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Abstract

Many experimental and numerical studies report a large reduction of the recirculation bubble in Backward-
Facing Step flows or airfoils in stall situation when excited at the natural shedding frequency f0. Through
a simple experiment using Dielectric Barrier Discharge actuator, we find a different result. For a given
Reynolds number, the frequency of the perturbation is varied for a fixed duty-cycle dc = 27%. Through
phase-averaging of Particle Image Velocimetry measurements, we show that the actuation creates a forced
vortex which interacts with the natural shedding with a different phase velocity than the unforced one. The
largest reduction of the recirculation bubble (-35%) is obtained in a very narrow frequency range around
0.73f0 where early vortex pairing occurs between forced and unforced vortices. Phase averaging shows that
in this case, the actuation clearly forces the vortex pairing in the shear layer. On the contrary, when the
forcing frequency is higher, the shear layer behaves like an amplifier synchronized on the forced frequency,
leading to a constant 10% reduction of the recirculation bubble.

Keywords: Flow control, Open-loop control, DBD plasma actuator, Upstream actuation, Backward-facing
step flow, Separated flow

1. Introduction

It is well-known that the Backward-Facing Step (BFS) flow is very sensitive to upstream flow condi-
tions and exhibits multiple natural characteristic frequencies which are associated to various phenomena
like Kelvin-Helmholtz instability, flapping of the shear layer or oscillation of the recirculation bubble [1]
and global 3D instabilities [2, 3]. In the following, we focus on the control of a massively separated flow
downstream a backward-facing step using temporal actuation just upstream of the BFS edge.

Indeed there are experimental and numerical evidences [4, 5, 6, 7, 8] of a large reduction of the re-
circulation bubble (up to -40%) when tuning the excitation frequency fe around the natural frequency of
the most amplified Kelvin-Helmholtz frequency f0 of the shear layer, corresponding to a Strouhal number
Stθ = f0θ

U0
= 0.0175 based on θ the momentum layer thickness measured near the separation point.

Most of the previous studies use pulsed jets interacting with the incoming boundary layer with a 45o or
90o angle [4, 5, 9, 7]. Nevertheless, one can think that the way the perturbation is injected into the shear
layer will influence its growth and amplification. In this study, a blowing tangential to the wall, homogenous
along the spanwise direction, is injected just upstream the BFS edge. For this purpose, we use a classic
surface Dielectric-barrier discharge (DBD) plasma actuator[10]. This perturbation is the best way to force
the shear layer without injecting 3D perturbations in the same time. Unlike other studies, the perturbation
is streamwise and the perturbation ratio is not small compared to one, in order to induce non-linear effects.

2. Experimental Set-Up

2.1. Wind tunnel

The experimental setup consists in a low-speed wind tunnel already described in Beaudoin et al[11].
The test section has a 0.1×0.1m2 square cross-section. The step-height is H = 0.2 m (Fig. 1) and thus
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Figure 1: Test section geometry and position of the actuator and PIV setup.

the expansion ration is E = H
H0

= 0.17, with H0 the total height of the channel. All the results discussed

in the following have been obtained for a given Reynolds number ReH = U0H
ν = 4400, corresponding

to a free-stream velocity U0 = 3.3m.s−1. In this case, the most amplified or natural shedding frequency
f0 ≈ 69Hz is measured through time-resolved visualizations using a fast camera (1kHz) and smoke injection.
From the initial unstable velocity profile measured at step edge, we measure the momentum layer thickness
θ = 0.8mm. The corresponding Strouhal number Stθ = 0.0167 close to the one found in the previous studies
as mentioned in the introduction. The downstream variation of the shear layer and its streamwise spreading
rate is measured dθ

dx = 0.004 at the step edge and dθ
dx = 0.05 for x > 0, 8H. This is in good agreement with

the values obtained in other mixing layers[12].

2.2. DBD Plasma discharge

The plasma actuation is obtained by applying a high frequency (fp = 3.9kHz) AC voltage (10 KV)
between two electrodes separated by an insulating mylar dielectric barrier to produce an electrical discharge.
It generates a ionic wind parallel to the wall and in the direction of the flow with a jet velocity uj ≈ 4m.s−1

(measured by PIV). A square waveform biases the voltage to create the pulsed actuation. Te = 1/fe is
the excitation time, Tb = 0.27Te is the blowing time while the actuator is on and 1/fp is the period of the
AC voltage signal of the electric discharge.The duty cycle is fixed at Tb

Te
= 27% (figure 2). The frequency

of the waveform fe, which is the control parameter, varies between 20 to 150 Hz corresponding to a non-
dimensional frequency F+ = fe

f0
ranging between 0.3 and 2.2. The discharge is placed 5mm upstream of the

separation.

2.3. PIV system and phase reconstruction

The natural and the perturbed flows are studied using a standard Particle Image Velocimetry (PIV) setup
with a 4Hz YaG laser synchronized with a double frame PIV camera. For every configurations, 720 double-
frame pictures are recorded so that the mean velocity vector fields are well defined and converged. The PIV
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Figure 2: Time diagram of the actuation.

Figure 3: a) Time-Averaged streamwise velocity profiles of the unforced flow at ReH = 4400.

setup is also synchronized on the waveform signal applied on the actuator to enable phase averaging and
analysis of the fluidic interactions during an actuation cycle. The actual acquisition frequency is determined
in order to avoid stroboscopic effect with the forcing frequency.

3. Results

3.1. Natural flow

The natural flow is illustrated on Fig. 3 showing time averaged profiles of the streamwise velocity, which,
with contours of time-averaged streamwise velocity < U(x, y) >t are used to measure the length of the
recirculation bubble Xr which will be modified by the actuation. In the following, Xr0 is the length of the
unforced recirculation bubble. In our case, Xr0 = 4.2H.

3.2. Actuated flow

The first evidence of the influence of the pulsed actuation is the modification of Xr. As illustrated on
Fig. 4, a large reduction of the recirculation length (-34%) is found when the actuation frequency reaches
F+ = 0.73. This is different from previous studies [4, 7] where the maximum reduction is obtained when
the excitation matches the natural shedding frequency (F+ ≈ 1) in a relatively large frequency band. In
this case this effect occurs in a very narrow frequency band and the optimal excitation frequency is lower
than the natural shedding frequency. It is important to notice that the 0.73 coefficient corresponds exactly
to the percentage of the time when the actuation is off during one cycle (Tb

Te
= 0.27). More precisely, the

recirculation bubble is minimum when the time when the actuation is off corresponds to the natural shedding
period Te − Tb = T0.

For lower forcing frequencies the recirculation length is reduced (except for F+ = 0.57 which leads to a
+18% increase of the recirculation bubble). For larger frequencies a nearly constant -10% reduction of Xr

is observed with a local minimum for F+ = 1.7.
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Figure 4: Evolution of Xr

Xr0
as a function of the forcing frequency F+.

3.3. Actuated flow dynamics

To try to understand why the most efficient frequency is F+ = 0.73, it is necessary to have more insights
into the transient phenomena happening during one excitation cycle. In this purpose the time sequence
during one cycle is reconstructed using phase averaging. The cycle is decomposed into 36 events taken from
the PIV time series. It shows clearly the shedding of KH vortices (Fig. 5a). From these velocity fields it
appears that the dynamics of the KH vortices is strongly affected by the actuation.

To clarify the underlying mechanism, we plot on Fig. 5 the spatio-temporal diagrams of a horizontal
line (y = 0 and x = 0 to 6H) in the phase-averaged streamwise velocity fields for three different actuation
frequencies. On the left of the diagrams, the actuator appears as green stripes when on and red stripes when
off. x/H = 0 corresponds to the step edge.The red and blue oblique stripes correspond to the traces of the
vortices convected in the shear layer. Their slopes correspond to the phase velocity uφ of the given vortex.
The dark dotted lines shows the slope of constant phase velocity uφ equal to U0/2. Different phenomena
are observed in the region 0≤ x

H ≤ 2, depending on the forcing frequency.

• When F+ < 0.73 (Fig. 5a), several vortices are shed in a single cycle. In addition to the forced one, one
or several natural vortices are shed at random phase shifts which leave traces in the spatio-temporal
diagrams.

• When F+ ≈ 0.73 (Fig. 5b). Two vortices are shed in a single cycle. A forced vortex is shed during the
excitation(when the actuator is on). A unforced one is shed while the actuator is off. The shedding
of the unforced vortex has a constant phase shift compared to the shedding of the forced vortex.
Moreover, the forced vortex having a much higher phase velocity than the unforced one, it catches
up the former, leading to vortex pairing and to a large reduction of the recirculation length. The
difference in phase velocity can be accounted on the large jet velocity (

uj

U0
≈ 1.2).

• When F+ > 0.73 (Fig. 5c). A single vortex is shed at the exact forcing frequency. The shear layer
behaves like a forced oscillator following perfectly the actuation frequency.

These results are confirmed by visualizations obtained by smoke injection and fast-camera recordings
(figure 6). The vortex pairing can be observed on Fig. 6b.

On Fig. 7, the phase velocity of unforced and forced vortices shed from the BFS is plotted as a function
of the forcing frequency. For F+ > 0.73 the only vortex shed during one cycle has a phase velocity around
0.4. For lower Strouhal numbers forced vortices have a slightly higher phase velocity (up to ∆uφ/U0 = 0.07)
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Figure 5: Spatio-temporal diagrams of a horizontal line (y = 0) (a) in the phase-averaged streamwise
velocity fields for F+ = 0.43 (b), F+ = 0.73 (c) and F+ = 1.5 (d).
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Figure 6: Visualisation of unforced a) and forced flows b) and c). On figure b) the smaller forced vortex
catches-up the unforced one and initiate a vortex pairing, which leads to a large scale vortical structure
(F+ ≈ 0.73). On Figure c) the shear layer is synchronized by the excitation (F+ > 0.73).
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Figure 7: Evolution of the phase velocity uφ of the forced (open squares) and unforced (4) vortices as a
function of the forcing frequency F+.

than unforced ones. This difference becomes much higher (between ∆uφ/U0 = 0.15 to ∆uφ/U0 = 0.25) at
the optimal forcing frequency.

4. Discussion

This difference can be explained using vortex-vortex interactions. For higher Strouhal numbers only one
type of vortex is shed very regularly so that the flow fields induced by both preceding and following vortices
are always the same. The effect induced by the preceding vortex is counterbalanced by the following one
which have the same vorticity and position. This leads to a phase velocity with small variation compared
to the natural flow.

On the contrary, when Te − Tb > T0 unforced and forced vortices are not shed in the same conditions.
Unforced vortex are always shed after a time T0 from the previous forced vortex. Forced vortex are shed
with a time which depends on fe. When Te−Tb = T0 the delay between the forced vortex and the preceding
unforced one is minimum, while the delay with the next vortex is maximum (T0), creating a strong interaction
between those two vortices. The forced vortex is most likely shed with a slightly higher advection velocity
due to the blowing during Tb. Moreover it appears that the respective size and position of the vortices
provoke the early rising of the forced vortex in high advection velocity area and the fall of the unforced
one where advection is slower (fig. 6b) leading to the highest difference in phase velocity detected in the
figure 7. The later the forced vortex is shed, the weaker is the interaction with the preceding vortex, and
the more counter-balanced it is by the following vortex, leading to a lower difference in the phase velocity.
Thus the pairing, if any, is achieved farther from the separation point. The main difference between this
study and earlier work pointing a minimum of the recirculating happening at a Strouhal number close to
the most amplified by the shear layer lies in the amplitude of the actuation. It has been pointed out that
sub-harmonic phenomenons in the shear layer need high actuation level. The fact that no multi-scale vortex
pattern is found like pointed out by earlier experimental and numerical studies may lie in the fact that the
actuation is upstream of the separation and its main effect is not pressure driven and thus acting on the
whole shear layer.
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5. Conclusion

In this study, we find that a forcing frequency F+ = 0.73 leads to a large reduction of the recirculation
bubble. The maximum reduction is associated to an early pairing of successive shed vortices with a high
difference in their phase velocity. The optimal frequency is obtained when Te − Tb = T0 i.e. when the
natural shedding period corresponds to the time when the actuator is off. This configuration is also the one
where phase velocity difference between the forced vortex and the unforced one is the greatest. It allows
an early vortex pairing between forced and unforced vortice, enhancing the mixing in the shear layer and
thus decreasing the size of the recirculation bubble. For higher forcing frequencies the system cannot shed
another vortex when the actuator is off. In this case only the forced vortex is shed during one cycle at the
forcing frequency. For lower frequencies the shedding is irregular as we can follow similar vortices shed at
different phase instants. In addition the distance between the forced and unforced vortices is necessarily
higher in this case than in the optimal case. This is different from past studies as we are actuating with
high relative velocity and with a jet that has an effect on the phase velocity due to its parallelism to the
main flow. This can be a condition to achieve early vortex pairing.
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