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Abstract
Climate services that can anticipate crop yields can potentially increase the resilience of food
security in the face of climate change. These services are based on our understanding of how crop
yield anomalies are related to climate anomalies, yet the share of global crop yield variability
explained directly by climate factors is largely variable between regions. In Europe, France has been
a major crop producer since the beginning of the 20th Century. Process based and statistical
approaches to model crop yields driven by observed climate have proven highly challenging in
France. This is especially due to a high regional diversity in climate but also due to environmental
and agro-management factors. An additional level of uncertainty is introduced if these models are
driven by seasonal-to-decadal surface climate predictions due to their low performances before the
harvesting months of both wheat and maize in western Europe. On the other hand, large scale
circulation patterns can possibly be better predicted than the regional surface climate, which offers
the opportunity to rely on large scale circulation patterns as an alternative to local climate
variables. This method assumes a certain degree of stationarity in the relationships between large
scale patterns, surface climate variables, and crop yield anomalies. However, such an assumption
was never tested, because of the lack of suitable long-term data. This study uses a unique dataset of
subnational crop yields in France covering more than a century. By calibrating and comparing
statistical models linking large scale circulation patterns and observed surface climate variables to
crop yield anomalies, we can demonstrate that the relationship between large scale patterns and
surface variables relevant for crop yields is not stationary. Therefore, large scale circulation pattern
based crop yield forecasting methods can be adopted for seasonal predictions provided that
regression parameters are constantly updated. However, the statistical crop yield models based on
large-scale circulation patterns are not suitable for decadal predictions or climate change impact
assessments at even longer time-scales.

1. Introduction

Global agricultural crop areas have been increasingly
exposed to unfavourable weather conditions, sig-
nificantly deteriorating yields of the main agricul-
tural crops (Lesk et al 2016, Zampieri et al 2017a).
Climate change is expected to exacerbate the fre-
quency, severity, and spatial extent of extreme events

(Zhu and Troy 2018, Ceglar et al 2019, Zampieri
et al 2019) thereby changing the risk of simultaneous
breadbaskets failures (Gaupp et al 2020). Preventing
adverse effects of unfavourable climate events on crop
yields to avoid crop failures requires timely and effect-
ively planned agronomical decisions, which can be
put in practice if the future weather evolution is
known early enough in the growing season. As the
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location andmagnitude of surface weather anomalies
are difficult to predict beyond a two weeks horizon,
understanding the relationship between large-scale
atmospheric circulation patterns and surface climate
variability (including extremes) might provide a
more effective way to predict the potential impact on
crops. Relevant dynamical processes on sub-seasonal
to seasonal time scale include features such as El-
Nino (Cane et al 1994, Iizumi et al 2014), Madden
and Julian oscillation (Andersson et al 2020), stra-
tospheric circulation (Byrne et al 2017), stationary
Rossby waves (Kornhuber et al 2019), and large-scale
atmospheric circulation patterns (Ceglar et al 2017).
In this study, we focus on the latter.

Europe is predominantly influenced by four large-
scale atmospheric circulation (hereafter LS) pat-
terns: the North Atlantic Oscillation (NAO), the
East Atlantic (EA), the East Atlantic-West Russian
(EAWR) and the Scandinavian (SCAND) patterns
(Gonzalez-Reviriego et al 2015). Large-scale atmo-
spheric circulation in the Euro-Atlantic region has
an important control over the regional surface cli-
mate in Europe (Bladé et al 2012, Toreti et al 2010,
Casanueva et al 2014, Krichak et al 2014, Ceglar et al
2017). The persistence of certain types of circulation
patterns is associated with the occurrence of anomal-
ouswell-characterized spatial patterns of climate con-
ditions; for example, NAO has been shown to have a
strong influence on drought variability across Europe
(e.g. van der Schrier et al 2006, Vicente-Serrano et al
2016).

LS patterns have been shown to control vegeta-
tion activity in Europe, with the CO2 land sink being
influenced by NAO and EA coupling (Maignan et al
2008, Bastos et al 2016). The signature of these cli-
mate features has been identified in complex bio-
physical variables such as crop yields (e.g. Sepp and
Saue 2012, Brown 2013, Irannezhad and Klöve 2015,
Ceglar et al 2017). LS patterns have been shown to
account for up to 70% of inter-annual crop yield
variability in Europe (Cantelaube et al 2004, Ceglar
et al 2017). Identification of precursor mechanisms
leading to potential negative crop yield anomalies at
harvest can effectively provide an early warning for
adapting agro-management decisions with beneficial
economic prospects for farmers (Faloon et al 2018).
The recent improvements in predictability of large
scale atmospheric circulation over the Euro-Atlantic
region, with key factors such as the winter NAO being
predictable months ahead (Scaife et al 2014, Dun-
stone et al 2016), provide an opportunity to use skilful
seasonal forecasts for improved yield forecasts.

To benefit from seasonal climate predictability,
it is important to understand the link between LS
patterns and yields. Such relationships have been
explored and established for agriculture (e.g. Ceg-
lar et al 2017, Heino et al 2018, Nobre et al 2019)
and wind energy (e.g. Ely et al 2013). The impact
of LS patterns is indirect through their effect on

regional surface climate. Understanding the relation-
ship between LS and complex biophysical variables,
such as crop yield, is complicated by the time-varying
LS impact on surface regional climate, and lagged
responses of ecosystems through phenology and soil
moisture carry-over effects (Bastos et al 2016). The
formation of yield may be sensitive to specific con-
ditions during grain filling that can be connected to
the previous growing season such as the occurrence of
diseases (Capa-Morocho et al 2014, Caube et al 2017,
Ben-Ari et al 2018). Additionally to the climatic fin-
gerprint, the inter-annual variability and trends of
crop yields can be influenced by human interven-
tion (such as reactive in-season agro-management
and irrigation practices, andmore gradual changes in
characteristics and choice of crop varieties).

The impact of LS patterns on regional surface
climate in Europe is characterized by nonstationar-
ity, which is likely linked to interdecadal shifts in
the locations of the LS pressure centers (Vicente-
Serrano and Lopez-Moreno 2008). However, station-
arity is often assumed for empirical relationships
between LS and crop yields due to short historical
yield records that limit a more formal analysis. The
temporal evolution and magnitude of LS circulation
impact on crop yields are important to better under-
stand past regional co-variability between climate and
crop yields and have clear significance for impact
assessments at seasonal and/or decadal time scales.
This study aims to identify those LS patterns with
significant impact on crop yields on centennial time
scale and to discuss the temporal variation of these
impacts. Furthermore, we do so at subnational level
to capture the spatio-temporally evolving regionally
diverse impacts of LS patterns on surface climate
across France. For this purpose, we derive and apply a
statistical framework linking LS patterns and regional
surface climate to a long-term record of French soft
wheat and maize yields starting in 1900.

2. Data andmethods

2.1. Crop yield data
Crop yield, production and areas on regional
(department) level from 1900 until 1988 in France
were collected from books of national agricul-
tural statistics (‘Statistique agricole annuelle’ or
‘Annuaire de statistique agricole’) and merged
together with crop yield data from the Agreste web-
site (agreste.agriculture.gouv.fr; ‘Statistique agri-
cole annuelle’) for the period between 1989 until
2016. Following (Schauberger et al 2018) we use
here the 96 French mainland departments in their
current form, which is an equivalent to NUTS3
administrative division (figure S2 (available online
at stacks.iop.org/ERL/15/094039/mmedia)). Since
the shapes of French departments have changed over
time, the historical yield values were subsumed to
modern departments. Crop yields were calculated
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from total production and surface area for each
department.

The two main crops grown in France have been
analysed in this study: soft wheat and grain maize.
The manual digitization of data points from statist-
ical yearbooks was a large effort subject to possible
errors. Hence, to evaluate the quality of the data-
base, a preprocessing of the crop yield data is neces-
sary. Apart from physiologically unattainable values,
abrupt changes in time series within one department
are considered as possible reporting errors. These lat-
ter values are detected by the defined 99% quantile
and standard-deviation filters. Though this auto-
matic filter procedure may indeed remove some cor-
rect values, we assume that the alternative of manual
filtering by an expert would be more subjective (and
not feasible given the large amount of data). The fol-
lowing quality filters have therefore been applied to
check for digitizing errors in time series of crop yield
figures:

(i) unreasonable absolute values larger than a
physiologically currently unreachable yield
(20 t ha−1 for maize and wheat) are removed,

(ii) the top 1% of values across all departments per
decade are removed,

(iii) values deviating more than four standard
deviations around the mean of each crop-
department time series (for yield, area or pro-
duction) are removed, and

(iv) a similar thresholding approach is applied
within each decade of a single time series (for
yield, area or production), filtering values above
or below decadal mean ± two (yield) or three
(area, production) decadal standard deviations.

figures 1(b) and (c) shows the resulting time series of
total soft wheat (sum of winter and spring soft wheat)
and grain maize yields, aggregated at national level.

2.2. Time series of large-scale circulation patterns
The time series of the four main Euro-Atlantic LS
patterns (NAO, EA, EAWR and SCAND) for the
period 1901–2010 have been obtained from the 500-
hPa geopotential height (Z500) of the 20CR version
2 reanalysis (Compo et al 2011) through the applic-
ation of the Partial Least Squares (PLS) regression,
as described in Gonzalez-Reviriego et al (2015). The
main advantage of using the PLS regression, in com-
parison with the traditional EOF or REOF meth-
ods, is the higher correspondence obtained for the
common period 1950–2000 between the 20CR time
series of the LS patterns and those monitored by the
National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC). In the
PLS regression, the four LS spatial patterns (NAO, EA,
EAWR and SCAND) monitored by NOAA-CPC for
the period 1950–2000, have been used as dependent
variables and the 20CRZ500 anomalies for the period

1901–2010 as explanatory variables. Since neither the
dependent or explanatory input variables are stand-
ardized (both are given in the spatial domain), the
obtained PLS regression coefficients were standard-
ized for the period 1981–2010, which is the refer-
ence period used by CPC to normalize the time series
of the LS patterns. Standardized regression coeffi-
cients obtained in this way represent the time series
of the Euro-Atlantic LS patterns for the 20CR reana-
lysis. This procedure is applied for each season (DJF,
MAM, JJA and SON) separately (figure 1(a)).

2.3. Observational gridded weather data
The Climate Research Unit (CRU) gridded climate
dataset (version 4.03) is used here to obtain data
on monthly average temperature and precipitation
cumulates (Harris et al 2014). The CRU data rep-
resents gridded fields based on monthly observa-
tional data calculated from daily or sub-daily data by
National Meteorological Services and other external
agents. The resolution of the grid is 0.5◦ and covers a
period between 1901 and 2016. Gridded temperature
and precipitation data over France have been aggreg-
ated to French department levels.

2.4. Empirical relationship between climate and
crop yields
To establish the empirical relationship between LS
circulation patterns and crop yields, a similar meth-
odology has been followed as in Ceglar et al (2017).
The steps followed in this analysis are presented in a
schematic workflow in figure S1.

A multi-decadal trend in crop yield time series
can be induced by the combined effects of changes
in agro-management practices, environmental and
socio-economic factors and climatic changes. The cli-
mate factors can have a significant influence not only
on interannual yield variability but also on its long-
term trend. Agnolucci and De Lipsis (2020) have
shown that the trend in temperature is responsible
for a reduction in the long-term growth rate of wheat
yields in major European wheat producing countries.
Nevertheless, since our focus is on the inter-annual
crop yield variability, the multi-decadal trend in time
series is first removed using Dynamic Linear Mod-
els (DLMs). In statistical literature the DLMs might
go by a different terminology; in Harvey (1991) they
are called structural time series. The DLMs are a type
of linear regression models with time-varying rather
than fixed parameters and were shown to be a robust
method for crop yield trend analysis (Michel and
Makowski 2013). In our study, the DLMs are applied
for each crop and each department to detrend crop
yield time series (see Schauberger et al 2018, for more
details).

Detrended yield data are then used to build the
main statistical models at department level:

Yt = α0 +
∑

i
(αi.xi,t)+ ε (1)

3
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Figure 1. (a) Time series of first four leading modes of large-scale atmospheric circulation patterns over the euro-atlantic region
since 1901 (NAO, EA, EAWR and SCAND). (b) The time series of total soft wheat yield on national level since 1901 (black line).
Detrended yields (using dynamic linear model) are denoted by red line, while dashed blue line (belonging to secondary axis)
represents the yield standard deviation calculated using a moving window of 40 years. (c) Same as (b) but for grain maize.

where Yt represents detrended crop yield anomaly in
year t, xi,t the explanatory variables (seasonal NAO,
SCAND, EA and EAWR values) in year t and ε is
the residual term. The growing period for soft wheat
starts in autumn and finishes in the summer of the
following year. Spring, summer and autumn are con-
sidered as potential explanatory seasons for grain
maize. The empirical regression models are derived
for moving 40-year periods, starting with the period
1901–1940 (figure S1). Linear detrending is applied
to all explanatory variables (LS patterns) for each
time window of 40 years. Crop yields and explanat-
ory variables are also standardized (mean = 0 and
std = 1) for each period; the standardization makes
the regression results comparable between different
regions and time periods considered. The normal-
ity of derived model residuals has been tested using
the Shapiro test, while the Durbin-Watson test has
been used to detect the presence of autocorrelation in
residuals (Wilks 2006).

Initially, all explanatory variables are included
in the regression model (figure S1). For total soft
wheat, these amount to 16 variables (4 LS patterns
for each season), while this amounts to 12 variables
for grain maize. Regularization is therefore necessary
to reduce the model to the most important variables
and to reduce multicollinearity between the inde-
pendent variables. For this purpose, all explanatory
variables are first included into a Least Angle Regres-
sion Scheme (LARS; Efron et al 2004) to evaluate and
rank those variables contributing themost to the vari-
ance of the predicted yield. LARS is a model-selection
method, providing an ordering in which the covari-
ates enter the regression model. The main principle

of the LARS is to add or drop covariates one-at-time;
coefficients are updated at each step in equiangular
direction of themost correlated covariates until a new
covariate is added or dropped. To increase the robust-
ness of the method in the presence of outliers, we use
the robust LARS (RLARS), where the classical correl-
ations between covariates are replaced by robust cor-
relation estimates (Khan et al 2007). Finally, we gen-
erate bootstrap samples on the original data and apply
RLARS on each of these samples to sequence predict-
ors. The predictors are then ranked according to their
average rank over the bootstrap samples. The final set
of ranked predictors is chosen byminimizing the cor-
rected Akaike Information Criterion (AICc; Hurvich
and Tsai 1991).

After the final set of predictors is identified based
on the above procedure applied for each department,
the regression model (1) is then used again with
the identified set of predictors to derive department-
based standardized regression coefficients. The signi-
ficance of derived department-based regressionmod-
els is assessed using the p-values obtained by an F-test.
To account for multiple hypothesis testing (i.e. false
detection rate) for 96 departments, individual signi-
ficance tests on department level are corrected using
the procedure proposed by (Strimmer 2008).

The above procedure to establish department-
level regression models is followed also using surface
climate as explanatory variables (replacing the LS pat-
terns in equation (1) with seasonal averages of tem-
peratures and cumulates of precipitation). However,
in this case the number of explanatory variables is
lower, initially amounting to 8 variables for soft wheat
and 6 for grain maize (figure S1).
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Figure 2. (a) Standardized regression coefficients of the four leading atmospheric modes of variability for regional-based total soft
wheat yield regression models. The regression models are derived for each department separately, followed by aggregation of their
predictions to national level using a wheat area weighted average. For each year the regression coefficients are calculated using
predictors and explanatory variables on the moving window of 40 years. The coefficients displayed represent the central year of
each moving window (e.g. coefficients displayed for 1960 are derived from data between 1941 and 1980). The size of the circle
denotes the share of wheat area affected by large scale atmospheric circulation (i.e. cumulative area where obtained regression
models are significant, p < 0.05). Grey colour represents non-significant regression coefficients. (b) Same as a) but using seasonal
precipitation cumulates and average temperature as explanatory variables. The size of the circle denotes the share of wheat area
affected by seasonal temperature and precipitation (i.e. cumulative area where obtained regression models are significant,
p < 0.05).

3. Results

3.1. Time-varying impact of climate on soft wheat
yields
Figure 2(a) shows the time series of obtained regres-
sion coefficients for total soft wheat together with
the share of affected crop area at national level. The
regression coefficients are calculated using predictors
and explanatory variables on the moving window of
40 years; the coefficients displayed represent the cent-
ral year of each moving window. Winter EAWR and
spring EA patterns influenced the highest share of
soft wheat cropland during the first half of the 20th
Century; but their influence gradually decreased dur-
ing the second half of the 20th Century. While the
impact of positive spring EA on yield remains negat-
ive through the entire period of analysis, the stand-
ardized regression coefficient of winter EAWR pat-
tern reverses sign in the 1980’s. This is also visible
on figure S2(a), showing regional regression coeffi-
cients for three different periods. The strong posit-
ive impact of EAWR during the winter in a major
part of France gradually weakened and even reversed
its sign in the most recent period. A noticeable fea-
ture is an increase in influence of the autumn SCAND
pattern after mid-century, however with high inter-
annual variations in the area affected. SCAND influ-
enced wheat in a major part of France, except for the
Mediterranean and eastern continental regions dur-
ing the 1941–1980 period (figure S2(a)). Its influence
has been weakening towards the end of the analysed
period. During the recent period the impact of spring
SCAND pattern and summer EA pattern is observed,

with positive phases of both related to positive crop
yield anomalies.

Figure S2(b) shows regression coefficients
obtained for winter soft wheat only, calculated for
the period after 1960 due to the lack of separation in
reported winter and spring soft wheat statistics before
the 1950s. The comparison of coefficients with those
in figure 2(a) shows very little differences, indicating
that total soft wheat inter-annual variability is mainly
governed by winter soft wheat. This is confirmed also
by correlation figures between the total soft wheat
yields and winter soft wheat yields, which almost
equals 1 (Schauberger et al 2018).

Large scale atmospheric circulation has only an
indirect impact on crop yields through controlling
regional surface climate. To elucidate the role of tem-
perature and precipitation directly, we also derive
empirical relationships between these regional sur-
face climate variables (mean seasonal temperature
and precipitation cumulates) as predictors for crop
yield anomalies. The results exhibit similarity to
the decreasing influence of winter LS circulation on
wheat yields; a decrease of winter temperature and
precipitation impact can be observed in the second
half of the 20th Century (also in terms of total
soft wheat area affected). Negative regression coeffi-
cients related to winter precipitation indicate a deteri-
orating influence of positive rainfall anomalies on
wheat especially during the first half of the 20th Cen-
tury. Similar to winter EAWR, the impact of winter
temperature reverses its sign in the second half of
the 20th Century. Another interesting feature can
be observed in terms of summer temperature and
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Figure 3. As figure 2, but for grain maize.

Figure 4. (a) Explained variability of soft wheat yields (winter, spring and total soft wheat yields) obtained by deriving the moving
window regression models (using a time window of 40 years). (b) Reconstructed total soft wheat yield anomalies. Black lines
represent standardized measured yield. Green lines represent results obtained by using large scale atmospheric indicators as
predictors, while blue lines represent results obtained by using surface meteorological variables as predictors. The shaded area
around green and blue lines for each year denotes the range of predictions of the entire set of regression models from the moving
window of 40 years that include that specific year in the calibration (e.g. yield anomaly in year 1950 is predicted using 40 different
derived regression models from the moving time window). The uncertainty range diminishes at the beginning and at the end of
time series, where the first year (1901) and last year (2016) are used only once to derive the first and last regression model from
the moving time window. (c) Same as (a), but for grain maize. (d) Same as (b), but for grain maize.

precipitation; while the regression coefficients are
negative throughout the entire analysed period, their
amplitude strengthens after the 1950s. This indicates
an increasingly negative impact of positive temperat-
ure and precipitation anomalies during the summer.

3.2. Time-varying impact of climate on grain maize
yields
Grain maize has been mostly affected by the sum-
mer LS patterns (figure 3). The two most import-
ant modes of LS variability in this case are sum-
mer SCAND and summer NAO patterns. Summer
SCAND affected a major proportion of maize crop-
land in France until the late 1960s, when the impact
started to decrease sharply. Since the 1950s the sum-
mer NAO became the most prominent mode affect-
ing maize yields in France (together with summer
EAWR after 1980s).

Regression coefficients obtained from surface cli-
mate exhibit similar patterns of change; summer rain-
fall became more important in the second half of
the Century. Nevertheless, its relevance is slightly
decreasing towards the end of the analysed period.
Summer temperature affected large maize areas at the
beginning of the 20th Century, followed by a period
of little influence from mid-Century until the 1990s
after which it started to affect large areas of maize
again. Surface climate in spring and autumn had only
limited effect across the country.

3.3. Temporal evolution in explained variability of
crop yields
The obtained regression models are able to explain
a higher share of observed inter-annual crop yield
variability at the beginning of the 20th Century
(figures 4(a) and (c)). A distinctive drop in explained
variance can be observed roughly between the 1950s
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and 1980s for total soft wheat, followed by an increase
after the 1980s. Models based on regional surface
climate (seasonal mean temperature and precipita-
tion cumulates) generally explain more variability in
observed wheat yields than the LS counterpart until
the 1980s, when seasonal LS circulation becomes a
stronger predictor than surface climate. Contrarily,
surface climate predictors are able to explain more
variability than LS predictors for grain maize during
the entire analysed period (figure 4(c)). Reconstruc-
ted yields of total soft wheat and grain maize (fig-
ures 4(b) and (d)) show the lack of both regression
approaches to capture the magnitude of lower yield
anomalies, especially after the 1960s.

4. Discussion

4.1. Underlying reasons for varying impact
of surface climate on crop yields
4.1.1. Grain maize.
Our analysis for grain maize shows that it is primar-
ily sensitive to summer climate anomalies. Reduced
sensitivity to summer temperatures after the 1960s
could be related to improved crop management and
an increasing share of irrigated cropland in France.
The cropland area equipped for irrigation, which was
below 0.5 Mha before the 1960s, thereafter sharply
increased to above 2.5 Mha at the beginning of the
21st Century (Siebert et al 2015, Schauberger et al
2018). By 1975, maize was occupying roughly 35%
of irrigated cropland in France (OECD 2000); before
that, maize was likelymuch less irrigated, as irrigation
traditionally was used for market gardening and hor-
ticulture as well as orchards (OECD 2000). The share
of both maize harvested area and cropland irrigation
extent have increased after the 1960s; nearly 50% of
maize was irrigated at the beginning of the 21st Cen-
tury. Notwithstanding this, the increasing sensitivity
to summer temperature after the 1990s has likely been
caused by increasing occurrence of heat stress and
reduced grain filling length, confirming previous res-
ults of Ceglar et al (2016) and Hawkins et al (2013).
Even though irrigation was introduced, a relatively
stable sensitivity to summer rainfall remains after the
1950s, affecting mostly production areas that are less
intensively irrigated.

4.1.2. Soft wheat.
Positive winter precipitation anomalies were found
to negatively influence wheat yields during the first
half of the 20th Century in all of France. The decrease
of sensitivity to winter precipitation as well as total
area affected could be related to more intensive man-
agement, including fungicide and herbicide applic-
ations (Schauberger et al 2018). Towards the end of
the analysis period, the sensitivity to winter precipit-
ation remained only in southern and central-western
France, which represent less than a quarter of the

entire softwheat area in France. The sensitivity to pos-
itive winter temperature anomalies disappeared or
even reversed its sign in the 1960s (figure 2(b)). The
distinction between natural or management causes
in this case is not straight-forward. Warmer win-
ters could provide lower frost kill risk; however,
the introduction of varieties that require less ver-
nalization could also play a significant role when it
comes to sensitivity to winter temperature (Ceglar
et al 2019).Wu et al (2017) have shown the sensitivity
of winter wheat yields to warming-mediated interan-
nual variations that affect vernalization, especially in
regions where the period during which the temperat-
ure remains in the optimal range for vernalization has
shorthened.Warmer temperatures during the vernal-
ization period can affect various important growth
processes such as the floral initiation time and tiller
and spikelet formation, which consequently impact
crop yields.

Increasingly negative impacts of positive sum-
mer temperature anomalies at the end of the ana-
lysis period are presumably related to warmer tem-
peratures, which have been shown to lead to decreases
in wheat yield, especially when accompanied with
heat stress (Brisson et al 2010, Wu et al 2017). The
observed negative impact of wet conditions during
the grain filling and harvest periods confirms the
observations of Zampieri et al (2017a) and Ceglar
et al (2016), who identified a higher sensitivity of
wheat to water excess than drought in northern
France.

4.2. Links and differences between the LS and
regional surface climate impact on crop yields
The two most important modes of LS variability
for grain maize are summer SCAND and summer
NAO patterns. Their impact was strongest during
the mid-century, when positive anomalies in NAO
and SCAND were related to positive summer tem-
perature anomalies (figure 3(a)). Towards the end
of the analysis period only the sensitivity to sum-
mer NAO remained relatively stable and negative. It
even became slightly more pronounced in the 1990s,
reflecting the increasing importance of hot summers.
The decreasing explanatory power of the LS pat-
terns driven approach towards the end of the analysis
period, when surface climate is becoming increas-
ingly important, also indicates that local feedback
processes play a relevant role in amplification of sum-
mer extreme events, such as heat waves and droughts.
Indeed, late spring soil moisture conditions have
been shown to amplify high impact events such as
heat waves during summer (Prodhomme et al 2016).
Incorporation of realistic soil moisture conditions in
late spring in seasonal predictions of surface climate
in France also leads to improved seasonal prediction
skill for grainmaize yield forecasts (Ceglar et al 2018).

The predominant LS circulation patterns affect-
ing winter wheat in France are winter EAWR and
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spring EA (especially during the first half of the
20th Century). The controlling mechanism of winter
EAWR impact on wheat yield is mainly through
winter rainfall, which is negatively correlated to the LS
circulation pattern (figure 5(b)). Until the late 1950s,
the impact of winter EAWR on yield anomalies was
stable, while the influence of precipitation was gradu-
ally decreasing (plateau in the EAWR.wi-RR.wi rela-
tionship, figure 5(a)). This was followed by a sharp
decrease in EAWR impact on wheat area and crop
yields towards the 2000s. Similarly, winter precipita-
tion affected a significantly lower share of wheat cro-
pland after the 1950s. figure S2(a) reveals that winter
EAWR and precipitation impacted different parts of
France (EAWR in northern France and precipitation
in southern France). This can possibly be explained
by the EAWR control on other regional surface vari-
ables (such as radiation and humidity), which are not
included in our regression models, but that might
still be of high relevance for winter wheat in north-
ern France (Lecerf et al 2019).

The second prominent pattern, the spring EA,
relates to positive precipitation anomalies in the
central-northern part of France (figure 5(c)), is char-
acterized by more stable and lower temporal vari-
ation of regression coefficients through time. As for
the surface temperature, the strong positive correl-
ation observed at the beginning of the 20th Cen-
tury disappeared later on and only remained signi-
ficant in the southern and eastern parts of France.
Consequently, the share of wheat area affected by
this pattern decreased after the 1940s, followed by
an increase towards the end of the analysis period.
Comparison with the impact of surface climate vari-
ables suggests that EA imposes a stronger control on
precipitation anomalies when it comes to impact on
wheat yield; indeed, towards the end of the analysis
period the regression coefficient remains significant
for the EA spring pattern, however the surface tem-
perature impact diminishes (figure 2).

As shown in figures 2 and 3, the LS circulation
impact on inter-annual crop yield variations exhib-
its a time-varying behaviour in terms of strength of
impact as well as the share of cropland area affected.
Temporal variation in regression coefficients can arise
fromdifferent sources: (i) changing sensitivity of crop
yields to climate anomalies, which originates from
agro-management practices such as changing crop
varieties and introduction/improvement of various
agro-management practices (e.g. irrigation; Van der
Velde et al 2010, Ceglar et al 2016), (ii) changes in
covariance between LS indexes, and (iii) time-varying
LS circulation impact on regional surface climate.
The latter is likely to change the relation between
the LS circulation and its regional climate impact.
These variations are related to changes in the mean
state of the climate system over which the circulation
anomalies are over-imposed, such as sea surface tem-
perature, sea ice, or snow cover over land. Temporal

variation of LS circulation impact in the north-
ern Atlantic region can be related to displacement
of NAO’s action centres and consequently changed
atmospheric flow (Schenk et al 2009).

Time-varying behaviour of established regression
models can be observed also in the temporal evol-
ution of explained variability (figures 4(a) and (c)).
The amount of variability explained by LS circulation
decreases consistently for all types of wheat towards
the mid-of Century and increases again in the 1970s.
By contrast, the amount of variability explained by
surface climate is steadily decreasing until it reaches
a stable value of nearly 40% after the 1970s. It is
interesting to observe that LS circulation explains
more variability than surface climate after this point
in time. There are several possible reasons for this.
Surface climate based regression models take into
account only precipitation and temperature; other
variables could play an important role for instance
when it comes to the prevalence of diseases. Addition-
ally, isolated extreme events during the most sensit-
ive growth stages are not captured properly due to
the seasonal aggregation (e.g. Porter and Semenov
2005). On the other hand, the LS circulation control
over surface climate also affects other weather char-
acteristics, such as wind speed, humidity, and solar
radiation. At the same time, however, derived rela-
tionships using LS patterns are complicated by the
nonstationarities induced by other factors such as
sea surface temperatures and Quasi-Biennial Oscil-
lation (related to stratospheric warming and cool-
ing events), that are difficult to isolate and control
in our regression models. For example, when the
Atlantic is cold, the NAO tends to be more often in
a positive state; when the Atlantic is warm, the situ-
ation is reversed (D’Aleo and Easterbrook 2016). The
weaker control of large-scale circulation over wheat
yields during the mid-century period warrants addi-
tional research onmodulation of LS circulation in the
northern Atlantic region due to AtlanticMultidecadal
Oscillation (Zhang et al 2019), as the impact of the
latter onwestern European climate is especially strong
in spring (Zampieri et al 2017b).

It is worthwhile mentioning that regional sur-
face climate always explains a higher proportion of
observed maize yield variability than the LS pat-
terns (figure 4(c)). During the summer, the impact
of LS circulation on surface climate (especially rain-
fall) becomes weaker, as surface processes become rel-
evant (e.g. increased convection activity). Neverthe-
less, a positive summer NAO phase, which favours
warm temperature anomalies in France, has increased
its influence on maize areas in France (figure 6(b)).

Figures 4(a) and (c) reveals another important
feature; the evolution of explained yield variability
for both crops is more stable when surface climate
is used to provide explanatory variables. This has
important implications for prediction purposes. In
terms of statistically modelling the impact of surface
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Figure 5. (a) Scatterplot between obtained standardized regression coefficients using winter EAWR (y-axis) and winter surface
climate (x-axis, RR—precipitation and T—temperature) as predictors for total soft wheat yield aggregated at national level. The
color gradient in points represents the central year of the 40-year period used to obtain the regression coefficient. (b) Correlation
between surface precipitation (and temperature) anomalies and EAWR during winter in three successive periods. (c) Same as a),
but for EA indicator and surface climate in spring. (d) Correlation between surface precipitation (and temperature) anomalies
and EA during spring in three successive periods. (e) Same as (a) but for grain maize and NAO in summer. (f) Correlation
between surface precipitation (and temperature) anomalies and NAO during summer in the three successive periods.

climate change on crop yield anomalies, regression
models can be estimated more reliably when using
surface climate as predictors for at least a decadal win-
dow ahead of the calibration period, assuming that
agro-management effects (important for estimation
of crop yield trends) are known or can be extrapol-
ated from trend analysis. For example, given the rel-
atively stable persistence of summer temperature and
precipitation regression coefficients for grain maize
in the 1950s, these models could be used to estim-
ate the effects of summer climate impact almost until

the end of our analysis period. In the case of wheat,
the decadal predictability seems weaker mainly due
to the longer growing season and thus an interplay
of many more different variables compared to grain
maize. The LS based empirical models can still be
used to forecast the yield one to several years ahead of
the training period. This has important implications
for using seasonal forecasts of LS circulation patterns,
which are generally more skilful than seasonal surface
climate forecasts (e.g. Stockdale et al 2015, Dunstone
et al 2016).
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Figure 6. (a) Difference in observed total soft wheat yield anomaly in crop growing seasons when a compound event occurred
characterized by a negative winter EAWR and a positive spring EA, and all other growing seasons, for three time periods. Black
dots denote whether the difference is statistically significant (p < 0.05). (b) Difference in observed grain maize yield anomaly in
crop growing seasons when summer NAO was positive and growing seasons with negative summer NAO.

4.3. Case study—diverse impact of LS on crop
yields in two distant periods
To further illustrate the high level of time-varying LS
impact on regional crop yields, let us consider several
years with observed wheat yield anomalies under the
lower tercile values. According to estimated regres-
sion coefficients, the compound events with negative
winter EAWR (positive precipitation anomalies) and
positive spring EA (warm and wet spring) provide
highly unfavourable conditions for wheat yields. Such
a year occurred in 1947 (figure 1(a)), which resul-
ted in the lowest standardized wheat yield anom-
aly during the last century. Strong blocking per-
sisted over north-western Europe during the second
half of January which favoured an inflow of cold air
from north-eastern Europe and diverted the west-
erly flow of Atlantic depressions towards the south
of Europe. France experienced extreme cold weather
in the north and mild temperatures with excessive
wetness in the south and south-western parts (Eden
2008). The winter crops in the north were therefore
exposed to frost kill (FAO 1947). The winter was fol-
lowed by a wet spring, further compromising crops
that survived the preceding winter frost. Even though
the extremity of this compound event was unique in
the entire period after 1901, its occurrence in other
growing seasons before the 1980s resulted in signific-
antly lower yields with respect to other years (figure
6(a)). However, the occurrence of these compound
events after the 1980s did not result in significantly
different yields than in other years, except in a couple
of regions in southern France. The different nature of
winter climatic extremes occurring in the north and
south of France in 1947 also demonstrate the import-
ance of regional assessments on crop yield impact.

France experienced one of the worst soft wheat
yield losses in 2016 (in terms of detrended crop yield
anomalies, figure 1(b)). This loss was a consequence

of a compound event consisting of abnormally warm
temperatures in late autumn/early winter and abnor-
mally wet conditions in the following spring (Ben-Ari
et al 2018). In terms of LS circulation patterns, these
climate conditions are favoured by strong positive
EA patterns during autumn, winter and spring; and
warm winter is favoured also by a positive NAO.
While both empirical models (trained on LS patterns
and surface climate) result in a slightly negative yield
anomaly on national level for that year, they both fail
to capture the magnitude of the 2016 yield loss in
France. A relatively small area was affected by large
scale circulation; figure 2(a) shows that roughly half
of the wheat area is affected by the spring EA pattern
and only one quarter of area is affected by autumnEA.
Additionally, a stronger signal from large-scale cir-
culation is hidden in the seasonal values, which rep-
resent an average over three months. Excessive wet-
ness in May 2016 is only partially captured by the
EA signal; a better explanatory variable in this case
could be the SCAND pattern for May, which was
highly positive (i.e. favouring positive precipitation
anomalies over France). Indeed, this situation was
caused by an almost stationary low pressure system
over France and Germany, leading to heavy rainfalls
in different locations (Oldenborgh et al 2016). Simil-
arly, the EA pattern in preceding December 2015 was
extremely high, favouring abnormally warm temper-
atures. These probably contributed to increased dis-
ease pressure, indirectly influencing the final wheat
yields (Ben-Ari et al 2018).

5. Conclusions

Wehave derived a statistical framework to identify the
temporal stability of large scale circulation impact on
French crop yields using reported regional crop yields
since the beginning of the 20th Century. A lack of
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temporally consistent impact on crop yields for both
main crops (soft wheat and grain maize) grown in
France is identified. The winter EAWR had a dom-
inant impact on soft wheat yields until the 1980s;
additionally, yield became sensitive to large scale cli-
mate forcing in autumn during the second half of
the 20th Century (SCAND and EA patterns), while
the sensitivity to winter circulation features gradu-
ally weakened towards the last third of the analysed
period. By contrast, the LS patterns in spring (EA
and SCAND patterns) have increased their influence
during the last third of the analysis period (1981–
2016). Grain maize has been mainly affected by sum-
mer SCAND andNAO patterns, with the former hav-
ing a higher influence at the beginning, and the latter
towards the end of the 20th Century. Both patterns
can be linked to the deteriorating impact of posit-
ive temperature anomalies and negative precipitation
anomalies on maize yields.

The amount of crop yield variability explained
by LS circulation decreases for soft wheat towards
the mid of the 20th Century and increases again
in the 1970s. Conversely, the amount of variabil-
ity explained by surface climate is steadily decreas-
ing until it reaches a stable value in the 1970s. The
fact that surface climate, expressed in terms of sea-
sonal average temperature and precipitation cumu-
lates, explains less variation in wheat yield anomalies
as LS patterns do, reveals the importance of extreme
surface climate events such as precipitation shortages
and heat stress during more sensitive growing peri-
ods. Surface climate consistently explained a higher
share of crop yield variance than the LS patterns
counterpart throughout the entire period for grain
maize. Our analysis also reveals temporally varying
crop area totals affected significantly by climate con-
ditions. This highlights the importance of regional
impact assessments of both LS patterns and surface
climate on crop yields.

The LS patterns have an important impact on soft
wheat and grain maize yields in France, albeit with
high levels of temporal variation. This limits the use
of derived empirical models for prediction of yield
anomalies beyond a seasonal time scale in a decadal
to multi-decadal setting (e.g. simulation of future cli-
mate change impacts). Two main reasons behind this
are the non-stationary large scale control over surface
climate and changes in agricultural practices (such
as introducing new varieties, irrigation and fertiliza-
tion); their combined effect can lead to different levels
of sensitivity of crops to climate anomalies, when dis-
tant periods are considered. Nevertheless, we have
identified a source of seasonal predictability (i.e. up
to one year ahead) for soft wheat and grain maize
crop yields. This framework could take advantage
of potentially higher skill of seasonal predictions of
large-scale atmospheric circulation as opposed to sur-
face climate in mid-latitudes. It is important, though,

to constantly re-calibrate the empirical models using
the most recent crop yield observations.
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Ben-Ari T, Boé J, Ciais P, Lecerf R, Van der Velde M and
Makowski D 2018 Causes and implications of the
unforeseen 2016 extreme yield loss in the breadbasket of
France Nat. Commun. 9 1627
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