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Introduction

The estimation of quadratic functionals of a probability density and of its derivatives is crucial, in particular for the problem of data-driven bandwidth selection for density estimation. When initiating research on this issue, [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF] showed that such functionals can be estimated at the parametric rate, which has attracted great interest. Since then, many studies have been done on this subject; let us cite, among many others, [START_REF] Bickel | Estimating integrated squared density derivatives: sharp best order of convergence estimates[END_REF], [START_REF] Birgé | Estimation of Integral Functionals of a Density[END_REF], [START_REF] Giné | Uniform in bandwidth estimation of integral functionals of the density function[END_REF], [START_REF] Laurent | Efficient estimation of integral functionals of a density[END_REF][START_REF] Laurent | Estimation of integral functionals of a density and its derivatives[END_REF][START_REF] Laurent | Adaptive estimation of a quadratic functional of a density by model selection[END_REF], [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF], and [START_REF] Mokkadem | Recursive estimators of integrated squared density derivatives[END_REF]. Let us mention that parametric rate appears also in density estimation of convolutions, see [START_REF] Du | Root-n consistency and functional central limit theorems for estimators of derivatives of convolutions of densities[END_REF], [START_REF] Giné | On local U-statistic processes and the estimation of densities of functions of several sample variables[END_REF], and Schick and Wefelmeyer (2004a, 2004b, 2007a[START_REF] Schick | Uniformly root-n consistent density estimators for weakly dependent invertible linear processes[END_REF], 2008).

Let X, X 1 , X 2 , . . . , X n be independent and identically distributed (i.i.d.) random variables with probability density f . For any function g and for any m ∈ N, let g (m) denote the derivative of order m of g (with, by convention, g (0) = g), and set I (m) = R [f (m) (x)] 2 dx. [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF] introduce kernel estimators of these integrals, by setting

I (m) N D,n = (-1) m n(n -1)
i,j∈{1,...,n} i =j

K (2m) hn (X i -X j ) ,
where K is a kernel, (h n ) a bandwidth, and, for h > 0, K h (x) = h -1 K h -1 x . They compute the asymptotic MSE of I (m) N D,n , and show in particular that, in the case when m = 0, the parametric rate is attainable with a two-order kernel and by assuming only that f is regular with order p > 2; on the other hand, when m ≥ 1, it is necessary to use a higher order kernel and to require more regularity on f in order to obtain the parametric rate.

Jones and Sheather (1991) define an alternative non-recursive estimator I (m) D,n of I (m) , which is famous in the framework of bandwidth selection (see [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF]); this estimator is built up by reintroducing the nonrandom diagonals terms in the estimator I D,n is in their bias expression, that of Jones and Sheather's estimator having two dominant terms whose sum equals zero when K satisfies the conditions

(X n -X k ) , (2) 
Ǐ(m)

D,n = (1 -γ n ) Ǐ(m) D,n-1 + γ n (-1) m n -1 n k=1 K (2m) hn (X n -X k ) , (3) 
where the stepsize (γ n ) is a positive sequence going to zero.

The recursive estimators (2) and ( 3) are both defined as stochastic algorithms approximating the zero of the function x → I (m) -x. The most famous use of stochastic approximation algorithms in the framework of nonparametric statistics is the work of [START_REF] Kiefer | Stochastic estimation of the maximum of a regression function[END_REF], who built up an algorithm which allows the approximation of the maximizer of a regression function. Their well-known algorithm was widely discussed and extended in many directions (see, among many others, [START_REF] Blum | Multidimensional stochastic approximation methods[END_REF], [START_REF] Fabian | Stochastic approximation of minima with improved asymptotic speed[END_REF], [START_REF] Kushner | Stochastic approximation methods for constrained and unconstrained systems[END_REF], [START_REF] Hall | Martingale limit theory and its application[END_REF], [START_REF] Ruppert | Almost sure approximations to the Robbins-Monro and Kiefer-Wolfowitz processes with dependent noise[END_REF], [START_REF] Chen | Lower rate of convergence for locating a maximum of a function[END_REF], [START_REF] Spall | A stochastic approximation algorithm for large-dimensional systems in the Kiefer-Wolfowitz setting[END_REF], [START_REF] Dippon | Weighted means in stochastic approximation of minima[END_REF], [START_REF] Spall | A one-measurement form of simultaneous perturbation stochastic approximation[END_REF], [START_REF] Chen | A Kiefer-Wolfowitz algorithm with randomized differences[END_REF], [START_REF] Dippon | Accelerated randomized stochastic optimization[END_REF], and Mokkadem and Pelletier (2007)). Stochastic approximation algorithms were also introduced by [START_REF] Révész | Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I[END_REF][START_REF] Révész | How to apply the method of stochastic approximation in the non-parametric estimation of a regression function[END_REF] to estimate a regression function at any point; his work was then extended by [START_REF] Mokkadem | The multivariate Révész's online estimator of a regression function and its averaging[END_REF] D,n need O(n 2 ) operations. However, these recursive estimators both suffer from a main drawback: they require to save all past data. In a Big Data context, the limited storage capacity is a concern even bigger than convergence rate, so that it is crucial to construct estimators whose update only requires the last available data.

The main purpose of this paper is to introduce and study online versions of the estimators of [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF] and of [START_REF] Jones | Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives[END_REF], that is, estimators which are not only recursive, but whose update does not need the storage of all past data. To construct these estimators, we note that the estimator Ǐ(m) N D,n proposed in Mokkadem and Pelletier (2020) can be written as

Ǐ(m) N D,n = (1 -γ n ) Ǐ(m) N D,n-1 + γ n (-1) m n n -1 g (2m) n (X n ) - 1 n -1 K (2m) hn (0) ,
where g

(2m) n
, which is the derivative of order 2m of the non-recursive Rosenblatt's kernel estimator g n of f , requires all past data to be updated. In order to construct a new recursive estimator of I (m) whose update does not require the storage of all past data, we rather use a recursive estimator f 

1 = 0, f (2m) 1 (x) = K (2m) h1 (x -X 1 ) and, for n ≥ 2, Î(m) n = (1 -γ n ) Î(m) n-1 + (-1) m γ n f (2m) n-1 (X n ) , (4) 
f (2m) n (x) = (1 -β n ) f (2m) n-1 (x) + β n K (2m) hn (x -X n ) , (5) 
where the stepsizes (γ n ) and (β n ) are positive sequences going to zero. Similarly, the online version of the estimator I 

f (2m) n (x) = (1 -β n ) f (2m) n-1 (x) + β n K (2m) hn (x -X n ) , (6) 
Ĩ(m) n = (1 -γ n ) Ĩ(m) n-1 + (-1) m γ n f (2m) n (X n ) , (7) 
where β 1 is chosen equal to 1 (this choice, together with that of the initial value of the algorithm [START_REF] Cardot | Recursive estimation of the conditional geometric median in Hilbert spaces[END_REF], ensure that both algorithms ( 5) and ( 6) give the same estimator).

We first compute the biais and the variance of the estimators Î(m) n and Ĩ(m) n defined by ( 4)-( 5) and ( 6)-( 7), respectively, and then deduce the MSE of these estimators. The most striking result is for m = 0. Under very weak smoothing assumption on f , and without needing higher-order kernels, we get the parametric rate. Moreover, an adequate choice of the stepsize (γ n ) makes the online estimators Î(0) n and Ĩ(0) n have the same asymptotic MSE as the nonrecursive estimator I (0) N D,n of Hall and Marron. In the case when m ≥ 1, we first give conditions (which include the use of higher order kernels and more smoothness of f ) leading to the parametric rate, and then study the MSE of both estimators in the case when the parametric rate is not achieved. We conclude with an application on bandwidth selection in the framework of density estimation: we show how our online estimators of I (m) allow to construct an online estimator of the optimal bandwidth, as well as an online version of the famous Sheather-Jones bandwidth selector (see [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF]).

Assumptions and Main Results

Before stating our assumptions, let us recall that: • f is said to have smoothness of order p > 0 whenever there is a constant M > 0 such that, for all x, y ∈ R, f (l) (x) -f (l) (y) ≤ M |x -y| α , where p = l + α and 0 < α ≤ 1. • The kernel function K is said to have order k when R K(x)dx = 1, R x j K(x)dx = 0 for j ∈ {1, . . . , k -1}, and

R x k K(x)dx = C. • A nonrandom positive sequence (v n ) n≥1 is said to be in GS (γ), γ ∈ R, if lim n→+∞ n 1 -v n-1 v -1 n = γ. Remark 1 Typical sequences (v n ) in GS (γ) are v n = n γ , v n = n γ (ln n) c , v n = n γ (ln ln n) c
, and so on.

The assumptions to which we shall refer are the following. (A1) The kernel function K is symmetric, has order k, and has 2m derivatives which vanish when |x| goes to infinity. 1) and there exists γ such that lim n→∞ nγ n = γ. (A4) (β n ) ∈ GS(-1) and there exists β such that lim

(A2) (h n ) ∈ GS(-a) with a ∈ 0, 2 4m+1 . (A3) (γ n ) ∈ GS(-
n→∞ nβ n = β. Moreover, we set b m,k = (-1) k/2 I (m+k/2) (k!) -1 R u k K(u)du , v m = R f 2 (x)dx R [K (2m) (u)] 2 du , and c m = R [f (2m) (x)] 2 f (x)dx -I (2m) 2 .

Biases and Variances

The following proposition gives the bias of the estimators Î(m) 1. Let f have smoothness of order p > k + m and let the functions f (j) be integrable for all integer j less than p.

• If min{β, γ} > ak, then

E Î(m) n -I (m) = βγh k n (β -ak)(γ -ak) b m,k + o h k n . (8) 
• If min{β, γ} > ak and γ > 1 -a(2m + 1), then

E Ĩ(m) n -I (m) = βγb m,k (β -ak)(γ -ak) h k n (1 + o(1)) + βγJ m (γ -[1 -a(2m + 1)])nh 2m+1 n (1 + o(1)). (9) 
2. Let f have smoothness of order p ∈]m, k + m] and let the functions f (j) be integrable for all integer j less than p.

• If min{β, γ} > a(p -m), then E Î(m) n -I (m) = O h p-m n . (10) 
• If min{β, γ} > a(p -m) and γ > 1 -a(2m + 1), then

E Ĩ(m) n -I (m) = O h p-m n + O 1 nh 2m+1 n . ( 11 
)
Remark 2 If f has smoothness of order p > k + m, but if the condition min{β, γ} > ak is not satisfied, we still have the following upper bound of the bias of

Î(m) n and Ĩ(m) n : for all v < min{β, γ} ≤ ak, E Î(m) n -I (m) = o n -v and E Ĩ(m) n -I (m) = o n -v + βγJ m (γ -[1 -a(2m + 1)])nh 2m+1 n (1 + o(1)). Similarly, if f has smoothness of order p ∈]m, k + m], then, for all v < min{β, γ} ≤ a(p -m), E Î(m) n -I (m) = o n -v and E Ĩ(m) n -I (m) = o n -v + O 1 nh 2m+1 n .
The following proposition gives the variance of the estimators

Î(m) n and Ĩ(m) n . Proposition 2 (Variances of Î(m) n and Ĩ(m) n ) Let (A1)-(A4) hold, and set I (m) n = Î(m) n or I (m) n = Ĩ(m) n .
1. Let f have smoothness of order p > 2m and let the functions f (j) be integrable for all integer j less than p. If β > 1 2 and γ > max 1 2 ; 1 -a(4m+1)

2

, then

V I (m) n = β 2 γ 2 v m (2γ -[2 -a(4m + 1)])(2β -[1 -a(4m + 1)])n 2 h 4m+1 n (1 + o(1)) + 2γ 2γ -1 γ 2 + βγ β + γ -1 β 2β -1 + 1 c m n (1 + o(1)). (12) 
2. Let f have smoothness of order p ∈]m, 2m] and let the functions f (j) be integrable for all integer j less than p. If

β > max 1-a(4m+1) 2 , 1-a(4m-2p) 2 and if γ > max 1 -a(4m+1) 2 , 1-a(4m-2p) 2
, then

V I (m) n = β 2 γ 2 v m (2γ -[2 -a(4m + 1)])(2β -[1 -a(4m + 1)])n 2 h 4m+1 n (1 + o(1)) + O 1 nh 4m-2p n . (13) 
In Equation ( 12), the two terms in V I (m) n

do not converge at the same rate and the leading term depends on the choice of the bandwidth. Let us underline that such a situation is quite unusual in kernel density estimation.

Let us also remark that only the squared integral of K (2m) appears in the variance expression, so that this one does not depend on the kernel order. On the other hand, the bias is function of R u k K(u)du, and thus depends heavily on the kernel order; this is usual in kernel density estimation. 

Parametric rate for Î(m)

-I (m) ) 2 ] = 4c m n -1 + o n -1 .

Remark 3 The assumptions on

(h n ) made in Corollary 1 when I (m) n = Î(m) n (respectively, when I (m) n = Ĩ(m) n ) require in particular (A2) be satisfied with a ∈ 1 2 min{k;p-m} ; 1 4m+1 (respectively, with a ∈ 1 2 min{k;p-m} ; 1 4m+2 ). Remark 4 When I (m) n = Î(m) n (respectively, when I (m) n = Ĩ(m) n )
, the assumptions of Corollary 1 imply that min{k, p -m} > 2m + 1/2 (respectively, that min{k, p -m} > 2m + 1). In particular, the density f must have smoothness of order p > 3m + 1/2 (respectively, p > 3m + 1), and the kernel must be of order k ≥ 2m + 1 (respectively, k ≥ 2m + 2).

The result in Corollary 1 seems doubly surprising. The first striking fact is that the parametric rate is achieved, which is very unusual in nonparametric statistics. However, this rate was expected, since [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF] highlighted that quadratic functionals of a probability density and of its derivatives could be estimated at the parametric rate. On a technical point of view, this can be explained by the fact that the second term in the variance expression [START_REF] Du | Root-n consistency and functional central limit theorems for estimators of derivatives of convolutions of densities[END_REF] can be the leading term thanks to a suitable choice of bandwidth (see the comment at the end of Section 2.1).

The second striking fact is that, under the assumptions of Corollary 1, the online estimators Î(m) [START_REF] Jones | Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives[END_REF]. Indeed, the recursive estimators in nonparametric statistics are known to usually have a larger MSE than their nonrecursive version. However, this fact also was expected, since it was already observed for the recursive estimator Ǐ(m) N D,n of Mokkadem and Pelletier (2020), which also shares the same optimal asymptotic MSE.

Let us finally note that, in the case when m = 0, the parametric rate is achieved with a kernel of order 2, and with very weak smoothing assumption on f . On the other hand, for m ≥ 1, the use of a higher order kernel and much stronger smoothing conditions on f are required to obtain this optimal rate.

2.3 Optimal rates with lower order kernels in the case m ≥ 1

As said previously, when m ≥ 1, obtaining the parametric rate has a cost: the use of higher order kernels and, consequently, the necessary higher smoothness of f . The two following corollaries give the optimal asymptotic MSE of our estimators of I (m) , m ≥ 1, in the case when a lower order kernel is used, and thus when less smoothness is required for f . The first one deals with Î(m) n , the second one with Ĩ(m) n .

Corollary 2 (Optimal rate of Î(m)

n with less smoothness in the case m ≥ 1) Set m ≥ 1, let f have smoothness of order p > 2m, let the functions f (j) be integrable for all integer j less than p, and let (A1) hold with k < 2m + 1/2 and k < p -m. Then, the optimal MSE of Î(m)

n is obtained for (γ n ) satisfying (A3) with γ = 2, for (β n ) satisfying (A4) with β = (4k + 4m + 1) + (8k + 20m + 5)(4m + 1) 2(2k + 4m + 1) , for (h n ) =   (4m + 1)(k + 4m + 1)v m 2k(2k + 4m + 1)b 2 k,m n -2 1 2k+4m+1   ,
and we then have

E Î(m) n -I (m) 2 = R m,k ρ m,k   (2k + 4m + 1) b 2 m,k 4m + 1 4m+1 2k+4m+1 v m k 2k 2k+4m+1 n -4k 2k+4m+1   (1 + o(1)), with ρ m,k = 1 2 2k 2k+4m+1 2k + 4m + 1 k + 4m + 1 1+ 4m+1 2k+4m+1 R m,k = (4k+4m+1)+ √ (8k+20m+5)(4m+1) 2 (8k+16m+4) 2k 2k+4m+1 (4m+1)+ √ (8k+20m+5)(4m+1) 8m+2 2k+4m+1 (2k+8m+2)+ √ (8k+20m+5)(4m+1) 2k 2k+4m+1
.

As said in the introduction, the use of recursive estimators usually has a cost on the asymptotic MSE, and it is in particular the case here. As a matter of fact, the optimal MSE of the online estimator given in Corollary 2 equals R m,k times that of the recursive estimator Ǐ(m) N D,n , and equals R m,k × ρ m,k times that of the nonrecursive estimator I

N D,n . As an example, set k = 2; in the case when m = 2 (which is famous for bandwidth selection in density estimation), we have R 2,2 1, 2116 and R 2,2 × ρ 2,2 1, 2988.

Corollary 3 (Optimal rate of Ĩ(m)

n with less smoothness in the case m ≥ 1) Set m ≥ 1, assume that f has smoothness of order p > 2m, that the functions f (j) are integrable for all integer j less than p, that (A1) and (A3)-(A4) hold with k < 2m + 1/2, k < p -m, and min{β, γ} > 1/2, and that K satisfies Conditions [START_REF] Bickel | Estimating integrated squared density derivatives: sharp best order of convergence estimates[END_REF]. Then, the optimal MSE of Ĩ(m) n is obtained for

h n = J m k! r k I (m+k/2) β - k k + 2m + 1 1/(2m+k+1) n -1/(2m+k+1) , (14) 
and we then have

E Ĩ(m) n -I (m) 2 = o 1 n 2k 2k+4m+1
.

When (h n ) is chosen satisfying [START_REF] Galambos | Regularly varying sequences[END_REF], we only get an upper bound of the MSE of Ĩ(m) n , so that we cannot say anything about the optimal choices of (γ n ) and (β n ). To circumvent this drawback, we follow the approach of Jones and Sheather (1991) and [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF], and compute the quantity defined as the sum of the leading variance term and of the squared sum of the leading bias terms of the estimator, and denoted AMSE(.) in the sequel. In particular, under the assumptions of Corollary 3, 

AMSE Ĩ(m) n = βγh k n (β -ak)(γ -ak) b m,k + βγJ m (γ -[1 -a(2m + 1)])nh 2m+1 n 2 + β 2 γ 2 v m (2γ -[2 -a(4m + 1)])(2β -[1 -a(4m + 1)])n 2 h 4m+1
AMSE Ĩ(m) n = G(β) 2 - 4m + 1 2m + k + 1 v m r k I (m+k/2) J m k! 4m+1 2m+k+1 n -(2k+1) 2m+k+1 ,
with n when the bandwidth is chosen as in ( 14) (since it is obtained by making its bias term equal to zero), and the variance of a recursive estimator is known to be usually smaller than that of its nonrecursive version. However, let us dwell on the fact that, even if the online estimator performs better than Ǐ(m) D,n and I (m) D,n in terms of AMSE, this does not say anything more than the upper bound given in Corollary 2 concerning its asymptotic MSE.

G(β) = β 2 2β - k -2m k + 2m + 1 -1 β - k k + 2m + 1 -(4m+1) 2m+k+1

Application to bandwidth selection in density estimation

Let L be a two-order kernel, let (α n ) be a bandwidth, and let

g n (x) = 1 n n j=1 L αn (x -X j ) and ĝn (x) = 1 n n j=1 L αj (x -X j )
denote the estimators of the density of X introduced by Rosenblatt (1956) and [START_REF] Wolverton | Asymptotically optimal discriminant functions for pattern classification[END_REF], respectively (note that ĝn (x) = f (0) n (x) in the particular case when L = K, (β n ) = (n -1 ) and (α n ) = (h n ) in ( 5)). The bandwidth minimizing the asymptotic MSE of g n and ĝn is

α * n = c f R L 2 (z)dz I (2) R z 2 L(z)dz 1/5
n -1/5 , with c f = 1 for the Rosenblatt estimator and c f = 3/10 for the Wolverton-Wagner estimator. The key point in estimating α * n is the estimation of I (2) . We now give recursive estimators of the optimal bandwidth α * n , and conclude this section with a remark on the use of these estimators.

A recursive estimator of α * n Replacing I (2) with the online estimator Î(2) n defined by the double algorithm (4)-( 5) (with the optimal bandwidths γ n = 2 n and

β n = 17+ √ 549 26n
) in the expression of α * n straightforwardly leads to the recursive estimator α * n defined by the triple algorithm obtained by setting Î(2)

2 = K (4) h1 (X 2 -X 1 ), α * 2 = c f R L 2 (z)dz 2 Î(2) 2 R z 2 L(z)dz 1/5 , f (4) 2 
(x) = 17+ √ 549 52 K (4) h1 (x -X 1 ) + 17+ √ 549 52 K (4) h2 (x -X 2 ), and, for n ≥ 3,          Î(2) n = 1 -2 n Î(2) n-1 + 2 n f (4) n-1 (X n ) α * n = (n-1) Î(2) n-1 n Î(2) n 1/5 α * n-1 f (4) n (x) = 1 -17+ √ 549 26n f (4) n-1 (x) + 17+ √ 549 26n K (4) hn (x -X n ) . ( 15 
)
Remark 5 The first two equations are the updates of the bandwidth (that is, the computation of α * n from the knowledge of f

(4) n-1 , Î (2) 
n-1 , and α * n-1 ), whereas the lattest equation is the update of the fourth derivative of the density estimator, which will be necessary for the next update of the bandwidth. Of course the procedure (15) can also be used with Ĩ(2) n instead of Î(2) n ; it then begins with the computation of f 

Let us underline that Î(2)

n has the same asymptotic MSE as the estimator I

(2) n of [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF], that is, O(n -8/13 ) when k = 2, and O(n -1 ) when k ≥ 6. So, there is no loss in the convergence rate when estimating α * n recursively by using Î(2) n , rather than nonrecursively by using I

n . To implement the procedure [START_REF] Giné | On local U-statistic processes and the estimation of densities of functions of several sample variables[END_REF], we must also choose a bandwidth h n for the estimator of I (2) . We may choose any nonrandom bandwidth ensuring the consistency of the estimator. We may also look for an optimal bandwidth. If the order of the kernel used in the estimation of I (2) is large enough, we may choose a nonrandom bandwidth satisfying Corollary 1 and leading to the parametric rate. Otherwise, when I (2) is estimated with Î(2) n , we may estimate the optimal bandwidth h n given in Corollary 2; when I (2) is estimated with Ĩ( 2) n , we may estimate the optimal bandwidth h n given in Corollaries 3 and 4. In this lattest case, we then obtain an online version of the widely used Sheather-Jones bandwidth selector (see Sheather and Jones (1991)) as follows.

(X n ) , h * n = (n-1) Ĩ(2+k/2) n-1 n Ĩ(2+k/2) n 1/(k+5) h * n-1 f (4) n (x) = 1 -1 n f (4) n-1 (x) + 1 n K (4) h * n (x -X n ) Ĩ(2) n = 1 -1+2k (5+k)n Ĩ(2) n-1 + 1+2k (5+k)n f (4) n (X n ) α * n = (n-1) Ĩ(2) n-1 n Ĩ(2) n 1/5 α * n-1 (17) 
Remark To conclude this section, let us dwell on the fact that the real interest of the online procedures ( 15) and ( 17) appears in the case when the density is estimated by using the Wolverton-Wagner estimator. As a matter of fact, the estimator computed with the estimator of the optimal bandwith, can then be updated by using the recursive relation

ĝn (x) = 1 - 1 n ĝn-1 (x) + 1 n L βn (x -X n ) ,
where βn either equals α * n given by ( 15), or α * n given by [START_REF] Godichon-Baggioni | Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence[END_REF]. Let us also mention that the procedures ( 15) and ( 17) can of course also be applied to the online estimators f (0) n (x) defined by [START_REF] Cardot | Recursive estimation of the conditional geometric median in Hilbert spaces[END_REF] with other stepsizes than (β n ) = (n -1 ); however, we only consider the case when (β n ) = (n -1 ) (and thus f (0) n (x) = ĝn (x)) since it is the case which makes the asymptotic MSE of f (0) n (x) minimum.

Proofs

Let us first recall that, if f has smoothness of order p > m, then classical computations yield (see [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF])

E (-1) m K (2m) hn (X 1 -X 2 ) = R 2 K(u)f (m) (x)f (m) (x -h n u) dudx, ( 18 
) V K (2m) hn (X 1 -X 2 ) = v m h -4m-1 n + o h -4m-1 n , ( 19 
) C K (2m) hn (X 1 -X 2 ) , K (2m) h k (X 1 -X 3 ) = O [h n h k ] -2m+p if p ≤ 2m, c m + o (1) if p > 2m. ( 20 
)
Let us also state the following lemma, proved in [START_REF] Mokkadem | The multivariate Révész's online estimator of a regression function and its averaging[END_REF], and which will be used throughout the proofs.

Lemma 1 Let (a n ) ∈ GS (-a * ) with a * > 0 and such that a n = ∞. Let (u n ) ∈ GS (-u * ), with lim n→∞ na n > u * . • If (A n ) n≥n0 is defined by A n0 ∈ R and, for n ≥ n 0 + 1, by A n = (1 -a n + o(a n )) A n-1 + a n u n [1 + o(1)], then A n = 1 -u * lim n→∞ (na n ) -1 -1 u n [1 + o(1)]. • If (A n ) n≥n0 is defined by A n0 ∈ R and, for n ≥ n 0 + 1, by A n = (1 -a n + o(a n )) A n-1 + a n o(u n ), then A n = o(u n ).

Proof of Proposition 1

In view of (4), we have

E Î(m) n -I (m) = (1 -γ n ) E Î(m) n-1 -I (m) + γ n E (-1) m f (2m) n-1 (X n ) -I (m) (21)
with, in view of ( 5) and ( 18),

E (-1) m f (2m) n-1 (X n ) -I (m) = (1 -β n-1 ) E (-1) m f (2m) n-2 (X n ) -I (m) + β n-1 E (-1) m K (2m) hn-1 (X n -X n-1 ) -I (m) = (1 -β n-1 ) E (-1) m f (2m) n-2 (X n ) -I (m) + β n-1 R 2 K(u)f (m) (x) f (m) (x -h n-1 u) -f (m) (x) dudx. ( 22 
)
In the case when p > m + k, it follows that

E (-1) m f (2m) n-1 (X n ) -I (m) = (1 -β n-1 ) E (-1) m f (2m) n-2 (X n ) -I (m) + β n-1 h k n-1 b m,k (1 + o(1)) = b m,k 1 -akβ -1 h k n-1 (1 + o(1)) (23) 
by application of Lemma 1. We then deduce from ( 21) and applying Lemma 1 again that

E Î(m) n -I (m) = (1 -γ n ) E Î(m) n-1 -I (m) + γ n h k n βb m,k β -ak (1 + o(1)) = βb m,k (β -ak)(1 -akγ -1 ) h k n (1 + o(1)),
which gives [START_REF] Chen | A Kiefer-Wolfowitz algorithm with randomized differences[END_REF]. Similarly, in the case when p ∈]m, m + k], Equation ( 22) and Lemma 1 yield

E (-1) m f (2m) n-1 (X n ) -I (m) = (1 -β n-1 ) E (-1) m f (2m) n-2 (X n ) -I (m) + β n-1 O h p-m n-1 = O h p-m n-1 . (24) 
In view of (21), Equation ( 10) is obtained by applying Lemma 1 once more. Now, in view of (7), we have

E Ĩ(m) n -I (m) = (1 -γ n ) E Ĩ(m) n-1 -I (m) + γ n E (-1) m f (2m) n (X n ) -I (m) (25) 
with, in view of ( 6),

E (-1) m f (2m) n (X n ) -I (m) = (1 -β n ) E (-1) m f (2m) n-1 (X n ) -I (m) + β n (-1) m K (2m) hn (0) -I (m) . (26) 
In the case when p > m + k, the combination of ( 23), ( 25) and ( 26) yields

E Ĩ(m) n -I (m) = (1 -γ n ) E Ĩ(m) n-1 -I (m) + γ n βb m,k β -ak h k n (1 + o(1)) + γ n βJ m nh 2m+1 n (1 + o(1)).
Equation ( 9) then follows from two successive applications of Lemma 1. Similarly, in the case when p ∈]m, m + k], the combination of ( 24), ( 25) and ( 26) gives

E Ĩ(m) n -I (m) = (1 -γ n ) E Ĩ(m) n-1 -I (m) + γ n O h p-m n-1 + γ n O 1 nh 2m+1 n ,
and Equation [START_REF] Douma | Online Estimation of Hazard Rate Under Random Censoring[END_REF] follows from two successive applications of Lemma 1.

Proof of Proposition 2

Proof of Proposition 2 for

I (m) n = Î(m) n
We first state the two following lemmas.

Lemma 2 Let (A1)-(A4) hold, let f have smoothness of order p, and let the functions f (j) be integrable for all integer j less than p.

If p > 2m and if β > 1-a(4m+1) 2 , then V f (2m) n-1 (X n ) = β 2 v m (2β -[1 -a(4m + 1)])nh 4m+1 n (1 + o(1)) + c m (1 + o(1)). If p ∈]m, 2m] and if β > 1-a(4m+1) 2 , then V f (2m) n-1 (X n ) = β 2 v m (2β -[1 -a(4m + 1)])nh 4m+1 n (1 + o(1)) + O 1 h 4m-2p n-1 .
Lemma 3 Let (A1)-(A4) hold, let f have smoothness of order p, and let the functions f (j) be integrable for all integer j less than p.

If p > 2m, if β > 1 2 and if β + γ > 1, then C Î(m) n-1 , f (2m) n-1 (X n ) = (-1) m βγc m β + γ -1 β 2β -1 + 1 1 n -1 (1 + o(1)). If p ∈]m, 2m], if β > 1-a(4m-2p) 2 and if β + γ > 1 -a(4m -2p), then C Î(m) n-1 , f (2m) 
n-1 (X n ) = O 1 nh 4m-2p n-1 .
We first show how Proposition 2 for

I (m) n = Î (m) 
n can be deduced from Lemmas 2 and 3, and then prove both lemmas. Moreover, we only consider the case p > 2m: the proofs in the case p ∈]m, 2m] are similar and are thus omitted. In view of (4), we have

V Î(m) n = (1 -γ n ) 2 V Î(m) n-1 + γ 2 n V f (2m) n-1 (X n ) + 2 (1 -γ n ) γ n (-1) m C Î(m) n-1 , f (2m) 
n-1 (X n ) ,
and Lemmas 2 and 3 yield

V Î(m) n = (1 -2γ n + o(γ n )) V Î(m) n-1 + (2γ n ) β 2 γv m 2(2β -[1 -a(4m + 1)])n 2 h 4m+1 n (1 + o(1)) + (2γ n ) γ 2 + βγ β + γ -1 β 2β -1 + 1 c m n (1 + o(1)),
Applying twice Lemma 1, we get [START_REF] Du | Root-n consistency and functional central limit theorems for estimators of derivatives of convolutions of densities[END_REF].

Proof of Lemma 2 In view of ( 5) and ( 19), we have

V f (2m) n-1 (X n ) = (1 -β n-1 ) 2 V f (2m) n-2 (X n ) + β 2 n-1 h 4m+1 n-1 v m (1+o(1))+2 (1 -β n-1 ) β n-1 C f (2m) n-2 (X n ) , K (2m) 
hn-1 (X n -X n-1 ) with C f (2m) n-2 (X n ) , K (2m) hn-1 (X n -X n-1 ) = (1 -β n-2 ) C f (2m) n-3 (X n ) , K (2m) hn-1 (X n -X n-1 ) + β n-2 C K (2m) hn-2 (X n -X n-2 ) , K (2m) 
hn-1 (X n -X n-1 ) .

It follows that

C f (2m) n-2 (X n ) , K (2m) hn-1 (X n -X n-1 ) = (1 -β n-2 ) C f (2m) n-3 (X n ) , K (2m) hn-1 (X n -X n-1 ) + β n-2 c m (1 + o(1)) = c m (1 + o(1)), so that V f (2m) n-1 (X n ) = (1 -2β n-1 + o (β n-1 )) V f (2m) n-2 (X n ) + β 2 n-1 h 4m+1 n-1 v m (1 + o(1)) + 2β n-1 c m (1 + o(1)).
A first application of Lemma 1 in the case nh Proof of Lemma 3 In view of (4) and then of (5), and since Î(m) n-2 and K

(2m) hn-1 (X n -X n-1 ) are independent, C Î(m) n-1 , f (2m) n-1 (X n ) = (1 -γ n-1 ) C Î(m) n-2 , f (2m) n-1 (X n ) + (-1) m γ n-1 C f (2m) n-2 (X n-1 ) , f (2m) n-1 (X n ) = (1 -γ n-1 ) (1 -β n-1 ) C Î(m) n-2 , f (2m) n-2 (X n ) + 0 + (-1) m γ n-1 (1 -β n-1 ) C f (2m) n-2 (X n-1 ) , f (2m) n-2 (X n ) + (-1) m γ n-1 β n-1 C f (2m) n-2 (X n-1 ) , K (2m) hn-1 (X n -X n-1 ) . ( 27 
)
In view of [START_REF] Cardot | Recursive estimation of the conditional geometric median in Hilbert spaces[END_REF], and by independence of f

n-3 (X n-1 ) and K

hn-2 (X n -X n-2 ) on the one hand, and of

K (2m) hn-2 (X n-1 -X n-2 ) and f (2m) n-3 (X n ) on the other hand, we have C f (2m) n-2 (X n-1 ) , f (2m) n-2 (X n ) = (1 -β n-2 ) C f (2m) n-3 (X n-1 ) , f (2m) n-2 (X n ) + β n-2 C K (2m) hn-2 (X n-1 -X n-2 ) , f (2m) n-2 (X n ) = (1 -β n-2 ) 2 C f (2m) n-3 (X n-1 ) , f (2m) n-3 (X n ) + β 2 n-2 C K (2m) hn-2 (X n-1 -X n-2 ) , K (2m) 
hn-2 (X n -X n-2 ) .

It follows that

C f (2m) n-2 (X n-1 ) , f (2m) n-2 (X n ) = (1 -2β n-2 + o (β n-2 )) C f (2m) n-3 (X n-1 ) , f (2m) n-3 (X n ) + 2β n-2 β n-2 c m 2 (1 + o(1)) = β 2 c m (2β -1)(n -2) (1 + o(1)). (28) 
On the other hand, (5) yields

C f (2m) n-2 (X n-1 ) , K (2m) hn-1 (X n -X n-1 ) = (1 -β n-2 ) C f (2m) n-3 (X n-1 ) , K (2m) 
hn-1 (X n -X n-1 )

+ β n-2 C K (2m) hn-2 (X n-1 -X n-2 ) , K (2m) 
hn-1 (X n -X n-1 ) , which gives

C f (2m) n-2 (X n-1 ) , K (2m) hn-1 (X n -X n-1 ) = (1 -β n-2 ) C f (2m) n-3 (X n-1 ) , K (2m) hn-1 (X n -X n-1 ) + β n-2 c m (1 + o(1)) = c m (1 + o(1)). ( 29 
)
The combination of ( 27), [START_REF] Mokkadem | The multivariate Révész's online estimator of a regression function and its averaging[END_REF], and ( 29) then yields

C Î(m) n-1 , f (2m) 
n-1 (X n ) = 1 - β + γ n -1 + o 1 n -1 C Î(m) n-2 , f (2m) 
n-2 (X n ) + (-1) m βγc m (n -1) 2 β 2β -1 + 1 (1 + o(1)) = (-1) m βγc m β + γ -1 β 2β -1 + 1 1 n -1 (1 + o(1)),
which gives the first part of Lemma 3.

Proof of Proposition 2 for

I (m) n = Ĩ(m) n
Once again, we only consider the case p > 2m: the proof in the case p ∈]m, 2m] is similar and is thus omitted. In view of [START_REF] Chen | Lower rate of convergence for locating a maximum of a function[END_REF] and then of (6), we have

V Ĩ(m) n = (1 -γ n ) 2 V Ĩ(m) n-1 + γ 2 n V f (2m) n (X n ) + 2 (1 -γ n ) γ n (-1) m C Ĩ(m) n-1 , f (2m) n (X n ) = (1 -γ n ) 2 V Ĩ(m) n-1 + γ 2 n (1 -β n ) 2 V f (2m) n-1 (X n ) + 2 (1 -γ n ) γ n (-1) m C Ĩ(m) n-1 , f (2m) n (X n ) . (30) 
Now, we note that

C Ĩ(m) n-1 , f (2m) n (X n ) (31) = (1 -β n ) C Ĩ(m) n-1 , f (2m) n-1 (X n ) = (1 -β n ) (1 -γ n-1 ) C Ĩ(m) n-2 , f (2m) 
n-1 (X n ) + (1 -β n ) (-1) m γ n-1 C f (2m) n-1 (X n-1 ) , f (2m) n-1 (X n ) = (1 -β n ) (1 -γ n-1 ) C Ĩ(m) n-2 , f (2m) n-1 (X n ) + (1 -β n ) (-1) m γ n-1 (1 -β n-1 ) 2 C f (2m) n-2 (X n-1 ) , f (2m) n-2 (X n ) + (1 -β n-1 ) β n-1 C f (2m) n-2 (X n-1 ) , K (2m) hn-1 (X n-1 -X n ) . (32) 
It follows from ( 28) and ( 29) that

C Ĩ(m) n-1 , f (2m) n (X n ) = (1 -β n ) (1 -γ n-1 ) C Ĩ(m) n-2 , f (2m) 
n-1 (X n ) + (-1) m γ n-1 β 2 c m (2β -1)(n -2) (1 + o(1)) + β n-1 c m (1 + o(1)) = 1 - β + γ n -1 + o 1 n -1 C Ĩ(m) n-2 , f (2m) n-1 (X n ) + (-1) m βγc m (n -1) 2 β 2β -1 + 1 (1 + o(1)) = (-1) m βγc m β + γ -1 β 2β -1 + 1 1 n -1 (1 + o(1)),
and, in view of [START_REF] Révész | Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I[END_REF] and Lemma 2, we obtain

V Ĩ(m) n = (1 -2γ n + o(γ n )) V Ĩ(m) n-1 + (2γ n ) β 2 γv m 2(2β -[1 -a(4m + 1)])n 2 h 4m+1 n (1 + o(1)) + (2γ n ) γ 2 + βγ β + γ -1 β 2β -1 + 1 c m n (1 + o(1)),
and, applying twice Lemma 1, we get [START_REF] Du | Root-n consistency and functional central limit theorems for estimators of derivatives of convolutions of densities[END_REF].

Proof of Corollary 1 In view of Remark 4, p > 2m, so that Part 1 of Proposition 2 holds. Moreover, since nh 4m+1 n → ∞, we have

V I (m) n = 2γ 2γ -1 γ 2 + βγ β + γ -1 β 2β -1 + 1 c m n + o 1 n . (33) 
Let us now prove that

E I (m) n -I (m) 2 = o n -1 . (34) 
Let us first assume that p > k + m. When I 33) and ( 34) yields

E I (m) n -I (m) 2 = 2γ 2γ -1 γ 2 + βγ β + γ -1 β 2β -1 + 1 c m n + o 1 n . Since the function (γ, β) → 2γ 2γ -1 γ 2 + βγ β + γ -1 β 2β -1 + 1
reaches its minimum at γ = 2 and β = 1, Corollary 1 follows.

Proof of Corollary 2

Set

C 1 (γ) = γ 2 b 2 m,k (γ -ak) 2 , C 2 (γ) = γ 2 v m 2γ -2 + a(4m + 1) , Γ 1 (β) = β 2 (β -ak) 2 , Γ 2 (β) = β 2 2β -1 + a(4m + 1) . (35) 
The application of ( 8) and [START_REF] Du | Root-n consistency and functional central limit theorems for estimators of derivatives of convolutions of densities[END_REF] ensures that

E Î(m) n -I (m) 2 =    C 1 (γ)Γ 1 (β)h 2k n + o(h 2k n ) if a < 2/(2k + 4m + 1) C 1 (γ)Γ 1 (β)h 2k n + C 2 (γ)Γ 2 (β)n -2 h -4m-1 n (1 + o(1)) if a = 2/(2k + 4m + 1) C 2 (γ)Γ 2 (β)n -2 h -4m-1 n + o(n -2 h -4m-1 n ) if a > 2/(2k + 4m + 1).
To minimize the MSE of Î(m) n , the parameter a must thus be chosen equal to 2/(2k + 4m + 1). Now, let L n = n where C 2 (γ) is defined in [START_REF] Schick | Root n consistent density estimators for sums of independent random variables[END_REF]. Following [START_REF] Jones | Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives[END_REF], we note that the O n -2 h -4m-2 n term in the squared bias dominates the O n -2 h -4m-1 n variance term, so that to minimize the asymptotic MSE of Ĩ(m) n , the bandwidth h n must be chosen on the basis of the bias alone. Since K satisfies Conditions (1), the asymptotic MSE of Ĩ(m) n is minimum when (h n ) is chosen such that the sum of the dominant bias term equals zero, that is, for h n = c2(γ)(β-ak)Jmk! c1(γ)r k I (m+k/2) 1/(2m+k+1) n -1/(2m+k+1) . Noting that we then have a = (2m + k + 1) -1 , which implies in particular that 

  n of[START_REF] Hall | Estimation of integrated squared density derivatives[END_REF], that is, by setting I

  . Let us also mention the works of Cardot et al. (2012a, 2012b) and Godichon-Baggioni (2016) on the use of stochastic approximation algorithms for the recursive estimation of the geometric median, and that of Douma et al. (2018) who give a two-time-scale algorithm estimating the hazard rate under random censoring. The computational advantage of Ǐ(m) N D,n and Ǐ(m) D,n is clear, since their update at step n requires O(n) operations, whereas those of I (m) N D,n and I (m)

  of f(2m) . The online version of the estimator I (m) N D,n introduced by Hall and Marron (1987) (and of the recursive estimator Ǐ(m) N D,n given in Mokkadem and Pelletier (2020)) is thus defined by setting Î(m)

  and Sheather (1991) (and of the recursive estimator Ǐ(m) D,n given in Mokkadem and Pelletier (2020)) is defined by reintroducing the diagonal terms in the computation of Î(m) n , and thus by setting f

)

  Let (A1)-(A4) hold.

Corollary 1 (

 1 Parametric rate) Set m ≥ 0, let (A1) hold, let f have smoothness of order p and let the functions f (j) be integrable for all integer j less than p. Then, the optimal MSE of Î(m) n (respectively, of Ĩ(m) n ) is obtained for (h n ) satisfying (A2) with nh 4m+1 n → ∞ and nh 2 min{k,p-m} n → 0 (respectively, with nh 4m+2 n → ∞ and nh 2 min{k,p-m} n → 0), for (γ n ) satisfying (A3) with γ = 2, and for (β n ) satisfying (A4) with β = 1. For I

  asymptotic MSE as that of the nonrecursive estimators I (m) N D,n and I (m) D,n of Hall and Marron (1987) and of

n.Corollary 4 (

 4 Optimal AMSE of Ĩ(m) n under the assumptions of Corollary 3) Under the assumptions of Corollary 3, in order to minimize AMSE Ĩ(m) n , (h n ) must be chosen as in (14), (γ n ) must satisfy (A3) with γ = 2 -(4m + 1)(2m + k + 1) -1 , and we then have

.

  The optimal AMSE of the online estimator Ĩ(m) n equals G(β) times that of the recursive estimator Ǐ(m) D,n , and equals G(β) × 1 -4m+1 4m+2k+2 times that of the non-recursive estimator I (m) D,n . Set k = 2 and m = 2 again; we then have lim n→∞ G(β) = 0, so that the AMSE of Ĩ(m) n can be made negligible in front of those of Ǐ(m) D,n and I (m) D,n . This fact, surprising at first glance, is totally explained in the following way: the optimal AMSE of Ĩ(m) n equals the variance term of Ĩ(m)

( 4 )

 4 n (x), whose knowledge is necessary for the update of Ĩ(2) n .

4m+1 n = o( 1 )

 1 and a second one in the case 1 = O(nh 4m+1 n ) yield Part 1 of Lemma 2.

  n ), the condition nh 2k n → 0, (respectively, the conditions nh 2k n → 0 and nh 4m+2 n → ∞) together with Part 1 of Proposition 1 yields (34) in the case when min{β, γ} > ak; moreover, in the case when min{β, γ} ≤ ak, (34) is obtained by applying Part 1 of Remark 2 with v ∈]1/2, min{β, γ}[. Let us now assume that p ≤ k + m. Similarly, when I 2(p-m) n → 0 (respectively, the conditions nh 2(p-m) n → 0 and nh 4m+2 n → ∞), together with Part 2 of Proposition 1 yields (34) in the case when min{β, γ} > a(p -m); moreover, in the case when min{β, γ} ≤ a(p -m), (34) is obtained by applying Part 2 of Remark 2 with v ∈]1/2, min{β, γ}[. Now, the combination of (

( 1 + 2 2kC1

 12 2/(2k+4m+1) h n ; the MSE of Î(m) n can then be rewritten asE Î(m) n -I (m) 2 = n -4k/(2k+4m+1) C 1 (γ)Γ 1 (β)L 2k n + C 2 (γ)Γ 2 (β)L -(4m+1) n o(1)).The study of the functionx → C 1 (γ)Γ 1 (β)x 2k + C 2 (γ)Γ 2 (β)x -(4m+1) ensures that the bandwidth making the MSE ofÎ(m) n minimum is h n = (4m+1)C2(γ)Γ2(β)nthen have E Î(m) n -I (m) 2 = F (γ)G(β) 4m + 1 2k 2k 2k+4m+1 2k + 4m + 1 4m + 1 n -4k 2k+4m+1 (1 + o(1)) with F (γ) = [C 1 (γ)] 4m+1 2k+4m+1 [C 2 (γ)]

F 2 2k2k+4m+1 2 + C 2

 222 2k 2k+4m+1 and G(β) = [Γ 1 (β)] 4m+1 2k+4m+1 [Γ 2 (β)] 2k 2k+4m+1 . Since a has been chosen such that 2ak = 2 -a(4m + 1), we have The study of the function γ → γ 2 /(γ -ak) 2k+8m+2 2k+4m+1 ensures that, to make F and thus the MSE of Î(m)n minimum, the stepsize must be chosen such that γ = 2, and we then haveE Î(m) o(1)).Now, since a has been chosen such that 2β -1 + a(4m + 1) = 2(β -ak + 1/2), we haveG(β) = β 2 [β -ak] a(4m+1) β -ak + 1 2 ak .Since the function G reaches its minimum atβ * = Proof of Corollary 3 Set c 1 (γ) = γ γ-ak , c 2 (γ) = γ γ-[1-a(2m+1)], and note that the assumptions of Corollary 3 ensure thatE Ĩ(m) n -I (m) 2 = c 1 (γ)βh k n (β -ak) b m,k + c 2 (γ)βJ m nh 2m+1 n (γ)β 2 (2β -[1 -a(4m + 1)])n 2 h 4m+1 n + o h 2k n + o 1 n 2 h 4m+2 n ,

c 1

 1 (γ) = c 2 (γ), Corollary 3 follows. Proof of Corollary 4 Following the proof of Corollary 3, in order to minimize AMSE Ĩ(m) n , (h n ) must be chosen as in (14), and we then have AMSE Ĩ(m) n = C 2 (γ)G(β) r k I (m+k/2) 2m+k+1 . Since we then have a = (2m + k + 1) -1 , and since the function γ → C 2 (γ) is minimum at γ = 2 -(4m + 1)(2m + k + 1) -1 , Corollary 4 follows.

(4+k) n
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Online version of the Sheather-Jones bandwidth selector The first step to define an online version of the Sheather-Jones bandwidth selector is to replace the estimator Î(2) n defined by the double algorithm ( 4)-( 5) with the estimator Ĩ

n defined by the double algorithm ( 6)-( 7) in [START_REF] Giné | On local U-statistic processes and the estimation of densities of functions of several sample variables[END_REF]. For that, we choose a kernel K of order k and satisfying Conditions (1), we set β n = n -1 in (6) (since it is the choice which makes the MSE of f

n (x) minimum) and γ n = 1+2k (5+k)n (since it is the choice which makes the AMSE of Ĩ(2) n minimum). Moreover, we need an online estimator of the bandwidth, which makes the AMSE of Ĩ(2) n minimum, that is, of

This online estimator of h * n is obtained by simply replacing I (2+k/2) in ( 16) with Ĩ(2+k/2) n , an estimator defined by the double algorithm ( 6)- [START_REF] Chen | Lower rate of convergence for locating a maximum of a function[END_REF], where the bandwidth in ( 6) is called ν n and is chosen so that Ĩ(2+k/2) n is a consistent estimator of I (2+k/2) n . Finally, the online Sheather-Jones estimator of α * n is the estimator α * n defined by the sextuple algorithm obtained by setting f

, and, for n ≥ 2,