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Turbulent spots occur in shear flows confined between two walls and are surrounded
by robust quadrupolar flows. Although the far-field decay of such large-scale flows has
been reported to be exponential, we predict a different algebraic decay for the case
of plane Couette flow. We address this problem theoretically, by modelling an isolated
spot as an obstacle in a linear plane shear flow with free-slip boundary conditions at
the walls. By seeking invariant solutions in a co-moving Lagrangian frame and using
geometric scale separation, a set of differential equations governing the large-scale flows
is derived from the Navier-Stokes equations and solved for analytically. The wall-normal
velocity turns out to be exponentially localised in the plane, while the quadrupolar in-
plane velocity field, after wall-normal averaging, features a superposition of algebraic
and exponential decays. The algebraic decay exponent is −3. The quadrupolar angular
dependence stems from (i) the shearing of the streamwise velocity and (ii) the breaking of
the spanwise homogeneity. Near the spot, exponentially decaying solutions can generate
reversed quadrupolar flows. Eventually, by noting that the algebraically decaying in-plane
flow is two-dimensional and harmonic, we suggest a topological origin to the quadrupolar
large-scale flow.

1. Introduction

Localised turbulent structures associated with subcritical transition to turbulence were
first observed by Reynolds (1883) in pipe flow, where the flow is confined in the radial
direction and the spatial localisation can manifest itself only along the axial direction.
The velocity field associated with these structures is exponentially localised (Ritter et al.
2018), hence interactions between adjacent turbulent patches are clearly short-range
(Samanta et al. 2011). As an extension of the quasi-one-dimensional pipe flow, planar
shear flows evolve freely in both streamwise and spanwise directions, consequently richer
dynamics emerge with underlying mechanisms that are harder to decipher. At the lowest
Reynolds number where turbulence is reported, laminar-turbulent coexistence takes the
form of localised turbulent patches, termed spots, interspersed amidst otherwise a linearly
stable laminar base flow. Since their discovery by Emmons (1951) in a water table study,
turbulent spots have been subsequently observed experimentally in most incompressible
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shear flows confined between two walls including counter-rotating Taylor-Couette flow
(Coles 1965), plane Poiseuille flow (Carlson et al. 1982; Alavyoon et al. 1986), plane
Couette flow (Daviaud et al. 1992; Tillmark & Alfredsson 1992) and Couette-Poiseuille
flow (Klotz et al. 2017). More recently, advances in numerical techniques have enabled the
observation of turbulent spots in annular flows confined between two co-axial cylinders
(Ishida et al. 2016), as well as in a sinusoidal shear flow, now known as Waleffe flow, with
stress-free boundary conditions (Schumacher & Eckhardt 2001; Chantry et al. 2016).
Despite their apparent difference in shape, turbulent spots feature generic small-scale
coherent structures in the form of elongated streamwise velocity streaks maintained by
counter-rotating streamwise vortices (Dauchot & Daviaud 1995b; Bottin et al. 1998;
Jiménez 2018). Spots can decay, or spread, exhibiting complex growth dynamics (Duguet
et al. 2010, 2011; Couliou & Monchaux 2017). At Reynolds numbers higher than the
onset of turbulence, localised initial conditions lead to turbulent spots quickly invading
the whole domain (Lundbladh & Johansson 1991; Dauchot & Daviaud 1995a; Couliou
& Monchaux 2017).

The presence of turbulent spots in planar shear flows is always accompanied by the
existence of large-scale circulations. Reported examples include plane Poiseuille flow
(Henningson & Kim 1991; Lemoult et al. 2013), plane Couette flow (Lundbladh & Jo-
hansson 1991; Lagha & Manneville 2007; Duguet & Schlatter 2013; Couliou & Monchaux
2015), and Waleffe flow (Schumacher & Eckhardt 2001; Chantry et al. 2016). Despite
their different driving mechanisms, symmetries, and boundary conditions, the large-scale
flows in these planar systems share several properties. The wall-normal velocity features
small-scale fluctuations which decay rapidly away from the spot (Eckhardt & Pandit
2003). The large-scale in-plane velocities vary more slowly, they are directed inward
along the streamwise direction and outward along the spanwise direction, giving rise to
a quadrupolar circulation.

In the present study, we focus on the case of plane Couette flow. The associated linear
base flow profile is known to be linearly stable for all Reynolds numbers (Romanov 1973),
here defined as Re = Uh/ν, where ±U is the speed of counter-moving plates, h is the half-
gap size between them, and ν is the kinematic viscosity of the fluid. It admits a simple
analytical expression for the base flow: U = (Sy, 0, 0), where the shear S = U/h. The
homogeneous shear of the base flow leads to plausible mathematical simplifications, while
the absence of mean advection makes the long-term tracking of turbulent spots simpler.
Therefore, plane Couette flow is an ideal system for analytical and experimental studies
of localised turbulent spots and for the investigation of the large-scale flows around them.

Turbulent spots in plane Couette flow are sustained above Re ≈ 325 and take a rhombic
shape, with the dimension along the streamwise direction being slightly larger than its
counterpart in the spanwise direction (Daviaud et al. 1992; Tillmark & Alfredsson 1992;
Dauchot & Daviaud 1995a; Couliou & Monchaux 2018). During its initial growth, a
turbulent spot undergoes a spanwise expansion resulting from two combined mechanisms:
the stochastic nucleation of new streaks at the spanwise laminar-turbulent interface
(Duguet et al. 2011) and the motion of the interface due to the spanwise advection by
large-scale flows (Duguet & Schlatter 2013; Couliou & Monchaux 2016, 2017). At later
stages, growing turbulent spots start to distort and several spots might interact with each
other. Two neighbouring spots can approach and merge, forming a single stripe inclined
with respect to the streamwise direction (Duguet et al. 2010). Moreover, large-scale flows
introduce modifications to the base flow and depending on their far-field decay, they may
contribute to a long-range modulation among turbulent spots (Prigent et al. 2002, 2003),
leading to the formation of laminar-turbulent banded patterns or labyrinths (Barkley &
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Tuckerman 2007; Duguet et al. 2010). Therefore, in order to understand the underlying
mechanism for the spreading and suppression of localised turbulence by large-scale flows
and to formulate an interaction rule among spots, it is necessary to know how the large-
scale flow intensities decay with the distance from the spot.

For Re < 325 turbulent spots in plane Couette flow are not sustained. However, they
can be sustained artificially if they are continuously forced by the presence of a permanent
disturbance, e.g. a transverse jet (Tillmark & Alfredsson 1992; Daviaud et al. 1992) or
a solid obstacle (Bottin et al. 1997; Couliou & Monchaux 2017). Even at low Reynolds
numbers Re 6 10, a continuous forcing localised in space triggers a permanent response
interpretable as a non-turbulent spot (Tardu 2012).

The physical origin of the large-scale flow is the mismatch of the streamwise flow
rates across the laminar-turbulent interface (Duguet & Schlatter 2013). The mismatch
is associated with the presence of overhang regions, where the flow is turbulent near one
wall and laminar near the other (Coles 1965; Lundbladh & Johansson 1991). The scaling
behaviour of the large-scale flows away from turbulent spots is far from clear and even
controversial. Schumacher & Eckhardt (2001) have investigated the growth of turbulent
spots in Waleffe flow. By averaging between the two walls, they observed quadrupolar
flows apparently similar to those in plane Couette flow with no-slip boundary conditions
(Duguet & Schlatter 2013; Couliou & Monchaux 2016). In a moderate periodic domain
of size 80h× 2h× 80h, where 2h is the gap width, they found that the kinetic energy
of the large-scale flow exhibits an exponential decay in space, with a decay rate almost
independent of the turbulent fluctuations inside the spot. More recently, Brand & Gibson
(2014) analysed a localised steady solution of plane Couette flow in a periodic domain
of size 200h× 2h× 200h. They found that the quadrupolar flow decays exponentially in
both streamwise and spanwise directions, thereby supporting the previous observation by
Schumacher & Eckhardt (2001). However, closer examination of the database obtained in
Duguet & Schlatter (2013) reveals a deviation from the exponential scaling for turbulent
spots in larger computation domains, though no scaling rule can be firmly established.
In experiments by Couliou & Monchaux (2015), no clear scaling has emerged from the
data due to the difficulty of measuring low-amplitude velocities.

Despite the ubiquitous observation of spots in experiments and direct numerical
simulations, as well as their importance for understanding growth dynamics and pattern
formation, no analytical solution for quadrupolar flows has been obtained by solving
the Navier-Stokes equations. In this work, we present an analytical derivation for
quadrupolar circulations in a flow with a linear laminar profile, but confined by free-slip
boundary conditions at the walls, instead of no-slip. As we shall see, such a trade-off
is a necessary compromise for the analytical approach. The reasons for choosing to
accomplish an analytical study are (i) the current technical limitations in addressing
experimentally or numerically the prediction of the far-field decay and (ii) the general
lack of analytical studies on spatial localisation in the Navier-Stokes equations and their
importance for a genuine understanding of the underlying localisation mechanisms.

The plan of the paper is as follows: a derivation of equations governing the large-
scale flow is given in §2, in addition to a modelling of turbulent spots based on sym-
metry arguments. In §3, the proposed governing equations for the poloidal and toroidal
functions are supplemented with free-slip boundary conditions and solved analytically.
The characteristics of the quadrupolar flow are recovered in §4 from the poloidal and
toroidal functions, along with a brief argument for the topological origin of quadrupolar
circulation in planar shear flows. Finally, conclusions drawn from the present study and
outlooks are given in §5.
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2. Formulation

In this section, we present a derivation for a linearised model characterising the spatial
distribution of the large-scale flow. Throughout the derivation, two assumptions have
been exploited: (i) the intensity separation between the large-scale flow in the far-field and
the relative speed of counter-moving plates in §2.1; and (ii) the scale separation between
the wall-normal and the homogeneous directions in §2.2. In order to solve the derived
model, boundary conditions are discussed in §2.4 and the forcing term representing a
localised turbulent spot is modelled in §2.5.

2.1. Linearised Navier-Stokes equations

Turbulent spots in plane Couette flow are limited to a bounded region in two homo-
geneous directions, but extend all the way across the gap. Localised distribution of the
small-scale turbulent fluctuations inside the spot leads to the large-scale flow penetrating
deeply into the laminar regions. At large distances from the spot, the decaying large-scale
flow contributes to a weak deviation from the laminar base flow. Following Li & Widnall
(1989), we consider a decomposition of the instantaneous flow characteristics, i.e. the
velocity u and the pressure p, into a base flow (U , P ), turbulent fluctuations (u′, p′)
inside the turbulent spot, and a perturbation (ũ, p̃) representing the large-scale flow

u = U + u′ + ũ, p = P + p′ + p̃, (2.1)

where, denoting by overbar the ensemble averaging, the large-scale flow is given by

ũ = u−U , p̃ = p− P . (2.2)

By taking the ensemble average of the Navier-Stokes equations, in Cartesian coordinates,
where the axes x, y, and z are aligned with the streamwise, wall-normal, and spanwise
directions, the large-scale flow (ũ, p̃) is governed by:

Dtũ + ũ · ∇U + u′ · ∇u′ = −ρ−1∇p̃+ ν∇2ũ, (2.3)

∇ · ũ = 0, (2.4)

where ρ is the fluid density and

Dt = ∂t + U · ∇ (2.5)

denotes the material derivative. In Eq. (2.3), terms that are quadratic in ũ are neglected,
reflecting the observation that the large-scale flow is a weak perturbation on the back-
ground laminar shear flow, that is |ũ| � U . The preceding equations are supplemented
with the Dirichlet boundary conditions

u′ = ũ = 0, (2.6)

at the walls y = ±h and at infinity, i.e. |x|, |z| → ∞.
Note that subjected to the shearing of the base flow, perturbations generated at the

spot are advected away and decay in amplitude. Since, our focus is on the large-scale flow
in the far-field, not flow structures inside turbulent spots, we propose to seek invariant
solutions ũ(xL, yL, zL) in a co-moving Lagrangian frame attached to the base flow

xL = x− Syt, yL = y, zL = z, (2.7)

where the subscript L denotes variables in the Lagrangian frame. Hence

Dtũ = 0. (2.8)
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This assumption coincides with Kelvin’s solution for ship wakes (Kelvin 1887) and Tay-
lor’s hypothesis on turbulence (Taylor 1938). The fulfilment of the Lagrangian invariance
with our solution for quadrupolar flows is inspected in §3.1 and §4.1, respectively.

By applying the divergence operator to Eq. (2.3) and using Eq. (2.4), the Poisson
equation for pressure is

ρ−1∇2p̃ = −2S∂xũy −∇ · u′ · ∇u′. (2.9)

It is seen that the perturbed pressure comes from two distinct origins: (i) the spatial
variation of the perturbed velocity, and (ii) the divergence of the Reynolds stresses.
Consequently, the perturbed pressure can be further decomposed into

p̃ = p̃(i) + p̃(ii), (2.10)

where p̃(ii) is denoted, up to an additive constant, by

ρ−1∇2p̃(ii) = −∇ · u′ · ∇u′. (2.11)

It is seen from Eq. (2.11) that, since the Reynolds stresses are not divergence-free, the
divergence of the Reynolds stresses will always generate a corresponding pressure field
p̃(ii) so as to make the sum

qũ = −u′ · ∇u′ − ρ−1∇p̃(ii), (2.12)

satisfy the incompressible condition

∇ · qũ = 0. (2.13)

This observation reflects the mathematical fact that, for incompressible flows, the role
of the pressure is to project the compressible nonlinear terms onto the subspace of
divergence-free flow fields. Therefore, we interpret qũ as a forcing term mimicking the
presence of an autonomous turbulent spot.

By using Eqs. (2.8) and (2.12), and dropping the superscript (i) denoting the origin,
the momentum equation (2.3) can be expressed as

ũ · ∇U = −ρ−1∇p̃+ ν∇2ũ + qũ, (2.14)

where the incompressibility constraint (2.4) leads to the following Poisson equation

ρ−1∇2p̃ = −2S∂xũy. (2.15)

Due to the presence of the variable part of the pressure gradient in Eq. (2.12), the forcing
term needs not vanish at the walls. However, in order to simplify the algebra, we impose
the Dirichlet boundary conditions for the forcing †

qũ|y=±h = 0, (2.16)

complementary to the boundary conditions (2.6). Alternatively, Li & Widnall (1989)
and Lagha & Manneville (2007) have modelled an isolated turbulent spot as a Gaussian
distribution of Reynolds stresses in the homogeneous directions, deviating from the
current approach.

2.2. Geometric scale separation in plane Couette flow

A distinguishing feature of planar shear flows is that, unlike localised turbulent fluctu-
ations, the large-scale flow is spatially extended in the homogeneous directions, whereas

† One of us (Z.W.) has calculated in his PhD thesis without imposing the Dirichlet boundary
condition (2.16) and he found that the result was qualitatively the same.
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highly confined in the wall-normal direction due to the presence of walls. Since the large-
scale flows do not present an obvious well-defined length scale, let us denote by λ the
distance from a localised turbulent spot to where the large-scale flow is measured. The
planar geometry entails the existence of a small parameter

η = h/λ� 1. (2.17)

This slenderness is associated with a separation of geometric scales. Due to the confine-
ment by the walls, the perturbed flow occurs at length scales ≈ h in the wall-normal
direction, while it is extended in the homogeneous directions. In a periodic box of size
[500h, 2h, 500h], for instance, the large-scale flow is observed at scales λ ≈ 100h, cf.
figure 3 in Duguet & Schlatter (2013). For this particular case, η ≈ 10−2 measures the
separation between the small and large scales.

In this study, we suggest to exploit this geometric scale separation. We thus rescale
the homogeneous coordinates x and z by λ, and the wall-normal coordinate y by h

x = λx∗, y = hy∗, z = λz∗, (2.18)

where the superscript ∗ denotes rescaled dimensionless variables. As such, the walls are
now located at y = ±1. We choose to rescale in-plane velocities by U . The incompress-
ibility constraints (2.4) and (2.13) lead to the following substitution for the velocity
components

ũx = Uũ∗x, ũy = ηUũ∗y, ũz = Uũ∗z, (2.19)

and for the forcing

qũx =
(
νU/h2

)
q∗ũx

, qũy = η
(
νU/h2

)
q∗ũy

, qũz
=
(
νU/h2

)
q∗ũz

, (2.20)

where the scaling for the forcing terms is selected so as to balance the viscous dissipation.
Similarly, the scaling for the pressure, as in lubrication theory (Howison 2005)

p̃ = ρ(νUλ/h2)p̃∗, (2.21)

is built on a balance between the pressure gradients and the dominant viscous terms in
the homogeneous directions. Note that the scaling (2.21) is justified provided that the
reduced Reynolds number α is small:

α = ηRe � 1. (2.22)

This condition is satisfied as soon as the scale separation η−1 sufficiently large, cf. Eq.
(2.17), and it shall be assumed henceforth.

Substituting the preceding scaling relations into Eq. (2.14), the rescaled non-
dimensional Navier-Stokes equations are:(

η2∂2x∗ + ∂2y∗ + η2∂2z∗
)
ũ∗x = ∂x∗ p̃∗ + αũ∗y − q∗ũx

, (2.23a)(
η2∂2x∗ + ∂2y∗ + η2∂2z∗

)
ũ∗y = η−2∂y∗ p̃

∗ − q∗ũy
, (2.23b)(

η2∂2x∗ + ∂2y∗ + η2∂2z∗
)
ũ∗z = ∂z∗ p̃

∗ − q∗ũz
, (2.23c)

and the Poisson equation (2.15) becomes:(
∂2x∗ + η−2∂2y∗ + ∂2z∗

)
p̃∗ = −2α∂x∗ ũ∗y. (2.24)

By contrast to lubrication theory, wherein the Laplace operator reduces to a second-order
derivative with respect to y∗, the full operator is retained here, signifying the geometric
scale separation.

We observe from Eq. (2.23b) that the vertical pressure gradient is larger, by a factor
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η−2, than remaining terms in the equation, hence it cannot be balanced. The formal
procedure consists of expanding the perturbed pressure as

p̃∗ = p̃∗(0) + η2p̃∗(1) + O(η4). (2.25)

Substituting the expansion into Eqs. (2.23) and collecting powers of η−2 reveals that

∂y∗ p̃
∗(0) = 0. (2.26)

This means that, due to the confinement by the walls, the leading order pressure p̃∗(0)

is only effective in generating large-scale flows in the homogeneous directions. The first
order correction p̃∗(1) enters Eq. (2.23b), generating small-scale vertical motions of O(h),
but has negligible effect on generating the large-scale in-plane flows of O(λ). Since Eqs.
(2.23) are linear and since we are interested in the angular dependence and scaling
characteristics of the large-scale flows, we filter out the irrelevant small-scale vertical
motions by truncating the perturbative expansion (2.25) to the lowest order:

p̃∗ = p̃∗(0). (2.27)

Substituting the truncation (2.27) into Eqs. (2.23) and using (2.26), we obtain:(
η2∂2x∗ + ∂2y∗ + η2∂2z∗

)
ũ∗x = ∂x∗ p̃∗ + αũ∗y − q∗ũx

, (2.28a)(
η2∂2x∗ + ∂2y∗ + η2∂2z∗

)
ũ∗y = −q∗ũy

, (2.28b)(
η2∂2x∗ + ∂2y∗ + η2∂2z∗

)
ũ∗z = ∂z∗ p̃

∗ − q∗ũz
. (2.28c)

For completeness, the perturbed pressure can be recovered by solving the following
two-dimensional Poisson equation(

∂2x∗ + ∂2z∗
)
p̃∗ = −2α∂x∗ ũ∗y, (2.29)

as soon as the wall-normal velocity is determined.

2.3. Poloidal-toroidal decomposition

In order to guarantee that the validity of the incompressible constraints (2.4) and
(2.13) is not effected by the truncation (2.27), we represent the perturbed velocity ũ
using the poloidal-toroidal decomposition

ũ∗ = ∇∗ × (ψ̃∗ey) +∇∗ ×∇∗ × (φ̃∗ey), (2.30)

where ∇∗ = (η∂x∗ , ∂y∗ , η∂z∗) is now the scaled gradient operator, φ̃∗ and ψ̃∗ are the
poloidal and toroidal functions, respectively, and ey is the unit vector pointing towards
positive y. Similarly, the forcing term q∗ũ can be expressed in terms of the poloidal q∗

φ̃

and the toroidal q∗
ψ̃

components as

q∗ũ = ∇∗ × (q∗
ψ̃
ey) +∇∗ ×∇∗ × (q∗

φ̃
ey). (2.31)

Hence, rather than working with the three-dimensional velocity field, we pursue in this
paper the poloidal-toroidal formulation à la Marqués (1990):(

η2∂2x + ∂2y + η2∂2z
)
φ̃ = −qφ̃, (2.32a)(

η2∂2x + ∂2y + η2∂2z
)
ψ̃ = −qψ̃ + ηα∂zφ̃, (2.32b)

where the superscript ∗ denoting rescaled dimensionless variables is now dropped for
simplicity. Here, Eq. (2.32a) is obtained by substituting the decomposition (2.30) and
(2.31) into Eq. (2.28b), while Eq. (2.32b) is obtained by taking the curl of Eqs. (2.28)
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and projecting onto the ey component. In order to simplify the expression, the two-
dimensional Laplace operator (∂2x+∂2z ) has been removed from both sides of Eqs. (2.32).
Consequently, φ̃ and ψ̃ are determined only up to an additive function hφ̃(x, z) and
hψ̃(x, z) satisfying the two-dimensional Laplace equations

(∂2x + ∂2z )hφ̃(x, z) = (∂2x + ∂2z )hψ̃(x, z) = 0. (2.33)

Stemming from the Dirichlet boundary conditions (2.6), Eq. (2.33) is supplemented with
boundary conditions

hφ̃(x, z)||x|,|z|→∞ = hψ̃(x, z)||x|,|z|→∞ = 0, (2.34)

such that hφ̃(x, z) and hψ̃(x, z) are identically zero:

hφ̃(x, z) = hψ̃(x, z) = 0. (2.35)

Therefore, φ̃ and ψ̃ are uniquely determined by the second-order differential equations
(2.32). Similarly, combining Eqs. (2.29) and (2.30) and taking out the two-dimensional
Laplace operator (∂2x + ∂2z ), the perturbed pressure becomes

p̃ = 2η2α∂xφ̃. (2.36)

The preceding equations can be solved classically using Fourier transforms as soon as the
boundary conditions as well as the forcing terms qφ̃ and qψ̃ are specified.

2.4. Boundary conditions

The original boundary conditions for the plane Couette problem are no-slip (2.6), which
can be expressed in terms of the wall-normal components of the velocity and vorticity as

ũy|y=±1 = ∂yũy|y=±1 = ω̃y|y=±1 = 0. (2.37)

Stemming from the poloidal-toroidal decomposition (2.30), there is a correspondence
between the velocity-vorticity and poloidal-toroidal formulations:

ũy = −η2
(
∂2x + ∂2z

)
φ̃, (2.38)

ω̃y = −η2
(
∂2x + ∂2z

)
ψ̃. (2.39)

Hence, the preceding no-slip boundary condition (2.37) can be rewritten in terms of the
poloidal and toroidal functions as

φ̃|y=±1 = ∂yφ̃|y=±1 = ψ̃|y=±1 = 0. (2.40)

Here, the constraints on ∂yφ̃ and ψ̃ together ensure that the tangential velocities vanish

at the walls. Note that there are four boundary conditions imposed on φ̃, compatible
with the presence of the fourth-order differential operator ∇4 in the original momentum
equation for φ̃, cf. Eq. (14b) in Marqués (1990). In this work, however, the removal of
the vertical pressure gradient, which arises as a natural consequence of the geometric
scale separation (2.17), does not only filter out irrelevant small-scale motions driven by
the vertical pressure gradient, but also leads to mathematical simplifications by reducing
the fourth-order differential equation with respect to y to a second-order one. Therefore,
Eq. (2.32a) can support only two boundary conditions at the walls. This observation
implies that the filtered small-scale motions must play a dominant role in satisfying the
no-slip boundary conditions (2.40). Consequently, by removing them, we have to relax
the no-slip boundary conditions to free-slip boundary conditions in order to ensure that
the resulting problem is mathematically well-posed.
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Numerical simulations of Waleffe flow with stress-free boundary conditions (as consid-
ered by Schumacher & Eckhardt (2001) and Chantry et al. (2016, 2017))

ũy|y=±1 = ∂2y ũy|y=±1 = ∂yω̃y|y=±1 = 0, (2.41)

suggest that the presence of slip at the walls does not affect the generic properties of the
large-scale flow. The stress-free boundary conditions can be expressed in terms of φ̃ and
ψ̃ as

φ̃|y=±1 = ∂2y φ̃|y=±1 = ∂yψ̃|y=±1 = 0, (2.42)

where vanishing ∂2y φ̃|y=±1 and ∂yψ̃|y=±1 ensure that the tangential stresses are zero at
the walls. However, since the linear laminar profile of plane Couette flow does not satisfy
the stress-free boundary conditions, one needs to modify the base flow by, for instance, the
inclusion of a sinusoidal body force. Moreover, similar to the no-slip boundary conditions,
there are four constraints imposed on φ̃, incompatible with the second-order differential
equation (2.32a). Therefore, in general, the stress-free boundary conditions (2.42) cannot
be satisfied, unless φ̃ solves

∂2y φ̃ = cφ̃, (2.43)

up to a multiplying constant c. In this case, two constraints for φ̃ are simultaneously
satisfied. Examples include trigonometric and hyperbolic trigonometric functions.

As a compromise between the number of boundary conditions that can be imposed on
Eq. (2.32a) and the compatibility with the linear base flow, we consider in this paper a
flow with mixed boundary conditions as in Eckhardt & Pandit (2003). More specifically,
we require that the laminar profile satisfies the no-slip boundary conditions (2.6) of the
full Navier-Stokes equations, whereas the perturbation satisfies the following free-slip
boundary conditions:

φ̃ |y=±1 = 0 and ∂yψ̃ |y=±1 = 0. (2.44)

Here, the constraint on φ̃ signifies that there is no penetration at the walls, while
the constraint on ψ̃ is borrowed from the stress-free boundary conditions (2.42). It is
demonstrated in §3.1 that the perturbed flow field obtained in this paper also satisfies
the stress-free boundary conditions (2.42), while the generality of the proposed free-slip
boundary conditions (2.44) is discussed from a topological point of view in §4.4.

2.5. Forcing selection

By seeking an equilibrium solution in an Eulerian frame attached to spots, Li &
Widnall (1989) obtained doubly localised solutions in plane Poiseuille flow. With the
same assumption, Brand & Gibson (2014) obtained a similar solution for plane Couette
flow. Note that these solutions are similar in size and structure to turbulent spots obtained
from direct numerical simulations. Consequently, rather than the detailed dynamics, we
perceive large-scale flows as arising from the blockage effect of localised turbulent spots.
This leads to a formulation of the forcing terms by making the minimal assumption
in §2.5.1. Based on the parity analysis of Eqs. (2.32), we conclude in §2.5.2 that the
formation of quadrupolar flows is associated with the forcing components that are
symmetric with respect of the mid-plane y = 0.

2.5.1. Minimal assumption model for a localised spot

In order to solve Eqs. (2.32), we must specify an analytical form for the forcing (qφ̃, qψ̃),
yet the selection must not predetermine the large-scale flow. As such, we make the
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minimal assumption by modelling a localised turbulent spot as an obstacle in the xy-
plane, that will deflect the streamwise velocity into vertical momentum, without imposing
a wall-normal vorticity distribution in the xz-plane. By virtue of the conservation of
angular momentum, the vertical momentum will alternate sign on each side of the
obstacle. Assuming that the vertical momentum is concentrated on a mathematical
filament along the y-axis which terminates at the walls, the minimal forcing is:

qφ̃ = −Ag(y)δ′(x)δ(z), (2.45)

qψ̃ = 0. (2.46)

Here, A is the amplitude of the forcing and the prime denoting derivative with respect to
the scaled x-axis, i.e. η∂x, arises as a consequence of opposite vertical momentum. Note
that the poloidal forcing (2.45) imposes a counter-rotating pair of streamwise circulations
in the yz-plane. The form factor

g(y)|y=±1 = 0, (2.47)

is adjusted so as to satisfy the Dirichlet boundary condition (2.16).
The sign of A remains undetermined, and it shall be concluded by comparing the

analytic solution with previous experimental and numerical results in §4.2. Denoting the
integral

G =

∫ 1

−1
g(y) dy. (2.48)

For AG > 0, the forcing term (2.45) introduces an overall spanwise vorticity which is
opposite in sign to that of the base flow; whereas for AG < 0, the spanwise vorticity
associated with the spot is aligned with that of the base flow.

2.5.2. Parity of the forcing

Although the characteristics of turbulent spots, as well as of the large-scale flows around
them, are strongly three-dimensional, the quadrupolar circulation is usually revealed after
applying the y-average, denoted by

〈·〉 =
1

2

∫ 1

−1
·dy, (2.49)

to the perturbed in-plane flow 〈ũ2D〉 = (〈ũx〉, 〈ũz〉). Here, the y-averaged in-plane
velocities

〈ũx〉 = −η∂z〈ψ̃〉+ η∂x〈∂yφ̃〉, (2.50)

〈ũz〉 = +η∂x〈ψ̃〉+ η∂z〈∂yφ̃〉, (2.51)

can be decomposed into a divergence-free component characterised by the stream function
〈ψ̃〉 and a curl-free component characterised by the velocity potential 〈∂yφ̃〉. The latter
is identically zero with the Dirichlet boundary conditions (2.44)

〈∂yφ̃〉 =
1

2

(
φ̃|y=+1 − φ̃|y=−1

)
= 0. (2.52)

Therefore, the in-plane flow 〈ũ2D〉 is divergence-free, arising from the non-vanishing 〈ψ̃〉.
Since the differential operator in Eqs. (2.32) is strictly second-order, the parity of the

poloidal and toroidal functions is uniquely determined by the parity of the forcing. More
specifically, the odd component of qφ̃ leads to ψ̃ vanishing upon y-averaging. Since qψ̃ is
zero by assumption, the quadrupolar flow must stem from the even part of the forcing.
Accordingly, we restrict ourselves to the case where g(y) is an even function of y.
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Let g(y) be an arbitrary even function satisfying the Dirichlet boundary condition
(2.47), it can be expanded using Fourier series as

g(y) =

∞∑
n=1

an cos(ξny), (2.53)

where an denote the Fourier coefficients and the wavenumbers are discretised:

ξn =

(
n− 1

2

)
π for n = 1, 2, 3... (2.54)

In this model, the index n signifies that there are n mutually counter-rotating vortices
stacking along the y-axis. Based on the minimal assumption meant to model a localised
filament-like spot, the present analysis can be applied to not only the transitional flows
with Re ≈ 300 but to all regimes with Re > 0 down to the Stokes regime.

3. Analytical solutions for poloidal and toroidal functions

In this section, the modal solutions for the poloidal and toroidal functions are presented
in §3.1 and their inverse Fourier transform are evaluated in §3.2. Moreover, the origin of
the quadrupolar angular dependence and the algebraic decay in the toroidal function is
uncovered in §3.1 and §3.2, respectively.

3.1. Modal solutions

The homogeneity in x and z justifies the use of Fourier transform in the corresponding
directions with wavenumbers Kx and Kz. For any function f̂ , let f̃ be denoted by

f̃(x, y, z) =
1

2πη

∫∫ ∞
−∞

f̂(y,Kx,Kz)e
i(Kxx+Kzz)/ηdKxdKz, (3.1)

where the presence of η in the basis function signifies the smallness of wavenumbers
Kx,Kz ∼ O(η) associated with the large-scale motion. Expanding the potential functions
φ̃ and ψ̃, as well as the forcing terms qφ̃ and qψ̃, using (3.1) and substituting the
expansions into (2.32) gives(

∂2y −K2
)
φ̂ = i

AKx

2πη

∞∑
n=1

an cos(ξnyL), (3.2a)(
∂2y −K2

)
ψ̂ = iαKzφ̂, (3.2b)

where K =
√
K2
x +K2

z is the radial wavenumber. The preceding equations are supple-
mented with the Fourier-transformed free-slip boundary conditions

φ̂ |y=±1 = 0 and ∂yψ̂ |y=±1 = 0. (3.3)

Using the method of undetermined coefficients, Eqs. (3.2) are solved recursively, yielding

φ̂ = −i
AKx

2πη

∞∑
n=1

an cos(ξny)

K2 + ξn
2 , (3.4)

ψ̂ = −αAKxKz

2πη

∞∑
n=1

an

(K2 + ξn
2)2

[
cos(ξny) + ξn sin(ξn)

cosh(Ky)

K sinh(K)

]
, (3.5)

where the complementary solutions involving hyperbolic trigonometric functions arise so
as to satisfy the corresponding boundary conditions at the walls. Note that the modal
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solution φ̂ has vanishing second-order derivatives

∂2y φ̂|y=±1 = 0, (3.6)

at the walls. Therefore, the obtained solutions (3.4) and (3.5) satisfy, upon inverse Fourier
transforms, not only the free-slip boundary conditions (2.44) but also the stress-free
boundary conditions (2.42).

Note that the solutions (3.4) and (3.5) do not fulfil the Lagrangian invariance (2.8) in
general. The reason is, by using Eq. (2.8), the solution space of Eqs. (2.32) is a superset
of the Lagrangian invariant solutions. Therefore, additional treatments are required to
extract Lagrangian invariance from solutions (3.4) and (3.5). Substituting the Fourier
transform for φ̃ and ψ̃ into Eq. (2.8), the Lagrangian invariance requires that both
integrands vanish:

y(iKx/η)φ̂ = y(iKx/η)ψ̂ = 0. (3.7)

Since φ̂ and ψ̂ are even functions of y, Eq. (3.7) is satisfied either globally through a wall-
normal average or locally at the mid-plane y = 0. These are exactly the circumstances
under which quadrupolar flows are experimentally and numerically measured. A deviation
from the mid-plane leads to a distortion of quadrupolar flows and their annihilation near
the walls. This implies that, rather than a general property of the large-scale flow, the
Lagrangian invariance is specific to the symmetric quadrupolar circulation.

In order to facilitate a comparison with previous numerical studies (Schumacher &
Eckhardt 2001; Brand & Gibson 2014), we focus on the quadrupolar y-averaged flow.
Upon averaging in y, the modal solutions (3.4) and (3.5) become

〈φ̂〉 = −i
AKx

2πη

∞∑
n=1

bn
K2 + ξ2n

, (3.8)

〈ψ̂〉 = −αAKxKz

2πηK2

∞∑
n=1

bn
K2 + ξ2n

, (3.9)

where the hyperbolic trigonometric functions arising from the complementary solutions
cancel by averaging and

bn = an sin(ξn)/ξn, (3.10)

are the modified Fourier coefficients.
Let us introduce the polar decomposition for the wavenumbers:

Kx = K cos(ϕ), Kz = K sin(ϕ). (3.11)

The quadrupolar nature of the solution stems from the angle dependence of the product

KxKz =
1

2
K2 sin(2ϕ), (3.12)

which generates second azimuthal harmonics in the xz-plane. The presence of KxKz in
Eq. (3.9) is inscribed in the obstacle interpretation of the poloidal forcing (2.45) and the
structure of the toroidal equation (3.2b), hence it is independent of the particular choice
of the boundary conditions.

3.2. Inverse Fourier transform

After obtaining the modal solutions, we still face the task of inverting the Fourier
transform. Let us introduce polar coordinates via

x� = r� cos θ, z� = r� sin θ, (3.13)
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where the spatial coordinates are re-scaled as x� = x/η and z� = z/η, so that the spatial
coordinates are normalised by the half-gap size h, cf. Eq. (2.17). Dropping the superscript
�, the inverse Fourier transform for the y-averaged poloidal and toroidal functions can
be expressed in polar coordinates as

〈φ̃〉 =
1

2πη

∫ ∞
0

∫ 2π

0

〈φ̂〉eiKr cos(ϕ−θ)KdKdϕ (3.14)

= − A

4π2η2

∞∑
n=1

∫ ∞
0

bnK
2

K2 + ξ2n
dK

∫ 2π

0

i cos(ϕ)eiKr cos(ϕ−θ)dϕ, (3.15)

and

〈ψ̃〉 =
1

2πη

∫ ∞
0

∫ 2π

0

〈ψ̂〉eiKr cos(ϕ−θ)KdKdϕ (3.16)

= − αA

8π2η2

∞∑
n=1

∫ ∞
0

bnK

K2 + ξ2n
dK

∫ 2π

0

sin(2ϕ)eiKr cos(ϕ−θ)dϕ. (3.17)

Since integrands involving the angular variables are decoupled from those with wavenum-
bers, they can be evaluated independently, yielding∫ 2π

0

i cos(ϕ)eiKr cos(ϕ−θ)dϕ = −2π cos(θ)J1(Kr), (3.18)∫ 2π

0

sin(2ϕ)eiKr cos(ϕ−θ)dϕ = −2π sin(2θ)J2(Kr), (3.19)

where Jm(Kr) denotes the mth order Bessel function of the first kind. Substitution gives

〈φ̃〉 =
A cos(θ)

2πη2

∞∑
n=1

bn

∫ ∞
0

K2 J1(Kr)

K2 + ξ2n
dK =

A cos(θ)

2πη2

∞∑
n=1

bnξnK1(ξnr), (3.20)

〈ψ̃〉 =
αA sin(2θ)

4πη2

∞∑
n=1

bn

∫ ∞
0

K J2(Kr)

K2 + ξ2n
dK =

αA sin(2θ)

2πη2

∞∑
n=1

bn

[
(ξnr)

−2 − 1

2
K2(ξnr)

]
,

(3.21)

where Km(ξnr) is mth order modified Bessel function of the second kind. The integral
(3.20) is given by Eq. (6.565.4) in Gradshteyn & Ryžhik (2014). The integral (3.21) is not
elementary, therefore a special treatment is required, see Appendix A. The occurrence
of the term 1/(ξnr)

2 in the y-averaged toroidal field in Eq. (3.21) is at the root of the
predicted algebraic decay of the in-plane velocity components. The mathematical origin
of that term can be traced to the recurrence relation of the Bessel function J2(Kr), cf.
Eq. (A 3) and the integral (A 7) in the Appendix.

Note that, the quantities α, A and η only appear in Eq. (3.20) and (3.21) as am-
plitudes, not as arguments, they do not affect the angular dependence and the scaling
characteristics of the quadrupolar flow, only its strength. Consequently, the qualitative
features of the quadrupolar flow depend only on the Fourier coefficients an of the forcing.

4. Quadrupolar flows

In this section we present the full analytical expressions for the main flow components
of the quadrupolar y-averaged flow in §4.1, as well as their scaling behaviours in the
far-field in §4.2. We also uncover in §4.3 an unexpected property of the flow circulation
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at intermediate distances from the spot, and eventually explain in §4.4 the origin of the
quadrupolar flow from a topological point of view.

4.1. Analytical expressions for the quadrupolar y-averaged flow

From the analytical solutions for the poloidal and toroidal functions, various y-averaged
flow variables can be recovered, yielding

〈ũx〉 =−
[
sin(θ)∂r + cos(θ)r−1∂θ

]
〈ψ̃〉

=− ARe cos(3θ)

πη

∞∑
n=1

bnξn

[
(ξnr)

−3 − 1

8
K1(ξnr)−

1

2
(ξnr)

−1K2(ξnr)

]

− ARe cos(θ)

8πη

∞∑
n=1

bnξnK1(ξnr), (4.1)

for the streamwise velocity,

〈ũz〉 = +
[
cos(θ)∂r − sin(θ)r−1∂θ

]
〈ψ̃〉

=− ARe sin(3θ)

πη

∞∑
n=1

bnξn

[
(ξnr)

−3 − 1

8
K1(ξnr)−

1

2
(ξnr)

−1K2(ξnr)

]

+
ARe sin(θ)

8πη

∞∑
n=1

bnξnK1(ξnr), (4.2)

for the spanwise velocity,

〈ũy〉 = −
[
∂2r + r−1∂r + r−2∂2θ

]
〈φ̃〉 = −A cos(θ)

2πη2

∞∑
n=1

bnξ
3
nK1(ξnr), (4.3)

for the wall-normal velocity,

〈ω̃y〉 = −
[
∂2r + r−1∂r + r−2∂2θ

]
〈ψ̃〉

=
ARe sin(2θ)

4πη

∞∑
n=1

bnξ
2
n

[
K0(ξnr) + 2(ξnr)

−1K1(ξnr)
]
, (4.4)

for the wall-normal vorticity, and eventually

〈p̃〉 = 2ηα
[
cos(θ)∂r − sin(θ)r−1∂θ

]
〈φ̃〉

= −ARe cos(2θ)

2π

∞∑
n=1

bnξ
2
n

[
K0(ξnr) + 2(ξnr)

−1K1(ξnr)
]
− ARe

2π

∞∑
n=1

bnξ
2
nK0(ξnr),

(4.5)

for the pressure, where the spatial derivatives ∂x and ∂z have been expressed in polar
coordinates. Inherent from the Lagrangian invariance of the y-averaged poloidal and
toroidal functions, the quadrupolar y-averaged flow, i.e. Eqs. (4.1) to (4.3), recovered
from them are therefore Lagrangian invariant, satisfying:

1

2

∫ 1

−1
Dtũdy =

1

2

∫ 1

−1
∂tũdy +

1

2

∫ 1

−1
y∂xũdy = 0. (4.6)

As a robust outcome of Eqs. (4.1) and (4.2), the reversed quadrupolar flow predicted in
§4.3.2 are also Lagrangian invariant.

Note that, while the scaling of flow variables 〈ũy〉, 〈ω̃y〉, and 〈p̃〉 is solely characterised
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by the modified Bessel functions of various orders, the in-plane velocities 〈ũx〉 and
〈ũz〉 feature a superposition of algebraic power law functions 1/r3 and modified Bessel
functions Km(ξnr). Therefore, a qualitatively different asymptotic behaviour is expected
for 〈ũx〉 and 〈ũz〉.

4.2. Algebraic asymptote of the quadrupolar y-averaged flow

Since, independently of its order m, the modified Bessel function Km(ξnr) decays faster
than exponential in the asymptotic limit, cf. Eq. (9.7.2) in Abramowitz & Stegun (1965)

Km(ξnr) =

√
π

2

e−ξnr√
ξnr

[
1 + O(

1

ξnr
)

]
, as r →∞, (4.7)

the wavenumber ξn can be regarded as the inverse of a screening length over which
contributions from Km(ξnr) are negligible. Consequently, the asymptotic behaviour of
the quadrupolar y-averaged flow must be characterised by the slower algebraic decay. It
is seen from Eqs. (4.1) and (4.2) that, in the absence of the modified Bessel functions,
each Fourier mode contributes to the same algebraic asymptote:

〈ũx〉 = −ARe cos(3θ)

πη

∞∑
n=1

bnξ
−2
n r−3, (4.8)

〈ũz〉 = −ARe sin(3θ)

πη

∞∑
n=1

bnξ
−2
n r−3, (4.9)

provided that r � 1/ξ1. In other words, unlike previous findings by Schumacher &
Eckhardt (2001) and Brand & Gibson (2014), we find that the far-field decay of the
quadrupolar in-plane flow is algebraic, whose power-law exponent is −3. In particular,
for

A

∞∑
n=1

bnξ
−2
n > 0, (4.10)

the angular dependence of the asymptotic solutions (4.8) and (4.9) entails a quadrupolar
angular dependence with streamwise inflow and spanwise outflow, consistently with
previous experimental and numerical observations. We, therefore, conclude that the
localised perturbation in Eqs. (2.45) and (2.46) gives rise to the algebraically decaying
quadrupolar in-plane flows in the far-field.

Featuring modified Bessel functions, the flow variables 〈ũy〉, 〈ω̃y〉, and 〈p̃〉 decay faster
than exponentially and are thereby referred to as exponentially localised. Consequently, we
define a spot as exponentially localised if and only if both 〈ũy〉 and 〈ω̃y〉 are exponentially
localised. It shall be discussed in §4.4 that, independently of the boundary conditions
at the walls and details of the base flows, the angular dependence and the scaling
characteristics of the quadrupolar y-averaged flow around an exponentially localised
turbulent spot are unique and given by Eqs. (4.8) and (4.9), in the asymptotic limit.

4.3. Coexistence of exponential and algebraic decays

Although the asymptotic solutions (4.8) and (4.9) capture the scaling characteristics
of the quadrupolar y-averaged flows in the far-field, as one approaches the origin from
infinity, the first Fourier mode with wavenumber ξ1 comes into play at scales of O(1/ξ1),
followed by the second Fourier mode with wavenumber ξ2 at scales of O(1/ξ2), and so
forth. Observing from Eq. (3.21), the exponentially decaying components K2(ξnr) have
the same angular dependence but with opposite sign as compared to the algebraically
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decaying components (ξnr)
−2, constituting an exponentially localised reversed quadrupo-

lar flow. Since exponential functions decay faster than algebraic ones, we may expect
situations where the exponential decay takes over the algebraic decay near the turbulent
spot, thus revealing a reversed quadrupolar flow.

4.3.1. Single-mode model versus two-mode model

We restrict ourselves to a minimal forcing with only the first two Fourier modes,
implying a single-vortex and a triple-vortex configurations, respectively. In this case,
there remains two free parameters in the solutions, namely the amplitude of the forcing
A and the ratio between the first two Fourier coefficients, denoted by

γ = a2/a1. (4.11)

For small values of γ, the y-dependence of the forcing is dominated by the lowest Fourier
mode n = 1. An increase in γ signals a shift towards the second Fourier mode.

Without loss of generality, the coefficient of the first Fourier mode is selected to be
a1 = 1 such that the first two modified Fourier coefficients are given by

b1 =
2

π
and b2 = − 2

3π
γ. (4.12)

Consequently, Eq. (4.10) reduces to

A

2∑
n=1

bnξ
−2
n =

8A

π3

(
1− γ

27

)
> 0. (4.13)

There are two parameter combinations that can lead to the experimentally observed
quadrupolar flows with streamwise inflow and spanwise outflow: (i) A > 0 and γ < 27;
and (ii) A < 0 and γ > 27. Note that the latter depicts two counter-clockwise spanwise
circulations near the walls, separated by a negative spanwise vorticity at the centre of a
localised spot, and similarly for the case: A > 0 and γ < 0. Since these configurations
have not been reported in previous studies, we therefore focus on the parameter regime:

A > 0 and 0 6 γ < 27. (4.14)

More specifically, for the single-mode model: A > 0 and γ = 0, the poloidal forcing
imposes a uniform spanwise circulation in the xy-plane that counter-acts the base flow.
For the two-mode model: A > 0 and 0 < γ < 27, the forcing term signifies a three-vortex
configuration with three mutually counter-rotating spanwise vortices stacking along the
y-axis, wherein both vortices near the walls rotate with the base flow.

With this choice, the integral (2.48) reduces to

G =

∫ 1

−1

[
cos

(
1

2
πy

)
+ γ cos

(
3

2
πy

)]
dy = − 4

3π
(γ − 3). (4.15)

Following the discussion in §2.5.1, for 0 6 γ < 3, the forcing term is dominated by the
circulating cell in the centre, resulting in an overall spanwise vorticity which is opposite
in sign to that of the base flow. On the other hand, for 3 < γ < 27, two circulating cells
near the walls become dominant, hence the induced spanwise vorticity by the poloidal
forcing is align with the base flow. In order to highlight these two distinct cases and their
impact on the large-scale flow, two representative ratios: γ = 0 (single-mode model) and
γ = 15 (two-mode model), are considered. As we shall see in §4.3.2, the flow configuration
is insensitive to the precise values of γ in parameter regime: γ ∈ (3, 27).
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Figure 1. Directional field for the y-averaged in-plane velocities 〈ũ2D〉, defined as
〈ũ2D〉/|〈ũ2D〉|, exhibiting a quadrupolar angular dependence, i.e. with inflow along the
streamwise x-axis and outflow along the spanwise z-axis, cf. Eqs. (4.1) and (4.2). Despite the
difference in the forcing (a) γ = 0 and (b) γ = 15, the flow field (left) outside the inset (right)
remains essentially unchanged. The streamlines shown in the insets are visualised as level curves
of the toroidal function 〈ψ̃〉, increasing from blue to red (colour online). In the case γ = 15, the
streamlines reveal the coexistence of a reversed quadrupolar flow centred at the origin and four
vortices separated by the invariant manifolds of four hyperbolic saddle points, denoted by red
circles.

4.3.2. Reversed quadrupolar flow

In order to highlight the flow topology, we show in figure 1 the directional field for
the in-plane velocities, defined as the vector 〈ũ2D〉(x, z) = (〈ũx〉, 〈ũz〉) normalised by
its length |〈ũ2D〉|(x, z), so that all vectors have unit length. In both cases γ = 0 and
γ = 15, the directional field outside the square box exhibits generic quadrupolar angular
dependence, hence it is referred to as the far-field. Conversely, the directional field inside
the box exhibits a dependence on γ and it is referred to as the core region. For γ = 0, the
streamlines, visualised as level curves of the toroidal function 〈ψ̃〉, are homoclinic to the
origin, forming an ideal quadrupole. For γ = 15, the large-scale flow features a reversed
quadrupole centred at the origin, surrounded by four large vortices. Since the precise
value of each contour depends on the product ARe/η and the ratio γ, the colour bars are
best interpreted as indicators for relative magnitudes only. It should be re-emphasised
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Figure 2. Superposition between the contour plots of the y-averaged wall-normal vorticity
〈ω̃y〉, where (a) γ = 0 and (b) γ = 15, and the in-plane directional field, cf. Eq. (4.4). Note
that the exponentially decaying 〈ω̃y〉 takes opposite signs to the circulation direction of the
two-dimensional vector field 〈ũ2D〉, indicating that the algebraically decaying component of the
quadrupolar flows is irrotational.

that, in the present study, the turbulent spot is assumed to be infinitesimally small,
whereas it is of finite size in reality.

Figure 2 displays a superposition between the contours of the wall-normal vorticity
〈ω̃y〉 and the quadrupolar directional field from figure 1. It is seen that in both cases,
i.e. the single-mode and two-mode models, the predominant wall-normal vorticity 〈ω̃y〉
corresponds to a quadrupolar angular dependence with streamwise outflow and spanwise
inflow, opposite in sign to the in-plane circulation in figure 1. These reversed quadrupolar
flows arise from the exponentially localised components of the toroidal function 〈ψ̃〉,
consistently with the irrotational property of the quadrupolar flow in the far-field. Since
the wall-normal vorticity 〈ω̃y〉 is obtained by taking the curl of the in-plane velocity
〈ũ2D〉, it is independent of turbulent motions inside the spot.

Following the pioneering direct numerical simulation by Lundbladh & Johansson
(1991), we present in figure 3 the contours for the y-averaged velocity components. For
γ = 0, the contours of the in-plane velocity components 〈ũx〉 and 〈ũz〉 are homoclinic to
the origin, forming sextupoles; while those for the wall-normal velocity 〈ũy〉 form a dipole
corresponding to a spanwise vorticity in accord with that of the base flow. In the case
γ = 15, the symmetry associated with the sextupole of the in-plane velocity components
is broken, accompanied by a reversal of the wall-normal velocity 〈ũy〉 in the core, cf.
figure 3 (b, right column).

In order to understand the symmetry breaking observed in figure 3, we display in figure
4 (a) and (b) the decay of velocity components: |〈ũx〉| and |〈ũy〉| along the streamwise x-
axis. The decay of the wall-normal vorticity |〈ω̃y〉| and the pressure |〈p̃〉| is also included
as a reference. In both cases γ = 0 and γ = 15, the in-plane velocity components are
dominated by the algebraic decay, whose power-law exponent is −3, in the limit r →∞.
For γ = 15, the decay of flow variables are characterised by the presence of interfaces at
which they flip sign. In particular, the location of the interfaces for 〈ũx〉 and 〈ũy〉 along
the x-axis is plotted in figure 4 (c) as a function of γ. The interface for 〈ũx〉 appears first
as γ increases past γ = 3 and quickly shifts towards infinity at γ = 27. For γ > 27, the
flow field is characterised by an experimentally unobserved anti-quadrupolar flow with
streamwise outflow and spanwise inflow, consistent with the expectation (4.13). On the
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Figure 3. Contour plots for the y-averaged (a) streamwise velocity 〈ũx〉, cf. Eq. (4.1); (b)
wall-normal velocity 〈ũy〉, cf. Eq. (4.3) and; (c) spanwise velocity 〈ũz〉, cf. Eq. (4.2). The left
and right columns correspond to the cases of γ = 0 and γ = 15, respectively.

other hand, the interface for 〈ũy〉 appears as soon as the second Fourier mode comes into
play, i.e. γ > 0. With increasing values of γ, the interface for 〈ũy〉 persists and is almost
independent of γ. Therefore, within the framework of the linear theory of quadrupolar
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Figure 4. Decay of flow variables along the diagonal axis. In order to establish a comparison,
the flow variables |〈ũx〉| (solid line), |〈ũy〉| (dashed line), |〈ω̃y〉| (crosses), and |〈p̃〉| (dash-dot line)
are normalised by their amplitudes ARe/η, A/η2, ARe/η, and ARe, respectively. While |〈ũy〉|,
|〈ω̃y〉|, and |〈p̃〉| decay exponentially, |〈ũx〉| scales algebraically in the far-field, with a power-law
exponent −3, independent of the ratio: (a) γ = 0 and (b) γ = 15. The inset reveals that the
interface in (b) is where the velocity component 〈ũx〉 flips sign. (c) Location of the interfaces for
〈ũx〉 (solid line) and 〈ũy〉 (dashed line) along the streamwise x-axis for γ = a1/a2 ∈ [0, 30].

flows, the second Fourier mode ξ2 is a necessity in order to capture the reversal observed
in figure 3 (b, right column).

For completeness, the contours of the y-averaged pressure are shown in figure 5. For
γ = 0, the y-averaged pressure 〈p̃〉 is exponentially localised with negative branches
aligned with the streamwise direction and with the positive branches along the spanwise
direction. For γ = 15, the symmetry of the pressure field is broken by the emergence of
the reversed pressure in the core region, linked to the interface observed in figure 4 (b).

4.4. Topological origin of the quadrupolar flow

We discuss in this section the consequence of an exponentially localised turbulent spot,
where both 〈ũy〉 and 〈ω̃y〉 decay exponentially. Since 〈ω̃y〉 is exponentially localised,
the algebraically decaying component of the y-averaged in-plane flow 〈ũ2D〉 must be
irrotational. Recalling from Eq. (2.52) that the y-averaged in-plane flow field between
two walls is incompressible, we conclude that the algebraically decaying component of
〈ũ2D〉 is harmonic, i.e. both divergence-free and curl-free. To summarise, the algebraically
decaying components of the y-averaged in-plane flow are harmonic if the y-averaged wall-
normal vorticity is exponentially localised. This observation can be extended to all planar
shear flows confined between two walls.

Since 〈ũy〉 is also exponentially localised, the quadrupolar y-averaged flow 〈ũ〉 can be
decomposed into a two-dimensional algebraically decaying harmonic component 〈ũ〉H
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Figure 5. Contours of the y-averaged pressure 〈p̃〉: (a) γ = 0 and (b) γ = 15, cf. Eq. (4.5).

and a three-dimensional exponentially decaying component 〈ũ〉E such that

〈ũ〉 = 〈ũ〉H + 〈ũ〉E , (4.16)

where 〈ũ〉H and 〈ũ〉E both satisfy the Dirichlet boundary conditions

〈ũ〉H → 0, 〈ũ〉E → 0 as r →∞. (4.17)

In the framework of algebraic topology, we interpret such an exponentially localised
turbulent spot as an isolated zero of the two-dimensional vector field bounded by the
Dirichlet boundary conditions at infinity. Denote by C any simple closed curve enclosing
the isolated zero and p = (rp, θp) a point on C. Let p travel along C counterclockwise,
the corresponding vector 〈ũ〉H(rp, θp) attached to the point rotates continuously. Upon
returning to its original position, it rotates by an angle 2kπ for some integer k, (see,
e.g. Chapter 9 in Chaikin & Lubensky 1995). We denote by k the Poincaré index of the
exponentially localised turbulent spot after averaging between the two walls. It can be
shown that k is a topological invariant solely determined by the characteristics of the
turbulent spot inside C. It is independent of the exact form of C (Guckenheimer & Holmes
2013). According to the Hodge decomposition theorem (see, e.g. Theorem 2.2.1 in Jost
1995), such a harmonic field 〈ũ〉H is unique per Poincaré index, and it is independent
of boundary conditions of the ũ at the walls. The exponentially decaying component
〈ũ〉E , however, depends on details such as the boundary conditions at walls, the base
flow profile, and the forcing. These contributions lead to a deviation from the canonical
harmonic flow given by Eqs. (4.8) and (4.9). This deviation is however localised in the
core region only. In the asymptotic limit where the contribution from 〈ũ〉E is negligible,
the large-scale flow around an isolated turbulent spot is characterised by the harmonic
component 〈ũ〉H , which is uniquely determined by the index of the turbulent spot and
independent of the boundary conditions at the walls.

According to the Poincaré-Hopf theorem (see, e.g. Lefschetz 1949), the index of an
isolated turbulent spot is also unique and characterised by the Euler characteristics of
the planar geometry. The index of an isolated turbulent spot can be extracted from
figure 1. For γ = 0, the directional field has one fixed point, namely the quadrupole, with
index +3; while for γ = 15, the directional field possesses nine fixed points including a
quadrupole with index +3, four vortices with index +1 each, and four saddles with index
−1 each, such that the total sum of the indices is +3 and remains unchanged. Therefore,
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we conclude without any proof that the index of an isolated turbulent spot in planar
shear flow satisfying the Dirichlet boundary conditions (4.17) is uniquely equal to +3.

The uniqueness of the harmonic vector field, which is ensured by the Hodge de-
composition theorem, and the uniqueness of the index of an isolated turbulent spot,
which is ensured by the Poincaré-Hopf theorem, together imply that the topology of
the harmonic vector field 〈ũ〉H is uniquely determined by the planar geometry, namely,
the two-dimensional plane with Dirichlet boundary conditions at infinity and a simple
isolated zero at the origin. Therefore, we expect that the y-averaged large-scale flow
around an exponentially localised turbulent spot confined between two walls is generically
quadrupolar and decays algebraically with power-law exponent−3 in the asymptotic limit
r →∞. In other words, the origin of the ubiquitously observed quadrupolar circulations
around turbulent spots in planar shear flows is topological.

5. Conclusions and oulooks

Using scale analysis and symmetry argument, we have derived a set of linear second-
order differential equations for the poloidal and toroidal functions characterising the
spatial evolution of large-scale flows around an isolated spot, namely Eqs. (2.32).

Since the large-scale flow decays, as long as the far-field is of concern, the intensity
separation justifies a linearisation about the base flow and a seeking for invariant solutions
in the co-moving Lagrangian frame. With this formalism, we get around of the difficulty
associated with the variable coefficients in y, a typical feature of all shear flows. Scale
analysis reveals that the variable part of the vertical pressure gradient does not contribute
to the large-scale velocity field in the homogeneous directions. It is therefore neglected.
Physically, this corresponds to a filtering of the smallest-scale wall-normal flows driven
by the vertical pressure gradient, as well as the corresponding in-plane motions so as to
satisfy the incompressibility constraint. Mathematically, the elimination of the vertical
pressure gradient reduces the poloidal equation from a fourth-order differential equation
with respect to the wall-normal variable y to a second-order one. Hence the no-slip
boundary conditions, which require both the poloidal function and its derivative along
the vertical direction to vanish at the walls, cannot be satisfied. Consequently, we relaxed
the no-slip conditions to the free-slip boundary conditions. It is noteworthy that the
obtained poloidal functions have vanishing second-order derivatives at the walls, hence
the perturbed flow presented in this paper satisfies not only the free-slip but also the
stress-free boundary conditions.

Note that these simplifications rely only on (i) the intensity separation between the
large-scale flow in the far-field and the characteristic velocity scale of the base flow; and
(ii) the scale separation between wall-normal and homogeneous directions, we expect
them to be readily applicable to any planar shear flows confined between two walls.

The proposed governing equations have been solved analytically using Fourier trans-
form. Comparing the obtained solutions with experimental and numerical observations,
we conclude that the quadrupolar flows, which are experimentally measured at the
mid-plane and numerically revealed through a wall-normal average, are the stationary
wake pattern “behind” a localised spot in planar shear flows. In this sense, quadrupolar
flows arise as a consequence to the blockage effect of localised structures in shear flows,
rather than the detailed turbulent dynamics inside the spot. A closer examination of the
analytical solutions leads to the following three main predictions:
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5.1. The asymptotic decay of the quadrupolar flow is algebraic

While the wall-normal velocity component is exponentially localised, the in-plane
velocities feature a superposition between an algebraic and an exponential decay. That is,
the decay of the in-plane velocity components is exponential near an isolated turbulent
spot and it is algebraic with a power-law exponent −3 in the far-field. Note that, this
observation does not contradict previously reported exponential decay in moderately-
sized systems by Schumacher & Eckhardt (2001) and Brand & Gibson (2014), where no
algebraic decay was found. The algebraic decay can be masked by the exponential decay
near the turbulent spot and unveil itself only at larger distances than computed in these
numerical investigations. Note that algebraic decay of the large-scale flow implies that
the associated length scale diverges, namely λ→∞, hence the scale-separation criterion
(2.22) for large-scale flows is always valid, independent of the Reynolds number.

5.2. Existence of an exponentially localised reversed quadrupolar flow

The existence of reversed quadrupolar flow is a robust outcome of the proposed model
(2.32) but it has never been reported explicitly in the literature. As soon as the negative
spanwise vorticity is generated near the walls inside the spot and becomes dominant, the
exponentially localised reversed quadrupolar flow emerges. This reversed quadrupolar
flow leads to four large circulating cells in the xz-plane and a spanwise circulation
that counteracts the base flow in the xy-plane. The predicted flow resembles those
observed in previous experiment (Couliou & Monchaux 2015) and numerical simulation
(Lundbladh & Johansson 1991). However, since the spot is pointwise in our model, this
resemblance can be fortuitous. On the other hand, instead of the in-plane velocities, the
existence of the reversed quadrupolar flow, hence the validity of the linearised theory,
can be unambiguously tested by investigating the wall-normal vorticity. We expect that,
independently of the domain size and the resolution, the wall-normal vorticity displays
quadrupolar contours and is of opposite sign to the direction of quadrupolar circulation
in the far-field. Since these reversed solutions are exponentially localised, their presence
does not affect the algebraically decaying large-scale flow in the asymptotic limit r →∞.

5.3. Topological origin of the algebraically decaying quadrupolar flow

By exploiting the exponential localisation of the wall-normal components of velocity
and vorticity fields, as well as the non-penetrating boundary conditions at the walls, we
have uncovered a topological origin for quadrupolar circulations in planar shear flows.
More specifically, the algebraically decaying component of the large-scale flow is two-
dimensional and harmonic, which is uniquely determined by the index of the y-averaged
turbulent spots. For planar shear flows confined between two walls, the index of an
isolated turbulent spot is unique and equals +3. Therefore, independently of the details
of the driving mechanism and of the boundary conditions at the walls, we conclude that
the presence of quadrupolar circulations around localised turbulent spots in planar shear
flows confined between two walls, e.g. plane Couette, plane Poiseuille, Couette-Poiseuille,
and Waleffe flows, is generic.

Many other questions remain open and deserve verification using either experimental or
numerical means. In particular, with the increase in computer memory, a direct numerical
simulation of the fully-resolved nonlinear Navier-Stokes equations with no-slip boundary
conditions, in domains large enough to unambiguously verify the present predictions
about decay exponent, is currently becoming feasible. Similarly, the minimal assumption
adopted in the present modelling to mimic a localised turbulent spot by a filament-like
obstacle can be compared with the nonlinear simulations and tested. Alternatively, the
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linearised model (2.32) can give the Green’s function, see e.g. Blake (1971); Liron &
Mochon (1976); Grenier & Nguyen (2019), which could be used to derive the response to
any vorticity distribution mimicking an actual spot or band. Finally, a generalisation of
the present derivation to arbitrary boundary conditions at the wall, to pressure-driven
flows such as Poiseuille or Couette-Poiseuille flows, to even to non-planar geometries and
even to external boundary-layer flows would be welcome.
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Appendix A

This appendix contains details for calculating the following integral, cf. Eq. (3.21)∫ ∞
0

K J2(Kr)

K2 + ξ2n
dK. (A 1)

Denote Zm(x) the mth order Bessel functions of the first kind Jm(x), the modified Bessel
functions of the second kind Km(x), and any linear combinations of these functions. The
recurrence formula reads (see Eq. (8.471.1) in Gradshteyn & Ryžhik 2014)

xZm−1(x) + xZm+1(x) = 2mZm(x). (A 2)

Substituting m = 1 and x = Kr into Eq. (A 2), then the Bessel function J2(Kr) can be
expressed as

J2(Kr) =
2

Kr
J1(Kr)− J0(Kr). (A 3)

Thus, Eq. (A 1) can be split into two integrals∫ ∞
0

K J2(Kr)

K2 + ξ2n
dK =

2

r

∫ ∞
0

J1(Kr)

K2 + ξ2n
dK −

∫ ∞
0

K J0(Kr)

K2 + ξ2n
dK. (A 4)

Using the identity

1

K2 + ξ2n
=

1

ξ2n

(
1− K2

K2 + ξ2n

)
, (A 5)

the first integral on the right hand side of Eq. (A 4) can be, again, split into two, yielding∫ ∞
0

K J2(Kr)

K2 + ξ2n
dK = +

2

ξ2nr

[∫ ∞
0

J1(Kr)dK −
∫ ∞
0

K2J1(Kr)

K2 + ξ2n
dK

]
−
∫ ∞
0

K J0(Kr)

K2 + ξ2n
dK. (A 6)
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The preceding integrals can be found as Eqs. (6.511.1) and (6.565.4) in Gradshteyn &
Ryžhik (2014), respectively. They are∫ ∞

0

Jm(Kr)dK =
1

r
, (A 7)

for m > −1; and ∫ ∞
0

KmJm(Kr)

(K2 + ξ2n)µ+1
KdK =

rµξm−µn

2µΓ (µ+ 1)
Km−µ(ξnr), (A 8)

for −1 < m < 2µ+ 3/2 and ξn > 0. Here, Γ (µ+ 1) denotes the Gamma function.
Using these formulae, the integral (A 6) becomes∫ ∞

0

K J2(Kr)

K2 + ξ2n
dK =

2

ξ2nr

[
1

r
− ξnK1(ξnr)

]
−K0(ξnr). (A 9)

This expression can be further simplified by using the recurrence relation (A 2), yielding∫ ∞
0

K J2(Kr)

K2 + ξ2n
dK = 2(ξnr)

−2 −K2(ξnr). (A 10)
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