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Abstract. Low-cost particulate mass sensors provide oppor-
tunities to assess air quality at unprecedented spatial and
temporal resolutions. Established traditional monitoring net-
works have limited spatial resolution and are simply absent
in many major cities across sub-Saharan Africa (SSA). Satel-
lites provide snapshots of regional air pollution but require
ground-truthing. Low-cost monitors can supplement and ex-
tend data coverage from these sources worldwide, provid-
ing a better overall air quality picture. We investigate the
utility of such a multi-source data integration approach us-
ing two case studies. First, in Pittsburgh, Pennsylvania, both
traditional monitoring and dense low-cost sensor networks
are compared with satellite aerosol optical depth (AOD) data
from NASA’s MODIS system, and a linear conversion factor
is developed to convert AOD to surface fine particulate mat-
ter mass concentration (as PM2.5). With 10 or more ground
monitors in Pittsburgh, there is a 2-fold reduction in sur-
face PM2.5 estimation mean absolute error compared to using
only a single ground monitor. Second, we assess the ability
of combined regional-scale satellite retrievals and local-scale
low-cost sensor measurements to improve surface PM2.5 esti-
mation at several urban sites in SSA. In Rwanda, we find that
combining local ground monitoring information with satel-
lite data provides a 40 % improvement in surface PM2.5 esti-

mation accuracy with respect to using low-cost ground moni-
toring data alone. A linear AOD-to-surface-PM2.5 conversion
factor developed in Kigali, Rwanda, did not generalize well
to other parts of SSA and varied seasonally for the same loca-
tion, emphasizing the need for ongoing and localized ground-
based monitoring, which can be facilitated by low-cost sen-
sors. Overall, we find that combining ground-based low-cost
sensor and satellite data, even without including additional
meteorological or land use information, can improve and ex-
pand spatiotemporal air quality data coverage, especially in
data-sparse regions.

1 Introduction

Air quality is the single largest environmental risk factor for
human health; outdoor air pollution exposure is estimated to
have caused about 4 million premature deaths annually in
recent years (WHO, 2016, 2018a). Particulate matter (PM),
which represents a mixture of solid and liquid substances
suspended in the air, is one of the most commonly tracked
and regulated atmospheric pollutants globally (WHO, 2006).
Exposure to fine PM is known to have major adverse health
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impacts (e.g., Schwartz et al., 1996; Pope et al., 2002; Brook
et al., 2010). In addition, PM mass concentration is often
used as a proxy for overall air quality (WHO, 2018a). PM
mass concentration is typically tracked as PM10 (total PM
mass with diameter below 10 µm) and/or PM2.5 (total PM
mass with diameter below 2.5 µm). Even at low concentra-
tions, PM can have significant health impacts (Bell et al.,
2007; Apte et al., 2015). These health impacts are especially
notable in low-income communities and countries where
they can interact with other socioeconomic risk factors (Di
et al., 2017; Ren et al., 2018).

Sub-Saharan Africa (SSA) in particular is affected by poor
air quality, with less than 10 % of communities assessed by
the WHO meeting recommended air quality guidelines com-
pared with 18 % globally and 40 % to 80 % in Europe and
North America (WHO, 2018b). This poor air quality man-
ifests in terms of high infant mortality (Heft-Neal et al.,
2018), increased risk of chronic respiratory and cardiovascu-
lar diseases (Matshidiso Moeti, 2018), and reduced gross do-
mestic product (World Bank, 2016). Industrial development
and climate trends will likely only exacerbate this problem
in the future (Liousse et al., 2014; UNEP, 2016; Silva et al.,
2017; Abel et al., 2018).

Many African countries have among the highest estimated
annual average PM10 and PM2.5 concentrations, yet they
are also among those with the lowest number of in situ
regulatory-grade PM monitoring sites per capita. Figure 1
shows estimated average annual PM2.5 concentrations for
various regions of the world versus the density of regulatory-
grade monitoring sites in these regions (note that low-cost
monitors are not considered) based on information from the
Global Health Observatory (GHO). The GHO combines data
from multiple sources, including data collected during dif-
ferent years and from sporadic field monitoring campaigns,
and it is not necessarily reflective of continuous routine mon-
itoring for all regions (WHO, 2017). This lack of continuous
surface monitoring data makes it difficult to answer basic sci-
entific and policy questions related to air quality assessment
and mitigation (Petkova et al., 2013; Martin et al., 2019).
A major reason for this gap is the high capital and opera-
tional costs of traditional ground-based air quality monitor-
ing equipment. Two emerging technologies have the capacity
to close this gap: satellite-based air quality monitoring and
ground-based low-cost sensor systems.

Satellites are much more expensive than traditional
ground-based monitors, but their mobility and unique van-
tage point allow them to provide near-global coverage. Data
from Earth-observing satellites can be used to assess air qual-
ity in a variety of ways. In particular, aerosol optical depth
(AOD) retrievals quantify the absorption and scattering (ex-
tinction) of light by the atmosphere and can be related to the
concentration of light-absorbing or light-scattering pollutants
in the atmosphere. Several factors complicate the relation-
ship between AOD and surface-level particulate matter mass
concentrations (Paciorek and Liu, 2009). As a vertically in-

Figure 1. Estimated annual average PM2.5 concentration versus
the density of regulatory-grade monitoring stations across several
global regions. Colors correspond to continents, and sizes roughly
correspond to total regional population. This graphic is based on
information available from the Global Health Observatory (WHO,
2017).

tegrated quantity, AOD is related to total light extinction by
a column of atmosphere. The spatial distribution of particu-
late matter, especially vertical stratification, the presence or
absence of plumes aloft, humidity, and the size and optical
properties of particles affect the relationship between AOD
and surface concentrations (Kaufman and Fraser, 1983; Liu
et al., 2005; Paciorek et al., 2008; Superczynski et al., 2017;
Zeng et al., 2018). Cloud cover also makes AOD retrievals
impossible; the frequency of cloudy days in an area can
therefore make it difficult to establish reliable relationships
between AOD and surface PM, although this is not likely to
be a concern for the continental US (Christopher and Gupta,
2010; Belle et al., 2017). Changes in surface brightness can
also confound this relationship, although this may be less of
an issue in developing countries with higher aerosol levels
(Paciorek et al., 2012).

Nevertheless, early examinations of AOD data from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument, launched aboard the Terra and Aqua satellites
in 1999 and 2002, showed good correlation (e.g., correla-
tion coefficient r about 0.7 for Jefferson County, Alabama,
in 2002) with surface PM2.5 concentrations in the United
States, although these relationships varied from region to re-
gion (Wang and Christopher, 2003; Engel-Cox et al., 2004).
For instance, correlations between AOD and hourly surface
PM2.5 were found to vary from an r of 0.6 in the southeast-
ern United States to an r of 0.2 in the southwestern United
States during 2005–2006, with root mean square errors (RM-
SEs) of about 9 µg m−3 for surface PM2.5 reconstructed from
AOD using linear relationships and with worse results over
urban areas (Zhang et al., 2009). Additional studies show
broadly similar relationships, with r ranging between about
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0.5 and 0.8 in the northeastern United States (e.g., Paciorek
and Liu, 2009), with changes in agreement depending on sea-
son (Chudnovsky et al., 2013a), and with better agreement at
higher spatial AOD resolution (Chudnovsky et al., 2013b).
Using additional covariates, such as land cover, land usage,
and meteorological information, can further improve these
relationships. In particular, surface PM2.5 estimation models
combining daily averaged, 1 km resolution AOD data with
meteorological and land use regression variables achieved
an agreement (r) with EPA ground-based monitors of up to
about 0.95 in the northeastern and 0.9 in the southeastern
United States, with a mean absolute error of about 3 µg m−3

(Chang et al., 2014; Chudnovsky et al., 2014; Kloog et al.,
2014). Methods incorporating the outputs of chemical trans-
port models (in this case at lower spatial resolutions of 12 km
compared to the 1 km AOD resolution and at daily temporal
resolution) can further improve these results (e.g., Murray et
al., 2019).

Models combining satellite AOD data with vertical pro-
files derived from chemical transport models tend to underes-
timate surface-level PM2.5 outside Europe and North Amer-
ica, mainly in India and China where ground-based compar-
ison data are available (van Donkelaar et al., 2010, 2015).
In China, the r between surface PM2.5 estimates derived
from satellite AOD, meteorological, and land use informa-
tion and measured surface PM2.5 was found to be about 0.8,
corresponding to an RMSE of about 30 µg m−3 (roughly half
the mean concentration) in resulting satellite-derived surface
concentration estimates (Ma et al., 2014). A method that up-
dates the relationships between AOD and surface PM2.5 on
a daily basis (Lee et al., 2011) was able to improve these re-
sults, increasing r above 0.9 while reducing RMSE to about
20 µg m−3 (Han et al., 2018). This method, however, relies on
local ground-based measurements to provide the data neces-
sary to perform this daily updating.

Satellites have the potential to provide broad data coverage
to previously unmonitored areas such as SSA. Satellite-based
AOD and ground-based AOD agreed well during a recent as-
sessment in West Africa (Ogunjobi and Awoleye, 2019), but
an assessment in South Africa found a poor relationship be-
tween satellite AOD and surface PM2.5, with maxima in the
surface concentrations coinciding with minima in the AOD
(Hersey et al., 2015). Relationships between AOD and sur-
face PM2.5 developed using ground monitoring data else-
where in the world may not transfer well to SSA, leading
to inaccurate quantification of surface air quality.

Low-cost air quality monitors have much lower purchase
and operational costs in contrast to traditional or regulatory-
grade monitors (Snyder et al., 2013; Mead et al., 2013).
For example, a lower-cost multi-pollutant monitor (measur-
ing gases and PM) costs a few thousand US dollars; single-
pollutant PM sensors can cost just a few hundred US dollars.
A comparable multi-pollutant suite of traditional air quality
monitoring instruments would cost USD 100 000 or more; a
regulatory-grade PM monitor can cost tens of thousands of

US dollars (based on recent manufacturer quotations). This
cost reduction is made possible by a combination of lower-
cost measurement technologies (such as electrochemical sen-
sors for gases and optical particle detectors for PM) and
decreasing costs of battery, data storage, and communica-
tions technologies. Much recent research interest has been
focused on assessing the performance of these technologies
(e.g., AQ-SPEC, 2015, 2017), developing methods for ac-
counting for cross-interference effects in gas sensors (e.g.,
Cross et al., 2017; Zikova et al., 2017; Kelly et al., 2017;
Zimmerman et al., 2018; Crilley et al., 2018; Malings et al.,
2019a) and humidity dependence in optical PM measurement
methods (e.g., Malings et al., 2019b) to improve data qual-
ity, and demonstrating the utility of these low-cost monitors
in various use cases (e.g., Subramanian et al., 2018; Tanzer
et al., 2019; Bi et al., 2020). Because of their relatively low
cost, these instruments can be deployed more widely than tra-
ditional monitoring technologies, enabling measurements in
previously unmonitored areas. A trade-off for this increased
affordability can be reduced accuracy compared to traditional
air quality monitoring instruments. While there are currently
no agreed-upon criteria for assessing low-cost monitor per-
formance (Williams et al., 2019), several schemes suggest
tiered rankings ranging from, for example, 20 % relative un-
certainty for reasonable quantitative measurements to 100 %
uncertainty for indicative measurements (Allen, 2018); this
gives a general sense of the expected performance character-
istics of such instruments. In particular, recent testing of two
types of such low-cost monitors (which are the types used in
this paper) found relative uncertainties on the order of 40 %
and a correlation coefficient r of 0.7 with regulatory-grade
instruments for hourly PM2.5 measurements (Malings et al.,
2019b). These results are generally consistent with similar
studies conducted in a variety of environments and concen-
tration regimes, although relative performance tends to im-
prove at higher concentrations (Kelly et al., 2017; Zheng et
al., 2018).

The potential exists to use both satellite and low-cost sen-
sor data together to address the shortcomings of each data
source individually and to fill existing data gaps globally.
Satellite data provide near-global coverage, but relationships
between AOD and surface PM2.5 do not generalize well
across regions, so local ground-based data are needed for
establishing conversion factors. Low-cost sensors can pro-
vide these local data in areas where existing monitoring net-
works are sparse or data are sporadically available. The cur-
rent work examines the use of low-cost PM sensors as ground
data sources for estimating surface concentrations from satel-
lite AOD retrievals via two case studies. Specifically, we seek
to quantify to what extent, even with the inherent uncertain-
ties of low-cost sensors, their data might still be useful in
estimating surface PM2.5 from AOD.

First, using a dense network of low-cost monitors in Pitts-
burgh, Pennsylvania, USA, where a regulatory-grade moni-
toring network already exists, we assess the utility of low-
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Table 1. Summary information for low-cost sensor systems utilized for this paper.

Manufacturer MetOne PurpleAir Alphasense

Product Neighborhood Particulate Moni-
tor

PurpleAir II OPC-N2

Abbreviation NPM PA-II OPC

Measurement
method

Forward light-scattering laser Laser particle sensor Optical particle counting

Other features Includes PM2.5 cyclone and
inlet heater. Provides estimates
of PM2.5 mass concentrations
using calibrations that are user-
modifiable. Interfaced with
RAMP low-cost monitor nodes.

Includes a pair of Plantower PMS
5003 units, along with tempera-
ture and humidity sensors. Pro-
vides estimates of PM1, PM2.5,
and PM10 mass concentrations
via proprietary calibrations. In-
terfaced with RAMP low-cost
monitor nodes.

Detects particles in the 0.38
to 17 µm range, converts par-
ticle counts to PM1, PM2.5,
and PM10 mass concentrations
via proprietary calibrations. In-
tegrated with ARISense low-cost
monitor nodes.

Unit cost (approx.) USD 2000 USD 250 USD 350 (not including housing)

Performance notes Moderate correlation with
regulatory-grade instruments in
laboratory and field testing. Re-
quires cleaning and recalibration
between deployments.

High correlation with regulatory-
grade instruments, except at high
humidity. Individual Plantower
sensor malfunctions detectable
via comparison between the two
internal units.

Moderate correlation with
regulatory-grade instruments
in field conditions.

References (AQ-SPEC, 2015; Malings et al.,
2019b)

(AQ-SPEC, 2017; Malings et al.,
2019b)

(AQ-SPEC, 2016; Crilley et al.,
2018)

cost sensors compared to these traditional instruments. Sec-
ond, using low-cost monitors deployed in Rwanda, Malawi,
and the Democratic Republic of the Congo, we explore the
utility of these low-cost sensors in previously unmonitored
areas. We use US State Department data (publicly avail-
able from US government websites as well as the OpenAQ
Platform at https://openaq.org, last access: 15 July 2020)
from regulatory monitors at the US Embassies in Kampala
(Uganda) and Addis Ababa (Ethiopia) to supplement our
analysis of the relationship between converted satellite AOD
data and surface-level PM2.5 across SSA. In this work, we
focus on high-spatial- and temporal-resolution satellite data,
which best align with the capacity of low-cost sensors to pro-
vide local air quality information in near-real time. We do not
incorporate meteorological or land use information, as such
additional information may not be available in sparsely mon-
itored areas. Further, keeping the model as simple as possible
avoids over-fitting a more sophisticated model to its calibra-
tion dataset, which can limit its generalizability. Instead, we
use simple linear AOD-to-surface-PM2.5 conversion factors
to indicate how low-cost sensors alone may provide addi-
tional information to inform the conversion of AOD to sur-
face PM2.5, particularly in data-sparse domains. The tech-
niques presented here are likely to translate to other data
sources (e.g., new regulatory-grade monitors, new geosta-
tionary satellites) as they become available in the future.

2 Methods

2.1 Low-cost PM2.5 sensor data

Surface PM2.5 data were collected with three types of
low-cost sensors (MetOne NPM, PurpleAir PA-II, and Al-
phasense OPC), as described in Table 1. For data collec-
tion, all NPM and most PA-II units were paired with RAMP
lower-cost monitoring packages. The RAMP (Real-time Af-
fordable Multi-Pollutant) monitor is produced by SENSIT
Technologies (Valparaiso, IN; formerly Sensevere) and has
internal gas, temperature, and humidity sensors, along with
the capability to interface with external PM monitors (newer
models also have internal PM sensors). This allows data
collected by these PM monitors to be stored and transmit-
ted over cellular networks by the RAMP. The characteristics
and operation of the RAMP are described elsewhere (Zim-
merman et al., 2018; Malings et al., 2019a). The ARISense
node, manufactured by Quant-AQ (Somerville, MA; for-
merly manufactured by Aerodyne Research), is a lower-cost
sensor package that combines internal gas, humidity, temper-
ature, wind, and noise sensors, together with the Alphasense
OPC-N2 PM sensor, and provides internet connectivity for
data transmission (Cross et al., 2017). Most low-cost PM2.5
data are collected via one of these two systems; the exception
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is a single independently deployed PA-II unit in Kinshasa,
DRC (see Table 2).

Collected data are down-averaged from their device-
specific collection frequencies to a common hourly
timescale. Erroneous data identified either automatically
(e.g., negative concentration values or unrealistically high
or low values) or manually (e.g., devices exhibiting abnor-
mal performance characteristics identified during periodic
inspections) are removed. To correct for particle hygroscopic
growth effects (i.e., the impact of ambient humidity on the
PM mass as measured by the low-cost sensors), previously
developed calibration methods (Malings et al., 2019b) were
implemented for the NPM and PA-II sensors. Briefly, a hy-
groscopic growth factor is first computed using the local hu-
midity and temperature as measured by the low-cost moni-
tor itself, along with an average or typical particle compo-
sition. Then, a linear correction is applied to the data based
on past collocations with regulatory-grade monitoring instru-
ments. Utilizing these methods, the uncertainties on hourly
average PM2.5 concentration are about 4 µg m−3 (Malings et
al., 2019b). For the Alphasense OPC sensors, raw bin-count
numbers were integrated to produce a new concentration es-
timate for PM2.5, and a similar relative humidity correction
was applied (Di Antonio et al., 2018). An additional correc-
tion factor of 1.69 (for workdays) or 1.39 (for non-workdays)
was applied to data collected by NPM sensors in Rwanda
based on previous results showing that current calibration
methods tended to underestimate PM2.5 there (Subramanian
et al., 2020). While we seek to use low-cost sensor data that
have been calibrated and validated in accordance with best
practices, uncertainties remain that are associated with these
instruments and inaccuracies compared to regulatory-grade
instruments. A major goal of this paper is to assess to what
extent, even with these uncertainties, low-cost sensor data
might still be useful in the context of the conversion of AOD
to surface PM2.5.

2.2 Ground-based sampling locations

Surface PM2.5 data analyzed in this paper were collected in
seven different areas, as listed in Table 2, where the approxi-
mate locations, number of sites in each area, and durations of
data collection are also listed. The Pittsburgh area includes
sites in the surrounding Allegheny county, although most
sites are concentrated within the city, as shown in Fig. 2. Sim-
ilarly, the Rwanda area has most sites located in the capital
city of Kigali, with one rural monitoring site collocated with
the Mount Mugogo Climate Observatory in Musanze. In the
Pittsburgh and Rwanda areas, low-cost sensors are connected
with RAMP low-cost monitors. In Malawi, data are collected
by three ARISense monitors using Alphasense OPC sensors
deployed to three locations in the vicinities of Lilongwe and
Mulanje. The two locations in the vicinity of Mulanje are
village-center sites and so may be influenced by nearby com-
bustion activities. In Kinshasa, a single PurpleAir PA-II was

deployed independently (i.e., without an associated RAMP
unit, as was the case in Pittsburgh) at the US Embassy. Tem-
perature and humidity data were therefore obtained from the
internal sensors within the devices themselves, and data con-
nectivity was achieved using the local wireless internet net-
work. At Kampala and Addis Ababa, regulatory-grade mon-
itoring data collected at US Embassies are used to provide
ground comparison data for concentration estimates derived
from satellite AOD data. Additional information about all of
these areas is also provided in the Supplement (Sect. S1), as
are maps of the SSA sites (Figs. S4–S8).

2.3 Regulatory-grade instrument data

At several locations in the Pittsburgh area, as well as
at the US Embassy locations in Kampala and Addis
Ababa, hourly averaged ground-level PM2.5 data are also
available from regulatory-grade monitoring instruments. In
Pittsburgh, these monitors are operated by the Allegheny
County Health Department (ACHD). At the US Embassies,
these instruments are operated by the US State Depart-
ment and the US EPA, and data are made available
by these agencies (https://www.airnow.gov/international/
us-embassies-and-consulates, last access: 15 July 2020), as
well as by the OpenAQ Platform (http://openaq.org, last ac-
cess: 15 July 2020). In all cases, regulatory-grade monitoring
data are collected with beta attenuation monitors (BAMs),
a federal equivalent monitoring method, that provide hourly
PM2.5 concentration measurements for air quality index cal-
culation purposes (Hacker, 2017; McDonnell, 2017). Nomi-
nally, such federal equivalent methods are required to be ac-
curate within 10 % of federal reference methods (Watson et
al., 1998; US EPA, 2016). Since BAM data have been used to
establish the calibration methods for low-cost PM sensor data
(Malings et al., 2019b), the data from the BAM instruments
are used as provided for uniformity, without any additional
corrections being applied.

2.4 Satellite data

The satellite data product used in this paper is the MODIS
MCD19A2v006 dataset (Lyapustin and Wang, 2018) avail-
able through NASA’s Earth Data Portal (http://earthdata.
nasa.gov, last access: 15 July 2020). This dataset consists of
AOD information for the 470 and 550 nm wavelengths from
the MODIS system processed using the Multi-Angle Imple-
mentation of Atmospheric Correction (MAIAC) algorithm
and presented at 1 km pixel resolution for every overpass of
either the Aqua or Terra satellite (Lyapustin et al., 2011a, b,
2012, 2018). This represents a Level 2 data product, mean-
ing that it includes geophysical variables derived from raw
satellite data at each overpass time and has not been aggre-
gated to a coarser (e.g., monthly) temporal resolution. Data
from identified cloudy pixels are masked as part of the data
product; possible misidentification of cloudy pixels is one
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Table 2. Summary information for the ground sites presented in this paper.

Area name Pittsburgh Rwanda Malawi Kinshasa Kampala Addis Ababa

Country USA Rwanda Malawi Democratic Uganda Ethiopia
Republic
of the Congo

Location 40.1◦ N, 2.2◦ S, 16.2◦ S, 4.3◦ S, 0.3◦ N, 9.0◦ N,
(approx.) 80.5◦W; 29.4◦ E; 33.6◦ E; 15.3◦ E 32.6◦ E 38.8◦ E

to 40.8◦ N, to 1.4◦ S, to 14.0◦ S,
79.7◦W 30.5◦ E 35.7◦ E

Start 1 Jan 2018 1 Apr 2017 25 Jun 2017 20 Mar 2018 1 Jan 2019 1 Jan 2019
End 31 Dec 2018 27 May 2018 30 Jul 2018 31 Oct 2019 31 Dec 2019 31 Dec 2019

Low-cost sensors

Total sites 62 4 3 1

Simultaneously 10 to 46 1 to 3 1 to 3 1
active sites

Sensor type NPM, PA-II NPM OPC PA-II

Regulatory-grade
monitors

Total sites 5 1 1

Type BAM BAM BAM

source of error in relating surface PM2.5 and AOD. As per
recommendations in the user guide for this dataset, only data
matching “best quality” quality assurance criteria are used.
This dataset was chosen as it represents the highest possi-
ble spatial and temporal resolution for AOD, thus providing
the most points for comparison with the high-spatiotemporal-
resolution low-cost monitor data.

Satellite AOD data are considered to be collocated in space
with data from a ground site when the center of the AOD
pixel is within 1 km of the ground site. Data are considered
concurrent if the satellite overpass occurs within the hour in-
terval over which ground site data have been averaged to ar-
rive at the hourly average PM2.5 concentration value used.
As we compare data from individual satellite passes directly
to temporally collocated ground site data, we do not need to
consider (as would be essential for long-term averages) the
potential impact of the fraction of time during which satellite
measures are missing (due to cloud cover or other factors).
Likewise, we do not consider the biases associated with the
fact that satellite passes occur at certain times of day (re-
quired when comparing with daily averaged ground monitor-
ing data) since here we only compare AOD to surface PM2.5
during the same hour when the satellite pass occurs.

2.5 Conversion methods for satellite AOD

A linear regression approach is used to establish relationships
between satellite AOD and surface-level PM2.5. Let yi,t de-

note the ground-level PM2.5 measurement at location i and
time t , and let xi,t represent the satellite AOD (i.e., a vec-
tor combining the AOD at 470 or 550 nm wavelength with a
“placeholder” constant of 1 to allow for the fitting of affine
functions) corresponding to location i and time t . For this
paper we present results using AOD at 550nm; results for
AOD at 470 nm are similar and are included in the Supple-
ment (Sect. S3.2). The total set of ground measurement sites
in an area, S, is partitioned into two disjoint subsets. Subset
Sin represents the sites used to establish the linear relation-
ship between AOD and surface PM2.5 concentrations. The
remainder of sites in the subset Sap are used for the applica-
tion, i.e., to serve as an independent set to evaluate the per-
formance of the linear relationship established from the Sin
sites. Likewise, the time domain T is partitioned into initial-
ization phase Tin, during which linear relationships are es-
tablished, and application phase Tap, during which these re-
lationships are applied and evaluated.

Linear relationships are determined as follows. First, satel-
lite AOD data and surface PM2.5 monitor data from the Sin
sites during the Tin phase are collected together:

Xin =
{
xi,t

}
Yin =

{
yi,t

}
∀ i ∈ Sin, t ∈ Tin. (1)

A linear relationship is established between these, defined by
parameters βin, using classical least-squares linear regression
(e.g., Goldberger, 1980):

βin =
(
XTinXin

)−1
XTinYin. (2)
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Figure 2. Map of ground sites in the Pittsburgh area. Blue dots represent sites of regulatory-grade monitors used in the analysis, while red
dots represent sites of low-cost sensor deployments. Background map obtained from http://maps.google.com (last access: 22 June 2020);
map data ©2020 Google. Note the scale in the lower left corner. Also note that the pair of regulatory sites in the southeast of the map are
located adjacent to a major industrial source (a coking plant for steel production), while the regulatory site to the northwest of the map is
located adjacent to another industrial source (a chemical plant).

The covariance matrix of the parameters, 6βin , is also ob-
tained:

6βin =
(Yin−Xinβin)

T (Yin−Xinβin)

length(Yin)− length(βin)

(
XTinXin

)−1
, (3)

where length(·) is a function returning the number of ele-
ments in the input. During the application phase, the linear
relationship can be used to estimate the surface PM2.5 con-
centration at location i and time t , ŷi,t,prior, from the satellite
AOD data corresponding to that location and time:

ŷi,t,prior = xi,t βin. (4)

The above procedure constitutes an offline or (in Bayesian
terminology) prior conversion; i.e., it uses data collected dur-
ing the initialization phase to define a single conversion fac-
tor that is applied throughout the application phase. An on-
line, dynamic, or (in Bayesian terminology) posterior ap-
proach can also be adopted, in which this relationship is
modified as additional data are available. This approach has
been proposed by Lee et al. (2011) and evaluated by Han et
al. (2018); it allows the potentially time-varying relationship
between satellite AOD and surface PM2.5 concentration to
be accounted for. In the online approach, for a time t during

the application phase, a new dataset consisting of Yin,t and
Xin,t is created by combining all data available from the Sin
ground sites together with satellite AOD data for that time:

Xin,t =
{
xi,t

}
Yin,t =

{
yi,t

}
∀ i ∈ Sin. (5)

Based on these new data, a linear relationship is established
for that time, as above:

βt =
(
XTin,tXin,t

)−1
XTin,tYin,t . (6)

This relationship is combined with the prior relationship es-
tablished during the initialization phase (using a Bayesian
approach and assuming normally distributed parameter val-
ues) to establish a new posterior relationship specific to that
time, βt,post:

βt,post = βin+6βin

(
6βin + η

2diag
(
6βin

))−1
(βt −βin)

≈
1

1+ η2

(
η2βin+βt

)
, (7)

where diag(·) denotes a matrix diagonalization, and η is
a relative error scale parameter used to define how much
“weight” is given to the time-specific relationship parameters
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βt versus the prior relationship parameters βin in the updating
process (with values of η near zero placing more weight on
the time-specific relationships, while high values of η place
more weight on the prior). The posterior relationship is then
used to estimate surface PM2.5 concentrations from the satel-
lite AOD data for that time:

ŷi,t,post = xi,tβt,post. (8)

Both the offline and online approaches are used in this paper,
and their performance is compared (see Sect. 3.1).

This simple linear correction factor method does not ex-
plicitly account for vertical distribution profiles, cloud cover,
or any other variables that affect the relationship of AOD to
surface PM2.5. Instead, the aggregate effect of these variables
is accounted for implicitly in an empirical relationship. The
offline approach uses fixed relationships, which cannot ac-
count for time-varying effects such as changes in vertical
distribution profiles. The online approach can account for
these time-varying effects by assuming that their observed
impact on the AOD-to-surface-PM2.5 relationship at the Sin
sites is representative of their short-term impact throughout
the region where the corresponding correction factors are ap-
plied. Finally, note that all parameters described above can be
solved for analytically using the equations presented in this
section (i.e., no iterative or approximate solution methods are
necessary).

2.6 Analyses conducted in this paper

This section provides details on how the various analyses and
comparisons to be discussed in Sect. 3 are performed. Addi-
tional details are also provided in the Supplement (Sect. S2.2
to S2.4).

2.6.1 Comparison of regulatory and low-cost monitors
as ground stations to develop conversion factors
for AOD

Here, we seek to compare the performance of AOD conver-
sion to surface PM2.5 using either low-cost or regulatory-
grade monitors as the ground-level data source for initializa-
tion. As only Pittsburgh has networks of both types of sen-
sors in place, we focus our analysis in this area. The surface
PM2.5 data collected at the five ACHD regulatory monitor-
ing locations are used to assess the performance of the satel-
lite AOD conversion, regardless of how the conversion fac-
tors are initialized. First, we use four of five ACHD locations
to develop a conversion factor and apply it to the fifth. All
ACHD sites are rotated through in this manner, providing a
performance metric assessed for AOD conversion applied to
each site. Second, we use low-cost sensors for developing
the conversion factor; in this case, we select a subset of four
locations in Pittsburgh where RAMP low-cost monitors are
deployed so that the number of ground sites used matches the
number of ACHD sites used in the first case. These low-cost

monitor locations are chosen to provide a similar spatial cov-
erage over Allegheny county as the ACHD sites. Low-cost
monitors collocated with ACHD sites were specifically not
chosen to allow for a fairer comparison when performance
is assessed against these ACHD sites (since, if this were not
done, it would be possible to have initialization sites that are
collocated with the application sites, which was not possible
when the ACHD sites alone were used). In this case, a con-
version factor developed using the four low-cost sensor sites
is applied at all five ACHD sites, with performance assessed
at each site.

Different application cases of the satellite AOD conversion
method are also tested. Note that in either case, we use all
the collocated ground and satellite data across the entire time
period without averaging these data in time. For a “yearly”
conversion, data from the entire calendar year are used to de-
velop the conversion factors, while in the “monthly” case,
data from the previous month are used to develop conversion
factors that are then assessed in the current month (e.g., Jan-
uary data are used to develop conversion factors that are ap-
plied in February, then the February data are used to develop
conversion factors that are applied in March, etc.). For the
monthly case, the median performance across months is pre-
sented. Although the yearly case would technically require
having access to data that have not yet been collected (as-
suming this method is being applied for data collected in
the current year), we use this to represent a case in which
data from a previous year are used to develop conversions
applied in the current year, as we assume that the annual av-
erage AOD-to-surface-PM2.5 concentration relationship for
a given area will not significantly change from one year to
the next. In addition, we also assess the relative performance
of the offline (prior) conversion factors, for which the same
relationship parameters determined during the initialization
period are applied to the entire application period, and the
online (posterior, dynamic) conversion, whereby these initial
parameters are modified based on the AOD-to-surface-PM2.5
relationships specific to each individual satellite pass. The re-
sults of this analysis are discussed in Sect. 3.1.

2.6.2 Analysis of AOD conversion factor performance
versus number of ground sites

A significant advantage of low-cost monitors compared to
traditional instruments is that we can deploy tens to hundreds
of low-cost sensors for the price of a single regulatory-grade
monitor. To assess the potential benefits of this in terms of
the conversion of satellite AOD data to surface PM2.5, we
analyze the influence of the number of surface sites used on
the performance of the surface PM2.5 estimates from AOD
conversion. We again examine the Pittsburgh region, vary
the number of ground sites used for initialization to generate
the AOD conversion factor, and evaluate the performance us-
ing the ACHD regulatory monitoring network as the “ground
truth”. For the ACHD network, the possible sites are the
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ACHD sites minus the one site against which performance is
assessed (all ACHD sites are rotated through). For the low-
cost sensors, the possible sites are all RAMP deployment
locations in the area, excluding RAMPs that are collocated
with ACHD sites, and performance is assessed against all
ACHD sites. Subsets of varying size are randomly selected
(10 different random set selections are used in this example);
the mean of the performance metric across these 10 randomly
selected sets is used as the assessed performance. In this case,
a yearly online conversion factor is used (based on the perfor-
mance of that method as described in Sect. 3.1). The results
of this analysis are discussed in Sect. 3.2.

2.6.3 Comparison of converted AOD and nearest
ground monitors as proxies for surface PM2.5

Here, we seek to assess the benefits of combining satel-
lite AOD and ground-based sensor data compared to us-
ing ground-based sensor data alone. For this assessment, we
compare estimates of surface PM2.5 derived from satellite
AOD data using the methods presented previously in this pa-
per with estimates based on the surface PM2.5 measurements
alone, which we denote as “nearest monitor” estimates. For
this estimation, we make use of a locally constant or naïve in-
terpolation, in which the surface PM2.5 estimate for a given
time and location is the same as the measurement of the near-
est available ground monitor (i.e., one of the ground monitors
used for establishing conversion factors for the satellite AOD
data) at that time:

ŷi,t,nearest = yj,t s.t. j = argmink∈Scal
dist(i,k) , (9)

where dist(i,k) indicates the distance between locations i
and k, and “argmin” denotes the input that minimizes this
objective.

In this case, low-cost sensor data are used to represent the
ground truth against which performance is assessed; this is
done so that a comparable analysis can be made in Pitts-
burgh and Rwanda, since no regulatory-grade instruments
were present in the latter area. Prior conversion factors are
developed for the entire time period and are updated to pos-
terior factors with time-specific data for their application. All
but one low-cost sensor site in a given area are used for the
development of these factors, with application and assess-
ment on the final site. These sites are then cycled through
to provide performance metrics across all sites. To allow
for comparability between the nearest monitor approach and
surface PM2.5 estimation from satellite AOD, we make use
of the same set of ground sites for both; i.e., for each site,
data from the closest available sites are used as inputs to the
nearest monitor method, and all sites are cycled through in
this manner, providing performance metrics for each site as
above. The results of this analysis are discussed in Sect. 3.3
(for Pittsburgh) and 3.4 (for Rwanda).

2.6.4 Analysis of inter-seasonal generalization of AOD
conversion factors

Changing seasons can affect the relationship between satel-
lite AOD and surface PM2.5 due to changes in confounding
factors like surface reflectance, aerosol vertical profiles, and
particle composition. Here, we assess the utility of devel-
oping seasonal AOD conversion factors for Pittsburgh and
Rwanda. For this assessment, conversions are developed and
applied in specific seasons (information on these seasons is
presented in Table S1 and Fig. S1). For Pittsburgh, these ap-
proximately correspond to winter, spring, summer, and fall,
while in Rwanda, these represent alternating wet and dry
seasons. For Pittsburgh, the major differences between sea-
sons are related to temperature, with humidity varying to a
lesser degree. In Rwanda, temperatures are relatively stable
year-round, with seasons mainly differentiated by humidity
changes (although the second dry season appears to have
been unusually wet, comparable to the previous wet season).

RAMP data are used to represent ground truth concentra-
tions for both areas. An offline or “prior” approach is used
here in order to investigate the effect of generalizing a cal-
ibration developed in one season to a different season; i.e.,
calibrations are not modified based on data collected within
the application period. Metrics are assessed for each individ-
ual site in each area, with all other sites being used to estab-
lish AOD conversion factors as in the previous section. The
results of this analysis are discussed in Sect. 3.5.

2.6.5 Analysis of inter-regional generalization of AOD
conversion factors

Finally, given the lack of ground-based monitoring in many
parts of SSA, we assess whether a conversion factor de-
veloped in one city of this region can be generalized to
other cities or locations across SSA. Here, a single AOD
conversion factor is developed using one site in Kigali,
Rwanda, and this factor is applied without modification to
other sites across SSA. These include a second site in Ki-
gali, a site in Musanze in rural Rwanda, a site in Kinshasa
(DR Congo), and three sites in Malawi (one near the urban
area of Lilongwe and two other sites in more rural areas
to the south near Mulanje) where low-cost sensor systems
are deployed. There are also two sites (Kampala, Uganda;
Addis Ababa, Ethiopia) where hourly resolution long-term
regulatory-grade monitoring data are available; data from
these sites are included for comparative purposes. An offline
approach is used here, with a single factor being initialized
over the entire study period. Uncertainty estimates for the
performance of this approach at each site are obtained via
bootstrap resampling of the times with valid coincident satel-
lite and ground data, with 100 random bootstrap samples be-
ing used to obtain the uncertainty estimates. The results of
this analysis are discussed in Sect. 3.6.
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3 Results

In this section, we apply the proposed method for the
satellite-AOD-to-surface-PM2.5 concentration conversion in
several use cases. In Sect. 3.1, 3.2, and 3.3, we assess the per-
formance in Pittsburgh by comparing the use of regulatory-
grade monitors and low-cost monitors as ground sites for es-
tablishing conversion factors. In Sect. 3.4 and 3.5, we extend
the comparison to Rwanda by examining the impact of us-
ing the relatively sparser low-cost sensor network there and
examining seasonal variations in the conversions. Finally, in
Sect. 3.6, we examine the generalization of Rwanda-based
conversion factors to other locations across SSA. The assess-
ment metrics used in this section, including correlation (r),
the coefficient of variation of the mean absolute error (Cv-
MAE), and the mean normalized bias (MNB), are described
in the Supplement (Sect. S2.1).

3.1 Comparing the use of regulatory and low-cost
monitors as ground stations to develop conversion
factors for AOD

We first evaluate the utility of low-cost sensors as substi-
tutes for regulatory-grade monitors when developing factors
to convert satellite AOD data to surface PM2.5 estimates us-
ing the Pittsburgh area as our case study. Results for all
eight combinations of ground initialization site monitor type
(ACHD vs. RAMP), initialization period length (yearly vs.
monthly), and application mode (prior vs. post.) are pre-
sented in Fig. 3. Overall, these results indicate relatively
weak relationships between satellite AOD and surface PM2.5
for Pittsburgh, regardless of the method used. Correlations
are weak (r < 0.5) and mean absolute errors are on the order
of half to three-quarters of the concentration values (annual
average concentrations are about 10 µg m−3 across most of
Pittsburgh). Biases are low on average but can vary across
locations. In comparing the different application modes, the
posterior method provides better performance in terms of
correlation than the prior method. This suggests that vari-
ability in AOD-to-surface-PM2.5 relationships between satel-
lite passes (e.g., due to differences in the vertical profile of
PM2.5 over the area and/or to differences between “point”
measurements of the ground monitors and “area” AOD) is
better captured by updating prior relationships with new in-
formation from each new satellite pass. In terms of other per-
formance metrics, there is little difference between these ap-
plication modes, with slight improvements observed in the
posterior method for the RAMP data but slight decreases for
the ACHD data. Comparing the use of annual to monthly
initializations, performance metrics are slightly worse in the
monthly case, indicating that the additional initialization data
used in the yearly case generally lead to a more robust con-
version. It should be noted, however, that these conclusions
may be specific to relatively low PM2.5 concentrations as
found in Pittsburgh.

Figure 3. Comparison of performance metrics (a correlation, b Cv-
MAE, and c MNB) for surface PM2.5 estimated from satellite AOD
data in the Pittsburgh area. Performance is assessed at the ACHD
regulatory-grade monitoring sites. Ground sites used for factor de-
velopment are either four of the ACHD monitors (ACHD) or four
low-cost sensors associated with RAMP monitors (RAMP). Con-
version factors are established either on a yearly or monthly basis.
Finally, either an offline (prior) or online (post.) approach is used.

In all cases, performances using low-cost sensor data are
comparable to those of the same conversion approaches uti-
lizing the regulatory-grade instruments. Note that the low-
cost monitors used here have been carefully corrected by
collocation with regulatory-grade monitors (Malings et al.,
2019b), which accounts for known artifacts with low-cost
sensors. Thus, there is no evidence from this analysis of any
inherent disadvantage to the use of carefully corrected low-
cost sensors to provide ground data compared to more tra-
ditional instruments. Rather, based on these results, any ad-
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Figure 4. Performance (assessed in terms of CvMAE) for surface PM2.5 estimated from satellite AOD data in the Pittsburgh area plotted
as a function of the number of ground sites used. Performance is assessed against the ACHD regulatory-grade monitors. Solid lines indicate
mean performance across sites using either ACHD or low-cost sensor (RAMP) sites to establish conversion factors. Shaded regions indicate
the range of variability across application sites.

ditional uncertainty due to data quality differences between
low-cost sensors and regulatory-grade instruments is seen to
be negligible compared to the difficulties associated with re-
lating satellite AOD to surface-level PM2.5 and has therefore
had no systematic impact on the performance of the assessed
linear conversion method, at least for this study area.

3.2 How many ground stations are needed to improve
surface PM2.5 estimates from AOD retrievals?

Figure 4 shows the results of the assessment conducted as
described in Sect. 2.6.2 in terms of the CvMAE metric. For
small numbers of ground sites, results for the ACHD net-
work and the low-cost sensor network are similar in terms of
mean performance across different randomly selected sub-
sets of the network, with slightly better performance using
the RAMP network sites. This may be related to the smaller
number of possible combinations of ACHD sites to be ran-
domly selected compared to the RAMP sites; with more
RAMP sites to choose from, the likelihood of selecting more
generally representative (rather than more source-impacted)
sites is higher, whereas with the ACHD network there is a
high likelihood of choosing a heavily source-impacted site
(especially since several ACHD locations are specifically
chosen to monitor such local sources; see Fig. 2). The lim-
ited number of ACHD sites prevents this analysis from being
expanded to larger numbers of locations; at four chosen loca-
tions, there is only one possible combination to be selected,
so the spread in performance collapses to match the mean.
With the low-cost sensor network, as more ground sites are
included, mean CvMAE decreases until about 10 sites are
chosen but afterwards remains relatively constant as more
sites are included. Performance variability decreases as more

site are added, indicating that by adding additional ground
sites, even sites positioned at random throughout the do-
main, the conversion relationship becomes increasingly ro-
bust. While for a single ground monitor, worst-case CvMAE
is on the order of 1.5 to 2, with 10 or more monitors, worst-
case performance is improved below 0.6, which is a more
than 2-fold improvement in worst-case performance. Over-
all, this demonstrates the potential benefits of dense low-cost
sensor networks for the conversion of satellite AOD data,
even over a limited spatial domain (covering about 600 km2).
Furthermore, it shows that even with quasi-random place-
ment of the ground sites, such as might be achieved by citi-
zens making personal decisions to deploy low-cost monitors
on their own properties, increasingly robust conversion re-
sults can be achieved as more sensors are included, although
these benefits diminish beyond (at least in the case of Pitts-
burgh) about one monitor per 60 km2.

3.3 Comparison of AOD-based surface PM2.5 to
measurements from a dense ground network

The performance of both the nearest monitor method and
the satellite AOD conversion method is assessed for Pitts-
burgh in Fig. 5. It should be noted that all available ground
sites have been used for conversion factor initialization in
this section versus a limited subset of these in Sect. 3.1, lead-
ing to improved performance of this method following the
trend noted in Sect. 3.2. In Pittsburgh, we see reduced perfor-
mance (lower correlation, larger CvMAE) when using con-
verted satellite data compared to nearest monitor data. This is
likely a result of the quite dense network of low-cost sensors
present in Pittsburgh, where the median distance between
sensors in the network is about 1 km. With this dense net-
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Figure 5. Comparison of performance metrics (a correlation, b CvMAE, c MNB) for surface PM2.5 estimated either from satellite AOD
data (satellite) or from the nearest ground-level PM2.5 monitor (nearest monitor) in the Pittsburgh area. Note that these performance metrics
are not directly comparable to those presented in Fig. 3, as in this case a larger number of ground initialization sites (9 to 45, depending on
the number of active sites in Pittsburgh at any particular time) are considered. Further, performance is now being assessed against the RAMP
rather than the ACHD network (i.e., performance is assessed at the held-out active RAMP site); this is done to allow for comparability with
the results from Rwanda presented in Fig. 6, where only RAMP data are available.

work, there is a good chance that the nearest ground mon-
itor will be quite close to the location at which concentra-
tions are to be estimated, and the resulting nearest monitor
estimate is therefore likely to be quite good, as PM con-
centrations tend to be homogenous at this spatial scale in
Pittsburgh (Li et al., 2019). When PM2.5 is instead estimated
from satellite data using a simple linear relationship, spatial
and temporal variability in AOD-to-surface-PM2.5 relation-
ships can confound the assessment. This is especially impor-
tant considering the relatively low levels of surface PM2.5
concentration and AOD in and above Pittsburgh, meaning
that any introduced noise will be relatively large in propor-
tion to the signal being assessed. These results indicate that
dense ground-based monitoring (if available) will likely out-
perform AOD-derived surface PM2.5, at least for the simple
conversion method used here.

3.4 The utility of AOD-based surface PM2.5 in regions
with a sparse ground monitoring network

The performance of the nearest monitor method and the
satellite AOD conversion method is assessed for Rwanda in
Fig. 6, in a similar manner as was done for Pittsburgh in
Fig. 5. In Rwanda, we see an improvement across all metrics
(higher and more consistent correlation, smaller and more

consistent CvMAE, and less spread in the bias) as satellite
data are combined with surface PM2.5 monitor data. Median
CvMAE is reduced from about 0.5 to 0.3, which is a 40 % im-
provement. Because of the relative sparsity of the low-cost
monitor network in Rwanda (four measurement sites, not
all of which were simultaneously operational) compared to
that in Pittsburgh, the assumption of the spatial homogeneity
of concentrations between monitoring sites is less valid, so
the inclusion of satellite data is beneficial in resolving these
spatial differences. Furthermore, the relatively high levels of
PM2.5 concentration in Rwanda (average of about 40 µg m−3

over the study period) allow for a higher signal-to-noise ratio
relative to Pittsburgh. Together, these results indicate the high
utility of low-cost sensors, used in conjunction with satel-
lite data, when these are deployed even in relatively sparse
networks to previously unmonitored areas with high surface
PM2.5 concentrations.

This point is further explored in Fig. 7, which compares
the correlations between ground measurements in Pittsburgh
and Rwanda with the AOD-to-surface-PM2.5 correlations in
these areas. In Pittsburgh, the high density of available mon-
itors leads to relatively high inter-site correlations above the
typical range of the AOD-to-surface-PM2.5 correlations. It
is therefore difficult to extract meaningful patterns from the
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Figure 6. Comparison of performance metrics (a correlation, b CvMAE, c MNB) for surface PM2.5 estimated either from satellite AOD data
(satellite) or from the nearest ground-level PM2.5 monitor (nearest monitor) in the Rwanda area.

Figure 7. Comparison of inter-site correlations versus AOD-to-
surface-PM2.5 correlations in Pittsburgh and Rwanda.

AOD information that would not also be present in avail-
able surface-level measurements, suggesting that AOD data
provide little additional value in this densely monitored area
(at least in terms of what can be derived without including
additional information sources like atmospheric modeling
and land use characteristics). Meanwhile, in sparsely mon-
itored Rwanda, inter-site correlations are lower, overlapping
the typical range of AOD-to-surface-PM2.5 correlations. This
means that AOD data can still provide useful information for
spatial heterogeneities in this region.

3.5 Seasonal effects on satellite AOD conversion to
surface PM2.5

Figure 8 presents the median performance metrics across all
sites in either Pittsburgh or Rwanda for each combination of
initialization and application season. Seasonal definitions are
provided in Table S1. For Pittsburgh, spring conversion fac-
tors seem to generalize best when applied to other seasons,
with the lowest biases and highest precisions. Low correla-
tions are observed in the summer and winter regardless of
initialization period, and clear seasonality is observed with
summer initializations being biased high in winter and win-
ter initializations being biased low in summer.

In Rwanda, an alternating pattern is revealed, with wet sea-
son conversion factors applying well to other wet seasons
and dry season conversion factors applying to other dry sea-
sons. Many factors could contribute to this pattern, including
changes in humidity and the resulting impact on extinction,
as well as seasonal burning patterns affecting particle sizes
and compositions. Conversion factors appear to generalize
better between wet seasons than between dry seasons. Corre-
lations are highest during the first dry season (DS1), regard-
less of whether the conversion factor is developed during this
season or during the surrounding wet seasons; this was also
the driest season and the season with the highest PM2.5 con-
centrations. Applications of conversion factors developed in
other seasons to DS1 underestimate PM2.5 in this season, es-
pecially applications of factors developed during the wet sea-
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Figure 8. Comparison of seasonal performance metrics (a, d correlation; b, e CvMAE; c, f MNB) for surface PM2.5 estimated from satellite
AOD data across different seasons in the Pittsburgh (a, b, c) and Rwanda (d, e, f) areas. The horizontal axis differentiates the seasons during
which initialization was performed, while the vertical axis denotes the seasons when the conversion was applied. Note that, in Rwanda, only
one sensor was operational during Dry Season 2 (DS2) and Wet Season 3 (WS3), so the application of these conversions to an independent site
was impossible; therefore, performance metrics are blacked out. In each figure diagonal (from top left to bottom right) elements correspond
to the same season. Values are also listed in the Supplement (Table S8).

sons (when PM2.5 levels were much lower). This indicates
that there is seasonality to PM2.5 concentrations that is not
being reflected in the AOD data and requires local monitor-
ing to identify. Overall, these results indicate that conversion
factors should be developed or updated at least on a seasonal
basis, especially in Rwanda; a conversion factor developed
during a limited monitoring campaign occurring in one spe-
cific season may fail to generalize well to other seasons.

3.6 Regional generalization of AOD conversion factors
developed in Rwanda

Results of the analysis discussed in Sect. 2.6.5 are presented
in Fig. 9. Correlation is relatively low across most applica-
tion areas, with a weak trend of decreasing correlation as
distance from the initialization site increases (the exception
to this is found at the rural Mugogo site). The best perfor-
mance in terms of CvMAE and normalized bias is found in
Kigali, Kampala, and Kinshasa; these urban zones are likely
most similar to the initialization site in terms of land use
and resulting source mix. Relatively, the best performance
is found at the spatially closest Kigali site. The Kampala
site, with data collected via a traditional monitoring instru-
ment, shows similar results as obtained at these other urban
sites with low-cost monitors. The other more rural locations
show poorer performance regardless of distance from the ini-
tialization site. However, the Addis Ababa site also shows
much poorer performance despite also being an urban area,

although the embassy is located on the outskirts of the city.
This may be due to climate differences between Addis Ababa
and the other cities considered, as well as differences in par-
ticle composition and size distributions, especially the higher
contribution to AOD from coarse (larger than PM2.5) Saha-
ran dust (De Longueville et al., 2010) that would not be ac-
counted for in the Kigali-based AOD conversion factor.

These results indicate that, while conversion factors may
generalize to sites with similar land use and climate charac-
teristics, physical distance alone is not as significant in de-
termining AOD–PM relationship generalizability. Also, the
overall low correlation values indicate the importance of lo-
cal data, as spatial heterogeneity in satellite-AOD-to-surface-
PM2.5 relationships can be a concern even for nearby sites.
Finally, it should be noted that a single annual conversion
factor, as is assessed here, could fail to take into account sea-
sonal variabilities (Sect. 3.5) and so can correlate poorly with
surface PM2.5 even in or near the area where it is developed
(as seen for the Kigali site here). A conversion factor that
varies on at least a seasonal basis is therefore preferred; how-
ever, determining how to generalize such a time-varying con-
version factor to other regions where seasonal definitions and
characteristics can be quite different is a challenging prob-
lem. Overall, it does not appear from this analysis that AOD-
to-surface-PM2.5 conversion factors can be broadly gener-
alized across global regions with consistent results. There-
fore, continuous localized monitoring, such as might be fa-
cilitated with local low-cost monitor networks, seems to be
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Figure 9. Comparison of performance metrics (a correlation, b CvMAE, c MNB) for surface PM2.5 estimated from satellite AOD data across
multiple sites in SSA. The conversion factor is developed at a central site in Kigali, Rwanda; the distances of each testing site to this central
site are given. Performances are assessed for all data collected at the given sites using the prior conversion factor only. Note that performance
in Kampala and Addis Ababa is assessed using traditional reference monitors (indicated by ∗), while performance at the other sites reflects
low-cost sensor data (indicated by •). Error bars denote the interquartile range of metric estimates obtained via bootstrap resampling (for
most cases of the mean normalized bias, this range is smaller than the marker size).

the most robust way to establish applicable AOD-to-surface-
PM2.5 conversion factors.

4 Discussion

We have examined the feasibility of using low-cost sensors
as a data source in developing relationships between surface
PM2.5 concentrations and satellite AOD. In a case study in
Pittsburgh, there was no decrease in performance associated
with the use of low-cost sensors for this purpose rather than
more traditional regulatory-grade monitors, although perfor-
mance was rather poor in both cases. The higher-density
ground networks possible with low-cost sensors did provide
benefits in terms of more robust conversion factors com-
pared to the more sparsely deployed traditional monitoring
network. However, it was found that for Pittsburgh, with a
relatively dense low-cost sensor network (median inter-site
distance of about 1 km) and low PM2.5 concentrations, the
use of the nearest ground measurement sites outperformed

the use of satellite AOD data to estimate surface PM2.5 us-
ing linear conversions. Partly, this could be because AOD
is rather low over this area (average of about 0.2), leading
to lower signal-to-noise ratios that reduce AOD-to-surface-
PM2.5 correlation. Conversely, in Rwanda, a relatively sparse
low-cost sensor network combined with satellite data in an
environment with higher and more variable PM2.5 concentra-
tions provided better estimates of surface PM2.5 concentra-
tions than was available using only the nearest surface mon-
itor alone. This result is highly relevant to SSA, as sparse
local monitoring and high average PM2.5 concentrations (as
measured by the few available ground-based monitors) are
common features. Differences in seasonal characteristics (es-
pecially at the Rwanda locations) show the added value of
season-specific conversion factors (which are facilitated by
continuous local monitoring), while differences in charac-
teristics between areas, especially urban and rural locations
with highly variable particle types, limit the generalizability
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of conversion factors across regions (again emphasizing the
importance of local monitoring).

The results presented here continue to highlight the need
for ground-based PM2.5 monitoring in previously unmoni-
tored areas such as SSA, especially in light of the benefits
observed in Rwanda from having even a sparse ground mon-
itoring network combined with satellite data for local spa-
tial heterogeneity. Efforts to expand ground-based monitor-
ing should make use of traditional regulatory-grade instru-
ments wherever possible, supplemented with low-cost moni-
tors to increase network density and expand spatial coverage.
Findings in Pittsburgh indicate that denser monitoring net-
works, such as those made possible by low-cost sensors, im-
prove the accuracy and robustness of surface PM2.5 estimates
from satellites. Verification that the same trend will hold in
other regions, especially in SSA, requires further dense de-
ployments of low-cost sensors and is the subject of ongoing
work.

It should be noted that the results of this paper pertain to
local and instantaneous relationships using the highest spa-
tial and temporal resolution of satellite data currently avail-
able. Results may differ for spatially or temporally aggre-
gated satellite and ground site data. In fact, such spatial and
temporal aggregation is likely to reduce the impact of noise
(but not bias) both from low-cost instruments and from satel-
lite retrievals. However, such aggregate information does not
take full advantage of the potential inherent in low-cost sen-
sors to provide near-real-time information on local air pollu-
tion. On a related point, satellite data (at least, for most of the
world using current polar-orbiting platforms) cannot provide
diurnal concentration profiles, instead presenting a “snap-
shot” of concentrations for a wide spatial domain but only for
a specific time of day. Ground-based continuous monitoring,
even with low-cost sensors, will still be essential where there
is no coverage with geostationary platforms that provide con-
tinuous (for daytime only) retrievals (Judd et al., 2018; She
et al., 2020). Past work has made use of AOD retrievals from
GOES geostationary satellites for North America (Zhang et
al., 2011, 2013). New geostationary satellites are planned for
coverage of North America (the TEMPO satellite mission),
Europe (Sentinel 4), and East Asia (GEMS); unfortunately,
there are no current plans for coverage of Africa by similar
satellites.

Further technical and research developments in this area
have enormous promise for improving our understanding of
local air quality worldwide. A functioning system for con-
verting satellite to ground-level air pollution data, relying on
a group of “trusted” ground data sources, could potentially
be a valuable resource for assessing and correcting low-cost
sensor data, allowing for in-field recalibration of drifting in-
struments and better identification of malfunctioning sensors.
Low-cost systems combining PM mass measurement and
ground-up AOD data can help to establish AOD-to-surface-
PM2.5 relationships at finer spatiotemporal resolution (Ford
et al., 2019). Open questions related to this research area in-

clude finding appropriate timescales over which conversion
factors can be considered constant within regions as well as
continuing to examine the question of conversion factor gen-
eralizability between regions separated by spatial distances
and across different climates and land use characteristics.
More sophisticated conversion methods incorporating me-
teorological and land use information as well as outputs of
chemical transport models can also be considered, albeit with
the recognition that some of these inputs may not yet be read-
ily available or well validated for SSA.

Code and data availability. Data related to the results and
figures presented in this paper are available online at
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