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Abstract: The onset of turbulence in subcritical shear flows is one of the most puzzling manifestations
of critical phenomena in fluid dynamics. The present study focuses on the Couette flow inside an
infinitely long annular geometry where the inner rod moves with constant velocity and entrains
fluid, by means of direct numerical simulation. Although for a radius ratio close to unity the system
is similar to plane Couette flow, a qualitatively novel regime is identified for small radius ratio,
featuring no oblique bands. An analysis of finite-size effects is carried out based on an artificial
increase of the perimeter. Statistics of the turbulent fraction and of the laminar gap distributions
are shown both with and without such confinement effects. For the wider domains, they display
a cross-over from exponential to algebraic scaling. The data suggest that the onset of the original
regime is consistent with the dynamics of one-dimensional directed percolation at onset, yet with
additional frustration due to azimuthal confinement effects.

Keywords: subcritical phenomenon; transition to turbulence; direct numerical simulation

1. Introduction

The dynamics at the onset of turbulent fluid flow, as the parameters are varied, is one of the most
puzzling issues of hydrodynamics. Subcritical flows are known to feature two regimes in competition,
namely a laminar and a turbulent one. As the Reynolds number (their main control parameter) is
varied, this competition takes the form of laminar-turbulent coexistence featuring some interesting
analogies with phase transitions in thermodynamics. The onset of this coexistence in wall-bounded
shear flows has been speculated to follow a statistical scenario called directed percolation (DP).
It involves a critical point (a critical Reynolds number) in the vicinity of which fluctuations diverge
algebraically [1,2]. The directed percolation scenario has gained theoretical importance because it
appears as the usual rule for a one-dimensional systems obeying a set of specific properties, notably a
unique absorbing state and short-range interactions [3,4]. However, it quickly proved difficult to isolate
similar phenomena experimentally [5]. The main limitations happen to be finite-size effects, as well as
the presence of defects [6–8] or issues revolving around nucleation rates [9,10]. The first experimental
evidence for directed percolation in a two-dimensional physical system, with a complete set of critical
exponents, occurred in electroconvection in nematic liquid crystals [11]. More recent experiments and
numerical simulations with inert liquids were aimed at establishing the critical exponents relevant
for the laminar-turbulent transition. The only meaningful experimental results are to be found in
Ref. [12] for the flow inside an annulus driven by the revolutions of the outer wall, where all critical
exponents match those of (1 + 1)-D DP. All other experimental attempts in effectively two-dimensional
geometries have so far lead to ambiguous results [13,14]. A few numerical studies based on other
geometries have also confirmed the DP hypothesis in one dimension, among them [15]. The most
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notorious system displaying one-dimensional spatiotemporal intermittency (STI) is cylindrical pipe
flow. Although (1 + 1)-D DP has been widely speculated and is found in the most recent modelling
approaches [16–18], clean experimental evidence seems to require facilities of a size beyond anything
engineerable [19]. The only convincing two-dimensional study to date based on the (underesolved)
Navier–Stokes equations and supporting the DP hypothesis is found in Ref. [20]. There again, a cost
compromise was necessary between accuracy of the Navier–Stokes solutions and size effects. There
the set of critical exponents differs from their unidimensional counterpart and corresponds to (2 + 1)-D
DP. The status of the application of (2 + 1)-D DP to other planar flows is still open: for plane Couette
flow (pCf), finite-size effects wrongly predict to discontinuous scenarios [21], whereas plane Poiseuille
flow (pPf) seems to display a two-stage behavior so far poorly understood [22–24]. At a finite distance
from the critical point, these two planar flows feature more structured arrays of turbulent stripes, all
oblique to the mean flow direction (see, e.g., [21,25–30] for recent reviews).

Given the current status of DP affairs in shear flows, new flow candidates where to probe
the DP hypothesis are encouraged, irrespective of the effective dimension considered (one or two).
In the present article, we revisit transition in annular Couette flow (aCf) in the light of critical scaling.
This flow has a geometry similar to cylindrical pipe flow, however, with a solid cylinder at its centerline.
The geometry is determined by the radius ratio η between the radius of the outer pipe and that of the
inner one. This flow supports both turbulence [31] as well as a linearly stable base flow for all Reynolds
number of interest, hence transition has to be of the subcritical type. Unlike annular pipe flow [32–34],
no pressure gradient is applied, instead the fluid is entrained by the translating motion of the inner
cylinder [35]. Earlier work by some of us [36] on this flow have lead to surprising results: although the
transitional flow reported for η ≥ 0.5 consists of helical bands of turbulence wrapping around the inner
rod, for lower values of η, a new regime of laminar-turbulent alternations was reported. This regime is
characterized by slightly shorter streamwise correlations and non-oblique structures, explained by the
azimuthal confinement and by the impossibility to host azimuthal large-scale flows [37]. The aim of the
present article is to give a more detailed characterization of the novel low-η intermittent regime and of
its onset. In particular, the azimuthal extension of aCf is investigated in a range of parameters beyond
that used by Kunii et al. [36]. As will be seen, this new choice of geometrical parameters leads to new
conclusions regarding the critical exponents. This new parametric study allows one to rationalize once
and for all the quantitative comparison between original geometry and the extended one.

The plan of this article unfolds as follows: the geometry and the numerical methods are explained
in Section 2, and the statistics of STI are reported in Section 3 and discussed in Section 4.

2. Set-Up and Methodology

2.1. Geometry of aCf

Annular Couette flow is the flow in the interstice between two coaxial cylinders of formally
infinite length, driven by the motion at velocity Uw > 0 of the inner cylinder in the x-direction.
The annular geometry of this flow is common to both Taylor–Couette flow and annular Pipe flow;
however, the forcing is different and no spin of the walls is considered. A sketch of that geometry
is displayed in Figure 1 with the usual notations for the cylindrical coordinates (x, r, θ). Assuming
that the inner and outer cylinder have respective dimensional radii rin and rout, the main geometrical
parameter of this study is the radius ratio η = rin/rout, which varies in the open interval (0, 1). We also
introduce the gap h between the two cylinders h = rout − rin.

Computationally, the pipes require to have either finite length or to be spatially periodic. The use
of a spectral Fourier-based method to solve the pressure Poisson equation requires axial and azimuthal
periodicity. This introduces the two wavelengths Lx and Lθ , respectively, as the domain length and
the angular periodicity. While Lx is a free parameter, the natural value for Lθ is 2π because of the
cylindrical geometry. However, there is no computational obstruction to choosing other values for Lθ ,
for instance Lθ = 8π or 16π as in Ref. [36]. In what follows, we keep the generic notation Lθ .
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Figure 1. Sketch of annular Couette flow in the cylindrical coordinate system.

Like in other wall-bounded shear flows, the main lengthscale ruling out the transitional dynamics
at onset is the gap h between the two solid walls, which here depends directly on the value η via
the relation h = rout(1− η). The perimeter on the internal cylinder, at mid-gap or on the external
cylinder, now expressed in units of h, is shown in Figure 2 when the original dimensional value of
Lθ is 2π (Figure 2a). The inner perimeter is also displayed when Lθ is a multiple of 2π (Figure 2b),
with Lθ = 2πn. The theory developed in Refs. [33,36] shows that azimuthal large-scale flows cannot
be accommodated by the geometry unless Lθr/h � 1 everywhere in the domain. The data for the
inner cylinder play the role of a lower bound. For Lθ = 2π, it is clear from Figure 2a that, for the
lowest values of η, no azimuthal large-scale flow is possible. However, increasing n leads to azimuthal
large-scale flows being possible for smaller and smaller values of η. This leads to the possibility to
artificially restore large-scale flows otherwise ruled out by geometrical confinement.

2.2. Governing Equations and Computational Methods

Whereas η is a geometrical parameter only, we also introduce the Reynolds number Rew =

Uwh/4ν, based on the half velocity of the cylinder sliding Uw/2, the half gap width h/2, and the
kinematic viscosity ν of the fluid. The reason why half-gap and half-velocities are considered to
non-dimensionalize the equations is a simple way to reconnect with the standard conventions for
pCf as η goes towards unity. By choosing this convention for all values of η, the non-dimensional
incompressible equations ruling the flow dynamics without any turbulence model read

∇∗ · u∗ = 0, (1)

∂u∗

∂t∗
+ (u∗ · ∇∗) u∗ = −∇∗p∗ +

1
4Rew

∆∗u∗, (2)

where superscripts ∗ indicate quantities non-dimensionalized with Uw and h, and where u =

(ux, ur, uθ) and p represent the velocity field and the pressure field, respectively.
Equation (2) is discretized in space using finite differences and with fine enough grid resolutions

according to the standard criteria of direct numerical simulation (DNS) [26]. The time discretization
is carried out using a second-order Crank–Nicolson scheme, and an Adams–Bashforth scheme
for the wall-normal viscous term and the other terms, respectively. Further details about the
numerical methods used here can be found in Ref. [38]. Table 1 lists the parameters used in this
computational study.
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Figure 2. (a) circumference of original annular pipe system at the outer cylinder, at mid-gap, and at the
inner cylinder; (b) circumference at the inner cylinder for Lθ ≥ 2π.

Table 1. Computational conditions. L∗i : length of the computational domain in the direction i,
non-dimensionalized by the gap width h = (rout − rin); L∗out (resp. L∗in) the circumference of the outer
(resp. inner) cylinder surfaces, normalized by h; Ni : the number of grids.

η = rin/rout 0.1 0.15 0.2 0.3

L∗x × L∗r 512× 1 409.6× 1

Lθ 2π 32π 128π 128π 112π 2π 96π

L∗out (= Lθ r∗out) 7.0 111.7 446.8 473.1 439.8 9.0 430.8

L∗in (= Lθ r∗in) 0.7 11.2 44.7 71.0 88.0 2.7 129.2

Nx × Nr 2048× 64

Nθ 32 512 2048 2048 2048 64 2048

3. Statistics at the Onset of Transition

3.1. Global Stability and Coherent Structures Close to Onset

In the present subsection, we recall some key results of Ref. [36] together with some updated
predictions. The investigation of the onset of turbulence starts with the determination of the global
Reynolds number Reg, defined as the highest Reynolds number below which no turbulence can survive
(at least in the thermodynamic limit, i.e., over infinite observation times in unbounded domains).
Since the flow is subcritical, using a given type of initial condition for this task can lead to overestimates
of Reg. The commonly adopted strategy, both in experiments and numerics, is that of an adiabatic
descent [39] initiated from a turbulent state at sufficiently high Reynolds number. In the limit where
the waiting time between successive diminutions of Re is sufficient long, the value at which turbulence
gets extinct is a good approximation of Reg. Figure 3 displays information about Reg depending on the
radius ratio η. For Lθ = 2π (n = 1), Reg increases monotonically with decreasing η. For larger Lθ , Reg is
always smaller than for the case with Lθ = 2π and the same value of η, with a now decreasing trend for
Reg(η) which is even more marked once η ≤ 0.3. The values of Lθ needed to obtain this curve robustly
are all listed in Table 1. As for the case of artificially extended aCf at η = 0.1, the result for Lθ = 128π

is plotted in the figure. The parameter range strictly below η = 0.1 has not been investigated.
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Figure 3. Radius ratio η dependency of the global critical Reynolds number Reg. The plot includes
the pCf limit η → 1 from Ref. [21] (labeled “*1”), as well as DNS data from Ref. [36] for η = 0.5 and
0.8 (labeled “*2”). Triangles: original aCf with Lθ = 2π is plotted using triangles; circles: artificially
extended aCf (Lθ > 2π).

The fact that artificially extended systems display a lower threshold in Re indicates that some
specific spatiotemporal regimes, specific to large Lθ and not allowed for in narrow domains, are able to
maintain themselves against relaminarization. As in Ref. [36], we can compare typical snapshots of the
velocity fields in the corresponding regime in order to highlight the qualitative differences. Figures 4
and 5 display instantaneous snapshots of the radial velocity at mid-gap (i.e., r = (rin + rout)/2) at
respectively η = 0.3 and 0.1, one very close to Reg (left column) and the other slightly above it
(right column). Each row corresponds to a different value of the integer n (n = 1, 16, 48, and 64), i.e.,
another value of Lθ . When n = 1, the one-dimensional intermittency is reminiscent of the dynamics
in cylindrical pipe flow [40]. The differences between different values of η emerge only for higher
n. For η = 0.3, the stripe patterns exhibit an obliqueness typical of most laminar-turbulent patterns
[25,26,37,41]. However, it is visually clear that the situation is different for η = 0.1, with shorter
structures and less pronounced obliqueness. It is not immediately clear whether the effective
dimensionality of the proliferation process is rather one or two. These issues can be addressed
using the determination of critical exponents, as will be done in the next subsection.

3.2. Data Binarization

Velocity fluctuations with respect to the mean flow are defined as u
′
= u − u, where u is

the space-averaged time-dependent velocity averaged along x and θ, as defined in Equation (3).
Here, y denotes the (dimensional) distance from the inner cylinder to the outer cylinder as y = r− rin,
instead of using r.

u(y, t) =
1

LxLθ

∫ Lx

0

∫ Lθ

0
u(x, y, θ, t)dxdθ. (3)

The flow is separated into its laminar and turbulent components by postulating a threshold
independently of the Reynolds number. The local criterion chosen is |u′r/Uw| ≥ 0.01 for turbulence and
|u′r/Uw| < 0.01 for laminar flow, with u′r the radial velocity component, which vanishes everywhere
for strictly laminar flow. As in Figures 4 and 5, localized turbulent regions are visualized by contours
of u′r

∗ in steps of ±0.01. The turbulent fraction Ft is evaluated at mid-gap (y = h/2) by estimating the
percentage of grid points for which the turbulent criterion above is fulfilled.
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(a) Rew = 389.5 (b) Rew = 390

(c) Rew = 320.5 (d) Rew = 325

ur
’/Uw

−0.01 −0.005 0.010.005

Figure 4. Contours of radial velocity fluctuations u∗r at mid-gap for η = 0.3 around Rew = Reg. Typical
snapshots of instantaneous flow fields obtained after reaching each equilibrium state are shown here.
The main flow is from left to right. (a,b) original aCf with Lθ = 2π, and (c,d) artificially extended with
Lθ = 96π.

(a) Rew = 407.5 (b) Rew = 415.0

(c) Rew = 272.5 (d) Rew = 277.5

(e) Rew = 262.5 (f) Rew = 267.5

ur
’/Uw

−0.01 −0.005 0.010.005

Figure 5. The same as Figure 4, but for η = 0.1. (a,b) Lθ = 2π; (c,d) Lθ = 32π; and (e,f) Lθ = 128π.

The dynamics of the proliferation process for η = 0.1 and 0.3 is illustrated in Figure 6 using
space-time diagrams and compared one to another in the case n = 1. The spatial variable is x−U f t,
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i.e., the streamwise coordinate in a frame moving with constant velocity U f , which is close to the
average velocity um. The space-time diagram is based on the binarized radial velocity u′r. The absolute
value of the radial velocity evaluated at mid-gap is first averaged azimuthally according to

〈u′rrms〉θ(x, t) =

√
1

2π

∫ 2π

0
u′ 2

r (x, h/2, θ, t) dθ. (4)

and the binarization criterion is 〈u′rrms〉θ/Uw ≥ 0.01. The frame velocity U f for η = 0.3 is chosen to be
same with um, which is estimated in two steps. First, a spatially average velocity is evaluated at every
time t

um(t) =
1

Lx(r2
out − r2

in)Lθ

∫ Lx

0

∫ rout

rin

∫ Lθ

0
ux(x, y, θ, t) rdxdrdθ, (5)

then it is time-averaged using a classical moving average technique over a time interval ∆T (with
∆T > 104h/Uw after reaching equilibrium).

um =
1

∆T

∫ T+∆T

T
um(t)dt. (6)

We found that, for η = 0.1, an optimal value of U f for the frame to move with puffs was slightly slower
than um. For each value of η, three space-time diagrams are displayed, respectively below, close to and
above the corresponding critical point Reg(η). The shorter aspect of the coherent structures for η = 0.1
is striking compared to η = 0.3. Many more splitting and decay events, qualitatively similar to the
pipe flow case [40,42,43], occur for η = 0.1 despite equal pipe lengths. This suggests that the status
of the present simulations for η = 0.1 is qualitatively much closer to the thermodynamic limit than
it is for η = 0.3. As a by-product, the critical scaling is expected to converge at a lower price than at
higher η. Given the cost obstacles induced by the diverging lengthscales/timescales in most critical
phenomena, the above conclusion is positive news.

0 512 0 409.6512 0 409.6

t*
=

t 
U

w
/

h
(×

1
0

4
)

η = 0.3η = 0.1

0 0 512
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0 409.6

10
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9

5

6

0

7

3

4

1

2

(x – Uf  t) / h

Figure 6. Space-time (x−U f t) diagram of original aCf (Lθ = 2π) for η = 0.1 (three leftmost columns)
and 0.3 (three rightmost columns). Black: turbulence according to the criterion 〈u′rrms〉θ/Uw ≥ 0.01.
The values of the frame velocity U f for η = 0.1 are 0.288Uw at Rew = 407, 0.2875Uw at Rew = 407.5,
0.2815Uw at Rew = 415, and those for η = 0.3 are approximately equal to um.
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3.3. Intermittency Statistics

The statistical post-processing protocol for STI is vastly similar to that used by other authors:
the first step is to monitor the decay in the time of the turbulence fraction Ft(t) when the system is
initiated with turbulence everywhere. By dichotomy, this yields a good approximation of Reg and
allows one to define the reduced control parameter ε = (Rew − Reg)/Reg. This decay is expected to be
algebraic exactly at onset, i.e., of the form Ft(t) = O(t−α). This yields as well the so-called dynamic
exponent α. In a second phase, the equilibrium turbulent fraction (i.e., its time average) is monitored
as a function of ε. For ε > 0, the data versus the expected scaling Ft(t) = O(εβ) yield the exponent
β. Eventually, the mean correlation length ξ(Rew) (either ξx in the streamwise direction or ξθ in the
azimuthal one) can be estimated at equilibrium by monitoring the cumulative distribution function
(CDF) of the laminar gaps Plam(lx > L), where lx stands for the length of a laminar trough and L is a
dummy variable. A critical exponent µ⊥ can be evaluated from fits as the algebraic decay exponent of
the CDF.

We begin by describing the results from the critical quench experiments of Figure 7 for η = 0.1 and
n = 64. The initial condition corresponds to a turbulent velocity field from a long simulation well above
Reg, here taken as Rew = 280. The same initial condition is used for new simulations at another target
value of Rew, in principle such that Rew is “close” to Reg. As expected, the flow relaminarizes (attested
by the monotonic decrease of Ft(t)) for sufficiently low values of Rew, whereas it stays turbulent for
the higher values. In the latter case, the turbulent fraction reaches a non-zero mean value Ft, which
will be reported in the next figure. The set of colored curves in Figure 7a straddle the decay curve
corresponding to the critical value Rew = Reg, whose best approximation in the figure is the red curve
associated with Rew = 262.5. For continuous phase transitions, the corresponding decay is expected
to be of power-law type, i.e., Ft = O(t−α). This fact of 260 < Reg < 262.5 yields an approximation of
Reg = 261.7, which allows for defining ε as before. The present approach rests on the hypothesis of a
critical scaling in the vicinity of the critical point. If that hypothesis is correct then, by rescaling time
and turbulent fraction, the curves of Figure 7a should collapse onto two master curves, one for the
relaminarization process and the other for the saturation process. This is tested in Figure 7b by plotting
tαFt(t) as a function of the rescaled time t|ε|ν‖ . As for α and ν‖, the approximate values from (1 + 1)-D
DP theory, respectively 0.451 and 1.733, have been used for the rescaling. The match is satisfying,
which confirms that a critical range has been identified in this system.

As a by-product of Figure 7, the values of the mean turbulent fraction Ft, obtained after reaching
equilibrium, are reported in Figure 8 as functions of Rew. Critical theories all predict a scaling
Ft = O(εβ) close enough to the critical point. The algebraic scaling revealed in the previous plots of
critical quench suggests that, for instance, Re = 262.5 belongs to the range where algebraic fits apply
for η = 0.1 and Lθ = 128π. Consequently, if, for these parameters, ε is defined using the approximated
Reg = 261.7, the dependence of Ft versus ε is also expected to be algebraic in the same range of values
of Re. In that case, the power-law exponents can be classically estimated using log-log plots and
compared to those from DP theories. Algebraic fits of Ft are shown in Figure 8 both for η = 0.1 (left)
and 0.3 (right). For each case, the main plot of Ft versus Rew is displayed in linear coordinates, while
the inset displays Ft versus ε in log-log coordinates, in order to highlight the quality of the estimation
of the power-law exponent.
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Figure 7. Critical quenches from Rew = 280 to each Reynolds number. Temporal variation of turbulent
fraction Ft for η = 0.1 and Lθ = 128π (log-log scale). In (a), the black dashed-dotted line and dashed
line each indicate possible algebraic fits with the dynamic exponent α from (2 + 1)-D and (1 + 1)-D
directed percolation (respectively α = 0.451 and 0.159). See also Supplementary; (b) test of the 1D
scaling hypothesis by plotting tαFt vs. tεν|| (log-log scale), with ν||=1.733 for (1 + 1)-D DP.
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Figure 8. Reynolds-number dependence of the time-averaged turbulent fraction Ft vs Rew for the
different radius ratios in the original domain (Lθ = 2π) and in artificially extended domains (Lθ � 2π).
Vertical error bars: standard deviations of Ft during the averaging period. Dashed/dashed-dotted
line: algebraic fits Ft = O(εβ), with exponent β obtained either as best fit βfit or from the (1 + 1)-D DP
universality class β1D = 0.276. In each figure, the insets are plotted in log-log coordinates versus ε that
is determined with Reg presented in Table 2.

The details of the fitting procedure for the various parameters used are given in Table 2. It includes
the values of the best fitted exponents as well as the approximate fitting range. As could already be
deduced graphically from the insets in Figure 8a, for η = 0.1, the compatibility of the exponent β with
the theoretical value of β1D = 0.276 from (1 + 1)-D DP is good (to the second digit). This is confirmed
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for both η = 32π and η = 128π, which suggests that the thermodynamic limit is already reached,
at least as far as the determination of the exponent β is concerned. For Lθ = 2π the approximated
exponent is 0.31 which constitutes a less accurate, but still consistent approximation of the theoretical
exponent. For Lθ = 2π, the range of validity of the algebraic fits extends up to≈5%, whereas it exceeds
10% for Lθ ≥ 32π. For η = 0.3, the situation is slightly different: for a large azimuthal extent Lθ = 96π,
there is a very good match with the 1D theoretical exponent all the way up to ε ≈ 20%. For Lθ = 2π,
however, although an algebraic fit seems consistent with the data below ε < 1% the measured exponent
is closer to 0.12 than to 0.276: none of these values matches any of the percolation theories.

Table 2. Critical Reynolds number Reg and critical exponent β depending on geometrical parameters η

(radius ratio) and Lθ (azimuthal extension). In addition, shown is the fitting range to estimate Reg and
β. † : not measured.

η = rin/rout Lθ Fitting Range Reg β

0.10 2π 407.5–460.0 406.9 0.31(3)
0.10 32π 277.5–300.0 269.0 0.26(2)
0.10 128π 263.0–270.0 261.7 0.28(2)
0.15 128π — † 290.5 — †

0.20 112π — † 303.5 — †

0.30 2π 389.0–395.0 388.7 0.12(2)
0.30 96π 320.5–375.0 319.0 0.28(1)

(1 + 1)-D DP model — — 0.276

The interpretation is delicate. On one hand, algebraic fits seem always verified as soon as ε is
small enough; on the other hand, (1 + 1)-D percolation exponents are well approximated only for
sufficient azimuthal extension of the order of 100π or more. The original system with Lθ = 2π hence
needs to be interpreted as a system with the DP property that experiences a geometrical frustration due
to lateral confinement. The present data support the hypothesis that the frustration effect is stronger
for η = 0.3 than for η = 0.1, and thus that the quality of the DP fit will be correspondingly worse.
Conversely, the convergence towards the thermodynamic limit seems slower for larger η.

Importantly, we emphasize the main difference between the present conclusion and that by
Kunii et al. [36], where the azimuthal extension for η = 0.1 was limited to Lθ = 16π (to be compared
to the present values of 32π and 128π). The fits reported in Figure 16 of that article suggested a fit
compatible with the (2 + 1)-D exponent β2D = 0.583. This former result, in the light of the present
computations, is re-interpreted now as a finite-size effect.

A power-law dependence of Ft alone does not warrant the proximity to the critical point,
as pointed out by Shimizu and Manneville [23] for pPf. Although the critical quenches reported
earlier also suggest power-law statistics near the picked up values for Reg, the classical determination
relies on, at least, three independent algebraic exponents. In order to lift this ambiguity, we chose to
report in Figure 9 statistics of laminar gap size for different values of Rew near the suspected critical
point. Expecting possible anisotropy when the domain is artificially extended in θ, two kinds of
statistics have been monitored, similarly to the study of Chantry et al. [20]. The axial extent of the
gaps for η = 0.1 and Lθ = 128π is shown in Figure 9a in log-log coordinates (and Figure 9c in lin-log
representation). The azimuthal extent of the laminar gaps is shown in Figure 9b in log-log coordinates
(and Figure 9d in lin-log representation). All four figures support a cross-over from exponential
to power-law statistics as Rew approaches the value of 262.5, with a decay exponent graphically
compatible with the decay exponent µ⊥ of (1 + 1)-D DP. The cross-over appears, however, more clearly
in the azimuthal where the match with the theoretical value of µ⊥ is valid over a full decade. In the
streamwise direction, the trend is not clear enough to extract a critical exponent with full accuracy.
This confirms, however, that the present statistics are indeed gathered in a relevant neighborhood
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of the critical point and that, for these parameters, Rew = 262.5 is a decent working approximation
of Reg.
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Figure 9. Time-averaged distributions of laminar gap in (a,c) the streamwise direction and (b,d) the
azimuthal direction, evaluated at mid-gap. (a,b) log-log plots vs. (c,d) lin-log plots. Lθ = 128π, η = 0.1
as in Figure 5e,f. In both figures, black dashed-dotted line (- · -) and dashed lien (- - -) indicate theoretical
distributions P(∆L∗) ∼ ∆L∗−µ⊥ with exponents µ⊥ from the universality classes of (2 + 1)-D DP and
(1 + 1)-D DP, respectively, i.e., µ⊥2D = 1.84, and µ⊥1D = 1.748.

3.4. Dynamics of Localized Turbulent Patches

In this last subsection, we address the issue of the influence of azimuthal confinement/extension
on the lower transition threshold Reg, as the estimations from Figure 3 suggest. In Ref. [36], a similar
trend was noted (from measurements in shorter and narrower domains). The mechanism suggested in
this former work addressed the presence of oblique stripes rather than their influence on the value of
Reg. It was thereafter realized that the phenomenon governing the value of Reg, and by extension all
statistics of the turbulent fraction, is the way different coherent structures interact together dynamically
rather than the shape of such individual structures (although that shape certainly influences the
interactions). In analogy with pipe [16,42,43] and channel [44,45], the finite turbulent fraction is
the result of a dynamical competition between the proliferation of coherent structures and their
tendency to decay in number. The transitional range where Ft > 0 is dominated by the splitting of
coherent structures, whereas instantaneous relaminarizations become rare. We hence focus on the
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dynamics of splitting events in two different computational domains, namely those with Lθ = 32π and
128π. Figure 10 contains zooms on the radial velocity plotted for different values of y = cst surfaces
(a different value for each row) and for different times (different columns). In Figure 10, the value of
Lθ is fixed to 32π, but the circumference in terms of rθ/h varies according to r. The global dynamics
of these flows can also been scrutinized in the videos made available as Supplementary Materials.
The comparison of different values of y is useful to confirm that, for all parameters, the spots remain
coherent over the gap even during splitting events.

Lateral splitting events are considered in each of these figures and videos. Because of the different
advection velocities in the azimuthal direction, spanwise collisions can occur. During spanwise
collisions, usually one of the two spots disappears (see also Ref. [21] for similar observations in pCf).
This tends to reduce the turbulent fraction while the other surviving spot is still active. In the presence
of a short enough spanwise periodicity, a spot collides with itself rather than with a different neighbor.
In such periodic domains, the local relaminarization of one spot is equivalent to the extinction of
an infinity of identical spots. Hence, the turbulent fraction decreases more than in large domains
where individual spots behave more like independent entities. We thus expect more turbulence to
proliferate more for larger Lθ . As a consequence, the critical Reynolds number Reg, for which the
rate of proliferation balances the probability to relaminarize locally, is lowered when Lθ is increased,
consistently with the thresholds reported in Figure 3 and Table 2. This effect is more marked at lower η.
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≈

0.
5

t∗ = 100 t∗ = 200 t∗ = 300 t∗ = 400 t∗ = 500 t∗ = 600 t∗ = 700

y∗
≈
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9
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≈ 0.1 and 0.5

Figure 10. Snapshots of splitting and self-colliding events in aCf for Rew = 262.5 with Lθ = 32π and
η = 0.1. Radial velocity in a frame moving with bulk velocity um. Here, t = 0 is an arbitrary time
instant after reaching equilibrium. Top row, y∗ = y/h ≈ 0.9; center row, y∗ ≈ 0.5; lower row, y∗ ≈ 0.1.

4. Conclusions

The present DNS study deals with the statistical aspects of the intermittent transitional regime
of aCf, with an emphasis on the low values of the radius ratio η close to 0.1. It is an extension of
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the simulations reported recently by Ref. [36]. The paper compares two computational situations,
respectively the case of a realistic geometry and the one where the azimuthal extent is larger than
the original value of 2π. In Ref. [36], this parametric trick was introduced in an explicit attempt to
decouple the effects of wall curvature effects from the effects of azimuthal confinement induced by the
geometry. The main conclusion for large η was that the reported absence of oblique laminar-turbulent
patterns was due to azimuthal confinement, since they could re-appear for Lθ > 2π. In the present
article, the same trick is introduced for η = 0.1; however, larger values of Lθ have been tried up to
128π (i.e., 64 times the original value). The oblique patterns do not reappear and a new percolating
regime takes place with shorter spatial correlations. The statistical analysis of the STI is convergent as
Lθ grows, and is consistent with (1 + 1)-D DP. This updates the results of Ref. [36] where (2 + 1)-D DP
was suggested from fits with Lθ = 16π. The present results suggest now that the Lθ = 16π algebraic
statistics was still far from the true thermodynamic limit, while Lθ = 128π seems to yield more
decent results.

To our knowledge, there has been only poor evidence for the cross-over from exponential to
algebraic scaling in the shear flow literature, as far as well-resolved simulations of the Navier–Stokes
equations are concerned [2]. An exception is the work by Shi et al. [46] in a tilted periodic domain
of pCf, which again is not a fully realistic numerical domain. It is interesting to speculate how much
the present results can teach us something about a fully realistic system such as cylindrical pipe flow.
Naive homotopy of the turbulent regimes is ruled out because of the singularity near the centerline.
Instead, we can compare the rate at which these two effectively one-dimensional percolating systems
tend towards their own thermodynamic limit. This issue was raised recently in the experimental study
by Mukund and Hof [19]. There, despite pipes as long as 3000 diameters, no critical regime (with
power-law statistics) was identified, only classical STI as reported in Refs. [47,48]. This issue was
attributed to the narrowness of the critical range, and to a clustering property of puffs which delays
the convergence to the thermodynamic limit. Here, in aCf with η = 0.1, the situation is different but
depends on this artificial parameter Lθ . To our surprise, power-law statistics of the turbulent fraction
as well as of the laminar gap distributions do appear in our simulations as Rew is reduced. All cases
shown in Figure 8 suggest a cross-over from turbulent to power-law behavior as Rew is within ≈ 1%
of the critical point. For Lθ = 2π or around, the turbulent fraction curve still suggests an unconverged
power-law. For Lθ = 32π or 128π, power-law statistics of Ft are fully consistent with one-dimensional
DP appear. This occurs despite a value of Lx of only 512h, i.e., much less than the pipe flow case and
even less if one counts in outer pipe diameters. A possible interpretation is that azimuthal extension,
by modifying the interaction with neighboring spots, can suppress the tendency to form clusters,
and hence converge faster towards the thermodynamic limit. This is consistent with lower transition
thresholds in Rew as well. One is left wondering if a similar approach to cylindrical pipe flow could
also easily yield the percolation exponents from simulation measurements.

We conclude by noting that artificially modifying both the shape of turbulent patches and their
interaction, as done here using azimuthal extension, is more than an esoteric thought experiment
or an exotic parameter study. It is used here as a legitimate strategy in order to untangle complex
phenomena, e.g., to decouple confinement from curvature effects. As demonstrated in our recent work
using a simple modeling approach [49,50], wall roughness can have similar effects on transitional
flows and change the way turbulence invades laminar flows. We expect similar strategies of artificial
domain extension to be relevant to such cases too.

Supplementary Materials: Video S1: Time evolution of turbulent fraction Ft(t) and of fluctuating velocity
fields visualized at mid-gap, for η = 0.1 with an artificially extended azimuthal domain size of Lθ = 128π.
On the right column, contours show x-θ distributions of the radial velocity fluctuation u′r normalized by the
inner-cylinder velocity Uw. Top (orange box and curve in the graph) : above the global critical Reynolds
number Reg. Middle (red) : near Reg. Bottom (black) : below Reg. A supporting video article is available at
https://doi.org/10.5281/zenodo.3985963.

https://doi.org/10.5281/zenodo.3985963
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aCf annular Couette flow
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DNS direct numerical simulation
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