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Comparing perturbation models
for evaluating stability
of neuroimaging pipelines

Gregory Kiar1 , Pablo de Oliveira Castro2, Pierre Rioux1,
Eric Petit3, Shawn T Brown1, Alan C Evans1

and Tristan Glatard4

Abstract
With an increase in awareness regarding a troubling lack of reproducibility in analytical software tools, the degree of
validity in scientific derivatives and their downstream results has become unclear. The nature of reproducibility issues may
vary across domains, tools, data sets, and computational infrastructures, but numerical instabilities are thought to be a
core contributor. In neuroimaging, unexpected deviations have been observed when varying operating systems, software
implementations, or adding negligible quantities of noise. In the field of numerical analysis, these issues have recently been
explored through Monte Carlo Arithmetic, a method involving the instrumentation of floating-point operations with
probabilistic noise injections at a target precision. Exploring multiple simulations in this context allows the character-
ization of the result space for a given tool or operation. In this article, we compare various perturbation models to
introduce instabilities within a typical neuroimaging pipeline, including (i) targeted noise, (ii) Monte Carlo Arithmetic, and
(iii) operating system variation, to identify the significance and quality of their impact on the resulting derivatives. We
demonstrate that even low-order models in neuroimaging such as the structural connectome estimation pipeline eval-
uated here are sensitive to numerical instabilities, suggesting that stability is a relevant axis upon which tools are com-
pared, alongside more traditional criteria such as biological feasibility, computational efficiency, or, when possible,
accuracy. Heterogeneity was observed across participants which clearly illustrates a strong interaction between the tool
and data set being processed, requiring that the stability of a given tool be evaluated with respect to a given cohort. We
identify use cases for each perturbation method tested, including quality assurance, pipeline error detection, and local
sensitivity analysis, and make recommendations for the evaluation of stability in a practical and analytically focused setting.
Identifying how these relationships and recommendations scale to higher order computational tools, distinct data sets,
and their implication on biological feasibility remain exciting avenues for future work.
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1. Introduction

A lack of computational reproducibility (Peng, 2011) has

become increasingly apparent in the last several years, call-

ing into question the validity of scientific findings affected

by published tools. Reproducibility issues may have

numerous sources of error, including undocumented sys-

tem or parametrization differences and the underlying

numerical stability of algorithms and implementations

employed. While containerization can mitigate the extent

of machine-introduced variability, understanding the effect

that these sources of error have on the encapsulated numer-

ical algorithms remains difficult to explore. In simple cases

where algorithms are differentiable or invertible, it is pos-

sible to obtain closed-form solutions for their stability.

However, as software pipelines grow, containing multiple

complex steps, using non-linear optimizations and non-

differentiable functions, the stability of these algorithms

must be explored empirically.
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As neuroscience has evolved into an increasingly com-

putational field, it has suffered from the same questions of

numerical reproducibility as many other domains (Baker,

2016). In particular, neuroimaging often attempts to fit

alignments, segmentations, or models of the brain using

few samples with variable signal-to-noise properties. The

nature of these operations leaves them potentially vulnera-

ble to instability when presented with minor perturbations

in either the data themselves or their processing implemen-

tations. High performance computing (HPC), commonly

used in neuroimaging, is one such perturbation. As data

sets grow in size, the adoption of HPC environments

becomes a necessity. Given that these environments are

highly heterogeneous in terms of hardware, operating sys-

tems, and parallelization schemes, this heterogeneity has

been shown to compound with tool-specific instabilities

and impact results (Glatard et al., 2015).

The independent evaluation of atomic pipeline compo-

nents may be feasible in some cases, as was done by Skare

et al. (2000). Here, the authors computed the theoretical

conditioning of various tensor models used in diffusion

modeling and compared these values to the observed var-

iances in tensor features when fit on simulated data. While

approaches like the above provide valuable insights to

algorithms and their implementations independently, the

impact of these stepwise instabilities within composite

pipelines remains unknown. Even if one were able to eval-

uate each step within a pipeline, identifying the impact

these instabilities may have on a result when composed

together, both structurally and analytically, remains practi-

cally difficult to evaluate.

Various forms of instability have been observed in struc-

tural and functional magnetic resonance (MR) imaging,

including across operating system versions (Glatard et al.,

2015), minor noise injections (Lewis et al., 2017), as well

as data set or implementation of theoretically equivalent

algorithms (Bowring et al., 2018; Klein et al., 2009). These

approaches may have practical applications in decision-

making, such as deciding which tool/implementation

should be used for an experiment. However, they are rela-

tively far removed from the underlying numerical instabil-

ities being observed. Recent advances in numerical

analysis allow for the replacement of floating-point opera-

tions with Monte Carlo Arithmetic simulations (Parker,

1997) which inject a random zero-bias rounding error to

operations for a target floating-point precision (Frechtling

and Leong, 2015; Parker, 1997). This method can be used

for evaluating the numerical stability of tools by wrapping

existing analyses (Frechtling and Leong, 2015) and provid-

ing a foothold for scientists wishing to explore the space of

their pipeline’s compound instabilities (Denis et al., 2016).

In this article, we explore the effect of various perturba-

tions on a typical diffusion MR image processing pipeline

through the use of (i) targeted noise injections, (ii) Monte

Carlo Arithmetic, and iii) varying operating systems to

identify the quality and severity of their impact on derived

data. This evaluation will inform future work exploring the

stability of these pipelines and downstream analyses depen-

dent upon them. The processing pipeline selected for explo-

ration is Dipy (Garyfallidis et al., 2014), a popular tool that

generates structural connectivity maps (connectomes) for

each participant. The pipeline accepts de-noised and co-

registered images as inputs and then performs two key

processing steps: tensor fitting and tractography. We

demonstrate the relative impact that each of the tested per-

turbation methods has on the resulting connectomes and

explore the nature of where these differences emerge.

2. Methods

All processing described below was run using servers pro-

vided by Compute Canada. Software pipelines were encap-

sulated and run using Singularity (Kurtzer et al., 2017)

version 2.6.1. Tasks were submitted, monitored, and pro-

venance captured using Clowdr (Kiar et al., 2019) version

0.1.2-1. All codes for performing the experiments and cre-

ating associated figures are available on GitHub at https://

github.com/gkiar/stability and https://github.com/gkiar/sta

bility-mca, respectively.

2.1. Data set and pre-processing

The data set used for processing is a 10-session subset of

the Nathan Kline Institute Rockland Sample (NKI-RS) data

set (Nooner et al., 2012). This data set contains high-

fidelity structural, functional, and diffusion MR data and

is openly available for research consumption. The 10 ses-

sions used were chosen by randomly selecting 10 partici-

pants and selecting their alphabetically first session of data.

These data were pre-processed prior to the modeling eval-

uated here using a standard de-noising and image align-

ment pipeline (Kiar, 2019) built upon the FSL toolbox

(Jenkinson et al., 2012). The steps in this pipeline include

eddy current correction, brain extraction, tissue segmenta-

tion, and image registration. The boundary between white

and gray matter was obtained by computing the difference

between a dilated version of the white matter mask and the

original. Data volumes at this stage of processing are four-

dimensional and variable in spatial extent (first three

dimensions) with a fixed number of diffusion directions

(fourth dimension), totaling approximately 1003 � 137

voxels in each case.

2.2. Modeling

After pre-processing the raw diffusion data using FSL,

structural connectomes were generated for an 83-region

cortical and subcortical parcellation (Cammoun et al.,

2012) using Dipy (Garyfallidis et al., 2014). A six-

component tensor model was fit to the diffusion data resid-

ing within white matter. Seeds were generated in a 2 � 2 �
2 arrangement for each voxel within the boundary mask,

resulting in eight seeds per boundary voxel. Deterministic

tracing was then performed using a half-voxel step size,
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and streamlines shorter than three points in length were

discarded as spurious. Once streamlines were generated,

they were traced through the parcellation. Edges were

added to the graph corresponding to the end points of each

fiber and were weighted by the streamline count. This pipe-

line was implemented in Python, including a few compo-

nents in Cython, and relies on the Numpy library for a large

proportion of operations. Each resulting network is a square

connectivity matrix of 83� 83 edges, as shown in Figure 1.

This pipeline was chosen as it is both common and simple

relative to many alternatives.

2.3. Stability evaluation

Targeted and Monte Carlo perturbation modes were tested

100� per image. Noise was represented by percent devia-

tion of the Frobenius norm of a resulting connectome from

the corresponding reference (no noise injection). A devia-

tion of 50% indicates that the norm of the difference

between the noisy and reference networks is 50% the size

of the norm of the reference graph. This is formalized

below in equation (1)

%DevðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

jaij � bijj2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

jaijj2
vuut

,
ð1Þ

where A is the reference graph, B is the perturbed graph,

and c ij is an element therein at row i and column j.

The perturbation methods evaluated, presented below,

are summarized in Table 1.

2.4. Subject-level variation

Comparison between subjects will be used as a reference

error. If the differences observed by other methods are

similar in magnitude to the subject-level difference, then

the validity of the processed networks for use in down-

stream phenotypic analysis becomes questionable as sub-

jects cannot be reliably distinguished from one another.

This error is computed as the pairwise distance between all

10 subjects included in this cohort.

2.5. Targeted noise

The goal of targeted noise was to inject data perturbations

sufficiently small that the resulting images would be indis-

tinguishable from the original. This is meant to test the

lower bound of noise sensitivity for processing pipelines.

The type of targeted noise used here will be referred to as 1-

voxel noise and is similar to the method employed by

Lewis et al. (2017). In our case, the intensity of a single

voxel in the defined range will be scaled based on a scaling

factor. The voxels modified in this case were randomly

generated within the mask of brain regions being modeled

by the pipeline.

The two modes of 1-voxel noise injection tested here

were: (a) a single voxel per entire image of size

ðX ;Y ; Z;DÞ (approximately 1003 � 137 for all images),

or (b) a single voxel per 3D volume of size ðX ; Y ; ZÞ
(approximately 1003 for all images), and are referred to

as “single” and “independent” modes, respectively. While

the number of perturbed voxels in the independent case is

approximately 100� larger, the intensity of magnification

was consistent as in both cases the original voxel intensities

were doubled.

2.6. Monte Carlo Arithmetic

Verificarlo (Denis et al., 2016) is an extension of the

LLVM compiler which automatically instruments

floating-point operations at build-time for software written

in C, Cþþ, and Fortran. Once compiled with Verificarlo,

the Monte Carlo emulation method and target precision can

be set as environment variables. For all simulations, a

rounding error on the least significant floating-point bit in

the mantissa (bit 53) was introduced. The simulations were

computed using the custom QUAD backend which is

0

1000
Edge WeightEdg

Figure 1. Example connectome. Each row and column corre-
sponds to a region within the brain, and the intersection a con-
nection between them. If no connection is found between regions,
the edge strength is zero. If a streamline is found to connect two
regions, the weight is incremented by 1. The resulting weights are
the sum of all observed connections for every streamline traced
within a brain image.

Table 1. Description of perturbation modes.

Permutation Description

X-subject Pairwise comparison of sessions based on Subject ID.
1-voxel Intensity value doubled for either single (one voxel

in entire 4D volume) or independent (one voxel
per 3D sub-volume) voxels.

MCA Simulation of all floating-point operations in Python
(Python and Cython-compiled libraries).

RR Simulation of all rounding operations in Python or
the Full Stack (BLAS and LAPACK, Python and
Cython-compiled libraries).

X-OS One of Ubuntu 16.04 or Alpine 3.7.1.
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optimized to reduce computation time over the traditional

MCALIB MPFR backend leveraging GNU’s multiple pre-

cision library (Frechtling and Leong, 2015). Noise through

Verificarlo can be injected as “Precision Bounded,” simu-

lating floating-point cancellations, “Random Rounding

(RR),” simulating only rounding errors on computation,

and “MCA,” which includes both of these modes. A parti-

cularity of the RR mode is that it only injects rounding

noise on inexact floating-point operations (i.e. operations

that have a rounding error in IEEE-754 at the target preci-

sion). Therefore, RR mode preserves the original exact

operations, it is a more conservative noise simulation. We

used both the RR and MCA modes of simulation.

Verificarlo was used to instrument tools in two modes

we will refer to as “Python” and “Full Stack.” In the

Python instrumentation, the core Python libraries were

recompiled with Verificarlo as well as any subsequently

installed Cython libraries. In the Full Stack instrumenta-

tion, BLAS and LAPACK were also recompiled, meaning

that Numpy, a dominant Python library for linear algebra,

was also instrumented. The Full Stack implementation did

not run successfully using the MCA mode. We suspect

that some libraries require exact floating-point operations

or are sensitive to cancellation errors, so only the RR

mode was able to be evaluated for the Full Stack. These

instrumentations took several working days (including

substantial cumulative compilation times) for the authors

to refine, and the images are available on DockerHub at

gkiar/fuzzy-python.

2.7. Operating system variation

Operating system noise was evaluated across Alpine

Linux 3.7.1 and Ubuntu 16.04. Alpine is a lightweight

distribution which comes with minimal packages or

libraries, and Ubuntu is a popular Linux distribution with

a large user and development community. Alpine was

chosen as its lightweight nature makes it an efficient

choice for the packaging and distribution of libraries in

containers for scientific computing, reducing the overhead

of shipping code toward data sources. Ubuntu was chosen

due to its high adoption and community support by major

libraries. While Alpine comes with a minimal set of

libraries, a core difference between these systems as noted

by DistroWatch (https://distrowatch.com/) is their depen-

dence on a different version of the Linux kernel. While

numerical differences between operating systems are

likely the result of compilers (Sawaya et al., 2017) and

installed libraries, the purpose of testing across operating

systems explicitly rather than combinations of specific

tools is to recreate a real-world setting in which typical

scientific users observe numerical differences across

equivalent high-level pipelines.

Ubuntu was used as the base operating system for all

simulations other than this comparison. The variability

observed across operating systems was aggregated across

participants and included as a reference margin of error.

2.8. Aggregation of simulated graphs

To structurally evaluate each simulation setting, connec-

tomes were aggregated within setting and subject combina-

tions. Several aggregation methods were explored to

preserve various sensitivity and stability properties across

the aggregated graphs. In each case, the operations are

performed edge-wise, so the aggregated graph is not guar-

anteed to be single graph in the set of perturbed graphs. The

aggregation operations are the edge-wise mean and the 0th

(minimum), 10th, 50th (median), 90th, and 100th (maxi-

mum) percentiles. The mean aggregate will include a non-

zero weight for every edge which appears in at least one

simulation, and the 0th and 100th percentiles will include

the lowest and highest observed weight for every edge,

respectively. The 90th, 50th, and 10th percentiles increas-

ingly aggressively filter edges based on their prominence

across simulations. The combination of percentile aggre-

gates also enables isolation of the most spurious edges,

such as by taking the difference of maximum and minimum

aggregates. A volatile aggregate was created to this effect

which consists of edges which are found in the maximum

aggregate but not the minimum aggregate. Note that in this

case, the weight for these edges is not implied and can be

defined as an alternative function of the graph collection,

such as mean, but as the weight does not appear when

comparing binary edges, no recommendation for this

weighting is made here.

3. Results

All perturbation modes were applied to either the input data

or post-processing pipeline described in Section 2.2 and

were evaluated according to equation (1).

3.1. Perturbation-induced differences

Figure 2 shows the percentage deviation for each simu-

lation mode on 10 subjects. Introduced perturbations

show highly variable changes in resulting connectomes

across both the perturbation model and subject, ranging

from no change to deviations equivalent to difference

typically observed across subjects. For the 10 subjects

tested, we see that the Python-instrumented MCA and

RR pipelines resulted in the largest deviation from the

reference connectome. In these cases, we also see that

the results are modal, where each subject has discrete

states that may be settled in, some of which result in

deviations comparable to subject-level noise. This mod-

ality is likely due to minor differences introduced at

crucial branch points which then cascaded throughout

the pipeline. This hypothesis is supported by observing

that the Full Stack implementation with RR perturba-

tions shows a continuous distribution of differences that

are highly variable in intensity, ranging from no devia-

tion to subject-level in some cases for some subjects,

which are explored in Section 3.2.
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The 1-voxel independent mode unsurprisingly produces

larger changes than the 1-voxel single mode. These

changes are larger than or comparable to operating system

variability, respectively, resulting in small deviations from

the reference, and are relatively minor in comparison to the

extremes observed with Monte Carlo Arithmetic. Operat-

ing system deviations are very low or even zero in some

cases. In all perturbation settings, we can see that there is

large variability both across simulations on the same data

and across subjects.

3.2. Progression of deviations in a continuous setting

In the case of subject A00035940, the Full Stack RR per-

turbations led to a continuous distribution of outputs,

ranging in difference from none to subject-level from the

reference. Figure 3 explores the progression of these

deviations by visualizing the difference connectome for

samples along various points of this distribution. In the

center, we show the reference connectome, and surround-

ing it the difference graph for a simulated sample labeled

%Dev from this reference. In this case, we can see a

progression of structurally consistent deviations. In par-

ticular, edges corresponding to regions in the left hemi-

sphere become increasingly distorted (bottom-right

portion of the connectome), whereas the within-

hemisphere connectivity for the right hemisphere (top-

left portion) remains largely intact in all cases except the

extreme difference case. We notice in all cases that the

connectivity between regions is decreasing until the edges

disappear entirely. While this behavior is not consistent

across all subjects, this observation suggests a peculiarity

in the quality of data in this region for the subject in

question. This could be due to artifacts caused by motion

or other factors, ultimately reducing the stability of mod-

eling connectivity in this region.

3.3. Structural properties of introduced perturbation

While the case investigated above notably showed a signif-

icant degradation of regional signal quality for Full Stack

RR noise in a single subject, Figure 4 explores the relative

change in connectivity from the reference for each pertur-

bation mode and subject. Edges in the presented graphs are

weighted by their standard deviation across all simulations

for that participant and colored as positive or negative

deviations based on whether the mean weight for all simu-

lations was greater or lower than the reference weight,

respectively. All edges with a standard deviation of 0

across all simulations were greened out for clarity.

For the Python-instrumented MCA and RR implementa-

tions, edge weight was generally inflated nonspecifically

for existing edges in the reference connectome for all sub-

jects. The Full Stack RR implementation shows significant

variability across subjects, where the number of affected

edges ranges from none to all. In each case where there

exists some deviation, intensities appear to be spatially

linked, suggesting the differences may be due to variable
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Figure 2. Comparison of perturbation modes. As evaluated by the percent deviation from reference in the Frobenius norm of a
resulting connectome, each of the 10 processed subjects were reprocessed 100� for each perturbation method. We see that the MCA
and RR (Python) methods resulted in distinct modes for the outputs in all cases reaching extreme deviations equivalent to cross-subject
variation. The RR (Full Stack) method shows high variability across subjects, and only reaching cross-subject variation in the case of two
subjects. The 1-voxel methods result in considerably less deviation from reference and are more consistent across subjects than the RR
(Full Stack) method.
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quality in the underlying data. In this case, Monte Carlo

Arithmetic may have served to shed light on poor signal-to-

noise properties present within regions of the images being

modeled.

For 1-voxel noise, the differences introduced across inde-

pendent injections impacted a larger portion of edges than

single injections, unsurprisingly. By design (i.e. injection at

random locations for each simulation), the deviations appear

nonspecifically spatially distributed. However, 1-voxel noise

could be modified to spatially constrain the location for

noise injection regionally, allowing the evaluation of model-

ing for particular substructures within the images.

3.4. Aggregation across simulations

For each simulation method there existed a graph nearly

identical to the reference, but the variability introduced by

these simulations were highly variable both in terms of the

method of perturbation used and the data set being pro-

cessed. The aggregation of the simulated graphs into a

consensus graph allows features of this variation to be

encoded implicitly in connectomes which may be used for

downstream analyses. Figure 5 shows the relative percent-

age of added and missing edges for each setting across all

subjects using a variety of such aggregation methods.

By aggregating the simulated connectomes in a variety

of methods, the resulting edges would be a product of

applying some filter to the set of observed edges and suc-

cinctly represented in a single graph. While minor devia-

tions in one edge may reduce the strength of connectivity

between two strongly linked regions, the addition of a con-

nection between two regions which were previously uncon-

nected may be significant in one aggregation method but

ignored in another. In the case of the above example,

despite the strength of connectivity remaining low between

the newly connected nodes many graph theoretic measures

rely on binarized graphs and may be considerably affected,

such as the degree.

We notice that the 1-voxel independent (i.e. single voxel

per 3D volume) method shows the most variability across

each aggregation method. Where all of the MCA-derived

methods perturb the pipeline nonlocally, both epsilon-level

methods add local noise at arbitrary locations. This distinc-

tion seems to manifest in more widely added or knocked-

out edges for the 1-voxel cases, as the location of noise may

have considerable impact on a multitude of nearby fibers,

where MCA methods have a zero-bias noise globally,

meaning all deviations from the reference are spurious and

due to numerical error rather than the introduction of a

systemic change that sheds light on an underlying cascad-

ing instability.

Unsurprisingly, the only aggregation method which

shows considerable amount of both new and missing edges

is the volatile technique, which takes edges that exist in the

binary difference of 100th and 0th percentile graphs, elim-

inating all extremely stable edges from the graph (i.e. those

which exist for the reference and all simulations). While the

mean sparsity of the reference graphs is 0.30, meaning 30%
of possible connections have nonzero weight on average,

the sparsity of the volatile aggregates ranges from 0.005 to

0.130, or the aggregates contain between 2.5% and 43.0%
the number of edges as the reference graphs.

3.5. Comparison of simulation performance

While the application of each perturbation model tested

sheds light on different properties of pipeline stability, the

resource consumption of these methods has significant

bearing when processing data in the context of a real

experiment often consisting of dozens to hundreds of sub-

jects worth of data. In this experiment, a single unperturbed

pipeline execution took approximately 20 min using one

core and 6 GB of RAM. Figure 6 shows the relative time on

CPU for a single simulation of each method tested, relative

to the reference task with no instrumentation. For Monte

Carlo Arithmetic-instrumented executions, we expect to

see a considerable increase in computation time as addi-

tional overhead is added to each floating-point operation. In

the case of 1-voxel noise, it is expected to see a minor

increase in computation time as the perturbed data volumes
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Figure 5. Gain and loss of edges in aggregation of simulations. The relative gain and loss of edges is shown for each aggregation method
and perturbation method in terms of binary edge count. The volatile aggregation is the difference between 100th percentile and 0th
percentile aggregates, and it contains all edges which do not appear in every graph. The volatile set of edges for each of MCA (Python),
RR(Python), RR (Full Stack), 1-voxel (independent), and 1-voxel (single) contain 2:5%, 2:5%, 18:5%, 43:0%, and 1:7% of the number of
edges found in the reference, respectively. In the worst case, 1-voxel (independent), this means that the existence of nearly half the
edges in the graph fail to have consensus across the simulations. RR: Random Rounding.
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were generated at runtime, reducing the data redundancy

on disk.

The Python MCA and RR modes show a slight increase

in computation time to the reference task, whereas the Full

Stack version approaches a nearly 7� slowdown, on aver-

age. This discrepancy further supports the hypothesis stated

above that floating-point logic implemented directly in

Python, without the use of Numpy or external libraries,

accounts for a minor portion of the total floating-point oper-

ations. As Verificarlo has been shown to increase the run-

time of floating-point operations by approximately 100�
(Denis et al., 2016), this result suggests that the pipeline

evaluated here is largely I/O limited. In the case of

1-voxel perturbations, we see a slowdown approximately

equivalent to that of the Python instrumentation, not exceed-

ing a 2� increase. Across all executions, approximately

2000 CPU hours were consumed. While this is a small work-

load in the context of HPC, the required resources quickly

reach the order of CPU years after extrapolating to the entire

NKI-RS data set or others in neuroimaging.

4. Discussion

We have demonstrated through the application of multiple

perturbation methods how noise can be effectively injected

into neuroimaging pipelines enabling the exploration and

evaluation of the stability of resulting derivatives. These

methods operate by either perturbing the data sets or tools

used in processing, resulting in a range of structurally dis-

tinct noise profiles and distributions which may each pro-

vide value when exploring the stability of analyses. While

1-voxel noise is injected directly into the data sets prior to

analysis, MCA and RR methods iteratively add signifi-

cantly smaller amounts of noise to each operation

performed.

In the case of partial (Python) instrumentation with

MCA and RR, distinct and considerably distinct modes

emerged in all tested subjects. We hypothesize that soft-

ware branching likely played a role leading to this unex-

pected result. As the majority of numerical analysis in

Python is traditionally performed using the Numpy library,

and therefore BLAS and LAPACK, it is possible that the

error introduced by Python was allowed to cascade

throughout the pipeline without correction, until the next

Python branch point occurred and this repeated, eventually

growing to the often subject-level differences observed.

These modes would then be the result of a small number

of instrumented numerically sensitive operations, leading

to a bounded set of possible outcomes of an otherwise

deterministic process. It is possible that these distinct

modes could serve as upper bounds for the deviation due

to instabilities within a pipeline, and this is an area for

further exploration. Future work will also more closely

instrument libraries with functionality that will enable the

identification of crucial branch points, as this functionality

is already present within Verificarlo. The identified crucial

branch points could be leveraged for the reengineering of

pipelines with more stable behavior and potentially shed

light on new best practices.

An exciting application of MCA and RR (Python) anal-

yses in cases where pipeline modification is not feasible is

the generation of synthetic data sets. Using each mode or an

aggregated collection of modes as samples in the MCA-

boosted data set could potentially increase the statistical

power of analyses for data sets which may suffer from

small samples, or be used to increase the robustness of

derivatives by bagging the results using an appropriate

averaging technique for the simulated derivatives.

While the Python instrumentation with MCA and RR

resulted in derivative modes, the Full Stack instrumentation

with RR produced a continuous distribution of derivatives

which were often less distinct from the reference results.

Extending the hypothesis posited above, this continuous set

of results may be due to a law of large numbers effect

emerging when performing a considerable number of small

perturbations, leading to a normalized error distribution

and effectively a self-correction of deviations. Future work

will test this hypothesis and consider the relationship

between the fraction of instrumented floating-point opera-

tions and modality, as well as through the incremental pro-

filing and evaluation of tools for the comparison of

intermediate derivatives and their deviation from a refer-

ence execution. These experiments have the potential to

provide more insight into the origin of instabilities in sci-

entific pipelines and identify rich optimization targets.

As the significance of RR (Full Stack) perturbation was

highly variable across participants, this technique could

also be used for automated quality control, flagging high-

variance subjects for further inspection or exclusion from

analyses. From the top level, inspecting the regional degra-

dation of signal across these perturbations as shown in

Figure 3, researchers could lead a targeted interrogation

Time (s)
0

1

2

3

4

5

6

7 MCA (Python)MCA (Python)
RR (Python)RR (Python)
RR (Full Stack)RR (Full Stack)
1-voxel1-voxel

Computation Time of Single Executions of Various Perturbation Methods

R
el

at
iv

e 
M

ea
n 

Ti
m

e 
pe

r S
im

ul
at

io
n

Figure 6. Computation time for each perturbation method.
Shown in relative time to the reference execution, plotted is the
average execution time for the perturbation methods. MCA and
RR (Python) have a small increase in computation time per run, as
few floating-point operations were instrumented in these settings.
The RR (Full Stack) method has nearly a 7� slowdown. In this
case, all floating-point operations were instrumented, but the
slowdown of less than the estimated 100� would suggest that the
bulk of computation time is not spent on floating-point arithmetic.
The 1-voxel implementations had a minor slowdown due to the
regeneration of data prior to pipeline execution. In every case, the
real-world slowdown is S� larger, where S is the number of
simulations, in this case 100.
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of their raw data sets to identify underlying causes of signal

loss. Conversely, investigating which low-level BLAS

operations contribute to the observed instabilities will

allow researchers to clarify the link between ill-

conditioning and so-called bad data directly within their

pipelines. Upon characterizing this relationship it would

be valuable to identify the point (if any) at which targeted

N-voxel perturbations become equivalent to MCA-induced

variability.

The differences observed when performing 1-voxel

perturbations were often comparable in magnitude to the

variation introduced across Operating Systems. As OS

noise is not controlled and may differ greatly among dis-

tributions, package updates, and so on, it is likely an insuf-

ficiently descriptive evaluation method and should be

used as a reference alongside others. The level of control

made available through 1-voxel perturbations in terms of

both locality and strength of noise makes it a flexible

option that could potentially be used to target known areas

of key importance for subsequent analyses. Due to the fact

that these perturbations introduce a minor change to input

images, this method could also be used for estimating

global pipeline stability in a classical sense (i.e.

conditioning).

While each of the perturbation modes showed distinct

differences with respect to the magnitude and continuity

of their induced deviations, Figure 4 illustrates that the

structure of these deviations was also highly variable

across both perturbation method and data. This suggests

different applications and use cases for each perturbation

method. While MCA and RR Python implementations

impact connectomes globally, these could be applied

to generate synthetic data sets. Full Stack RR is highly

variable with respect to data set, suggesting possible

applications in quality control, granted further work is

performed to more fully understand the effect observed

between this and the Python-only case. Both 1-voxel

methods add noise locally and can test the sensitivity

of specific pipeline components or regions of interest to

variation. Other methods, such as automatic differentia-

tion, could also be explored as possible avenues leading

toward an understanding of the end-to-end conditioning

of pipelines.

In addition to generating unstable derivatives which

could be looked at or analyzed independently, this type

of perturbation analysis enables the aggregation of deriva-

tives. As is summarized in Figure 5, the method by which

graphs or edges are aggregated can drastically change the

construction of resulting graphs. While the mean and max-

imum (i.e. 100th percentile) methods both retain all edges

that have appeared in even a single graph, the minimum

(0th percentile) and other low-percentile aggregations

require a stricter consensus of edges for inclusion in the

final graph. A benefit of performing multiple aggregations

is the composition of graphs with complex edge composi-

tion, such as the most volatile edges, as is shown in the final

column of Figure 5. While the binary edge count in the

composite graphs varies in each of these methods, it is

unclear how derived graph statistics will be affected, and

that remains an exciting question for further exploration.

From a resource perspective, each of the perturbation

methods evaluated requires multiple iterations to get a

sense of the pipeline stability or build aggregates, here

taken as 100 iterations. Though the MCA-based methods

have the obvious disadvantage of extra computational

overhead within each execution cycle of the pipeline, the

noise-injection methods do not increase the computation

time for a single pipeline execution itself but in this case

added computational burden for the generation of syn-

thetic data dynamically, reducing the redundancy of

stored images on disk. While Verificarlo has been demon-

strated to account for an approximately 100� slowdown

in floating-point operations (Denis et al., 2016), the larg-

est slowdown observed in this pipeline is approximately a

factor of 7, as shown in Figure 6. This suggests that the

bulk of time on CPU for this pipeline is not spent on

floating-point operations but perhaps other operations

such as looping, data access, or manipulation of informa-

tion belonging to other data types. While this slowdown is

observed for the Full Stack implementation, the Python-

only implementation is negligibly slower than the

reference execution, suggesting that even fewer of

the floating-point logic is directly written in Python. The

slowdown in the 1-voxel setting is of a similar scale to that

of the Python-only implementation, with the slowdown

likely caused by the addition of two read and one write

operations to the pipeline’s execution (reading of simula-

tion parameters and original image, application of simula-

tion, and subsequent writing of perturbed image to

temporary storage). Note that the figures shown in

Figure 6 are for a single simulation, and real relative CPU

time in each case would be 100� larger for the experi-

mental application of these methods.

The work presented here demonstrates that even low-

order computational models such as a six-component ten-

sor used in diffusion modeling are susceptible to noise. This

suggests that stability is a relevant axis upon which tools

should be compared, developed, or improved, alongside

more commonly considered axes such as accuracy/biologi-

cal feasibility or performance. The heterogeneity observed

across participants clearly illustrates that stability is a prop-

erty of not just the data or tools independently but their

interaction. Characterization of stability should therefore

be evaluated for specific analyses and performed on a rep-

resentative set of subjects for consideration in subsequent

statistical testing. Additionally, identifying how this rela-

tionship scales to higher order models is an exciting next

step which will be explored. Finally, the joint application of

perturbation methods with more complex post-processing

bagging or signal normalization techniques may lead to the

development of more numerically stable analyses while

maintaining sensitivity that would be lost in traditional

approaches such as smoothing.
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5. Conclusion

All pipeline perturbation methods showed unique nonzero

output noise patterns in low-order diffusion modeling,

demonstrating their viability for exploring numerical

stability of pipelines in neuroimaging. MCA and RR

(Python)-instrumented pipelines resulted in a wide range

of variability, sometimes equivalent to subject-level differ-

ences, and are recommended as possible methods to esti-

mate the lower bound of stability of analyses, generation of

synthetic data sets, and possible identification of Python-

introduced critical branch points. RR (Full Stack) perturba-

tions resulted in continuously distributed connectomes that

were highly variable across data sets, ranging from negli-

gible deviations to complete regional signal degradation.

We provisionally recommend the use of RR (Full Stack)

noise for automated quality control and identifying global

pipeline stability. While 1-voxel methods result in consid-

erably smaller maximum deviations than the MCA-based

methods, they are far more flexible and enable evaluating

the sensitivity of pipelines to minor local data perturba-

tions. While the MCA-based methods are more computa-

tionally expensive than direct 1-voxel noise injections, the

slowdown was found to be less significant in practice than

the 100� scaling factor estimated per floating-point oper-

ation, presumably due to a significant portion of the pipe-

line computation time being spent on data management or

string and integer processing rather than the constant use of

floating-point arithmetic.

In all cases, while tool instrumentation enables the par-

allelized simulation of a particular set of instructions, the

aggregation of the simulated graphs is an essential compo-

nent of the downstream analyses both when exploring the

nature of instabilities or developing inferences upon the

pipeline’s derivatives. We recommend a percentile

approach to aggregation, where the threshold can be

adjusted based on the desired robustness of the resulting

graphs. An advantage of percentile approaches is also that

composite aggregates can be formed, isolating edges based

on their prevalence across simulations. Further exploration

of the distribution of perturbed results should be performed

to conclude on the relevance of the aggregation used, as the

desired aggregate should be close to the expected value of

the distribution.

While both MCA and random-injection simulations are

computationally expensive in that they require the evalua-

tion of many simulations, they provide an opportunity to

characterize processing modes that may emerge when ana-

lyzing either noisy data sets or unstable tools. This work

also highlighted an important relationship between the

noise properties of an incoming data set and the tool, vali-

dating the need to jointly evaluate the stability of tool–data

set combinations.

Where this work demonstrates a range of numerical var-

iation across minor changes in the quality of data or com-

putation, it does not address the analytic impact of these

deviations on downstream statistical approaches. This open

question, as well as the relative impact of normalization

techniques on this process, presents avenues for research

which will more clearly place these results in a biologically

relevant context, allowing characterization of the func-

tional impact of the observed instabilities.
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