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Abstract: This paper presents a compact color texture representation based on the selection of features extracted from

different configurations of descriptors computed in multiple color spaces. The proposed representation aims

to take simultaneously into account several spatial and color properties of different textures. For this purpose,

texture images are coded in five different color spaces. Then, texture descriptors with different neighborhood

and quantization parameter settings, are calculated from this images in order to extract a high dimensionality

feature vector describing the textures. Compact representation is finally obtained by means of a feature selec-

tion scheme. Our approach is applied with two well-known color texture descriptors for the classification of

three benchmark image databases.

1 INTRODUCTION

Texture classification is one of the most com-

plex process in computer vision and image process-

ing. It has been an active topic of research for many

years and an important step in many applications

such as content based image retrieval, medical image

analysis, face recognition, machine vision and many

more (Liu et al., 2018). Texture classification is typi-

cally categorized into two sub-problems of represen-

tation and decision. Texture representation is a funda-

mental step of texture analysis that consists in extract-

ing features that describe texture information. Texture

information refers to the spatial organization of a set

of basic elements that requires the analysis of a neigh-

borhood and depends on observation conditions (illu-

mination, field of view, spatial resolution, orientation,

viewpoint, deformation, etc). In order to deal with

texture appearance variations caused by the change of

these conditions, numerous texture descriptors have

been proposed in the last decades, firstly for gray

level images. Liu et al. proposed an updated survey

of advances in texture representation based on Bag

of Words (BoW) and on Convolutional Neural Net-

work (CNN) (Liu et al., 2018). Although CNN-based

methods have provided impressive performances last

years, they suffer from the difficulty to understand the

representation that they generate. The choice of the

adequate descriptor for classifying textures is there-

fore a crucial but difficult problem, being agree that

classification results depend on the choice of the tex-

ture features as well as the tuning of their parameters.

In addition, many studies have proved that the use

of color impacts the discrimination of textures and im-

proves classification accuracy (Alvarez and Vanrell,

2012; Khan et al., 2015). That is why many tex-

ture descriptors, like Gray Level Cooccurrence Ma-

trix (GLCM), Local Binary Pattern (LBP) and oth-

ers, were extended to color. These descriptors com-

bine spatial and color information to generate color

texture features following two main approaches de-

pending on whether they are considered jointly or in-

dependently (Mäenpää and Pietikäinen, 2004; Bian-

coni et al., 2011). There is a wide variety of color

spaces that belong to different families depending on

their properties. It is known that the choice of the

color space impacts texture classification results too

but the prior determination of a suitable color space

is a complex problem (Bello-Cerezo et al., 2016; Cer-

nadas et al., 2017).

Many authors propose to combine various texture

descriptors in several color spaces in order to take

into account their different properties (Khan et al.,

2015; Cusano et al., 2016). Because these approaches

generate high-dimensional features spaces, they suf-

fer from the curse of dimensionality and require to ex-
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Figure 1: Compact color texture representation.

tract a limited number of relevant features in order to

provide compact texture representations that improve

classification performance in terms of accuracy and

processing time (Porebski et al., 2013b). In most of

these works, the parameter settings of the used de-

scriptors, including the chosen color space, are a pri-

ori predefined. However, the properties of the textures

of different classes may be so different that they re-

quire to be represented with different descriptor con-

figurations. At the same time, texture representation

has to take into account possible intraclass property

variations due to changes in illumination, rotation,

scale, shape, etc.

In this paper, we propose a compact color tex-

ture representation where texture features are com-

puted and selected from different configurations of

a same descriptor in multiple color spaces (see fig-

ure 1). The proposed approach is applied with two

well-known color descriptors that process spatial and

color information jointly: Reduced Size Chromatic

Cooccurrence Matrix (RSCCM) (Palm, 2004) and

Extended Opponent Color Local Binary Pattern (EO-

CLBP) (Pietikäinen et al., 2011). Intra-channel and

inter-channel neighborhoods are both used to extract

color texture features from these descriptors. For the

first descriptor, Haralick features are extracted from

different configurations of RSCCM. For the second

one, we propose to extract statistical features from

histograms of many color LBP configurations. The

extraction of features proposed for this latter descrip-

tor is original because it differs from the classical ap-

proaches that use the bins of LBP histograms as tex-

ture features and so, it limits the number of candidate

features. Another original contribution is to represent

a color texture by combining features from several

configurations of a same descriptor in order to take

advantage of their different spatial and color prop-

erties simultaneously. The proposed approach thus

overcomes the difficulty of choosing a relevant de-

scriptor configuration and aims to provide a compre-

hensible and interpretable representation of textures.

The second section of this paper presents the im-

portance of color spaces used in texture classifica-

tion problems. The two descriptors used in this pa-

per for illustrating our approach are presented in the

third section. Section four presents how a compact

representation is determined from texture features ex-

tracted from a descriptor. Experimental results on

three benchmark databases are presented in the fifth

section. The last section offers different perspectives

for future work in order to improve our approach.

2 COLOR SPACES

The color of pixels can be represented in different

color spaces which respect different physical, phys-

iologic, and psycho-visual properties. They can be

categorized into four families: the primary spaces, the

luminance-chrominance spaces, the perceptual spaces

and the independent color component spaces (Poreb-

ski et al., 2013b).

Since the choice of a color space impacts directly

the classification results, many authors tried to com-

pare results obtained by using different color spaces

in order to find the most suited one for a given appli-

cation (Mäenpää and Pietikäinen, 2004; Bello-Cerezo

et al., 2016; Cernadas et al., 2017). The synthesis

of these works shows that there is no color space

well suited to represent all types of textures. To

solve this problem, few studies propose multi-color

space approaches (Porebski et al., 2018). They ex-

ploit the properties of multiple color spaces simulta-

neously by combining them and overcomes the diffi-

culty of choosing a single relevant color space. Al-

though these approaches have shown their relevance

with variable numbers of considered color spaces, it

appears that a limited number of color spaces repre-

sentative of each family is sufficient to improve clas-

sification performances. Moreover, many of these

spaces require to know the properties of the illumina-

tion and the acquisition device. That is why we pro-

pose to describe textures with only five color spaces

that do not need this knowledge: the RGB acquisition

image color space with one color space of each fam-

ily: YCbCr luminance-chrominance space, I1I2I3 in-

dependent color component space, HSV perceptual

space and RGBn normalized primary space.



3 TEXTURE DESCRIPTORS

In this paper, we propose to apply our approach

with two popular and efficient texture descriptors: the

cooccurrence matrix and the LBP operator known for

their computational simplicity.

3.1 Haralick features extracted from

chromatic cooccurrence matrices

3.1.1 Chromatic cooccurrences matrices

This descriptor is the extension to color of the GLCM

operator that is considered as a two-dimensional his-

togram of pairs of neighbor pixels. An important

property of this operator is its invariance to orientation

changes. Chromatic Cooccurrence Matrix (CCM)

considers both the spatial interactions within and be-

tween the color components of neighbor pixels in

the image plane and the color distribution in a color

space (Palm, 2004).

Let Q, be the number of levels used to quantify

the color components C1, C2 and C3 of a given color

space. A Reduced Size Chromatic Cooccurrence Ma-

trix (RSCCM) is a Q×Q CCM, where the parameter

Q is reduced in order to decrease the memory stor-

age cost and so, the time required to extract texture

features from these matrices (Porebski et al., 2013b).

The normalized RSCCM m
Ck,Ck′

N
[I] measures the

spatial interactions in the neighborhood N between

the two color components Ck and Ck′ of an image I

(k,k′ ∈ {1,2,3}). The neighborhood N is a second

parameter defined by the user.

For an image coded in a color space C1C2C3

with a quantization level Q and a given neighbor-

hood N , six normalized RSCCM are computed:

three within-component matrices (k = k′) and three

between-component matrices (k 6= k′) where m
Ck,Ck′

N
[I]

and m
Ck′ ,Ck

N
[I] are symmetric.

3.1.2 RSCCM configurations

Before calculating a chromatic cooccurrence matrix,

a number of parameters have to be set and adjusted.

This configuration is complex when the color and spa-

tial properties of the analyzed textures are heteroge-

neous. It principally depends on:

• Q, the image quantization level that defines the

size of the RSCCM,

• N , the pixel neighborhood in which cooccur-

rences are counted. N is controlled by two other

parameters:

– the neighborhood direction: four 2-directional

neighborhoods are usually used to compute

direction-dependent cooccurrence matrices: 0◦,

45◦, 90◦ and 135◦. In order to take simultane-

ously into account all the possible directions of

an observed texture, an isotropic 3× 3 neigh-

borhood is generally used with a number of 8

neighbors located in the 4 directions.

– the neighborhood distance: this distance, de-

noted D, is the spatial infinity-norm distance

separating each pixel from its neighbors.

We propose to adjust RSCCM configurations de-

pending on two parameters: the quantization level

Q and the neighborhood distance D since we be-

lieve these two parameters control the representation

of texture acquired with different observation condi-

tions. Haralick features are so extracted from each of

the following RSCCM configurations (D,Q):

(1, 16) (1, 32) (1, 64) (1, 128) (1, 256)
(2, 16) (2, 32) (2, 64) (2, 128) (2, 256)
(3, 16) (3, 32) (3, 64) (3, 128) (3, 256)
(5, 16) (5, 32) (5, 64) (5, 128) (5, 256)

(10, 16) (10, 32) (10, 64) (10, 128) (10, 256)

3.1.3 Haralick features extracted from RSCCM

The cooccurrence matrices are able to represent the

texture but they are not directly used for color texture

classification purposes because of the large amount of

information they contain. To reduce it while preserv-

ing the relevance of these descriptors, Haralick pro-

posed statistical features that can be extracted from

each matrix (Palm, 2004). We propose to use the first

13 Haralick features: homogeneity, contrast, correla-

tion, variance, inverse difference moment, sum aver-

age, sum entropy, entropy, difference variance, differ-

ence entropy and measures of correlation I and II.

A color texture is then represented by Haralick

features extracted from RSCCM with different con-

figurations and computed from images coded in mul-

tiple color spaces.

3.2 Texture features extracted from

color LBP histograms

3.2.1 Color LBP histogram

Color LBP are extensions to color of the Local Bi-

nary Pattern operator that captures the local texture

properties of a gray level image (Pietikäinen et al.,

2011). An important property of this operator is its

invariance to monotonic gray-scale changes caused,

for example, by illumination variations. In order to

characterize the whole color texture image, the LBP



operator is applied on each pixel and for each pair of

components in the color space C1C2C3. Considering

a pair of component (Ck,Ck′), (k,k
′ ∈ {1,2,3}), the

color LBP labels a pixel with the component Ck by

thresholding its neighborhood N in the component

Ck′ and by encoding the result as a binary number.

The consideration of the Extended Opponent

Color LBP (EOCLBP) operator gives rise to nine LBP

images: three within-component LBP images (k = k′)

and six between-component (k 6= k′). These images

are usually not exploited directly and most of authors

prefer to use LBP histograms and consider histogram

bins as texture features (Pietikäinen et al., 2011).

Instead of using the bins of EOCLBP histograms,

we propose to extract two different types of statistical

features from these histograms. In order to character-

ize textures acquired with different observation con-

ditions, these features are extracted from many EO-

CLBP configurations.

3.2.2 EOCLBP configurations

Due to its popularity, many variants of the basic LBP

operator, like the rotation invariant LBP or the uni-

form LBP for feature dimensionality reduction, as

well as their few extensions to color, have been pro-

posed the last two decades (Pietikäinen et al., 2011).

The definition of the original LBP operator with

its 3× 3 neighborhood has then been generalized by

using a circular neighborhood N defined by:

• P, the number of neighbor pixels that deter-

mines the dimensionality of the LBP histograms.

For example, a 3 × 3 neighborhood with P = 8

neighbors gives rise to a 28 = 256-dimensional

LBP histogram. For each pair of color compo-

nents, a color texture is thus described by a 2P-

dimensional histogram.

• R, the distance between each pixel and its neigh-

bors. This distance is equal to the radius of the

circle around the central pixel. Generally, when

a neighbor pixel is not confused with the circle, a

bi-linear interpolation is used to estimate its loca-

tion. Here, the neighborhood is thus pre-sampled.

With these two parameters, many LBP configura-

tions are available in order to characterize textures in

different scales. In this paper, we propose to consider

the following EOCLBP configurations (P,R):

(8, 1) (8, 2) (8, 3) (8, 5) (8, 10)
(16, 2) (16, 3) (16, 5) (16, 10)

(24, 3) (24, 5) (24, 10)

3.2.3 Statistical features extracted from

EOCLBP histograms

With the EOCLBP operator, a color texture is rep-

resented by 9 LBP histograms that are concatenated

to constitute a vector containing 9× 2P features for

a given color space C1C2C3. Several approaches

have been proposed to reduce the dimensionality of

such a feature space, like the uniform LBP oper-

ator. Some authors select the most discriminant

bins that constitute the LBP histograms (Pietikäinen

et al., 2011). Others authors reduce the number

of histograms with only the three within-component

LBP histograms or by adding only three out of six

between-component LBP histograms, assuming that

the opponent pairs such as (C1,C2) and (C2,C1) are

highly redundant (Mäenpää and Pietikäinen, 2004).

Another approach consists in selecting, out of the nine

LBP histograms, the most discriminant ones for the

considered application (Porebski et al., 2018).

In this paper we propose to extract statistical fea-

tures from each LBP histogram and concatenate them

to form a reduced dimensionality statistical feature

vector. For this purpose, two types of statistical fea-

tures are proposed:

• 7 first order statistical features: mean, median,

mode, standard deviation, symmetry around the

average and two inter quartile ranges.

• 11 second order statistical features extended from

the first 11 Haralick features presented in sec-

tion 3.1.3 and adapted to deal with histograms.

We propose to extract these 18 features from his-

tograms of different EOCLBP configurations for rep-

resenting color textures.

4 COMPACT COLOR TEXTURE

REPRESENTATION

Supervised texture classification aims to assign a

given texture to one of a set of known texture cat-

egories for which training samples have been given.

This process is divided into two successive stages: a

learning stage in which a classifier is trained and a de-

cision stage in which this classifier operates. During

the learning stage, texture images are represented by

descriptors from which texture features are extracted.

The extraction of discriminant texture features plays

an essential role in the success of the classification.

So the learning stage has to provide a powerful tex-

ture representation for the decision stage.

The previously proposed descriptors are able to

take into account the heterogeneity of color textures



to be analyzed. However, they tend to produce high

dimensionality feature vectors, especially when the

number of configurations increases or when it is ap-

plied to color images. It is well-known that the per-

formance of a classifier is generally dependent on the

dimension of the feature space due to the curse of di-

mensionality. Thus, dimensionality reduction meth-

ods are needed to reach satisfying classification accu-

racies while decreasing the memory storage and the

computation time.

To reduce the dimensionality of the feature space,

two main strategies are proposed: feature extrac-

tion and feature selection. Because feature extrac-

tion methods require the computation of all candi-

date features during the decision stage to build the

new low-dimensional feature subspace, they are time-

consuming. So, feature selection methods that just

require the computation of a reduced number of se-

lected features are preferred here.

So, the proposed compact color texture represen-

tation consists in selecting the most discriminant color

texture features among a set of candidate ones during

a learning stage.

4.1 Candidate color texture features

4.1.1 Features extracted from multiple RSCCM

configurations

In order to take advantage of the specific properties

of several color spaces simultaneously, each image is

first coded in 5 color spaces described in section 2.

Then, for each of the 25 RSCCM configurations de-

scribed in subsection 3.1, 6 RSCCM are computed

and the 13 Haralick features are extracted from each

RSCCM.

Using Haralick features extracted from different

RSCCM configurations, a color texture is firstly rep-

resented by 5×25×6×13= 9750 candidate features.

4.1.2 Features extracted from histograms of

multiple EOCLBP configurations

To extract statistical features from histograms of mul-

tiple EOCLBP configurations, each image is first

coded in 5 color spaces descried in section 2. Then,

for each of the 12 EOCLBP configurations described

in subsection 3.2, 9 LBP images are computed and 18

statistical features are extracted from each EOCLBP

histogram.

Using statistical features extracted from EOCLBP

histograms, a color texture is firstly represented by

5×12×9×18 = 9720 candidate features.

4.2 Feature selection

Many authors have chosen to use sequential feature

selection methods in order to build a reduced dimen-

sion feature subspace during the learning stage of the

classification process. Porebski et al. were among the

first to use sequential forward selection (SFS) scheme

to select the most discriminant Haralick features ex-

tracted from cooccurrence matrices of images coded

in 28 different color spaces (Porebski et al., 2013b).

Because these scheme have shown their efficiency,

a SFS scheme is applied in this paper for a compact

representation of color textures. SFS scheme is a

bottom-up approach that starts with an empty set and

adds features at each step of the procedure in order

to constitute candidate feature subspaces to be evalu-

ated. An evaluation function then measures the capac-

ity of the feature subspaces built during the generation

step to correctly classifying the given textures and se-

lects the most discriminant subspace. The procedure

continues until a stopping criterion is satisfied.

In order to highlight the interest of our approach, a

wrapper model evaluates each candidate feature sub-

space by using the classification accuracy as the eval-

uation function in a supervised context. In this con-

text, wrapper models require to split up the initial im-

age database to a training, a validation, and a test-

ing image subset, according to a holdout partition. At

each step s of this procedure, the classification accu-

racy Cs is measured with the validation image subset

in order to evaluate the discriminant power of each

candidate subspace. The candidate subspace with

the highest accuracy is selected as the most discrimi-

nant s-dimensional subspace. In this paper, the clas-

sification accuracy is estimated as the percentage of

the validation images that have been correctly clas-

sified by the nearest neighbor classifier because of

its parameter-independence and its simplicity of im-

plementation. Although the wrapper model is time-

consuming and classifier-dependent, it gives good re-

sults and easily determines the dimensionality of the

feature subspace by searching the best classification

accuracy. The procedure runs until the dimension-

ality of the selected feature space reaches a maxi-

mum value smax equal to 100 in our experiments. The

dimensionality ŝ of the finally selected subspace is

equal to the iteration step for which the classification

accuracy is maximum.

In order to select uncorrelated color texture fea-

tures, correlation levels between all candidate features

are measured before performing the SFS scheme. In

our approach, candidate features are considered as re-

dundant if their correlation measure is greater than a

threshold equal to 0.95 and are thus removed.



5 EXPERIMENTS

In order to evaluate the efficiency of our approach,

we perform an evaluation on the three well known

and largely used benchmark color texture databases

Outex-TC-000131, NewBarkTex2 and USPtex3.

Each database has been chosen to measure the rel-

evance of our approach by comparing the classifica-

tion accuracies with those of previous works under

the same experimental protocol (number of classes,

size of images, number of images for each class, total

number of images, and accuracy evaluation method).

They are representative of different color texture clas-

sification problems with different numbers of classes

as shown in table 1

Table 1: Experimented texture databases

Dataset Image size #classes #images

Outex-TC-00013 128×128 68 1360

NewBarkTex 64×64 6 1632

USPtex 128×128 191 2292

Let us note that the considered databases are given

with only two image subsets according to a holdout

evaluation method: half of the images defines a train-

ing subset and the other half a testing subset. How-

ever, our approach needs three subsets because it uses

a wrapper model associated to the nearest neighbor

classifier for the feature selection scheme. For com-

parison with other works, this classifier has to use the

same training subset. We thus propose to use the test-

ing subset as a validation subset and to consider that

the classification accuracies are measured during the

feature selection scheme of the learning stage. There-

fore, the classification results can be interpreted as op-

timistic but they can be compared with other works

using the same split into training and testing subsets.

5.1 Experimental results

5.1.1 Haralick features extracted from different

RSCCM configurations

Table 2 presents results obtained with the proposed

approach using a combination of Haralick features ex-

tracted from the multiple RSCCM configurations pro-

posed in section 3.1.

1available at: http://www.outex.oulu.fi/index.

php?page=classification\#Outex_TC_00013
2available at: https://www-lisic.univ-littoral.

fr/˜porebski/BarkTex_image_test_suite.html
3available at: https://www-lisic.univ-littoral.

fr/˜porebski/USPtex_image_set.html

In addition, this table shows the results obtained in

multiple color spaces with only one predefined con-

figuration. As mentioned by Porebski et al., when

Q = 16 and D = 1, RSCCM analysis reaches satisfy-

ing classification results while significantly reducing

the processing time (Porebski et al., 2013b).

Table 2: Classification accuracies for different RSCCM
configurations in multiple color spaces.

Dataset (D,Q) Cŝ ŝ

Outex-TC-00013
multiple 98.53 29
(1,16) 97.20 33

NewBarktex
multiple 86.39 75
(1,16) 84.50 93

USPtex
multiple 98.87 38
(1,16) 95.98 54

This table highlights the interest of our approach

that produces higher classification accuracies with

lower dimensionality feature spaces compared to a

predefined descriptor configuration.

5.1.2 Statistical features extracted from

different EOCLBP configurations

Table 3 presents results obtained with the proposed

approach using a combination of statistical features

extracted from histograms of the multiple EOCLBP

configurations proposed in section 3.2.

In addition, this table shows the results obtained in

multiple color spaces with only one predefined con-

figuration. We choose to use the original LBP con-

figuration with P = 8 and R = 1 in two cases: with-

out and with a bin selection (BS) scheme (Pietikäinen

et al., 2011).

Table 3: Classification accuracies for different EOCLBP
configurations in multiple color spaces.

Dataset (P,R) Cŝ ŝ

Outex-TC-00013
multiple 96.91 18
(8,1) 96.61 47

(8,1) with BS 97.50 75

NewBarktex
multiple 89.82 20
(8,1) 89.46 66

(8,1) with BS 86.76 66

USPtex
multiple 97.64 18
(8,1) 96.71 49

(8,1) with BS 93.45 41

This table shows that our approach provides repre-

sentations with a lower dimensionality than the other

approaches and with a bit higher classification accu-

racies. Moreover, statistical features extracted from

EOLBP histograms give comparable results than clas-

sical bin selection approach with a lower dimension-

ality feature space too. This result underlines the rel-

evance of this original LBP representation.



Table 4: Comparison between the classification accuracies reached with the 1-NN classifier.

Dataset Descriptor Color space Accuracy

Outex-TC-00013

Our approach with RSCCM 5 color spaces 98.5
Our approach with EOCLBP 5 color spaces 96.9
(Porebski et al., 2013b) 28 color spaces 96.6
(Porebski et al., 2018) 9 color spaces 95.6
(Mäenpää and Pietikäinen, 2004) HSV 95.4
(Qazi et al., 2011) IHLS 94.5
(Alvarez and Vanrell, 2012) RGB 94.1

NewBarkTex

Our approach with EOCLBP 5 color spaces 89.8
Our approach with RSCCM 5 color spaces 86.4
(Porebski et al., 2018) 9 color spaces 88.0
(Kalakech et al., 2018) RGB 81.4
(Porebski et al., 2013a) RGB 81.4
(Ledoux et al., 2016) RGB 77.7
(Porebski et al., 2014) RGB 75.9

USPtex

Our approach with RSCCM 5 color spaces 98.9
Our approach with EOCLBP 5 color spaces 97.6
(Porebski et al., 2018) 9 color spaces 97.6
(Liu et al., 2017) RGB 95.9
(Guo et al., 2016) RGB 93.9
(Kalakech et al., 2018) YUV 93.2
(Ledoux et al., 2016) RGB 84.2

5.2 Comparisons and discussion

Table 4 reports the classification results reached by

other method applied on the three experimented

benchmark datasets with the same experimental pro-

tocol. In order to achieve classifier-independent com-

parisons, only the five better texture classification re-

sults reached with the nearest neighbor classifier (1-

NN) and the same training subset are presented.

As we can notice, the results obtained by our

approach is competitive with other approaches and

are very promising. Obviously, other results with

other classifiers and other protocols are available in

the literature (Cernadas et al., 2017; Bello-Cerezo

et al., 2016). This table also confirms that multi-color

space approaches outperform approaches using a sin-

gle color space. For the Outex-TC-00013 and USPtex

datasets, the best result is reached by our approach

with RSCCM whereas for the NewBarkTex dataset, it

is reached by EOCLBP. So, none of these descriptors

is more relevant than the other.

5.3 Processing time

5.3.1 Learning stage

Table 5 compares the processing time required by the

learning stage of 1360 images of the Outex-TC-00013

image test suite, for both training and testing images.

These times are obtained using Matlab software on a

PC cadenced at 2.00 GHz and with 4 MB RAM.

Table 5: Processing time of the learning stage for the 1360
training and testing images of the Outex-TC-00013 dataset.

Descriptor RSCCM EOCLBP

Feature computation 287 800 s 1 369 240 s

Feature selection 10 911 s 9 266 s

Total 289 711 s 1 378 506 s

The learning stage seems time-consuming be-

cause a wrapper model is used here to select color

texture features. With this model, the classification

of all validation images is needed in order to esti-

mate the classification accuracy for each candidate

subspace and to determine the dimension of the fea-

ture subspace under construction. The solution to this

problem is to prefer filter or embedded models for the

feature selection evaluation in future work.

The learning time required with the EOCLBP de-

scriptor is high because of the computation of features

extracted from the configuration using P = 24 neigh-

bors which consumes the most part of this time. In-

deed, with this parameter value, 224 = 16 777 216-

dimensional histograms are analyzed.

5.3.2 Decision stage

Table 6 shows the processing time required in order

to classify a 128× 128 Outex sub-image. This time

depends on the selected color texture features and the

dimensionality of the feature space.

This table shows that the classification time is very

low for RSCCM compared to EOCLBP because of

the analysis of high dimensional histograms when the



Table 6: Processing time of the decision stage for one 128×
128 testing image of the Outex-TC-00013 dataset.

Descriptor RSCCM EOCLBP

Feature computation 933 ms 3 000 ms

Classification 3 ms 3 ms

Total 936 ms 3 003 ms

number of neighbors is high.

6 CONCLUSION

In this paper, we have proposed a compact color

texture representation based on the combination of

texture features extracted from various configurations

of descriptors in multiple color spaces. This repre-

sentation takes into account different color and spa-

tial properties of the textures to be analyzed and over-

comes the difficulty of a prior parameter settings. In

addition, a novel family of features computed from

histograms of LBP has been proposed in this paper.

Compared to others approaches, experiments car-

ried out on three benchmark texture databases give

competitive results that are very promising for future

work. The proposed approach should be improved by

using a filter model for feature selection rather than

the wrapper model chosen in this paper. Since filter

model is classifier-independent, it should greatly re-

duce the execution time of the learning stage. For the

decision stage, it would be interesting to apply more

performing classifiers like SVM.

Finally, in order to increase the classification ac-

curacies, we plan to extend our approach to the com-

bination of texture features extracted from manifold

descriptors (RSCCM, EOCLBP and others) with dif-

ferent configurations and several color spaces.
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