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Abstract—Land surface temperature is described as one of the 

most important environmental parameters of the land surface 

biophysical process. Commonly, the remote sensed LST products 

yield a tradeoff between high temporal and high spatial resolution. 

Thus, many downscaling algorithms have been proposed to 

address this issue. Recently, downscaling with machine learning 

algorithms, including artificial neural networks (ANN), support 

vector machine (SVM) and random forest (RF) and so on, have 

gained more recognition with fast operation and high computing 

precision. This paper intends to make a comparison between 

machine learning algorithms to downscale the LST product of the 

Moderate Resolution Imaging Spectroradiometer (MODIS) from 

990 m to 90 m, and downscaling results would be validated by the 

resampled LST product of the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER). The results are 

further compared with the classical algorithm-thermal sharpening 

algorithm (TsHARP), using images derived from two 

representative kind of areas of Beijing City. The result shows that: 

(1) All machine learning algorithms produce higher accuracy than 

TsHARP. (2) The performance of TsHARP on urban area is 

unsatisfactory than rural because of the weak indication of 

impervious surface by NDVI, however, machine learning 

algorithms get the desired results on both two areas by importing 

more explanatory factors, such as reflectance, spectral indices and 

terrain factors, to depict the spatial distribution of LST 

comprehensively. (3) Additionally, machine learning algorithms 

are promising to achieve a universal framework which can 

downscale LST for any area within the training data from long 

spatiotemporal sequences. 

 
Index Terms—Land surface temperature, downscaling, machine 

learning, comparison 

I. INTRODUCTION 

AND surface temperature (LST), described as one of the 

most important environmental parameters of the 

interaction of land surface and atmosphere, water circulation as 

well as energy exchange within the regional or global scale, has 

played an essential role on the research of evapotranspiration, 

urban heat island effects and global warming [1]. A finer 

resolution LST has been widely used in hydrological 

equilibrium assessment, global warming study, urban heat 

island effect assessment as well as surface evapotranspiration 

calculation [2]. Commonly, the existing land surface 

temperature products are mostly derived from the thermal 

infrared remote sensing image, with the superiority of repeated 

and continuous observation to surface. However, because of the 

heterogeneity of most surface parameters such as land cover 

types and the physical and thermal properties of soil moisture, 

the thermal infrared images from satellite sensors always have 

relatively lower resolution, the detailed spatial information 

cannot be efficiently captured from lower resolution LSTs 

during a revisiting cycle [3]. This issue hindered the research of 

land surface temperature retrieval and application; hence an 

effective downscaling algorithm is desperately needed to 

provide high quality temperature products [4]. 

During the past few years, many efforts have been tried to 

advance the spatial downscaling algorithms of satellite-based 

land surface temperature datasets based on the relationship 

between LST and other land surface characteristics, which can 

be roughly divided into three categories based on mechanism: 

(1) Statistical regression algorithm-based algorithm; (2) 

Modulation distribution-based algorithm; (3) Linear spectral 

mixture model-based algorithm [5-8]. Among these methods 

the statistical regression algorithm has been commonly 

accepted as the easy-manipulative and the satisfactory accuracy, 

thus many scholars have carried out research on spatial 

downscaling based on this field. The early regression 
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algorithms tend to focus on the statistical relationship between 

vegetation indices and LST, such as normalized difference 

vegetation index (NDVI), fractional vegetation cover and soil-

adjusted vegetation index (SAVI). Other remote sensing indices, 

such as normalized difference building index (NDBI) and 

normalized difference dust index (NDDI) and so on, have been 

applied to downscaling researches under different 

circumstances [9-11]. Recent studies also addressed the issues 

on the linear or nonlinear regression algorithms between LST 

and these remote sensing indices, including the geographically 

weighted regression model, the regression-kriging model and 

Bayesian-based model [12-14]. The machine learning 

algorithms, such as artificial neural network (ANN), support 

vector machine (SVM), the combination of global window and 

moving window regression trees as well as random forest (RF), 

have gotten great accuracies in fitting the nonlinear relationship 

between LST and other variables [15-18]. Accordingly, several 

researches have been carried out to compare the existing 

downscaling algorithms, Zhan et al. provided the review of the 

issue of the disaggregation of remotely sensed land surface 

temperature (DLST) and presented several caveats which 

should be emphasized in future research [19]. Bisquert et al. 

compared several disaggregation methods with two different 

sensors and proved the potential of the disaggregation 

techniques applied to two different sensors [20]. Bonafoni et al. 

evaluated different regressive downscaling schemes by using 

the representative spectral index (SI) and then pointed out the 

importance of vegetation and built-up/soil indexes in 

disaggregation [21]. 

The objectives of this paper are to evaluate the performance 

of three downscaling algorithms based on machine learning: 

ANN, SVM and RF to obtain LST product with finer resolution 

from the coarser resolution. Variables that have closed 

correlation with land surface status like vegetation coverage, 

topography and terrestrial radiation were introduced into model. 

By comparison, the strength and weaknesses of each machine 

learning algorithms in downscaling could be revealed. In 

addition, the comparison with NDVI-based algorithm, 

TsHARP gives the further evidence about the superiority of 

machine learning algorithms, which could provide guide in 

spatial downscaling to product LSTs with higher accuracy. 

II. METHODOLOGY 

A. Study Area and Data Resources 

 

Figure 1 shows the spatial distribution of elevation and false 

color images of study areas in the paper. Two typical areas 

located in Beijing City were selected with different land cover 

types and terrains, which were marked as rural and urban area. 

The study areas are located at districts of Haidian and 

Changping in Beijing City, China. Beijing is in the northern part 

of North China Plain, ranging from 39°28′N to 41°05′N and 

from 115°25′E to 117°35′E, with the average elevation around 

43.5 meters. Beijing has a typical semihumid continental 

monsoon climate with four clearly distinct seasons. The annual 

mean temperature ranges from 10°C to 12°C and mean 

precipitation ranging from 450 mm to 550 mm. These study 

areas typically contain four kinds of land cover types: 

vegetation, croplands, impervious surfaces (including buildings 

and roads) and water; study area A is mainly characterized by 

vegetation in the western region with undulating topography 

and study area B, located in the downtown area, is almost 

covered by impervious surfaces in the eastern regions with 

relatively flat topography. 

The LST at finer resolution was derived from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER), which is another sensor aboard the Terra satellite. 

The ASTER LST products (AST08), available from the NASA 

Earthdata Search (https://search.earthdata.nasa.gov/) with a 

spatial resolution of 90m, were generated from the 

Temperature/emissivity Separation algorithm with the accuracy 

of about 1.5 K [22]. The ASTER LSTs will be served as the 

referenced data to validate the performance of the downscaling 

models at the finer scale. 

The LST to be downscaled is the Moderate Resolution 

Imaging Spectroradiometer (MODIS) LST product 

(MOD11A1), which was acquired on 24 July 2014 for study 

area A and B, MODIS is a sensor aboard the Terra satellite. 

MOD11A1 is available from the Land Processes Distributed 

Active Archive Center (LPDAAC) with the resolution of about 

1 km and generated from the generalized split-window 

algorithm with an accuracy of about 1 K [23]. To keep the 

multiple relationship with the referenced ASTER LST at 90m 

resolution, the nearest neighbor resampling algorithm was used 

to resample MODIS LST product to maintain the pixel size of 

990 m. Then the LST data could be downscaled from 990 to 90 

m rationally. 

The Landsat 8 Operational Lad Imager (OLI) image were 

acquired at the United States Geological Survey (USGS) Earth 

Resources Observation and Science (EROS) Center Science 

Processing Architecture with the resolution of 30m. In this 

study, the Landsat reflectance products with bands 2-7 and the 

processed spectral indices are served as the input variables for 

downscaling MODIS LST product from 990m to 90m. 

The digital elevation model (DEM) data are derived from The 

NASA’s Shuttle Radar Topography Mission (SRTM). The 

SRTM DEM data and the derivative (aspect, slope and hill-

shade), with a spatial resolution of 90 m, were spatially 

aggregated to a resolution of 990 m by spatial averaging to the 

resolution of the MODIS LST for the downscaling model.  

B.  Method 

 

1) Downscaling Methodology 

In this study, the spatial downscaling algorithm is based on 

the relationship between LST and other land surface parameters 

[24]. The basic process is to construct the statistical model 

between LST and these predictors at coarser resolution, on the 

condition that the relationship is scale invariable, then the 

established model is applied to the study areas with finer 

resolution. The input variables should be intended to depict the 

spatial variance and continuity of LST over different regions. 

Therefore, this paper selects four kinds of predictor variables. 

file:///D:/360Downloads/Dict/8.3.1.0/resultui/html/index.html#/javascript:;
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The first kind of variable is the reflectance of visible/near 

infrared and short-wave infrared bands derived from Landsat 

OLI and TIRS images, which contains much information of 

land cover types, land surface status and soil moisture status. 

Typical spectral indices indicting special land cover are also 

introduced to given precise instructions to study area about 

vegetation, water, bare land as well as impervious surface. 

Thirdly, terrain factors, which make a difference in the direction 

of solar radiation and long-wave surface cooling, have also 

been added in. Additionally, the land classification map was 

introduced as the hierarchical display of the relationship 

between LST and spectral patterns over different land cover 

types. 

The specific steps of the spatial downscaling model are listed 

as following and the flow diagram is shown in Figure 2. 

(1) The experimental data, including Landsat 8 OLI, SRTM 

DEM, land classification map, ASTER and MODIS LST 

product, were expected to registered to the same projection and 

then regions of study area were extracted to construct the 

standard datasets. The derived input variables were intended to 

be aggregated to the MODIS LST product with 990 m coarser 

resolution. In this study, the upscaling method is simply using 

the spatial averaging method. On this level, the statistical model 

between LST and other predictor variables could be established. 

(2) The statistical model based on the coarser level can be 

expressed as following: 

        , s , ,c i ic c c c
LST F t lc  (1) 

where the subscript c means the variable with coarser 

resolution, subscript i represents the i-th variable, 𝜌 is the 

reflectance, s represents the spectral indices, t represents the 

terrain factor and lc represents the land cover type. The function 

F (·) indicates a nonlinear regression model constructed 

between LST and these variables. 

(3) There exists a residual temperature resulted from the 

difference between original and estimated LST, which is called 

model error, the formula is listed as following:  

oc cLST LST LST    (2) 

where the subscript o represents the original LST. 

(4) The statistical downscaling algorithms are commonly 

based on the assumption that there is a unique statistical 

relationship exists within a sensor scene at multiple spatial 

resolutions [5,9,17]. By introduction of predictor variables with 

finer resolution into the constructed model and allocation of 

model error, the downscaled LST product at finer resolution can 

be derived as following:  

        , s , ,
i ii cLST F t lc LST   

    (3) 

 

 
 

Figure 1. Geolocation of the study area in Beijing, China with elevation and false color images generated from Landsat 8 data (R: band 5; G: band 4; B: band 3). 

(a) study area A, (b) study area B. 

 

2) Brief introduction of machine learning algorithms 

Machine learning regression algorithms have been broadly 

utilized in remote sensing image processing, land cover 

classification and image sharping, which the superiority of high 

prediction accuracy and the rapid process of dealing with high 

dimensional data. 

In this study, three rule-based machine learning algorithms, 

(ANN, SVM, and RF), were chosen in LST downscaling. 

The ANN is a computing system constructed by an 

interconnected group of nodes and acquires knowledge through 

a learning process. Each node represents an interconnected 

neuron and the interconnection of weight which is repeatedly 

modified during training process represents the connection 

from the output of one artificial neuron to the input of another, 

the output of each node is computed by some non-linear 

function of the sum of its inputs. The ANN is suitable for 

solving problems such as non-deterministic reasoning with 

complex causality because of its self-learning, self-organization, 

error tolerance and excellent nonlinear approximation ability 
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[25-26]. In this study, training and test data were generated by 

random selection from dataset of two study areas, and the 

samples were divided by 70%, 15% and 15% of training, 

validation and testing, respectively. 

The SVM, proposed by Cortes and Vapnik in 1995, is a 

popular machine learning algorithm in dealing with small-

sample, nonlinear data and high-dimensional pattern 

recognition [27]. The basic concept of the SVM algorithm is 

based on the Vapnik-Chervonenkis Dimension theory and the 

principle of structural risk minimization. It seeks the best 

compromise between the complexity of model and the learning 

ability (that is, the ability to identify any sample without errors) 

based on the limited samples in order to obtain the best 

generalization ability of model [28]. More formally, the SVM 

serves as an ideal machine learning algorithm for classification 

and regression problems and has been successfully applied in 

different fields such as evapotranspiration estimation and 

precipitation estimation from remote sensing data [16]. In our 

study, the Gaussian radial basis function (RBF) is chosen as the 

kernel function of SVM, and the relevant parameters are 

penalty coefficient (C) and gamma, which are optimized by 

traversal to minimize the model error. 

The RF is a new machine learning algorithm evolved from the 

bagging algorithm with the advantage of high accuracy and 

insensitivity to multi-collinearity [29-30]. As a nonlinear 

statistical ensemble regression method, the RF is ensembled by 

a set of uncorrelated classification and decision regression trees. 

The tree is based on the classification and regression trees 

(CART) algorithm, in which the basic concept is to construct a 

tree-like graph or model of decisions and their possible 

consequences by generating relative homogeneous subgroups 

by recursively partitioning the training dataset to the maximum 

variance between groups of independent variables and 

dependent variables in each of the terminal nodes of the tree 

[31]. The results of RF training turn out to be the voting output 

for all decision trees [31]. In our study, the key parameters of 

RF model are the number of decision trees and the maximum 

number of features to be split, which are optimized by traversal 

to minimize the model error. 

 

 

Figure 2. Schematic of the land surface temperature downscaling procedure 
by using machine learning algorithm. 

III. RESULTS AND ANALYSIS  

A. Downscaling performance in different surface conditions 

 

Three machine learning algorithms were applied to downscale 

the LST of MODIS products (the resampled resolution is 990m) 

to finer resolution with about 90m, and then the downscaled 

results were validated by ASTER LST products with 90m 

resolution. The root-mean square errors (RMSE) and the 

estimated biases are listed in Table 1 as following:  

From Table 1 we can see, the average RMSE of three machine 

learning algorithms are about 2~3 K both in study area A and 

B, which perform the better results than that of TsHARP. The 

biases of these methods are almost close to zero, which means 

the unbiased estimation of machine leaning. The RF model 

achieves the most satisfied downscaled result with the RMSE 

of 2.22 K in study area A, about 0.6 K lower than TsHARP, 

following closely by that of ANN model, about 0.2 K lower 

than TsHARP; and also achieves the same satisfied result in 

study area B with the RMSE of 2.28 K, about 1.38 K lower than 

TsHARP, following by ANN and SVM, about 0.87 K and 0.56 

K lower than TsHARP. 

Figure 3 shows the error distribution boxplots of methods-

processed LST derived by TsHARP and machine learning 

algorithms, which are more intuitional than the data graphs in 

Table 1. We can clearly draw the conclusion that the median of 

error is almost close to zero, which means the unbiasedness of 

algorithms. In Figure 3a, the box width of SVM and RF is 

ranged from about -1.5 to 1.5 K, narrower than that of TsHARP 

with the width limits about -3~3 K, this shows the more 

concentrated distribution of regression errors of SVM and RF. 

In addition, the outliers in TsHARP box seem to be much more 

than other algorithms. The similar conclusion could be reached 

in Figure 3b, in which the RF performs best with the smallest 

box width and the minimum outliers. 
TABLE 1. RMSE AND BIAS OF DOWNSCALED LST IN DIFFERENT STUDY AREAS. 

  

 Study area A Study area B 

 RMSE bias  RMSE bias 

TSHARP 3.22 0 3.66 0 

ANN 2.62 -0.05 2.79 -0.2 

SVM 2.82 -0.01 3.1 0.01 

RF 2.22 0 2.28 -0.13 

 

Figure 4c to 4f are the spatial distribution and Figure 6a to 6d 

are the error distribution of downscaled LSTs in study area A 

with several regression models. Compared with the spatial 

distribution of ASTER LST in Figure 4b, the spatial variance of 

4c and 4f are apparently similar to the true LST products and 

the detailed information of land surface status are reserved 

completely. By introducing multiple type predictor variables, 

such as NDVI (which serves as a good indicator of vegetation 

coverage), land use map (which gives a classified reaction to 
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LST in different kinds of land surface) and the terrain factors 

including DEM, slope, aspect as well as hill-shade of mountains, 

the RF and ANN model depict the complicated terrain more 

precisely and completely. The SVM model, although performs 

slightly better than TsHARP with RMSE lower about 0.03 K, 

has made a smoothing effect on the spatial distribution of LST, 

thus a loft of spatial information is over looked, which performs 

slightly inferior to RF and ANN. The TsHARP model is based 

on the relationship between LST and vegetation index such as 

vegetation coverage, thus is more inclined to be affected by 

fitting residuals, which commonly leads to a misty texture 

feature. The lost information can be founded clearly form the 

Figure 3f especially in the sharp mountains. 

The study area B, located in the downtown area in Beijing 

City, is mainly consist of the soaring skyscrapers and the 

bustling streets, together with consecutive road greening and 

continuous river. The complex land covers aggravate the spatial 

heterogeneity and the plenty of mixed pixels help reduce the 

accuracy of downscaling models. Therefore, the RMSE tested 

on study area B are almost higher than that in study area A, 

especially for TsHARP model, the single indictor towards LST. 

Similarly, the RF model gets the pretty steady regression results 

with the RMSE of 2.28 K, about 1 K lower than that of TsHARP. 

The difference of LST spatial difference and the error 

distribution of these downscaling algorithms in study area B is 

shown in Figure 5 and Figure 6d-6h, respectively. On the one 

hand, RF is insensitive to multicollinearity, which pledges the 

robustness of the result for missing and nonequilibrium data and 

has a satisfactory prediction for thousands of predictor variables. 

On the other hand, RF is a kind of ensemble algorithm 

integrated with many basic machines, the voting mechanism 

usually avoids the influence of outliers and get a desired result. 

The downscaled LST of SVM model in Figure 5e shows a more 

smoothing effect on land surface details, which shows a worse 

result than TsHARP. 

From the above, the accuracies of downscaling results trained 

by ANN, SVM and RF seem to be similar to each other and all 

better than TsHARP. This conclusion has reinforced the 

superiority of machine learning. For further comparison, in 

terms of algorithm complexity, ANN and SVM are constructed 

by a number of complicated parameters which are sensitive to 

model training, while RF has the advantage of less parameters 

and simple algorithm, from this, the processing time of RF also 

seems to be much less than ANN and SVM. In addition, the 

smoothing effects that are not appeared in ANN and RF have 

weaken the downscaling performance of SVM, the reason is 

supposed to be the mechanism of SVM, which is more suitable 

for classification than regression. 

 
Figure 3. Comparison the error distribution of TsHARP LST, ANN LST, 

SVM LST and RF LST in (a) Study area A and (b) Study area B by box-plots. 
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Figure 4. Spatial distribution of LSTs in study area A. (a) 990-m MODIS LST, 

(b) 90-m ASTER LST, (c) 90-m downscaled ANN LST, (d) 90-m downscaled 

RF LST, (e) 90-m downscaled SVM LST and (f) 90-m downscaled TsHARP 

LST. 

 
Figure 5. Spatial distribution of LSTs in study area B. (a) 990-m MODIS 

LST, (b) 90-m ASTER LST, (c) 90-m downscaled ANN LST, (d) 90-m 

downscaled RF LST, (e) 90-m downscaled SVM LST and (f) 90-m 

downscaled TsHARP LST.
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Figure 6. Distribution of  LST errors between the estimated and reference LSTs (a) 90-m downscaled TsHARP LST for study area A,(b) 90-m downscaled ANN 
LST for study area A.(c) 90-m downscaled SVM LST for study area A.(d) 90-m downscaled RF LST for study area A. (e) 90-m downscaled TsHARP LST for 

study area B ,(f) 90-m downscaled ANN LST for study area B.(g) 90-m downscaled SVM LST for study area B.(h) 90-m downscaled RF LST for study area B.

 

Figure 7. Random forest variable importance scores averaged across two study areas. 

 

B. Variable Importance in Downscaling of LST 

 

The RF algorithm provides measurements of variable 

importance. The resultant values are then used to rank the 

orderings of those independent variables in terms of their 

contribution to the regression model. Figure 7 shows the 

importance ranking of input variables calculated by RF 

algorithm in two study areas. Apparently, contributions of 

terrain factors, especially for DEM and slope are the highest in 

both of two areas. It implies that there are large topographic 

effects on the healing process for solar incident radiance in 

mountainous surface. Besides, the terrain-dominated study area 

A shows a significant inconsistency between DEM and other 

kind of variables, while the difference of importance scores in 

study area B seems to be not intensive because of the flat terrain. 

For study area A, largely covered by hills with the elevation 

ranging from 15~2832 m, the spatial distribution of LST would 

almost be controlled by these terrain factors and the vegetation 

fraction correlated factors. For study area B, the scene acquired 

at downtown area with the complicate landscapes and relatively 

flat terrain, DEM becomes less important than that in study area 

A. It’s important to find that the importance ranking of NDVI 

in both two areas seems not more distinctive than other 

variables, which gives the further evidence that the NDVI-

based algorithm, TsHARP would have a weak performance in 

regions with complex land cover type. 

C. Downscaling results of the different training models 

 

Downscaling algorithms trained on the specific area often 

reward with acceptable results because of the high correlation 

between training and testing data, which may give a concern 

about the overfitting problem of the model. For this reason, 

downscaling models trained on the study area A were applied 

the downscale the LST in study area B and vice versa. The 

statistical results of three machine learning algorithms and the 

TsHARP model are listed in Table 2. Compared the results in 

Tables 1, the regression accuracy of TsHARP are obviously 

declined with the RMSE increased about 0.43 K in study area 

A and 0.13 K in study area B. The same experiment were tested 

by other algorithms but the regression errors tend to be steady, 

and what is more amazing is that the RMSE of RF and ANN 

model with different training model and testing dataset appear 

to be (about 0.18 K of RF model and about 0.58 K of ANN 

model in study area A) lower than that of the same model and 

dataset, which give a strong evidence that the RF and ANN 

model are generalized enough to downscale LST using a 

different training model. Additionally, despite the lost spatial 

information and the smoothing effect of SVM, the RMSEs of 

SVM model are basically equal to the former result (about 0.14 

K in study area A and 0.03 K in study area B), which also proves 

that the machine learning algorithms are strong enough to 

downscale LST with different training model. 

 
TABLE 2.  DOWNSCALING STATISTICS FOR VARIOUS REGIONS. 

 

 Study area A using 

model B 

Study area B using 

model A 

 RMSE bias RMSE bias 

TSHARP 3.65 0 3.79 -1.68 

ANN 2.05 0.03 2.82 -0.01 

SVM 2.96 -0.26 3.13 0.18 

RF 2.04 0.03 2.3 -0.31 

 

IV. CONCLUSION 

In this study, three machine learning algorithms including 

ANN, SVM and RF model, were applied to downscale MODIS 

LST products from 990 m to 90 m. The case study was 

conducted over two typical study areas in Beijing; downscaled 

results were validated by the ASTER LST products with 90 m 

resolution and were compared with the common traditional 
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downscaling algorithm - TsHARP. According to the results we 

can draw some conclusion as following: 

Firstly, the model complexity of TsHARP model is far 

simpler than that of those machine learning algorithms, 

compared with ANN and SVM which have complex parameter 

optimization process, the RF model is lack of sensitivity to 

parameters, thus it has a relatively simple structure. Together 

with the number of input variables and computational 

complexity, the computation time of TsHARP is confirmed to 

be the least, followed by RF and ANN model, the SVM has the 

longest time with the most complicated mechanism. In terms of 

regression accuracy, machine learning algorithms are still 

superior to TsHARP model, no matter in areas with fully 

vegetation covered or in areas occupied with impervious 

surface. Especially for RF and ANN model, which shows more 

satisfied predicting effect with multiple type of predictor 

variables introduced. The SVM model, generally achieves a 

good result in number, but has a smoothing effect on land 

surface. Indeed, the NDVI-based TsHARP algorithm, with only 

one predictor variable into model, has an inadequate 

downscaling performance in areas with complicated land cover 

types. 

The downscaling results in study area A are universally better 

than that of study area B. This is attached to the land cover types 

of study area. In the region with fully vegetation covered, the 

land cover types are relatively simple and the spatial 

distribution of LST are highly associated with DEM and 

vegetation index like NDVI, thus all algorithms even TsAHRP 

have received a good regression result. However, the 

downscaled LST did not adequately capture spatial variations 

in study area B, possibly due to the complex land surface 

combined with natural as well as artificial materials, which are 

more apt to derive mixed pixels. Thus, a more kinds of 

explanatory variable dataset needs to be established over 

regions with spatial heterogeneity. 

One of the most significant advantages of machine learning 

algorithms is the robustness applied to different datasets using 

the trained model, this may be attribute to the introduction of 

multiple type predictor variables as well as the moderate model 

which depicts the nonlinear relationship between dependent 

variables and independent variables. In addition, RF provides 

with an indication for the selection of predictor variables in 

different kinds of regions. According to the variable importance 

measurements of the RF, DEM is the most significant variable, 

followed by slope, it means the great importance of terrain 

factors in downscaling LST. Moreover, the variable importance 

values in different regions would be reallocate following the 

different land cover types. 

This study has provided thoughts in comparing the capacity 

and suitability of different machine learning algorithms in 

downscaling LST. Once the appropriate and adequate input 

variable dataset being constructed and the representative 

training samples of downscaling model being selected, the 

framework is expected to provide more precise LST products 

with high spatial and temporal resolution at the 

larger geographic context. In the future, further studies would 

be focused on the parameter optimization and process 

standardization of these machine learning algorithms to 

produce excellent quality LST products with high spatial 

resolution. Additionally, other land surface variables related to 

LST (such as soil moisture, humidity) could be introduced to 

examine whether these variables are beneficial for downscaling 

LST. 

 

REFERENCES 

[1] Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. 

A. Sobrino, “Satellite-derived land surface temperature: Current status 
and perspectives,” Remote Sens. Environ., vol. 131, pp. 14–37, 2013.  

[2] A. J. Arnfield, “Two decades of urban climate research: a review of 

turbulence, exchanges of energy and water, and the urban heat island,” Int. 
J. Climatol., vol. 23, no. 1. Papers, 1-26, 2003. 

[3] V. Lakshmi, and D. Zehrfuhs, “Normalization and comparison of surface 

temperatures across a range of scales,” IEEE Trans. Geosci. Remote Sens., 
vol. 40, no. 12. Papers, 2636-2646, 2002. 

[4] P. E. Dennison, K. Charoensiri, D. A. Roberts, S. H. Peterson, and R. O. 

Green, “Wildfire temperature and land cover modeling using 
hyperspectral data,” Remote Sens. Environ., vol. 100, no. 2. Papers, 212-

222, 2006. 

[5] W. P. Kustas, J. M. Norman, M. C. Anderson and A. N. French, 
“Estimating subpixel surface temperatures and energy fluxes from the 

vegetation index–radiometric temperature relationship,” Remote Sens. 

Environ., Papers, 85(4):429-440, 2003. 
[6] L. J. Guo, and J. M. Moore, “Pixel block intensity modulation: Adding 

spatial detail to TM band 6 thermal imagery,” Int. J. Remote Sens., vol. 

19, no. 13. Papers, 2477-2491, 1998. 
[7] B. Zhukov, D. Oertel, F. Lanzl and G. Reinhackel, “Unmixing-based 

multisensor multiresolution image fusion,” IEEE Trans. Geosci. Remote 

Sens., vol. 37, no. 3. Papers, 1212-1226 , 1999. 
[8] A. Dominguez, J. Kleissl, J. C. Luvall, “High-resolution urban thermal 

sharpener (HUTS),” Remote Sens. Environ., Papers,115(7):1772-1780, 

2011. 
[9] N. Agam, W. P. Kustas, M. C. Anderson, F. Li, and C. M. U. Neale “A 

vegetation index based technique for spatial sharpening of thermal 

imagery,” Remote Sens. Environ., vol. 107, no. 4. Papers, 545-558, 2007. 

[10] K. Zakšek, K. Oštir, “Downscaling land surface temperature for urban 

heat island diurnal cycle analysis,” Remote Sens. Environ., Papers,117, 

114–124, 2012. 
[11] J.J. Qu, X. Hao, M. Kafatos, L. Wang, “Asian dust storm monitoring 

combining Terra and Aqua MODIS SRB measurements,” IEEE Geosci. 

Remote Sens. Lett., Papers, 3, 484–486, 2006. 
[12] S. B. Duan and Z. L. Li, "Spatial Downscaling of MODIS Land Surface 

Temperatures Using Geographically Weighted Regression: Case Study in 

Northern China," IEEE Trans. Geosci. Remote Sensing, vol. 54, no. 11, 
pp. 6458-6469, 2016. 

[13] S. Mukherjee, P. K. Joshi, and R. D. Garg, "Regression-Kriging 

Technique to Downscale Satellite-Derived Land Surface Temperature in 
Heterogeneous Agricultural Landscape," IEEE Journal of Selected Topics 

in Applied Earth Observations & Remote Sensing, vol. 8, no. 3, pp. 1245-

1250, 2015. 
[14] D. Fasbender, D. Tuia, P. Bogaert, and M. Kanevski, "Support-Based 

Implementation of Bayesian Data Fusion for Spatial Enhancement: 

Applications to ASTER Thermal Images," IEEE Geoscience & Remote 
Sensing Letters, vol. 5, no. 4, pp. 598-602, 2008. 

[15] F.S. Mpelasoka, A.B. Mullan, R.G. Heerdegen, “New Zealand climate 
change information derived by multivariate statistical and artificial neural 

networks approaches,” Int. J. Climatol., Papers, 21, 1415–1433, 2001. 

[16] J.A. Gualtieri, S. Chettri, “Support Vector Machines for classification of 
hyperspectral data,” In Proceedings of the IGARSS 2000., Papers, 813–

815, 2000. 

[17] C. Hutengs, M. Vohland, “Downscaling land surface temperatures at 
regional scales with random forest regression,” Remote Sens. Environ., 

Papers, 178, 127–141, 2016. 

[18] Y. Yang, X.L. Li, C. Cao, “Downscaling urban land surface temperature 
based on multi-scale factor,” Science of Surveying & Mapping, 2017. 

[19] W. F. Zhan, Y. H. Chen, J. Zhou, J. F. Wang, W. Y. Liu, James Voogt, X. 

L. Zhu, J. L. Quan, J. Li, "Disaggregation of remotely sensed land surface 

file:///D:/360Downloads/Dict/8.3.1.0/resultui/html/index.html#/javascript:;
file:///D:/360Downloads/Dict/8.3.1.0/resultui/html/index.html#/javascript:;
file:///D:/360Downloads/Dict/8.3.1.0/resultui/html/index.html#/javascript:;


 9 

temperature: Literature survey, taxonomy, issues, and caveats," Remote 
Sens. Environ., vol. 131, no. 8, pp. 119-139, 2013. 

[20] M. Bisquert, J. M. Sanchez, and V. Caselles, "Evaluation of 

Disaggregation Methods for Downscaling MODIS Land Surface 
Temperature to Landsat Spatial Resolution in Barrax Test Site," IEEE 

Journal of Selected Topics in Applied Earth Observations & Remote 

Sensing, vol. 9, no. 4, pp. 1430-1438, 2016. 
[21] S. Bonafoni, "Downscaling of Landsat and MODIS Land Surface 

Temperature Over the Heterogeneous Urban Area of Milan," IEEE 

Journal of Selected Topics in Applied Earth Observations & Remote 
Sensing, vol. 9, no. 5, pp. 2019-2027, 2016. 

[22] Z.M. Wan, J. Dozier, “A generalized split-window algorithm for 

retrieving land-surface temperature from space”. IEEE Trans. Geosci. 
Remote Sens., 34, 892-905, 1996.  

[23] A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, A. B. 

Kahle, “A temperature and emissivity separation algorithm for Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

images,” `EEE Trans. Geosci. Remote Sens., 36, 1113-1126, 2002. 

[24] W. Zhan, Y. Chen, J. Zhou, “Sharpening Thermal Imageries: A 
Generalized Theoretical Framework From an Assimilation Perspective,” 

IEEE Trans. Geosci. Remote Sens., Papers, 49(2):773-789, 2011. 

[25] G. S. Dwarakish, S. Rakshith, U. Natesan, "Review on Applications of 

Neural Network in Coastal Engineering," Artificial Intelligent Systems 

and Machine Learning., 5 (7): 324–331, 2013. 

[26] L. Ermini, F. Catani, N. Casagli, “Artificial Neural Networks applied to 
landslide susceptibility assessment,” Geomorphology, 66(1):327-343, 

2005. 
[27] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, 

vol. 20, no. 3, pp. 273-297, 1995. 

[28] W. Jing, Y. Yang, X.F. Yue, X.D. Zhao, “A Comparison of Different 
Regression Algorithms for Downscaling Monthly Satellite-Based 

Precipitation over North China,” Remote Sens., 8(10):138-144, 2016. 

[29] L. Breiman, “Random forests, machine learning 45,” J. Clin. Microbiol., 
Papers, 2:199-228, 2001. 

[30] Y. Yang, C. Cao, X. Pan, “Downscaling Land Surface Temperature in an 

Arid Area by Using Multiple Remote Sensing Indices with Random 
Forest Regression,” Remote Sens., Papers, 9(8), 2017. 

[31] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, “Classification and 

Regression Trees. Chapman et. Classification and regression trees,” 
Wadsworth International Group, 243-6, 1984. 

[32] T. G. Dietterich, “An Experimental Comparison of Three Methods for 

Constructing Ensembles of Decision Trees: Bagging, Boosting, and 
Randomization,” Mach. Learn., Papers, 40(2):139-157, 2000.  

 

 
Wan Li received B.S. degree in geographical condition 

monitoring from Wuhan University, Wuhan, China, in 

2012. She is currently pursuing the M.S. degree 
cartography and geographical information system from 

the Institute of Geographic Sciences and Natural 

Resources Research, Chinese Academy of Sciences, 
Beijing, China, in 2018. Her research interests include 

the scale transformation of land surface temperature. 

 
 

 

Li Ni received the B.S. degree and the M.S. degree in 
photogrammetric engineering and remote sensing from 

Wuhan University, Wuhan, China, in 2003 and 2006, 

respectively. She is currently pursuing the Ph.D. degree 

in cartography and geographical information system at 

Center for Earth Observation and Digital Earth, Chinese 

Academy of Sciences. She is currently an Associate 
Research Fellow with Key Laboratory of Digital Earth 

Science, Institute of Remote Sensing and Digital Earth, 

Chinese Academy of Sciences. Her research interests 
focus on the hyperspectral remote sensing. 

 

Hua Wu received the B.S. degree in photogrammetric 
engineering and remote sensing from Wuhan 

University, Wuhan, China, in 2003, the M.S. degree in 

cartography and geographical information system 
from Beijing Normal University, Beijing, China, in 

2006, and the Ph.D. degree in cartography and 

geographical information system from the Institute of 
Geographic Sciences and Natural Resources Research, 

Chinese Academy of Sciences, Beijing, in 2010.  

He is currently an Associate Research Fellow with the 
Institute of Geographic Sciences and Natural 

Resources Research, Chinese Academy of Sciences. His research mainly 

includes the retrieval, validation, and scaling of remotely sensed products. 
 

Zhao-Liang Li received the Ph.D. degree in 1990. Since 1992, he has been a 

research scientist at CNRS, Illkirch, France. He joined the Institute of 
Agricultural Resources and Regional Planning in 2013. He has participated in 

many national and international projects such as NASA-funded MODIS, EC-

funded program EAGLE, and ESA funded programs SPECTRA, etc. His main 
expertise fields are in thermal infrared radiometry, parameterization of land 

surface processes at large scale, as well as in the assimilation of satellite data to 

land surface models. He has published more than 100 papers in international 

refereed journals. 

 
Si-Bo Duan received the Ph.D. degree in 

cartography and geographical information system from 

the Institute of Geographic Sciences and Natural 

Resources Research, Chinese Academy of Sciences, 
Beijing, China, in 2014. He is currently a Associate 

Research Fellow with the Institute of Agricultural 

Resources and Regional Planning, Chinese Academy of 
Agricultural Sciences. His research interests include the 

retrieval and validation of land surface temperature. 

 
 

 

 

 

 

 


