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Abstract

To make informed decisions in natural environments that change over time, humans must

update their beliefs as new observations are gathered. Studies exploring human inference

as a dynamical process that unfolds in time have focused on situations in which the

statistics of observations are history-independent. Yet temporal structure is everywhere in

nature, and yields history-dependent observations. Do humans modify their inference

processes depending on the latent temporal statistics of their observations? We investigate

this question experimentally and theoretically using a change-point inference task. We

show that humans adapt their inference process to fine aspects of the temporal structure in

the statistics of stimuli. As such, humans behave qualitatively in a Bayesian fashion, but,

quantitatively, deviate away from optimality. Perhaps more importantly, humans behave

suboptimally in that their responses are not deterministic, but variable. We show that this

variability itself is modulated by the temporal statistics of stimuli. To elucidate the

cognitive algorithm that yields this behavior, we investigate a broad array of existing and

new models that characterize different sources of suboptimal deviations away from Bayesian

inference. While models with ‘output noise’ that corrupts the response-selection process are

natural candidates, human behavior is best described by sampling-based inference models,

in which the main ingredient is a compressed approximation of the posterior, represented

through a modest set of random samples and updated over time. This result comes to

complement a growing literature on sample-based representation and learning in humans.

Keywords: Bayesian inference, change-points, non-Poisson statistics, online inference,

response variability, computational modeling
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Human Inference in Changing Environments With Temporal Structure

In a variety of inference tasks, human subjects use sensory cues as well as prior

information in a manner consistent with Bayesian models. In tasks requiring the

combination of a visual cue (such as the shape, position, texture, or motion of an object)

with a haptic (Battaglia, Kersten, & Schrater, 2011; Ernst & Banks, 2002), auditory

(Battaglia, Jacobs, & Aslin, 2003), proprioceptive (van Beers, Sittig, & Denier, 1999), or a

secondary visual cue (Hillis, Watt, Landy, & Banks, 2004; Jacobs, 1999; Knill, 2007),

human subjects weigh information coming from each cue according to its uncertainty, in

agreement with an optimal, probabilistic approach. Moreover, subjects appear also to

integrate optimally prior knowledge on spatial (Körding & Wolpert, 2004, 2006) and

temporal (Jazayeri & Shadlen, 2010; Miyazaki, Nozaki, & Nakajima, 2005) variables

relevant to inference, in line with Bayes’ rule.

The Bayesian paradigm hence offers an elegant and mathematically principled account of

the way in which humans carry inference in the presence of uncertainty. In most

experimental designs, however, successive trials are unrelated to each other. Yet, in many

natural situations, the brain receives a stream of evidence from the environment: inference,

then, unfolds in time. Moreover, natural mechanisms introduce sophisticated temporal

statistics in the course of events (e.g., rhythmicity in locomotion, day-night cycles, and

various structures found in speech). Are these temporal dynamics used by the brain to

refine its online inference of the state of the environment?

Furthermore, most studies that support a Bayesian account of human inference discuss

average behaviors of subjects, and, thereby, side-step the issue of the variability in human

responses. While an optimal Bayesian model yields a unique, deterministic action in

response to a given set of observations, human subjects exhibit noisy, and thus suboptimal,

responses. Methods commonly used to model response variability, such as ‘softmax’ and

probability-matching response-selection strategies, or, more recently, stochastic inference
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processes, correspond to different forms of departure from Bayesian optimality. One would

like to identify the nature of the deviations from Bayesian models that can account for the

observed discrepancies from optimality in human behavior.

To explore these questions, we use an online inference task based on a ‘change-point’

paradigm, i.e., with random stimuli originating from a hidden state that is subject to

abrupt, occasional variations, which are referred to as ‘change points’. A growing

theoretical and experimental literature examines inference problems for this class of signals

(Adams & MacKay, 2007; Brown & Steyvers, 2009; Fearnhead & Liu, 2007; Gallistel,

Krishan, Liu, Miller, & Latham, 2014; Glaze, Filipowicz, Kable, Balasubramanian, & Gold,

2018; Glaze, Kable, & Gold, 2015; Khaw, Stevens, & Woodford, 2017; Nassar et al., 2012;

Nassar, Wilson, Heasly, & Gold, 2010; Piet, El Hady, & Brody, 2018; Radillo, Veliz-Cuba,

Josić, & Kilpatrick, 2017, 2019; Veliz-Cuba, Kilpatrick, & Josić, 2016; Wilson, Nassar, &

Gold, 2010, 2013). All these studies, with the exception of the work of Fearnhead and Liu

(2007), focus on the history-independent case of random change points that obey Poisson

temporal statistics. Such problems are characterized by the absence of temporal structure:

the probability of occurrence of a change point does not depend on the realization of past

change points. Piet et al. (2018), Wilson et al. (2010) and Glaze et al. (2018) extend their

studies beyond this simple framework by considering ‘hierarchical-Poisson’ models in which

the change probability is itself subject to random variations; but, here also, the occurence

of a change point does not depend on the timing of earlier change points. The

experimental studies among the ones cited above have investigated the way in which

human subjects and rodents infer hidden states, and whether they learn

history-independent change probabilities.

Because of the pervasiveness of temporal structure in natural environments, we decided

to study human inference in the presence of ‘history-dependent’ statistics in which the

occurrence of a change point depends on the timing of earlier change points. This

introduces considerable complexity in the optimal inference model (as the hidden state is
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no longer Markovian), and serves as a first step toward a more ecological approach to

human inference. For the purpose of comparison, we consider two different statistics of

change points: the first one is the Poisson statistics commonly used in earlier studies; the

second is the simplest non-Markovian statistics, in which the probability of a change point

is a function of the timing of the preceding change point. This setup allows us to examine

the effect of the latent temporal structure on both human behavior and model responses.

In these two contrasting conditions, the behavior of the Bayesian model and that of

human subjects exhibit both similarities and discrepancies. A salient departure from

optimality exhibited by subjects is the variability in their responses. What is more, the

shape of the distribution of responses is not constant, but, rather, subject to modulations

during the course of inference. The standard deviation and skewness of the empirical

response distribution are correlated with that of the optimal, Bayesian posterior; this

suggests that the randomness in subjects’ responses does not reflect some ‘passive’ source

of noise but is in fact related to the uncertainty of the Bayesian observer.

To account for this non-trivial variability in human responses and other deviations from

optimality, we investigate in what ways approximations of the Bayesian model alter

behavior, in our task. The optimal estimation of a hidden state can be split into two steps:

Bayesian posterior inference (computing optimally the belief distribution over the state

space) and optimal response selection (using the belief distribution to choose the response

that maximizes the expected reward). Suboptimal models introduce systematic errors or

stochastic errors in the inference step or in the response-selection step, or in both, thus

impacting behavior. Models discussed in the change-point literature, along with new

models we introduce, provide a wide range of such deviations from optimality, which we

compare to experimental data. This allows us to assess how different sources of

suboptimality impact behavior, and to what extent they can capture the salient features in

human behavior.

The paper is outlined as follows. We first present the main aspects of our task, in which
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subjects observe a visual stimulus and infer an underlying, changing, hidden state. The

susceptibility of subjects to a new stimulus is shown to differ appreciably between the two

conditions (with and without latent temporal structure), and to adapt to the statistics of

change points. We then analyze the variability in the subjects’ responses, and show how it

is modulated over the course of inference. After deriving the optimal, Bayesian solution of

the inference problem in the context of our task, we examine its behavior in comparison

with experimental data. We then turn to investigating a broad family of suboptimal

models. In particular, motivated by the form of the variability present in our human data,

we examine stochastic perturbations in both the inference step and in the response-selection

step. These models reflect different forms of sampling: model subjects either perform

inference using samples of probability distributions or select responses by sampling; the

former option includes models with limited memory as well as sequential Monte Carlo

(particle-filter) models. Finally, we discuss model fitting, from which we conclude that

humans carry out stochastic approximations of the optimal Bayesian calculations through

sampling-based inference (rather than sampling-based response selection).

Our observations confirm and extend the results reported in the change-point literature

on human inference in the context of Poisson statistics, by exploring a more ecological

(Anteneodo & Chialvo, 2009; Campione & Véronis, 2002; Griffin, West, & West, 2000;

Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995; Low, Grabe, & Nolan, 2000; Nakamura

et al., 2007; Nakamura et al., 2008; Nunes Amaral et al., 2004; Ramus, Nespor, & Mehler,

1999), non-Poisson, temporally structured environment. Likewise, our results come to

complement those of a number of studies on perception and decision-making that also

investigate inference from stimuli with temporal statistics (Ghose & Maunsell, 2002;

Janssen & Shadlen, 2005; Jazayeri & Shadlen, 2010; Li & Dudman, 2013; Miyazaki et al.,

2005; ten Oever, Schroeder, Poeppel, van Atteveldt, & Zion-Golumbic, 2014). Our

experimental results demonstrate that humans learn implicitly the temporal statistics of

stimuli. Moreover, our work highlights the variability ubiquitous in behavioral data, and
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shows that it itself exhibits structure: it depends on the temporal statistics of the signal,

and it is modulated over the course of inference. We find that a model in which the

Bayesian posterior is approximated with a set of samples captures the behavioral

variability during inference. This proposal adds to the growing literature on cognitive

‘sample-based representations’ of probability distributions (Gershman, Vul, & Tenenbaum,

2012; Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Moreno-Bote, Knill, & Pouget,

2011; Vul, Goodman, Griffiths, & Tenenbaum, 2014). Our results suggest that the brain

carries out complex inference by manipulating a modest number of samples, selected as a

low-dimensional approximation of the optimal, Bayesian posterior.

Results

Behavioral task, and history-independent vs. history-dependent stimuli

In our computer-based task, subjects are asked to infer, at successive trials, t, the

location, on a computer screen, of a hidden point, the state, st, based on an on-screen

visual stimulus, xt, presented as a white dot on a horizontal line (Fig. 1A,B). Subjects can

only observe the white dots, whose positions are generated around the hidden state

according to a likelihood probability, g(xt|st) (Fig. 1C,E, blue distribution). The state

itself, st, follows a change-point process, i.e., it is constant except when it ‘jumps’ to a new

location, which happens with probability qt (the ‘hazard rate’ or ‘change probability’). The

dynamics of change points are, hence, determined by the change probability, qt. To

examine the behavior of models and human subjects in different ‘environments’, we choose

two kinds of signals which differ in their temporal structure. History-independent (HI)

signals are memoryless, Poisson signals: qt is constant and equal to 0.1. Consequently, the

intervals between two change points last, on average, for 10 trials, and the distribution of

these intervals is geometric (Fig. 1D, blue bars). Conversely, history-dependent (HD)

signals are characterized by temporal correlation. Change points also occur every 10 trials,

on average, but the distribution of the duration of inter-change-point intervals is peaked
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around 10. This corresponds to a change probability, qt, that is an increasing function of

the number of trials since the last change point — a quantity referred to as the ‘run-length’,

τt. We thus denote it by q(τt). In HD signals, change points occur in a manner similar to a

‘jittered periodic’ process, though the regularity is not readily detected by subjects.

When a change point occurs, the state randomly jumps to a new state, st+1, according to

a state transition probability, a(st+1|st) (Fig. 1C,E, green distribution). The likelihood, g,

and the state transition probability, a, overlap, thus allowing for ambiguity when a new

stimulus is viewed: is it a random excursion about the current state, or has the state

changed? At each trial, subjects click with a mouse to give their estimate, ŝt, of the state.

The reward they receive for each response is a decreasing function, R, of the distance

between the state and the estimate, |ŝt − st|: one reward point if the estimate falls within a

given, short distance from the state, 0.25 point if it falls within twice that distance, and 0

point otherwise (Fig. 1E). The task is presented as a game to subjects: they are told that

someone is throwing snowballs at them. They cannot see this hidden person (whose

location is the state, st), but they observe the snowballs as white dots on the screen (the

stimulus, xt). After several tutorial runs (in some of which the state is shown), they are

instructed to use the snowballs to guess the location of the person (i.e., produce an

estimate, ŝt). Additional details on the task are provided in Methods.

Learning rates adapt to the temporal statistics of the stimulus

A typical example of a subject’s responses is displayed in Fig. 2A. To describe the data,

we focus, throughout this paper, on three quantities: the learning rate, defined as the ratio

of the ‘correction’, ŝt+1 − ŝt, to the ‘surprise’, xt+1 − ŝt; the repetition propensity, defined

as the proportion of trials in which the learning rates vanishes (ŝt+1 = ŝt); and the

standard deviation of the responses of the subjects. The learning rate represents a

normalized measure of the susceptibility of a subject to a new stimulus. If the new
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Figure 1 . Inference task and change probability, q, in the HI and HD conditions.
A. The various elements in the task appear on a horizontal white line in the middle of a
gray screen. a: subject’s pointer (green disk). b: new stimulus (white disk). c: state (red
disk, only shown during tutorial runs). d: position of subject’s previous click (green dot).
e: for half of subjects, previous stimuli appear as dots decaying with time. B. Successive
steps of the task: 1, 2: a new stimulus is displayed; to attract the subject’s attention, it
appears as a large, white dot for 400ms, after which it becomes smaller. 3: the subject
moves the pointer. 4: The subject clicks to provide an estimate of the position of the state.
After 100ms, a new stimulus appears, initiating the next trial. C. The position of the
stimulus on the horizontal axis, xt, is generated randomly around the current state, st,
according to the triangle-shaped likelihood function, g(xt|st). The state itself is constant
except at change points, at which a new state, st+1, is generated around st from the
bimodal-triangle-shaped transition probability, a(st+1|st). The run-length, τt, is defined as
the number of trials since the last change point. Change points occur with the change
probability q(τt) (orange bars), which depends on the run-length in the HD condition
(depicted here). (Continued on the following page.)
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Figure 1 . D. Top panel: change probability, q(τ), as a function of the run-length, τ . It is
constant and equal to 0.1 in the HI condition, while it increases with the run-length in the
HD condition. Consequently, the distribution of intervals between two consecutive change
points (bottom panel) is geometric in the HI condition whereas it is peaked in the HD
condition; in both conditions, the average duration of inter-change-point intervals is 10. E.
Compared extents of the likelihood, g(xt|st) (green), the state transition probability,
a(st+1|st) (blue), the ‘shot’ resulting from a click (green dot), and the radii of the 1-point
(red disk) and 0.25-point (grey circle) reward areas. A shot overlapping the red (gray) area
yields 1 (0.25) point.

estimate, ŝt+1, is viewed as a weighted average of the previous estimate, ŝt, and the new

stimulus, xt+1, the learning rate is the weight given to xt+1. A learning rate of 0 means

that the subject has not changed its estimate upon observing the new stimulus; a learning

rate of 0.5 means that the new estimate is equidistant from the previous estimate and the

new stimulus; and a learning rate of 1 means that the new estimate coincides with the new

stimulus, and the past is ignored (Fig. 2A).

Our data show that for human subjects the learning rate is not constant, and can vary

from no correction at all (learning rate ≈ 0) to full correction (learning rate ≈ 1). We

investigated how the average learning rate behaved in relation to the run-length, in the HI

and HD conditions. As the run-length is not directly accessible to subjects, in our analyses

we used the empirical run-length, τ̃ , a similar quantity derived from the subjects’ data (see

Methods). Unless otherwise stated, we focus our analyses on cases in which the surprise,

xt+1 − ŝt, is in the [8,18] window, in which there is appreciable ambiguity in the signal.

A first observation emerging from our data is that the learning rate changes with the

run-length, in a quantitatively different fashion depending on the condition (HI or HD). In

the HI condition, learning rates at short run-length (τ̃ ∈ [5, 6]) are significantly higher than

at long run-length (τ̃ ∈ [9, 10]), i.e., the learning rate decreases with run-length (Fig. 2B,

blue bars). In the HD condition, the opposite occurs: learning rates are significantly higher

at long run-lengths (Fig. 2B, orange bars), indicating that subjects modify their inference

depending on the temporal structure of the signal. In addition, at short run-lengths,
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Figure 2 . Human learning rates depends on the temporal statistics (HI or HD)
of the stimulus. A. Illustration of the learning rate using a sample of a subject’s
responses (red line). The ‘surprise’ (blue arrow) is the difference, xt+1 − ŝt, between the
estimate at trial t, ŝt (red), and the new stimulus at trial t+ 1, xt+1 (blue). The ‘correction’
(red arrow) is the difference between the estimate at trial t and the estimate at trial t+ 1,
ŝt+1 − ŝt. The ‘learning rate’ is the ratio of correction to surprise. B. Average learning
rates in HI (blue) and HD (orange) conditions, at short run-lengths (τ̃ ∈ [5, 6]) and long
run-lengths (τ̃ ∈ [9, 10]). In the HD condition the change probability increases with the
run-length, which advocates for higher learning rates at long run-lengths. C. Average
learning rates in HI (blue) and HD (orange) conditions, vs. run-length τ̃ . Shaded bands
indicate the standard error of the mean. B,C. Stars indicate p-values of one-sided Welch’s
t-tests, which do not assume equal population variance. Three stars: p < 0.01; two stars: p
< 0.05; one star: p < 0.1. Bonferroni-Holm correction (Holm, 1978) is applied in panel B.

learning rates are significantly lower in the HD condition than in the HI condition; this

suggests that subjects take into account the fact that a change is less likely at short

run-lengths in the HD condition. The opposite holds at long run-lengths: HD learning

rates are markedly larger than HI ones (Fig. 2B).

Inspecting the dependence of the learning rate on the run-length (Fig. 2C), we note that

the HD learning-rate curve adopts a ‘smile shape’, unlike the monotonic curve in the HI

condition. (A statistical analysis confirms that these curves have significantly different
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shapes; see Methods.) The HI curve is consistent with a learning rate that simply decreases

as additional information is accumulated on the state. In the HD condition, initially the

learning rate is suppressed, then boosted at longer run-lengths, reflecting the modulation in

the change probability.

These observations demonstrate that subjects adapt their learning rate to the

run-length, and that in the HD condition subjects make use of the temporal structure in

the signal. These results are readily intuited: shortly after a change point, the learning rate

should be high, as little is known about the new state, while at longer run-lengths the

learning rate should tend to zero as the state is more and more precisely inferred. This

decreasing behavior is observed, but only in the HI condition. The HD condition

introduces an opposing effect: as the run-length grows, new stimuli are increasingly likely

to divulge the occurrence of a new state, which advocates for adopting a higher learning

rate. This tradeoff is reflected in our data in the ‘smile shape’ of the HD learning-rate

curve (Fig. 2C; these trends subsist at longer run-lengths, see Supplementary Fig. B1.).

The increase in learning rate at long run-lengths is reminiscent of the behavior of a driver

waiting at a red light: as time passes, the light is increasingly likely to turn green; as a

result, the driver is increasingly susceptible to react and start the car.

Human repetition propensity

A closer look at the data presented in the previous section reveals that in a number of

trials the learning rate vanishes, i.e., ŝt+1 = ŝt. The distribution of the subjects’

corrections, ŝt+1 − ŝt, exhibits a distinct peak at zero (Fig. 3A). In other words, in a

fraction of trials, subjects click twice consecutively on the same pixel. We call such a

response a ‘repetition’, and the fraction of repetition trials the ‘repetition propensity’. The

latter varies with the run-length: it increases with τ in both HI and HD conditions, before

decreasing in the HD condition for long run-lengths (Fig. 3B).

What may cause the subjects’ repetition behavior? The simplest explanation is that,
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Figure 3 . Human repetition propensity depends on the temporal statistics, and
dynamically on the run-length. A. Histogram of subject corrections (difference
between two successive estimates, ŝt+1 − ŝt), in the HI (blue) and HD (orange) conditions.
The width of bins corresponds to one pixel on the screen, thus the peak at zero represents
the repetition events (ŝt+1 = ŝt). B. Repetition propensity, i.e., proportion of occurrences
of repetitions in the responses of subjects, as a function of run-length, in the HI (blue) and
HD (orange) conditions. Stars indicate p-values of Fisher’s exact test of equality of the
repetition propensities between the two conditions, at each run-length.

after observing a new stimulus, a subject may consider that the updated best estimate of

the state lands on the same pixel as in the previous trial. The width of one pixel in

arbitrary units of our state space is 0.28. As a comparison, the triangular likelihood, g, has

a standard deviation, σg, of 8.165. An optimal observer estimating the center of a Gaussian

density of standard deviation σg, using 10 samples from this density, comes up with a

posterior density with standard deviation σg/
√

10 ≈ 2.6. Therefore, after observing even 10

successive stimuli, the subjects’ resolution is not as fine as a pixel (it is, in fact, 10 times

coarser). This indicates that the subjects’ repetition propensity is higher than the optimal

one (the behavior of the optimal model, presented below, indeed exhibits a lower average
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repetition propensity than that of the subjects). Another possible explanation is that even

though the new estimate falls on a nearby location, a motor cost prohibits a move if it is

not sufficiently extended to be ‘worth it’ (Morasso, 1981; Rigoux & Guigon, 2012;

Shadmehr, 2009; Wolpert, 1997). A third, heuristic explanation is that humans are subject

to a ‘repetition bias’ according to which they repeat their response irrespective of their

estimate of the state.

Regardless of its origin, the high repetition propensity in data raises the question of

whether it dominates the behavior of the average learning rate. As a control, we excluded

all occurrences of repetitions in subjects’ data and carried out the same analyses on the

truncated dataset. We reached identical conclusions, namely, significant discrepancies

between the HI and HD learning rates at short and long run-lengths, albeit with, naturally,

higher average rates overall (see Supplementary Fig. B2).

The variability in subjects’ responses evolves over the course of inference

In the previous two sections, we have examined two aspects of the distribution of

responses: the average learning rate and the probability of response repetition. We now

turn to the variability in subjects’ responses. Although all subjects were presented with

identical series of stimuli, xt, their responses at each trial were not the same (Fig. 4A).

This variability appears in both HI and HD conditions. The distribution of responses

around their averages at each trial has a width comparable to that of the likelihood

distribution, g(xt|st) (Fig. 4B). More importantly, the variability in the responses (as

measured by the standard deviation) is not constant, but decreases with successive trials

following a change point, at short run-lengths (Fig. 4C). Comparing the HI and HD

conditions, we observe that for run-lengths shorter than 7, the standard deviation in the

HD condition is significantly lower than that in the HI condition. At longer run-lengths,

the two curves cross and the variability in the HD condition becomes significantly higher

than in the HI condition. The HD curve adopts, again, a ‘smile shape’ (Fig. 4C). What is
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the origin of the response variability? Because it changes with the run-length and the HI

vs. HD condition, it cannot be explained merely be the presence of noise independent from

the inference process, such as pure motor noise. In order to encompass human behavior in

a theoretical framework and to investigate potential sources of this inference-dependent

variability, we start by comparing the recorded behavior with that of an optimal observer.

Optimal estimation: Bayesian update and maximization of expected reward

We derive the optimal solution for the task of estimating the hidden state, st, given

random stimuli, xt. The first step (the ‘inference step’) is to derive the optimal posterior

distribution over the state, st, using Bayes’ rule. Because the state is a random variable

coupled with the run-length, τt, another random variable, it is convenient to derive the

Bayesian update equation for the (st, τt) pair (more precisely, the (st, τt) pair verifies the

Markov property, whereas st alone does not, in the HD condition). We denote by x1:t the

string of stimuli received between trial 1 and trial t, and by pt(s, τ |x1:t) the probability

distribution over (s, τ), at trial t, after having observed the stimuli x1:t. At trial t+ 1,

Bayes’ rule yields pt+1(s, τ |x1:t+1) ∝ g(xt+1|s)pt+1(s, τ |x1:t). Furthermore, we have the

general transition equation,

pt+1(s, τ |x1:t) =
∑
τt

∫
st

pt+1(s, τ |st, τt)pt(st, τt|x1:t)dst, (1)

given by the change-point statistics. As the transition probability, pt+1(s, τ |st, τt), can be

expressed using q(τt) and a(s|st) (see Methods for details), we can reformulate the update

equation as

pt+1(s, τ |x1:t+1) = 1
Zt+1

g(xt+1|s)
1τ=0

∑
τt

q(τt)
∫
st

a(s|st)pt(st, τt|x1:t)dst

+1τ>0 (1− q(τ − 1))pt(s, τ − 1|x1:t)
,

(2)
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Figure 4 . The variability in subjects’ responses is modulated during inference,
and these modulations depend on the temporal statistics of the stimulus. A.
Responses of subjects in an example of 5 consecutive stimuli. In this example, there is no
change point and the state (green) is constant. At each trial (from top to bottom), subjects
observe the stimuli (blue) and provide their responses (red bars). A histogram of the
locations of the responses is obtained by counting the number of responses in bins of width
3 (light red). B. Distribution of the responses of subjects around their average (red),
compared to the likelihood, g (blue), and the state transition probability, a (green). C.
Standard deviation of the responses of subjects vs. run-length, τ̃ , in the HI (blue) and HD
(orange) conditions. Stars indicate p-value of Levene’s test of equality of variance between
the two conditions, at each τ̃ . Shaded bands indicate the standard error of the standard
deviation (Ahn & Fessler, 2003).
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where 1C = 1 if condition C is true, 0 otherwise; and Zt+1 is a normalization constant.

This equation includes two components: a ‘change-point’ one (τ = 0) and a ‘no

change-point’ one (τ > 0). We call the model that performs this Bayesian update of the

posterior the OptimalInference model.

Finally, following the inference step just presented (i.e., the computation of the

posterior), a ‘response-selection step’ determines the behavioral response. At trial t and for

a response ŝt, the expected reward is EsR =
∫
R(|ŝt − s|)pt(s|x1:t)ds. The optimal strategy

selects the response, ŝt, that maximizes this quantity. Before exploring the impact of

relaxing the optimality in the inference step, in the response-selection step, or both, we

examine, first, the behavior of the optimal model.
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Figure 5 . The optimal model captures qualitatively the behavior of the learning
rate and of the repetition propensity in subjects, but does not account for their
variability. A. Average learning rate as a function of the run-length. In the HI
condition, the learning rate decreases with the run-length, for both the optimal model and
the subjects. In the HD condition, learning rates in the optimal model are lower than in
the HI condition, for short run-lengths, and higher for long run-lengths. The learning rate
of subjects exhibits a similar smile shape, in the HD condition. B. Repetition propensity,
i.e., proportion of repetition trials, as a function of the run-length. C. Standard deviation
of the responses of the subjects (dashed lines) and of the optimal model (solid lines), and
standard deviation of the optimal, Bayesian posterior distribution (long dashes), as a
function of the run-length. The optimal model is deterministic and, thus, exhibits no
variability in its responses. The optimal posterior distribution, however, has a positive
standard deviation which decreases with the run-length, in the HI condition, and exhibits a
smile shape, in the HD condition.
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The optimal model captures qualitative trends in learning rate and repetition

propensity

Equipped with the optimal model for our inference task, we compare its output to

experimental data. For short run-lengths (τ < 8), the learning rates in both HI and HD

conditions decrease as a function of the run-length, and the HD learning rates are lower

than their HI counterparts. They increase, however, at longer run-lengths (τ ≥ 8) and

ultimately exceed the HI learning rates; these, by contrast, decrease monotonically (Fig.

5A, solid line). These trends are similar to those observed in behavioral data (Fig. 5A,

dashed line). Hence, the modulation of the subjects’ learning rates with the temporal

statistics of the stimuli, and over the course of inference, is consistent, at least

qualitatively, with that of a Bayesian observer.

Although a Bayesian observer can, in principle, hold a continuous posterior distribution,

we discretize, instead, the posterior, in order to reproduce the experimental condition of a

pixelated screen. This discretization allows for repetitions. The repetition propensity of the

optimal model varies with the run-length: it increases with τ in both HI and HD

conditions, and decreases in the HD condition for long run-lengths, a pattern also found in

experimental data (Fig. 5B).

Hence, the optimal model captures the qualitative trends in learning rate and repetition

propensity present in the responses of the subjects. Quantitative differences, however,

remain. The learning rates of the subjects, averaged over both HI and HD conditions, are

43% higher than the average learning rate in the optimal model, and the average repetition

propensity of the subjects is 9 percentage points higher than that in the optimal model.

Relation between human response variability and the Bayesian posterior

The optimal model captures qualitatively the modulations of learning rate and repetition

propensity in subjects, but it is deterministic (at each trial, the optimal estimate is a

deterministic function of past stimuli) and, as such, it does not capture the variability



HUMAN INFERENCE IN CHANGING ENVIRONMENTS 19

inherent to the behavior of subjects. The modulations of the behavioral variability as a

function of the run-length and of the temporal structure of the signal (Fig. 4C) is a sign

that the variability evolves as the inference process unfolds. The standard deviation of the

optimal Bayesian posterior decreases with the run-length, in the HI condition: following a

change point, the posterior becomes narrower as new stimuli are observed. In the HD

condition, the standard deviation of the posterior exhibits a ‘smile shape’ as a function of

the run-length: it decreases until the run-length reaches 5, then increases for larger

run-lengths (Fig. 5C). This behavior is similar to that of the standard deviation of the

responses of the subjects. In fact, the standard deviation of the Bayesian posterior and

that of subjects’ responses across trials are significantly correlated, both in the HI

condition (Pearson’s r = .53, p < .0001) and in the HD condition (r = .25, p < .0001). In

other words, when the Bayesian posterior is wide there is more variability in the responses

of subjects, and vice-versa (Fig. 6A).

Turning to higher moments of the distribution of subjects’ responses, we find that the

skewness of this distribution appears, also, to grow in proportion to the skewness of the

Bayesian posterior (Fig. 6B). The correlation between these two quantities is positive and

significant in the two conditions (HI: r = .21, p < .0001; HD: r = .14, p < .0001. These

results are not driven by the boundedness of the response domain, which could have

artificially skewed the distribution of response; see Supplementary Fig. B3.). Thus, not

only the width, but also the asymmetry in the distribution of subjects’ responses is

correlated with that of the Bayesian posterior. These observations support the hypothesis

that the behavioral variability in the data is at least in part related to the underlying

inference and decision processes.

In what follows, we introduce an array of suboptimal models, with the aim of resolving

the qualitative and quantitative discrepancies between the behavior of the optimal model

and that of the subjects. In particular, we formulate several stochastic models which

include possible sources of behavioral variability. Two scenarios are consistent with the
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modulations of the magnitude and asymmetry of the variability with the width and

skewness of the Bayesian posterior: stochasticity in the inference step (i.e., in the

computation of the posterior) and stochasticity in the response-selection step (i.e., in the

computation of an estimate from the posterior). The models we examine below cover both

these scenarios.
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Figure 6 . Both width and skewness of the distribution of subjects’ responses are
correlated with those of the Bayesian posterior. Empirical standard deviation (A)
and skewness (B) of subjects’ responses as a function of the standard deviation and
skewness of the Bayesian posterior, in the HI (blue) and HD (orange) conditions, and linear
regressions (ordinary least squares; dashed lines). On 85% of trials, the standard deviation
of the Bayesian posterior is lower than 6.8 (vertical grey line). Shaded bands indicate the
standard error of the mean.

Suboptimal models reflecting cognitive limitations

In the previous sections, we have examined the learning rate of the subjects, their

repetition propensity, and the variability in their responses; comparison of the behaviors of

these quantities to that of the Bayesian, optimal model, revealed similarities (namely, the

qualitative behaviors of the learning rate and of the repetition propensity) and

discrepancies (namely, quantitative differences in these two quantities, and lack of

variability in the optimal model). Although the latter call for a non-Bayesian account of

human behavior, the former suggest not to abandon the Bayesian approach altogether (in
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favor, for instance, of ad hoc heuristics). Thus, we choose to examine a family of

sub-optimal models obtained from a sequence of deviations away from the Bayesian model,

each of which captures potential cognitive limitations hampering the optimal performance.

In the Bayesian model, three ingredients enter the generation of a response upon

receiving a stimulus: first, the belief on the structure of the task and on its parameters;

second, the inference algorithm which produces a posterior on the basis of stimuli; third,

the selection strategy which maps the posterior into a given response. The results

presented above, exhibiting the similarity between the standard deviation of the Bayesian

posterior and the standard deviation of the responses of the subjects (Fig. 5C), points to a

potential departure from the optimal selection strategy, in which the posterior is sampled

rather than maximized. This sampling model, which we implement (see below), captures

qualitatively the modulated variability of responses; sizable discrepancies in the three

quantities we examine, however, remain (see Methods). Hence, we turn to the other

ingredients of the estimation process, and we undertake a systematic analysis of the effects

on behavior of an array of deviations away from optimality.

Below, we provide a conceptual presentation of the resulting models; we fit them to

experimental data, and comment on what the best-fitting models suggest about human

inference and estimation processes. For the detailed mathematical descriptions of the

models, and an analysis of the ways in which their predictions depart from the optimal

behavior, we refer the reader to the Methods section.

Models with erroneous beliefs on the statistics of the signal. Our first model

challenges the assumption, made in the optimal model, of a perfectly faithful

representation of the set of parameters governing the statistics of the signal. Although

subjects were exposed in training phases to blocs of stimuli in which the state, st, was

made visible, they may have learned the parameters of the generative model incorrectly.

We explore this possibility, and, here, we focus on the change probability, q(τ), which

governs the dynamics of the state. (We found that altering the value of this parameter had



HUMAN INFERENCE IN CHANGING ENVIRONMENTS 22

a stronger impact on behavior than altering the values of any of the other parameters.) In

the HD condition, q(τ) is a sigmoid function shaped by two parameters: its slope, λ = 1,

which characterizes ‘how suddenly’ change points become likely, as a function of τ ; and the

average duration of inter-change-points intervals, T = 10. In the HI condition, q = 0.1 is

constant; it can also be interpreted as an extreme case of a sigmoid in which λ = 0 and

T = 1/q = 10. We implement a suboptimal model, referred to as IncorrectQ, in which

these two quantities, λ and T , are treated as free parameters, thus allowing for a broad

array of different beliefs in the temporal structure of the signal (Fig. 7A).

Models with limited memory. Aside from operating with an inexact representation

of the generative model, human subjects may use a suboptimal form of inference. In the

HD condition, the optimal model maintains ‘in memory’ a probability distribution over the

entire (s, τ)-space (see Eq. (2)), thus keeping track of a rapidly increasing number of

possible histories, each characterized by a sequence of run-lengths. Such a process entails a

large computational and memory load. We explore suboptimal models that alleviate this

load by truncating the number of possible scenarios stored in memory; this is achieved

through various schemes of approximations of the posterior distribution. More specifically,

in the following three suboptimal models, the true (marginal) probability of the

run-lengths, pt(τ |x1:t), is replaced by an approximate probability distribution.

A first, simple way of approximating the marginal distribution of the run-lengths is to

consider only its mean, i.e., to replace it by a Kronecker delta which takes the value 1 at an

estimate of the expected value of the run-lengths. Nassar et al. (2010) introduce a

suboptimal model based on this idea, some details of which depend on the specifics of the

task; we implement a generalization of this model, adapted to the parameters of our task.

We call it the τMean model. While the optimal marginal distribution of the run-lengths,

pt(τ |x1:t), spans the whole range of possible values of the run-length, it is approximated, in

the τMean model, by a delta function parameterized by a single value, which we call the

‘approximate expected run-length’ and which we denote by τ̄t. Upon the observation of a
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Figure 7 . Illustration of the erroneous beliefs in the IncorrectQ model and of
the approximations made in the τMean, τNodes, and τMaxProb models. A.
Change probability, q(τ), as a function of the run-length (first row), and distribution of
intervals between two consecutive change points (second row), for various beliefs on the
parameters of the change probability: the slope, λ, and the average duration of intervals,
T . For a vanishing slope (λ = 0), the change probability is constant and equal to 1/T (first
panel). With T = 10 this corresponds to the HI condition (blue lines). For a positive slope
(λ > 0), the change probability increases with the run-length (i.e., a change-point becomes
more probable as the time since the last change-point increases), and the distribution of
intervals between two successive change-points is peaked. The HD condition (orange lines)
corresponds to λ = 1 and T = 10. B. Schematic illustration of the marginal distribution of
the run-length, p(τ), in each model considered. The OptimalInference model assigns a
probability to each possible value of the run-length, τ , and optimally updates this
distribution upon receiving stimuli (first panel). The τMean model uses a single run-length
which tracks the inferred expected value, τ̄t (second panel). The τNodes model holds in
memory a limited number, Nτ , of fixed hypotheses on τ (“nodes”), and updates a
probability distribution over these nodes; Nτ = 2 in this example (third panel). The
τMaxProb model reduces the marginal distribution by discarding less likely run-lengths; in
this example, 2 run-lengths are stored in memory at any given time (fourth panel).

new stimulus, xt+1, the updated approximate expected run-length, τ̄t+1, is computed as a

weighted average between two values of the run-length, 0 and τ̄t + 1, which correspond to

the two possible scenarios: with and without a change point at trial t+ 1. Each scenario is

weighted according to the probability of a change point at trial t+ 1, given the stimulus,

xt+1. This model has no free parameter (Fig. 7B, second panel).
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In a second limited-memory model, contrary to the τMean model just presented, the

support of the distribution of the run-lengths is not confined to a single value. This model

generalizes the one introduced by Wilson et al. (2013). In this model, the marginal

distribution of the run-lengths, pt(τ |x1:t), is approximated by another discrete distribution

defined over a limited set of constant values, called ‘nodes’ (Fig. 7B, third panel). We call

this model τNodes. A difference with the previous model (τMean) is that the support of

the distribution is fixed, i.e., the set of nodes remains constant as time unfolds, whereas in

the τMean model the single point of support, τ̄t, depends on the stimuli received. The

details of the implementation of this algorithm, and, in particular, of how the approximate

marginal distribution of the run-lengths is updated upon receiving a new stimulus, are

provided in Methods. The model is parameterized by the number of nodes, Nτ , and the

values of the nodes. We implement it with up to five nodes.

The two models just presented are drawn from the literature. We propose a third

suboptimal model that relieves the memory load in the inference process. We also

approximate, in this model, the marginal distribution of the run-lengths, pt(τ |x1:t), by

another, discrete distribution. We call Nτ the size of the support of our approximate

distribution, i.e., the number of values of the run-length at which the approximate

distribution does not vanish. A simple way to approximate pt(τ |x1:t) is to identify the Nτ

most likely run-lengths, and set the probabilities of the other run-lengths to zero. More

precisely, if, at trial t, the run-length takes a given value, τt, then, upon the observation of

a new stimulus, at trial t+ 1 it can only take one of two values: 0 (if there is a change

point) or τt + 1 (if there is no change point). Hence, if the approximate marginal

distribution of the run-lengths at trial t is non-vanishing for Nτ values, then the updated

distribution is non-vanishing for Nτ + 1 values. We approximate this latter distribution by

identifying the most unlikely run-length, arg min pt+1(τ |x1:t+1), setting its probability to

zero, and renormalizing the distribution. In other words, at each step, the Nτ most likely

run-lengths are retained while the least likely run-length is eliminated. We call this



HUMAN INFERENCE IN CHANGING ENVIRONMENTS 25

algorithm τMaxProb (Fig. 7B, fourth panel). It is parameterized by the size of the

support of the marginal distribution, Nτ , which can be understood as the number of

‘memory slots’ in the model.

A model with limited run-length memory through sampling-based inference.

The five models considered hitherto (OptimalInference, IncorrectQ, τMean, τNodes, and

τMaxProb) are deterministic: a given sequence of stimuli implies a given sequence of

responses, in marked contrast with the variability exhibited in the responses of subjects.

To account for this experimental observation, we suggest several models in which

stochasticity is introduced in the generation of a response. Response stochasticity can stem

from the inference step, the response-selection step, or both. We present, first, a model

with stochasticity in the inference step.

This model, which we call τSample, is a stochastic version of the τMaxProb model:

instead of retaining deterministically the Nτ most likely run-lengths at each trial, the

τSample model samples Nτ run-lengths using the marginal distribution of the run-lengths,

pt(τ |x1:t). More precisely, if at trial t+ 1 the marginal distribution of the run-lengths,

pt+1(τ |x1:t+1), is non-vanishing for Nτ + 1 values, then a run-length is sampled from the

distribution [1− pt+1(τ |x1:t+1)] /zt+1, where zt+1 is a normalization factor, and the

probability of this run-length is set to zero (Fig. 8). In other words, while the τMaxProb

model eliminates the least likely run-length deterministically, the τSample model

eliminates one run-length stochastically, in such a fashion that less probable run-lengths

are more likely to be eliminated. The τSample model has one parameter, Nτ , the size of

the support of the marginal distribution of the run-lengths.

Stochastic inference model with sampling in time and in state space: the

particle filter. Although the τMean, τNodes, τMaxProb, and τSample models

introduced above relieve the memory load by prescribing a form of truncation on the set of

run-lengths, inference in these models is still executed on a continuous state space labeled
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Figure 8 . Posterior density over three successive trials for the OptimalInference
model, the τSample model with Nτ = 2, and the ParticleFilter model with ten
particles. The three panels correspond to the three successive trials. Each row except the
last one corresponds to a different run-length, τ . In these rows, the horizontal bars show
the marginal probability of the run-length, p(τ |x1:t). The posterior (i.e., the joint
distribution of the run-length and the state, p(s, τ |x1:t)) is shown as a function of the state,
s, for the OptimalInference model (blue shaded curve), the τSample model (pink line), and
the ParticleFilter model (orange vertical bars). The marginal probability of the run-length,
p(τ |x1:t), for the OptimalInference model, is additionally reflected in the hue of the curve
(darker means higher probability). For the ParticleFilter model, the heights of the bars are
proportional to the weights of the particles. When the state, s, of two or more particles
coincide, a single bar is shown with a height proportional to the sum of the weights. The
last row shows the marginal distributions of the states, p(s|x1:t) = ∑

τ p(s, τ |x1:t), along
with the location of the stimulus at each trial (red vertical line). At trial t (left panel), the
probability of the run-length τ = 5 dominates in the three models. In the τSample model,
it vanishes at run-lengths from 0 to 3, and it is very small for τ = 4. In the ParticleFilter
model, the run-lengths of the ten particles are all 5, and thus the probability of all other
run-lengths is zero. At trial t+ 1 (middle panel), upon observation of the new stimulus,
xt+1, the marginal probability of the vanishing run-length (τ = 0), which corresponds to a
‘change-point’ scenario, becomes appreciable in the OptimalInference model (top row). The
probability of the run-length τ = 6 (a ‘no change-point scenario’ ) is however higher. As a
result, a ‘bump’ appears in the marginal distribution of the state, around the new stimulus
(bottom row). (Continued on the following page.)
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Figure 8 . In the τSample model, the optimal update of the posterior results in a
non-vanishing probability for three run-lengths (τ = 0, 5, and 6), more than the number of
‘memory slots’ available (Nτ = 2). One run-length is thus randomly chosen, and its
marginal probability is set to zero; in the particular instantiation of the model presented
here, the run-length τ = 0 is chosen, and thus the resulting marginal probability of
run-length is non-vanishing for τ = 5 and 6 only. In the ParticleFilter model, the
stochastic update of the particles results in seven particles adopting a vanishing run-length,
and the probability of a ‘change-point’ scenario (τ = 0) becomes higher than that of the
‘no change-point’ scenario (τ = 6) supported by the remaining three particles. The various
marginal distributions of the states obtained in these three models (bottom row) illustrate
how the τSample model and the ParticleFilter model approximate the optimal posterior:
the τSample model assigns a negligible probability to a set of states whose probability is
substantial under the OptimalInference model, while the ParticleFilter yields a coarse
approximation reduced to a support of ten states (as opposed to a continuous distribution).

by s (or, more precisely, on a discrete space with resolution as fine as a pixel). Much as

subjects may retain only a compressed representation of probabilities along the τ axis, it is

conceivable that they may not maintain a full probability function over the 1089-pixel-wide

s axis, as they carry out the behavioral task. Instead, they may infer using a coarser

spatial representation, in order to reduce their memory and computational loads. Monte

Carlo algorithms perform such approximations by way of randomly sampling the spatial

distribution; sequential Monte Carlo methods, or ‘particle filters’, were developed in the

1990s to address Hidden Markov Models, a class of hidden-state problems within which

falls our inference task (Arulampalam, Maskell, Gordon, & Clapp, 2002; Doucet &

Johansen, 2008; Gordon, Salmond, & Smith, 1993). Particle filters approximate a

distribution by a weighted sum of delta functions. In our case, a particle i at trial t is a

triplet, (sit, τ it , wit), composed of a state, a run-length, and a weight; a particle filter with

NP particles approximates the posterior, pt(s, τ |x1:t), by the distribution

p̃t(s, τ |x1:t) =
NP∑
i=1

witδ(s− sit)δτ,τ i
t
, (3)

where δ(s− sit) is a Dirac delta function, and δτ,τ i
t
a Kronecker delta. In other words, a

distribution over the (s, τ) space is replaced by a (possibly small) number of points, or
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samples, in that space, along with their probability weights.

To obtain the approximate posterior at trial t+ 1 upon the observation of a new

stimulus, xt+1, we note, first, that the Bayesian update (Eq. (2)) of the approximate

posterior, p̃t(s, τ |x1:t), is a mixture (a weighted sum) of the NP Bayesian updates of each

single particle (i.e., Eq. (2) with the prior, pt(s, τ |x1:t), replaced, for each particle, by

δ(s− sit)δτ,τ i
t
). Then, we sample independently each component of the mixture (i.e., each

Bayesian update of a particle), to obtain stochastically the updated particles, (sit+1, τ
i
t+1),

and to each particle is assigned the weight of the corresponding component in the mixture.

The details of the procedure just sketched, in particular the derivation of the mixture and

of its weights, and how we handle the difficulties arising in practical applications of the

particle filter algorithm, can be found in Methods. This model, which we call

ParticleFilter , has a single free parameter: the number of particles, NP (Fig. 8).

Models with variability originating in the response-selection step. The

τSample and ParticleFilter models presented above reduce the dimensionality of the

inference problem by pruning stochastically the posterior, in the inference step. But, as we

pointed out, the behavior of the standard deviation of the responses of the subjects, as

compared to that of the width of the Bayesian posterior (Fig. 5C), hints at a more

straightforward mechanism at the origin of response variability. The model we now

introduce features stochasticity not in the inference step, but rather in the

response-selection step of an otherwise optimal model. In this model, the response is

sampled from the marginal posterior on the states, pt(s|x1:t), i.e., the response, ŝt, is a

random variable whose density is the posterior. This contrasts with the optimal

response-selection strategy, which maximizes the expected score based on the Bayesian

posterior, and which was implemented in all the models presented above. Henceforth, we

denote the optimal, deterministic response-selection strategy by Max, and the suboptimal,

stochastic strategy just introduced by Sampling. It has no free parameter.

Another source of variability in the response-selection step might originate in a limited
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motor precision, in the execution of the task. To model this motor variability, in some

implementations of our models we include a fixed, additive, Gaussian noise, parameterized

by its standard deviation, σm, to obtain the final estimate. Both this motor noise and the

Sampling strategy entail stochasticity in response selection. The former, however, has a

fixed variance, σ2
m, while the variance of the latter depends on the posterior which varies

over the course of inference (Fig. 5C). When we include motor noise in the Max or in the

Sampling strategies, we refer to these as NoisyMax and NoisySampling, respectively.

In sum, we have described four response-selection strategies (Max, Sampling, NoisyMax,

and NoisySampling), and seven inference strategies, of which five are deterministic

(OptimalInference, IncorrectQ, τMean, τNodes, and τMaxProb) and two are stochastic

(τSample and ParticleFilter). We can combine any inference strategy with any

response-selection strategy: thus, we have at hand 4×7 = 28 different models, 27 of which

are suboptimal, obtained from pairings of the inference and selection strategies. We label

each of the 28 models by the combination of the two names referring to the two steps in

the process, e.g., ParticleFilter+Sampling.

Fitting models to experimental data favors sample-based inference

The 27 suboptimal models introduced in the previous section yield a range of

discrepancies from the optimal behavior. The ways in which each deviation from the

optimal model impacts behavior is examined in Methods; here, we ask how well these

models account for the behavior of human subjects. Whereas the optimal model,

OptimalInference+Max, computes the Bayesian posterior (OptimalInference) and selects

the maximizing response (Max), the suboptimal models mimic cognitive limitations that

may prevent the brain from reaching optimality: incorrect belief in the temporal structure

of the signal (IncorrectQ), compressed representation of the Bayesian posterior, either

deterministically (τMean, τNodes, and τMaxProb) or stochastically (τSample and

ParticleFilter), and noise introduced in the response-selection step, with a width either
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Table 1. Model fitting favors the ParticleFilter inference strategy with
NoisyMax response selection. Ratios of the normalized mean squared error (NMSE) in
each model to that of the best-fitting model, ParticleFilter+NoisyMax. Each model is a
combination of an inference strategy (columns) with a response-selection strategy (rows).
The second best model, also a ParticleFilter but with a NoisySampling response-selection
strategy, yields an NMSE 46% higher than the best-fitting model.

scaling with that of the posterior (Sampling), or constant (NoisyMax), or a combination of

the two (NoisySampling).

To evaluate the ability of each of these models to account for human behavior, we

compare quantitatively their respective outputs with the responses of human subjects. For

the three quantities we examine (the learning rate, the repetition propensity, and the

standard deviation of the responses), we compute the normalized mean squared error

(NMSE) (sometimes referred to as the ‘Fraction of Variance Unexplained’ in the context of

linear regressions). It is defined, for a given model and for each quantity, as the ratio of the

mean squared error in the model output as compared to data, and the variance of the

quantity under scrutiny in the behavioral data. We fit each of our models to human data,

using the average of the three NMSEs as our error measure. (We note that the



HUMAN INFERENCE IN CHANGING ENVIRONMENTS 31

OptimalInference inference strategy is a special case of all the other inference strategies,

except τMean, thus its NMSE cannot be lower than that of these strategies. Likewise, the

Max and Sampling response-selection strategies are special cases of the NoisyMax and

NoisySampling strategies, respectively.)

We find that the five best-fitting models make use of stochastic compression in the

inference step, in either the τSample approximation or the ParticleFilter approximation

(Table 1). These models all reproduce the qualitative trends in the behavior of subjects

with respect to our three measures: for the learning rate and the standard deviation, the

‘smile shape’ of the HD curve, which crosses a decreasing HI curve; for the repetition

propensity, conversely, an inverted U shape of the HD curve which crosses an increasing HI

curve (Fig. 9, results from the τSample+Max and ParticleFilter+Sampling models are not

shown, but the corresponding curves are similar).

The τSample and ParticleFilter strategies have one or two parameters, depending on

whether they include motor noise or not. Other models, including all models with a

deterministic inference step, have an error at least 30% higher than the best five models

(and 2.45 times higher than the best model), despite the fact that other strategies come

with up to five parameters (Table 1). The best-fitting model is ParticleFilter+NoisyMax

with NP = 9 particles. The fitted standard deviation, σm, of the Gaussian motor noise is

approximately equal to 0.77 pixels; as a consequence, in about half of the trials, the noise

component is within the width of a pixel, and thus has no impact. The second best model

also follows a ParticleFilter inference strategy, with NP = 14, combined with a

NoisySampling response selection (with σm = 0.70 pixels).

The third and fourth best-fitting models use the τSample inference strategy, with

Nτ = 1, and the NoisyMax (with σm = 0.45 pixels, for the third one) and the Max (for the

fourth one) selection strategies. At any given trial, these two models retain only a single

assumption, τt, on the run-length. Upon receiving a new stimulus, xt+1, a model subject

computes pchange = pt+1(τ = 0|x1:t+1) and 1− pchange = pt+1(τ = τt + 1|x1:t+1), and decides
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whether there was a change-point by sampling this simple, Bernoulli distribution. This

sampling process, over a marginalization of the posterior, is similar to that in the particle

filter model, which samples over the full (s, τ)-dependent posterior. As a consequence of

sampling, the τSample strategy also exhibits variability, which behaves in a fashion similar

to the variability in the ParticleFilter strategy (Fig. 9, bottom right). As for response

selection, we note that with the Sampling and NoisySampling selection strategies (instead

of the Max and NoisyMax strategies), these models do not perform as well, and result in

errors larger by 86% (Sampling vs. Max) and 96% (NoisySampling vs. NoisyMax). In fact,

for all the seven inference models, the NoisyMax response-selection strategy results in

errors lower or equal (but more often, lower) than the other three selection strategies (Max,

Sampling and NoisySampling) (Table 1). This suggests that the variability in human

responses does not originate from a posterior-sampling strategy in the response-selection

step, but, rather, from an intrinsically stochastic inference process. In order to seek further

validation of this finding, we explore, below, a generalization of the Sampling strategy.

Robustness of the results. To substantiate the picture that emerges from the

results summarized above, we perform two supplementary analyses. First, we investigate

whether a generalized Sampling strategy yields smaller errors than the NoisyMax strategy.

Second, we consider our choice of fitting-performance measure (the average of the NMSEs

in the three quantities we examine), and we check for the robustness of model fitting to

changes in the relative weights of each quantity in the fitting performance measure.

Sampling from the posterior function is only one of many possible sampling strategies for

response selection. Furthermore, in practice sampling may be difficult to tease apart from

maximizing a perturbed posterior function. Acerbi, Vijayakumar, and Wolpert (2014)

argue that, for some forms of random perturbations of a posterior probability density,

maximizing the randomly perturbed function yields similar results to sampling from a

modified posterior density function obtained as a power of the correct posterior:

pκ(s) ∝ p(s|x1:t)κ. To establish the equivalence, the exponent, κ, is chosen as inversely
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Figure 9 . Behavior of the three best-fitting models. In HI (blue curves) and HD
(yellow curves) conditions, average learning rate (first column), repetition propensity
(second column), and standard deviation of responses (third column), as a function of
run-length, for the subjects (solid lines) and the three best-fitting models (dashed lines):
ParticleFilter+NoisyMax (first row), ParticleFilter+NoisySampling (second row), and
τSample+NoisyMax (third row).

related to the magnitude of the perturbing noise. Sampling from the modified posterior

yields a behavior that interpolates between posterior sampling (for κ = 1) and maximizing

(for κ→∞); it yields a family of softmax operations over the posterior (Vul, 2011; Yu &

Huang, 2014). Another interpretation of this sampling strategy is proposed by Battaglia

et al. (2011): in the case of an integer κ and a Gaussian posterior, the mean of κ samples

drawn from the posterior is a Gaussian random variable, with a standard deviation equal

to that of the posterior scaled by 1/
√
κ; i.e., a distribution equal to the posterior raised to

the power κ, and normalized. Hence, in the Gaussian case, sampling from the
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exponentiated posterior can be interpreted as drawing κ samples from the unexponentiated

posterior, and taking the mean.

We implement this strategy of response selection by sampling a modified posterior,

which we denote κSampling. We find that it performs better than the Sampling strategy,

as expected since the Sampling strategy is a special case of the κSampling (with the

parameter, κ, set to unity). However, in the case of all seven inference models, the

κSampling strategy, which has one free parameter, performs worse than the NoisyMax

strategy, which has, also, a single parameter (Fig. 10B). Hence, a random, additive

perturbation of the maximization strategy remains a better account of human behavior

than a posterior-sampling strategy.

Figure 10 . Model fitting is robust to the measure used for model comparison.
Normalized Mean Squared Error of fitted models. A. NMSE of models fitted to subjects
data, averaged over the three measures (learning rate, repetition propensity, and standard
deviation of responses), grouped by inference models. B. NMSE between fitted models and
subjects data, averaged over two out of the three measures.

Our results, which suggest that the variability in the responses of subjects originate in

the inference step rather than in the response-selection step, rely upon the fitting

performance measure used for model comparison. We chose a measure that weighted

equally the three NMSEs (on the learning rate, repetition propensity, and standard

deviation), so as to obtain a model performing well on all fronts, but that choice was
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arbitrary. Hence, one may be concerned, for instance, that the goodness-of-fit of the

ParticleFilter model be due to our choice of weighing errors. As a control, we computed

the three ‘two-measure errors’, each excluding one of the three measures and averaging the

errors in the two remaining ones. We found that, regardless of the choice of the

combination, the relative order of the models in terms of performance stays identical, with

only a few exceptions. Most importantly, the ParticleFilter remains, in all three cases of

error combinations, the best-fitting model (Fig. 10B).
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Figure 11 . Bayesian model selection favors the ParticleFilter inference strategy.
Difference between the BIC of each model and that of the best-fitting model, for the
models combining one of the seven inference strategies with the NoisyMax or the
NoisySampling response-selection strategies. The two best-fitting models make use of the
ParticleFilter inference strategy.

Bayesian model selection also favors sample-based inference

Another concern regarding the choice of the NMSE as our performance measure for

model comparison is that it does not take into account the number of parameters in the
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models. A standard method to fit and compare models is to maximize the log-likelihood of

each model and compute its Bayesian Information Criterion (BIC), which includes a

penalty as a function of the number of parameters in the model (Schwarz, 1978). In several

of our models (and in many models in the literature), the responses in successive trials,

conditioned on the stimuli presented to the subject, are independent; as a result, the

log-likelihood over all trials is the sum of the log-likelihoods for each trial, taken separately.

This obtains for all the models in which the inference strategy is deterministic

(OptimalInference, IncorrectQ, τMean, τNodes, and τMaxProb). It does not apply,

however, for the models with stochastic inference strategies (τSample and ParticleFilter):

in these models, successive responses, conditional on observed stimuli, are not independent

as they depend on the realization of the stochastic process that governs inference. To

compute the BIC, it is therefore necessary to compute, first, the distribution of the possible

realizations of the stochastic inference process. The difficulty, here, lies in the fact that the

space of these realizations grows exponentially with the number of trials in an experimental

run.

In the context of our task, in which the subjects undergo 1000 trials in a run, an exact

computation of the BIC is prohibitive. In order to circumvent this problem, we propose to

approximate the log-likelihood of a model by way of a Monte-Carlo estimation of the

log-likelihoods of short sequences of responses. This approach limits the computational

load of the estimation while taking into account the sequential dependence of responses.

We report, here, the results of this estimation scheme using short sequences of 10

successive trials, but in our investigations we repeated the calculations for different choices,

which yielded comparable results. We detail the procedure in Methods. Here, we mention

that, even though models with temporal correlation such as the particle filter have been

used to capture cognitive processes, to the best of our knowledge Bayesian model selection

using the BIC has not been applied to them, except in the case of a binary categorization

task (Lloyd, Sanborn, Leslie, & Lewandowsky, 2019). The approximate approach we
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propose may thus be of use beyond the confines of the specifics of our problem.

In the models that do not feature a (Gaussian) motor noise, some responses of the

subjects have a vanishing probability, and thus these models have an infinite BIC. Hence,

we look at the BICs of the models equipped with the Noisy or the NoisySampling

response-selection strategy. We find that the three best-fitting models involve a stochastic

approximation of the Bayesian inference: the two best-fitting models make use of the

ParticleFilter inference strategy, and the third best-fitting model has a τSample inference

strategy (Fig. 11). We note that with the NMSE metric the three best-fitting models were

also the two ParticleFilter models followed by a τSample model. Thus, both model-fitting

approaches suggest that human inference evolves according to a stochastic compression of

the posterior. The best-fitting model is ParticleFilter+NoisySampling, with NP = 8

particles, and its BIC is smaller than that of the second best-fitting model, the

ParticleFilter+NoisyMax model with NP = 4 particles, by 2, 816. This result is consistent

with the best-fitting numbers of particles obtained when minimizing the NMSE, which

were also relatively modest, although slightly larger (NP = 14 with NoisySampling and

NP = 9 with NoisyMax).

Taken together, our results suggest that variability in human behavior, at least in the

context of our task, is dictated primarily by stochasticity in the inference step — i.e., in

the manipulation and update of probabilities — rather than by ‘output noise’ such as

stochasticity in the response-selection step or motor noise. This view agrees with the

conclusion of a recent study of a cue combination task (Drugowitsch, Wyart, Devauchelle,

& Koechlin, 2016); its authors argue that a “dominant fraction” of human choice

suboptimality arises from random fluctuations in the inference step.
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Discussion

Summary

This study investigates the behavior of human subjects in an online inference task, and

examines mechanisms that can account for behavioral trends found in experimental data.

An important aspect of this task is that it makes use of both a history-independent (HI)

condition with no temporal structure, and a history-dependent (HD) condition in which a

hidden state is almost periodical and, hence, highly structured in time (Fig. 1D). We find

that subjects display different behaviors in the two conditions, adapting their learning rate

to the temporal structure of the hidden state. We also note a propensity in subjects to

repeat their response in consecutive trials; this repetition propensity increases with the

run-length, and in the HD condition drops again for larger run-lengths. Moreover, we

observe that subjects exhibit a greater variability in their responses shortly after a change

point, in both conditions, and at long run-lengths in the HD condition, i.e., the variability

in behavior also depends on the temporal statistics of the stimuli.

The distinctive behaviors of the learning rate and the repetition propensity in the HI and

HD conditions are reproduced qualitatively by a Bayesian model of inference which yields

optimal updates of the probability density of the hidden state. As for the variability in

subjects’ responses, we find that its behavior is similar to that of the standard deviation of

the Bayesian posterior. We therefore use the Bayesian model as a starting point to

elaborate variant models which can account for the trends exhibited in human responses.

We find that the variability in human behavior, and its dynamics, can be reproduced by

supoptimal models in which inference is executed in a stochastic manner. Specifically, the

τSample and the ParticleFilter models alter the optimal inference step by maintaining an

approximate version of the posterior, by means of random sampling. This alteration of the

optimal model at once introduces variability in the behavior and relieves the memory

capacity, through sampling either in the ‘time dimension’ (in the τSample model) or in the

‘time and space dimensions’ (in the ParticleFilter model).
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The behavioral patterns that arise in our task in the HI condition are also found in other

experiments. Gallistel et al., 2014 and Khaw et al., 2017 both conducted an online

inference task, with change points that occurred with constant probability (similarly to our

HI condition). We examined the responses of their subjects in the context of the respective

tasks, and we observed very similar behavioral trends: the learning rate decreases as a

function of the run-length, while the repetition propensity increases. As for the empirical

standard deviation of subjects’ responses, we note that in these studies some subjects were

presented several times with the same sequence of stimuli, in different sessions, thus

allowing for the examination of the variability of responses within subjects. We find, here

also, that the within-subject standard deviation of responses shows the same modulations

than the standard deviation of the Bayesian posterior (Supplementary Fig. B5).

Temporal structures in nature and their behavioral and neural counterparts

In order to make appropriate decisions in relation to their environment, humans and

animals must infer the state of the surrounding world on the basis of the sensory signals

they receive. If these signals are noisy and if the environment is changing, their inference

task is complicated by the fact that a new stimulus may reflect either noise or a change in

the underlying state. However, if events in the world present some kind of temporal

structure, such as in our HD signal, it is possible to use this structure to refine one’s

inference. Conversely, if events follow a Poisson process, as in the HI signal, their

occurrences present no particular temporal structure, and what just happened conveys no

information on what is likely to happen next. Hence, there is a fundamental difference

between the HI and HD conditions, which impacts the inference of an optimal observer.

Many natural events are not Poisson-distributed in time, and exhibit strong regularities.

Nunes Amaral et al. (2004), Nakamura et al. (2007), Nakamura et al. (2008), and

Anteneodo and Chialvo (2009) have recorded the motor activity of both rodents and

human subjects over the course of several days. In both species, they found that the time
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intervals between motion events were distributed as a power law, a distribution

characterized by a long tail, leading to bursts, or clusters, of events followed by long

waiting epochs. The durations of motion episodes also exhibited heavy tails. These kinds

of distribution are incompatible with Poisson processes, which yield exponentially

distributed inter-event epochs. Moreover, both rodent and human activity exhibited

long-range autocorrelations, another feature that cannot be explained by a Poisson process.

A particular form of autocorrelation is periodicity, which occurs in a wide range of

phenomena. In the context of human motor behavior, walking is a highly rhythmical

natural activity (Griffin et al., 2000; Hausdorff et al., 1995). More complex patterns exist

(neither clustered nor periodic), such as in human speech which presents a variety of

temporal structures, whether at the level of syllables, stresses, or pauses (Campione &

Véronis, 2002; Low et al., 2000; Ramus et al., 1999). In all these examples, natural

mechanisms produce series of temporally structured events. The ubiquity of

history-dependent statistics of events in nature begs for explorations of inference

mechanisms in their presence. For the purposes of our experiment, we chose an idealized

temporal signal that combined several advantages: it featured a prominent form of history

dependence, approximate periodicity; it was not easily distinguishable from the other,

history-independent signal used in the task; and it was amenable to modeling.

In the case of studies of perception and decision-making, in both humans and animals,

history-dependent signals have been used widely. In a number of experiments (Ghose &

Maunsell, 2002; Janssen & Shadlen, 2005; Jazayeri & Shadlen, 2010; Li & Dudman, 2013;

Miyazaki et al., 2005), a first event (a sensory cue, or a motor action such as a lever press)

is followed by a second event, such as the delivery of a reward, or a ‘go’ signal triggering

the next behavior. The time elapsed between these two events – the ‘reward delay’ or the

‘waiting time’ – is randomized and sampled from distributions that, depending on the

studies, vary in mean, variance, or shape. For instance, both Janssen and Shadlen (2005)

and Ghose and Maunsell (2002) use unimodal and bimodal temporal distributions.
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Because of the stochasticity of the waiting time, the probability of occurence of the second

event varies with time, similarly to the probability of a change point in our HD condition;

these studies explore whether variations of this probability are used by human and animal

subjects. Janssen and Shadlen (2005)’s recordings from the V4 cortical area in rhesus

monkey indicate that, for both unimodal and bimodal waiting times distributions, the

attentional modulation of sensory neurons varies consistently with the event probability.

Ghose and Maunsell (2002) note that the reaction times of macaques are inversely related

to the event probability, for both unimodal and bimodal distributions, and that the

activity of neurons in the lateral intraparietal (LIP) area is correlated with the evolution of

this probability over time. Li and Dudman (2013) manipulate another aspect of the

distribution of reward delays: between blocks of trials, the standard deviation of this

distribution is varied, while the mean is left unchanged. Mice, in this situation, are shown

to adapt their waiting times to this variability of reward delays, consistently with a

probabilistic inference model of reward timing.

Akin to the tasks just outlined are ‘ready-set-go time-reproduction tasks’, in which

subjects are asked to estimate the random time interval between ‘ready’ and ‘set’ cues, and

to reproduce it immediately afterwards. Miyazaki et al. (2005) and Jazayeri and Shadlen

(2010) show that human subjects combine optimally the cue (consisting in the perceived

ready-set interval) with their prior on the interval length. Different priors are learned in

training runs: they differ by the variances of the interval distributions (Miyazaki et al.,

2005) or by their means (Jazayeri & Shadlen, 2010). In both cases, subjects integrate the

prior in a fashion consistent with Bayesian inference. Adopting a different approach,

ten Oever et al. (2014) show that attentional resources can be dynamically allocated to

points in time at which input is expected: when asked to detect auditory stimuli (beeps) of

low intensity embedded in a continuous white noise, human subjects perform better when

detecting periodic beeps rather than random beeps, suggesting that they are able to

identify the temporal regularity and use it in their detection process.
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In all these studies, the event of interest has a probability of occurrence that varies with

time. The resulting temporal structure in the signal appears to be captured by human and

animal subjects, and reflected in behavior and in its neural correlate. Various probability

distributions used in the reported tasks can be compared directly to our HD

sigmoid-shaped change probability, with adjusted parameters. In line with these studies,

our results confirm that human subjects adapt their behavior depending on the temporal

structure of stimuli. Additionally, we provide a comparison between two different

conditions, a HD condition akin to a ‘jittered periodic’ process, and the Poisson, HI

condition; the latter produces a memoryless process. Importantly, it plays the role of a

benchmark from the point of view of probability theory: in discrete time it yields a

geometric distribution, and in continuous time it yields an exponential distribution; both

distributions maximize the entropy, subject to the constraint of a fixed event rate. In this

study, we compared a specific, temporally structured HD condition to this benchmark, HI

condition.

Online Bayesian inference

Our first observation is that the average learning rate of subjects and their repetition

propensity are captured by a Bayesian model. The Bayesian paradigm has been viewed as

an extension of logic that enables reasoning with propositions whose truth or falsity is

uncertain (Cox, 1946; Jaynes, 2003). In cognitive science, it has successfully accounted for

a wide range of observations, including cue combination in humans (Battaglia et al., 2003;

Battaglia et al., 2011; Ernst & Banks, 2002; Hillis et al., 2004; Jacobs, 1999; Knill, 2003,

2007; van Beers et al., 1999), sensorimotor control (Berniker & Kording, 2011; Körding &

Wolpert, 2004, 2006), integration of temporal statistics (Ghose & Maunsell, 2002; Janssen

& Shadlen, 2005; Jazayeri & Shadlen, 2010; Li & Dudman, 2013; Miyazaki et al., 2005),

perceptual multistability (Gershman et al., 2012; Moreno-Bote et al., 2011; Sundareswara

& Schrater, 2008), and various aspects of cognition (Blaisdell, Sawa, Leising, & Waldmann,
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2006; Goodman et al., 2008; Griffiths & Tenenbaum, 2006, 2011; Stocker & Simoncelli,

2008).

The literature on Bayesian online inference in cognition, where belief is updated

iteratively as a function of incoming information, is growing; examples can be found in

word segmentation (Pearl, Goldwater, & Steyvers, 2011), sentence processing (Levy, Reali,

& Griffiths, 2008), conditioning (Daw & Courville, 2008), as well as in the change-point

literature (Gallistel et al., 2014; Glaze et al., 2018; Glaze et al., 2015; Khaw et al., 2017;

Nassar et al., 2010; Piet et al., 2018; Wilson et al., 2010, 2013). In change-point tasks,

subjects are presented with a long sequence of consecutive inference problems (1000 of

them, in our case). Each trial is a slightly different task, in which one has to handle the

uncertainty resulting from the belief distribution, from the signal likelihood, and from the

possibility of a change point. The latter, in the HD condition, bears the added complexity

of a change-point probability, q(τ), that depends on the time of the last change point. How

these uncertainties are handled determines the behavior, and in particular to what extent

an observer reacts to a new stimulus: either shift the estimate towards it, or not move at

all. We quantify this response through the learning rate and the repetition propensity, and

we find that the ideal Bayesian observer and the subjects obey similar trends (Fig. 5A-B).

The success of the Bayesian paradigm, however, is limited, and comes with three

shortcomings. First, subjects do not behave quantitatively like the ideal Bayesian observer,

and hence there remains unexplained suboptimality. Second, we find variability in the

responses of subjects (Fig. 5C), an observation incompatible with optimal Bayesian

inference. Third, inference problems in the real world are complex and high-dimensional,

rendering Bayesian reasoning computationally heavy and memory-intensive. This suggests

that humans use approximations when carrying out inference and estimation tasks

(Gershman & Beck, 2016; Gershman, Horvitz, & Tenenbaum, 2015; Sanborn & Chater,

2016). These three observations call for the investigation of alternatives to the optimal

Bayesian paradigm. Our study explores several scenarios.
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Sampling versus noisy maximization

Although the behavior of the subjects and of the Bayesian model differ in that the

former exhibits variability while the latter is deterministic, the temporal modulation of the

human variability follows a similar course to that of the standard deviation of the Bayesian

posterior (Fig. 5C), and both the standard deviation and the skewness of the distribution

of subjects’ responses are correlated with those of the Bayesian posterior (Fig. 6).

Therefore, it is natural to propose that response selection operates by sampling the

Bayesian posterior instead of maximizing the expected score. Decision by posterior

sampling, or ‘probability matching’, has been suggested by other decision-making

experiments (Denison, Bonawitz, Gopnik, & Griffiths, 2013; Herrnstein, 1961; Koehler &

James, 2009) and, more recently, perceptual experiments (Battaglia et al., 2011;

Moreno-Bote et al., 2011; Wozny, Beierholm, & Shams, 2010). Although close to optimal

in some specific paradigms (Kaufmann, Korda, & Munos, 2012), sampling is suboptimal in

the context of our behavioral task. When fitting models to human data, we observe that

the ParticleFilter+Sampling and the ParticleFilter+NoisySampling models yield larger

NMSE than the ParticleFilter+NoisyMax model (the best-fitting model), by 90% and 48%,

respectively. More generally, we observe that for each of our seven inference strategies, the

NoisyMax response-selection strategy results in better fits (lower NMSE) than the

Sampling and the NoisySampling strategies (Fig. 10A). Relaxing the Sampling model by

allowing the posterior to be exponentiated before sampling, as in the κSampling strategy,

does not yield better fits than the NoisyMax strategy either. We conclude that posterior

sampling accounts less successfully for our data than a simple perturbation of the optimal

maximization strategy by an additive, fixed-width, Gaussian noise.
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Alternative models of response selection: ‘rational inattention’ and ad hoc

repetition probability

Aside from posterior sampling and motor noise, the so-called ‘rational inattention’

approach which has been gaining grounds in economics (Sims, 2003, 2011; Woodford,

2009), suggests a different account of the variability of responses in decision-making tasks.

In complement to the study of Bayesian and approximate Bayesian models, we have

examined models inspired by that approach. We summarize, here, our results, and provide

a more detailed discussion in Methods. Rational-inattention models posit the existence of a

cognitive cost which prevents subjects from making optimal decisions. In a standard

formulation of the approach, this cost is assumed to be proportional to the mutual

information between a subject’s mental representation (of quantities relevant to produce

responses) and the external variables relevant to the decision (here, the sequence of

presented stimuli). The subject optimizes the ‘information structure’, i.e., the distribution

of the mental representation conditional on the observed stimuli, under the cognitive cost.

The optimal distribution of responses depends on both the (prior) distribution of stimuli

and the form of the reward function. We implement this model and compute its BIC (see

Methods for details). We find that it is much larger (by 29,656) than the BIC of the

OptimalInference+NoisyMax model, which itself has a larger BIC than most of our other

models (Fig. 11). Hence, a direct application of a rational inattention approach does not

provide a better account of behavioral data than the addition of a Gaussian noise in

response selection following optimal inference.

Faced with a similar issue, Khaw et al., 2017 introduced a variant of the

rational-inattention model that is particularly relevant to our study, as it applies to a

sequential inference task with (history-independent) change points. In this variant, the

response selection is split into a two-stage decision process: first, the subject decides

whether to repeat the previous response; second, only if the decision is made not to repeat,

then the subject chooses the location of a new response; and both decision stages are
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subject to cognitive costs. This presents a difference with the models that we have

analyzed so far, in that an ad hoc probability of repetition is included explicitly in the

model, whereas our approach, instead, was to study deviations from optimality that

resulted from deterministic or stochastic approximations of a Bayesian scheme.

We have analyzed our data using a model similar to the one proposed by Khaw et al.,

2017. In order to evaluate the relevance of a rational-inattention information structure, we

have also studied a model that include a two-stage decision process, but does not involve

cognitive costs. Specifically, this model combines the OptimalInference strategy with a

strategy of response selection in which at each trial the model subject chooses, with fixed

probability, whether to repeat the previous response. The probability of a repetition is

constant, in this last model, whereas in the rational-inattention model it depends on the

stimulus history and on the location of the slider at the beginning of the trial.

These two models yield a BIC lower than that of our previously best-fitting model,

suggesting that a two-stage response-selection process is worth considering as a candidate

mechanism for sequential decision-making. The previously best-fitting model, however,

makes use of the ParticleFilter inference strategy, whereas the models just presented rely

on the OptimalInference strategy. Hence, we implement an array of models that combine

the same two-stage response-selection processes with, instead, the ParticleFilter inference

strategy. With this inference strategy, the model in which the subject chooses whether to

repeat with a fixed repetition probability results in a lower BIC (by 1,398) than the model

in which the repetition probability is governed by a rational-inattention cognitive cost.

Moreover, as in the other analyses conducted above, the models with a ParticleFilter

inference strategy all yield substantially lower BICs than their counterparts that make use

of the OptimalInference strategy. It appears, thus, that while the introduction of an

explicit repetition probability in models improves their explanatory power, deriving this

repetition probability from a simple form of cognitive cost does not provide a better

account of behavioral data than positing a fixed repetition probability.
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An explicit repetition probability alone is insufficient to capture human inference in our

task. Instead, stochastic compression of beliefs, as illustrated by stochastic pruning or

particle filtering, results in a closer match with experimental observations. (We provide

details on the rational-inattention models, the fixed-repetition-probability models, and

their BICs in Methods.)

Memory load and stochastic pruning during inference

After rejecting the rational inattention and the sampling hypotheses for response

selection, we are left with an unexplained modulation of the variability – specifically, the

relation between the magnitude of behavioral variability and the width of the Bayesian

posterior at successive times (Fig. 4). Noisy maximization, which makes use of an additive

random perturbation with fixed variance, leads to behavioral variability with constant

variance; it is thus insufficient to explain the experimental observations. If modulated

variability does not originate in the response-selection step, it must derive from the

inference step. Out of the 28 models we consider, the five best-fitting models implement

either the ParticleFilter or the τSample inference strategy, both of which rely on sampling

during inference. These strategies capture the trends in the variability of human responses,

in both HI and HD conditions (Fig. 9).

Both these inference strategies reduce the memory load in the inference problem by

stochastically trimming the posterior, in a fashion akin to the ‘pruning’ model proposed by

Huys et al. (2012) in the context of a decision-tree task. In their decision model, the

evaluation of a possible sequence of decisions is more likely to be curtailed (thus alleviating

the dimensionality of the problem) if it appears to have a low value. Similarly, the

ParticleFilter and the τSample inference strategies ignore with a higher probability

possible run-lengths and states that are less likely to be correct. Furthermore, we note that

the τMaxProb inference strategy also relies on pruning unlikely run-lengths, but it

deterministically eliminates the most unlikely, in contrast to its stochastic counterpart,
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τSample — which yields a better fit of the data. In explore-exploit problems, ‘Thompson

sampling’ (Thompson, 1933) refers to a strategy in which one ‘explores’ by randomly

choosing an action with the probability that this action maximizes the reward (instead of

deterministically choosing the action most likely to maximize the reward). Several studies

have reported that the responses of human subjects in explore-exploit tasks appeared

consistent with Thompson sampling (Gershman, 2018; Schulz, Konstantinidis, &

Speekenbrink, 2015; Speekenbrink & Konstantinidis, 2015). In this perspective, the

stochastic pruning of the posterior in our best-fitting models appears as an exploration

strategy, deployed during inference. Beyond the specifics of the pruning or exploration

mechanisms, the main conceptual point, here, is that behavioral biases may result from an

approximation to a Bayesian scheme that relieves memory load. A similar picture has been

advanced in the context of prediction tasks, where ‘over-reaction’ – effectively a biased,

enhanced learning rate – results from the compression of information stored in memory

(Afrouzi, Kwon, & Ma, 2020; Azeredo da Silveira & Woodford, 2019; Neligh, 2019).

Aside from stochasticity in the inference step and in the response-selection step, noise in

the sensory observation is a possible alternate account of behavioral variability, discussed,

among others, by Stocker and Simoncelli (2006) and Drugowitsch et al. (2016). The design

of our experiment, however, minimized perceptual ambiguity: the stimulus we presented to

the subject at each trial, in our task, was a white dot that clearly contrasted with the

background, and which remained on the screen until the subject responded (the subject

was thus free to look at it for as long as he or she wished). By contrast, in the two studies

just mentioned, the stimuli consisted of low-contrast gratings presented for one second or

less. We presume that our experimental design limited perceptual noise.

It would nevertheless be interesting to know whether and how perceptual noise may

contribute to behavioral variability in a sequential experiment, and how it may couple with

stochasticity in inference. A possibility is that the magnitude of perceptual noise is

constant throughout the task, in which case it would be expected to contribute an equal
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amount of variability at all run-lengths; if so, it would not account for the modulations of

variability that we record in our task. Another possibility is that perceptual noise itself

adapts dynamically during the task. Under this hypothesis, we speculate that the

magnitude of perceptual noise would decrease if uncertainty increases; if so, it would result

in an effect on behavioral variability opposite to the observed effect. Although we cannot

exclude that an effect of this nature is at play, it does not appear to offset completely the

modulations of the variability which can be understood in terms of an approximate

Bayesian inference. In sum, in the present setting of the experiments, a natural

explanation of the behavioral variability in terms of perceptual ambiguity seems unlikely.

Incorrect belief about the temporal statistics of the signal

Comparing the behaviors of the best-fitting model and that of the subjects, we note that

there remain discrepancies between the two, particularly at long run-lengths in the HD

condition. The increase in the subjects’ learning rate, and the reduction in their repetition

propensity, at these run-lengths and in this condition, are not as sharp as those of the

best-fitting model (Fig. 9). A candidate explanation of these deviations is that the subjects

hold an inexact belief on the shape of the change probability, q(τ), as a function of the

run-length. The analysis of the IncorrectQ inference strategy, in Methods, examines the

case of a model subject who believes that the change probability increases more slowly

(λ < 1) than it actually does and that the average interval length is greater (T > 10) than

it actually is in our task. The learning rate of this model subject does not increase as

abruptly, and the repetition propensity does not decrease as quickly, as those of the

best-fitting model, similarly to the behavior of actual subjects (Fig. 12, middle panels).

Moreover, among the five deterministic inference strategies considered, IncorrectQ is the

best-fitting strategy, regardless of the response-selection it is combined with, and with both

model-comparison measures — NMSE (Table 1) and BIC (Fig. 11). This suggests that,

aside from the stochastic compression of the posterior, the subjects’ deviations from
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optimality may also result, to some extent, from an incorrect belief in the temporal

structure of the signal.

Inference through sample-based representations of probability

The ParticleFilter strategy is noteworthy in a number of respects. First, it is our

best-fitting model. Second, it constitutes a generic approach to inference; it was reported

to account successfully for other inference and learning behaviors, such as category learning

(Sanborn, Griffiths, & Navarro, 2006, 2010), conditioning in pigeons (Daw & Courville,

2008), sentence processing (Levy et al., 2008), hidden state inference (Brown & Steyvers,

2009), and visual tracking of multiple objects (Vul, Frank, Tenenbaum, & Alvarez, 2009).

Third, out of all the models we consider, it is by far the less demanding on memory: with

nine particles, one needs to store 27 numbers (for s, τ , and the weight of each particle) in

memory. As a comparison, the optimal model stores a discretized probability distribution

over the (s, τ) space, which amounts to about 16000 numbers (the optimal posterior could

be well approximated with less memory-intensive methods, but this would require further

hypotheses.) Previous uses of particle-filter methods in the context of a variety of cognitive

tasks yielded best-fitting numbers of particles which ranged from one to several hundreds:

from one to 400 particles, with a mean of 56, in Brown and Steyvers (2009); 130 particles

(but 70 when subjects simultaneously perform a distractor task) in Thaker, Tenenbaum,

and Gershman (2017); around 20 particles in Levy et al. (2008); 20 particles in Glaze et al.

(2018); and as few as one particle in Daw and Courville (2008) and Sanborn et al. (2010).

In addition, Bramley, Dayan, Griffiths, and Lagnado (2017) consider only the case of a

single particle. We note that our analysis of the ParticleFilter inference strategy, detailed

in Methods, reveals that a model with just one particle fails to reproduce the decreasing

learning rates, in the HI condition, and the smile shape of the learning rates, in the HD

condition, while models with two or more particles do capture these behavioral trends (Fig.

15B). Hence, in contrast to the last three studies cited, we find that a particle-filter model
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with a single particle is qualitatively inconsistent with the behavior of human subjects, at

least in the context of our task.

A fourth aspect of particle filters is that they provide a natural interpretation of the high

repetition propensity observed in subjects (Fig. 5B). As the support of the probability

distribution is reduced to NP = 9 points on the (s, τ) plane, there is a fair chance that the

posterior-maximizing particle at trial t, (st, τt), remains the posterior-maximizing particle

at trial t+ 1. Hence, the response st is likely to be repeated. In a similar spirit, particle

filters have been shown to account for order effects in category learning (Sanborn et al.,

2010) and observations about online sentence comprehension (such as the processing of

‘garden-path sentences’ (Levy et al., 2008)).

The success of particle filters, also known as Sequential Monte Carlo method, in

accounting for human behavior in an online inference task adds to a growing literature on

sample-based representations in cognitive processes (Gershman et al., 2012; Goodman

et al., 2008; Moreno-Bote et al., 2011; Vul et al., 2014). Monte Carlo methods, which

approximate probability distributions with sets of samples, constitute a major element of a

family of techniques used in machine learning to address a wide range of problems

(inference, optimization, numerical integration, etc); they have also been put forth as

candidate cognitive algorithms (Gershman & Beck, 2016; Sanborn, 2015). Moreover, they

account for a range of cognitive biases in the laboratory, such as base-rate neglect,

conjunction fallacy, and the unpacking effect, as well as for human performance in complex,

real-world tasks, and specific observations such as response variability and autocorrelation

in perception and reasoning tasks (Gershman et al., 2012; Sanborn & Chater, 2016). At

the implementation level, sample-based representations are well suited to learning in neural

networks (Fiser, Berkes, Orbán, & Lengyel, 2010). Here, the variability in neural activity

can be interpreted in terms of sampling-based representations of probability (Buesing, Bill,

Nessler, & Maass, 2011; Fiser et al., 2010; Gershman et al., 2012; Hoyer & Hyvärinen,

2003), and a number of neural network models performing probability sampling have been
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proposed (Aitchison & Lengyel, 2016; Hennequin, Aitchison, & Lengyel, 2014; Moreno-Bote

et al., 2011; Savin & Denève, 2014; Shi & Griffiths, 2009).

Methods

Details of the behavioral task

The computer-based task was programmed and run with Psychopy (Peirce, 2009). In

this task, white dots appeared on a horizontal line in the middle of a grey screen. Subjects

were told that these white dots were snowballs thrown by a hidden person, the ‘enemy’

(also located on the horizontal line). The horizontal location of a snowball was the

stimulus, xt, and the position of the hidden person was the state, st. The state space was

arbitrarily chosen to be [0, 300]; this scale did not appear on the screen. By clicking with a

mouse (whose pointer moved on the horizontal axis only), subjects could indicate where

they thought the hidden person was (i.e., give their estimate, ŝt, of the state). The time of

response was not constrained. A green dot provided a visual feedback of the location of the

click. After 100ms, a new white dot appeared, starting the next trial (Fig. 1A-B). If a

subject’s ‘shot’ was within a fixed distance around the state (the radius of the enemy), the

subject was rewarded with 1 point. If the shot was ‘outside the enemy’ but within a

distance equal to twice the enemy radius, the reward was 0.25 point (Fig. 1E). Otherwise,

the reward was zero. Subjects were not informed of the reward immediately after each

shot, as this would have provided additional information on the location of the state. The

total score was given every 100 trials, to allow for an assessment of average

self-performance and to foster motivation.

Subjects

We ran the computer-based task on 30 paid subjects; all gave informed consent. The

study was approved by Princeton University’s Institutional Review Board for Human

Subjects. The sample size was determined so as to be comparable to that used in similar
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experiments (Nassar et al., 2012; Nassar et al., 2010). Four subjects performed significantly

worse than the other ones: their average error, defined as the absolute difference between

their estimate and the state, |ŝt − st|, was 10.4 (standard deviation (s.d.): 0.93), while the

average error of the other 26 subjects was 6.5 (s.d.: 0.62). Because of this difference of

more than 5 standard deviations, these four subjects were excluded from the analyses.

Hence, a total of 26 subjects were included in the analyses. Our conclusion remain

unchanged if all 30 subjects are included in the analyses (see Supplementary Fig. B4).

Details of the signal

The stimulus, xt, was generated around the state, st, according to the likelihood

probability, g(xt|st), which was chosen to be triangular, centered at st, and of half-width

20. The state, st, was piecewise-constant with respect to time, i.e., constant in the absence

of a change point. In the HI condition, the probability of a change point, qt, was constant

and equal to 10%. In the HD condition, qt depended on the run-length, τt, defined as the

number of trials since the last change point, and had a sigmoid shape:

qt(τt) = 1/(1 + e−(τt−10)). At τt = 0 (i.e., immediately after a change point), the probability

of another change point was very small. Six trials after a change point it was still small,

less than 2%, before growing appreciably (50% atτt = 10, 95% at τt = 13). This led to

more regular intervals between change points than in the HI condition, with a change point

roughly every 10 trials (Fig. 1C-D). The average number of trials between two change

points in both conditions was 10. At a change point, the state randomly jumped to a new

state, st+1, according to the state transition probability, a(st+1|st). This distribution was

chosen to be bimodal, symmetric, and centered at st (two triangles of half-width 20 each,

centered at st ± d, where d = 25, Fig. 1E). This prevented new states to be too close or too

far from the previous state, which would have made change-point detection too difficult or

too obvious.
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Training runs

All subjects did the task in both HI and HD conditions. 14 started with the HD task

and 16 started with the HI task (no significant difference were found in results between

these two groups). Subjects were not told the specificity of each situation. An explanatory

text indicated that there were “differences” between each condition but no further

indications were given. Each condition started with a series of explanations and tutorial

runs. In a first tutorial run, the enemy (i.e., the state) was visible and moved according to

the current (HI or HD) condition, and successive snowballs appeared without any action

from the user (as in passive video viewing). In a second run, the enemy was still visible and

subjects had to click at each trial, after which the next snowball would appear. This run

was a very simple version of the actual task, because subjects were seeing the state. In a

third run, the half-width of the triangular likelihood, g(xt|st), was 10, i.e., half the value it

took in the actual task. In this run, the state was not visible, except after a change point:

in the occurrence of a change point, the position of the state before the change point was

shown, along with the shots of the subject since the previous change point. This run had

two goals: first, to emphasize the timing of change points, and, second, to allow for

self-performance assessment and to illustrate that a strategy consisting in ‘following the

white dots’, i.e., clicking on the stimuli, was inefficient. A fourth tutorial run was an ‘easy’

version of the actual task: the state was always hidden, but the likelihood, g, had a

half-width of 10. A fifth and last tutorial run reproduced the third run, but with the

likelihood, g, with half-width 20. During the task, 15 subjects (7 amongst the HD-first

group and 8 amongst the HI-first group) were also shown the positions of past stimuli, as

white dots with decreasing contrast, gradually merging with the grey background (Fig. 1).

The other 15 subjects were not shown past stimuli. No significant differences were found in

data between the two groups. The number of stimuli presented in the tutorial runs totaled

297 for each condition. During the actual task there were 1000 trials in each condition,

leading to a total of 2000 data points per subjects.
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Empirical run-length

As subjects did not know the true run-length, τ , we computed an empirical run-length,

τ̃ , based on the responses of subjects. Whereas the true run-length is defined as the

number of trials since the last change point, the empirical run-length is defined as the

number of trials since the last ‘large correction’; a large correction is defined as a correction

with absolute value larger than the 90th percentile of corrections. This percentile level is

chosen in relation to the average frequency of change points, 1 for every 10 trials, in both

HI and HD conditions. In some occasions, a subject “misses” a change point: the

run-length and the empirical run-length, consequently, differ. For instance, τ̃ = 10, while

τ = 0 or 1. In such a case, because the change point did occur, the subject experiences a

large surprise and is thus likely to subsequently opt for a large correction, i.e., to increase

the learning rate. In the HD condition, because of the temporal statistics of change points,

this situation is more likely to occur at empirical run-lengths around 10. Hence, this effect

could bias the learning rates to higher values at these empirical run-lengths, in this

condition. This effect, however, does not originate in the inference process, but rather in

the temporal statistics of the HD signal. In other words, even an observer whose inference

algorithm is not adapted to the HD condition would have higher learning rates at empirical

run-lengths around 10. In the results presented, we removed all trials with a (true)

run-length of 0 or 1, in order to avoid this artifact.

Regression of the learning rate on run-lengths

In order to provide statistical evidence of the smile shape of the learning rates in the HD

condition (and the absence of a smile shape in the HI condition), we regress the learning

rate on the run-lengths, with a quadratic term. For the HD condition, we find that the

coefficient for the quadratic term is positive and significantly different from zero (0.0046;

p-value = 1e-11). For the HI condition, this coefficient is smaller and we cannot reject at a

significance level of 5% the null hypothesis that it is zero (0.0013; p-value = 0.068).
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Moreover, the difference between the two quadratic coefficients is statistically significant

(F-test p-value = 5.7e-4). The coefficient for the linear term is significantly negative

(p-value < 1e-2).

Bayesian update equation

We derive the Bayesian update equation for a general case with q = q(st, τt),

p(xt|st, τt) = g(xt|st, τt), and p(st+1|τt+1 = 0, st, τt) = a(st+1|st, τt), which includes the case

used in our task with q = q(τt), g = g(xt|st), and a = a(st+1|st).

Our goal is to obtain an update rule for the posterior, pt(s, τ |x1:t) upon the observation

of a new stimulus, xt+1. Bayes’ rule yields

pt+1(s, τ |x1:t+1) = 1
Zt+1

g(xt+1|s, τ)pt+1(s, τ |x1:t), (4)

where Zt+1 = pt+1(xt+1|x1:t) is a normalization constant. The third term in this product

can be written as

pt+1(s, τ |x1:t) =
∑
τt

∫
st

pt+1(s, τ |st, τt)pt(st, τt|x1:t)dst. (5)

The transition probability, pt+1(s, τ |st, τt), is determined by q and a. An absence of change

point occurs with probability 1− q(st, τt), and in such a case a state (st, τt) evolves into the

state (st+1 = st, τt+1 = τt + 1). In the case of a change point, an event which occurs with

probability q(st, τt), possible states at t+ 1 have the form (st+1, τt+1 = 0). Hence the

transition probability from (st, τt) to (s, τ) at t+ 1 is given by

pt+1(s, τ |st, τt) = 1τ=0 q(st, τt)a(st, τt, s) + 1τ=τt+1,s=st(1− q(st, τt)). (6)
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Combining Equations (4), (5), and (6), we obtain the Bayesian update equation, as

pt+1(s, τ |x1:t+1) = 1
Zt+1

g(xt+1|s, τ)


1τ=0
∑
τt

∫
st

q(st, τt)a(st, τt, s)pt(st, τt|x1:t)dst

+1τ>0 (1− q(s, τ − 1))pt(s, τ − 1|x1:t)
.

(7)

In the special case with q = q(τt), a = a(st+1|st), and g = g(xt|st), we obtain the slightly

simpler Eq. (2). In addition, we note that, in the HI condition, the change probability is

constant, q(τ) = q; in this condition, we can marginalize over the variable τ to obtain a

closed recursion over the state posterior, as

pt+1(s|x1:t+1) = 1
Zt+1

g(xt+1|s)
q ∫

st

a(s|st)pt(st|x1:t)dst + (1− q)pt(s|x1:t)
. (8)

Derivation of the suboptimal models and analysis of their behaviors

IncorrectQ model. In the IncorrectQ model, the two quantities governing the shape

of q(τ), λ and T , are treated as free parameters, and we explore how varying these

parameters impacts behavior, as compared to the OptimalInference model.

Keeping T constant at 10, and varying λ from 0 (HI condition) to 1 (HD condition), we

find that the learning rate as a function of the run-length gradually morphs from the HI,

monotonically decreasing curve, to the HD, non-monotonic and ‘smile-shaped’ curve (Fig.

12B). A similar behavior obtains at any fixed value of T , with the difference that the

minimum of the HD curve is shifted to smaller τ for smaller T , and to larger τ for larger T .

In other words, for fixed T , a higher value of λ, i.e., a sharper slope of the change

probability, leads to a higher learning rate at run-lengths comparable to T . (Note that, for

T = 20, the minimum of the learning rate occurs at run-lengths larger than 10, hence the

non-monotonicity is not apparent in Fig. 12B.) Conversely, for a fixed λ > 0, the minimum
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of the learning rate occurs at a run-length comparable to T which, precisely, determines

when change points become likely. Finally, for λ = 0, the change probability is constant

and there is no increase in the learning rates; these are, however, slightly higher for smaller

T , because in that case the change probability, q = 1/T , is larger, so a new stimulus is

more likely to be interpreted as stemming from a change point.

A subtlety that any analysis has to grapple with is that the statistics of responses

depend not only on the inference process, but also, of course, on the statistics of the

stimuli. To tease the two effects apart, for each IncorrectQ model subjects (with differing

values of λ and of T ) we computed the response behavior in presence of either signal: the

HI signal, characterized by a constant change probability, q = 0.1, and the HD signal,

characterized by a change probability, q(τ), varying with the run-length as a sigmoid with

parameters λ = 1 and T = 10. We note that the impact on behavior of changing the signal

is modest, as compared to the impact of changing the model subject’s beliefs (Fig. 12B).

This indicates that the discrepancy in human behavior in the HI and HD conditions does

not originate primarily from the statistics of the signals, but rather from the different

beliefs on the temporal statistics of the signals, held by the subjects.

Paralleling the behavior of learning rates, the repetition propensity in the HD condition

peaks earlier or later depending on the value of T , and its shallowness depend on the value

of λ (Fig. 12C). A belief in a shorter average inter-change-point interval, T , leads to a

smaller repetition propensity: assuming frequent change points enhances the frequency of

changes in one’s estimate.

Human subjects correctly believe that q is not constant in the HD condition, and they

use this belief in their inference process, but they may hold an inexact representation of the

shape of q(τ) (Fig. 12). This, however, is not sufficient to capture data quantitatively:

subjects exhibit both higher learning rates and more frequent repetitions than in the

optimal model (Fig. 5), an observation that cannot be explained by manipulating λ and T

in the IncorrectQ model; in the latter, high learning rates are accompanied by lower
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repetition propensity, and vice versa. Thus, and letting alone the issue of variability, an

erroneous belief on the change probability, q(τ), is insufficient to model experimental data.
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Figure 12 . Illustration of the IncorrectQ model with various beliefs on the shape
of the change probability. A. Examples of beliefs in IncorrectQ models. Change
probability, q(τ) (top line), and resulting inter-change-point interval distribution (bottom
line), for constant q (left column), sigmoid-shaped q(τ) with slope parameter λ = 0.5
(middle) and λ = 1 (right); and for average interval length, T , of 6 (dashed line), 10 (solid),
and 20 (dotted). The ‘true’ HI signals used in the task correspond to λ = 0, T = 10, while
the HD signals correspond to λ = 1, T = 10. B, C. Average learning rate (B) and
repetition propensity (C) as a function of the run-length, in IncorrectQ models performing
optimal inference with various beliefs on the change probability, q(τ), and presented with
HI signals (blue) and HD signals (orange).

τMean model.

Derivation. This model is a generalization of the model introduced by Nassar et al.

(2010). The approximate joint probability of the state and the run-length, which we denote

by p̃t(s, τ |x1:t), is assumed, in this model, to vanish at all values of the run-length, except

for one, which we call the ‘approximate expected run-length’ and which we denote by τ̄t.
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Hence,

p̃t(s, τ |x1:t) = δτ,τ̄t p̃t(s, τ̄t|x1:t), (9)

where δτ,τ̄t is the Kronecker delta. As in the optimal model (see Eq. (2)), we use Baye’s

rule and the parameters of the task to derive the update equation, as

pt+1(s, τ |x1:t+1) = 1
Zt+1

g(xt+1|s)
1τ=0 q(τ̄t)

∫
st

a(s|st)pt(st, τ̄t|x1:t)dst

+1τ=τ̄t+1 (1− q(τ̄t))pt(s, τ̄t|x1:t)
.

(10)

This distribution is non-vanishing for two values of the run-length, 0 and τ̄t + 1, which

correspond to the two possible scenarios: with and without a change point at trial t. We

use this distribution to compute the approximate expected run-length at trial t+ 1, τ̄t+1,

and the approximate posterior at trial t+ 1, p̃t+1(s, τ |x1:t+1). First, we obtain the

probability of a change point at trial t+ 1,

Ωt+1 ≡ pt+1(τ = 0|x1:t+1) = 1
Zt+1

q(τ̄t)
∫
s
g(xt+1|s)

∫
st

a(s|st)pt(st, τ̄t|x1:t)dstds, (11)

and we use it to compute the approximate expected run-length at trial t+ 1:

τ̄t+1 = Ωt+1 · 0 + (1− Ωt+1)(τ̄t + 1). (12)

Second, we approximate the posterior (Eq. (10)) by marginalizing it over the run-lengths,

and multiplying the result by a Kronecker delta which takes the value 1 at τ̄t+1:

pt+1(s|x1:t+1) =
∑
τ

pt+1(s, τ |x1:t+1) = pt+1(s, τ = 0|x1:t+1) + pt+1(s, τ = τ̄t + 1|x1:t+1),

p̃t+1(s, τ |x1:t+1) = δτ,τ̄t+1pt+1(s|x1:t+1).
(13)

This model has no parameter.
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Behavior. While the optimal marginal distribution of the run-lengths, pt(τ |x1:t),

spans the whole range of possible values of the run-length, it is approximated, in the

τMean model, by a delta function on a single value, τ̄t. In the HI condition, the change

probability, q, does not depend on the run-length, τ ; the approximate joint distribution

evaluated at τ = τ̄t, p̃t(s, τ̄t|x1:t), is equal to the optimal posterior distribution on the state,

pt(s|x1:t). (Compare Eq. (8) to the combination of Eqs. (10) and (13).) As a result, the

τMean model computes the optimal posterior on the state, and, thus, the responses in this

model are the same as those in the optimal model, i.e., the τMean model is optimal in the

HI condition. In the HD condition, by contrast, the change probability, q(τ), depends on

the run-length. The τMean model evaluates this function at only one run-length, τ̄t, an

approximation of the mean run-length; as compared to the optimal model, it fails to

capture fully the consequences of the dependence of the change probability on the

run-length (Fig. 1D). The learning rates in this model are higher than the optimal ones for

short run-lengths, and lower than the optimal ones for long run-lengths (Fig. 13B); and the

repetition propensities are lower than the optimal ones for short run-lengths, and higher

than the optimal ones for long run-lengths (Fig. 13C).

τNodes model.

Derivation. This model generalizes the one introduced by Wilson et al. (2013). In

this paper, the authors interpret a change-point setting similar to ours as a

‘message-passing’ graph where run-lengths are nodes, weighted by their marginal

probability pt(τ |x1:t), edges are characterized by the change probability, q, and ‘messages’

are passed along edges from one node to another. More precisely, we compute the marginal

probability of the run-length, using Eqs. (5) and (6):

pt+1(τ |x1:t) =


∑
τt
q(τt)pt(τt|x1:t) if τ = 0

(1− q(τ − 1))pt(τ − 1|x1:t) otherwise
. (14)

Hence, at trial t+ 1, the weight of a node τ (i.e., the marginal probability of the
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corresponding run-length) is equal, if τ = 0, to a sum of the marginal probabilities of all

nodes at trial t, τt, weighted by their corresponding change probabilities, q(τt); and, if

τ > 0, it is the probability of the node τ − 1, at trial t, weighted by the probability that

there was no change, 1− q(τ − 1). Taking a different view, one can reformulate these

weighted sums of probabilities as transfers of probability masses, as follows. Each node τ

sends two ‘messages’: a ‘no-change-point’ message is sent to node τ + 1 so as to set its

weight to (1− q(τ))pt(τ |x1:t), and a ‘change-point’ message is sent to node τ = 0 to

increase its probability by q(τ)pt(τ |x1:t). This is the message-passing algorithm. Wilson

et al. (2013) assume a change probability, q, that is constant; a likelihood, g, which belongs

to the exponential family; and a state transition probability, a(st+1), that does not depend

on the previous state, st, and which is a conjugate prior of the likelihood. They show that

in this case each node can be seen as implementing a delta-rule, and the optimal Bayesian

model amounts to the weighted sum of these delta-rules.

The authors then ‘reduce’ this model by removing nodes and accordingly revise the

message-passing algorithm and each node’s update rule. We only focus on the aspects of

the model that will be used in our τNodes implementation. The set of new nodes comprises

‘virtual’ run-lengths l ∈ {l0, l1, ..., lN}. A node li, with i 6= 0, now sends three messages:

one to l0, one to the next node li+1, and one to itself. The ‘change-point’ message remains

the same as in the previous algorithm, i.e., the quantity q(li)pt(li|x1:t) is sent to l0 (i.e., this

quantity is added to the probability of this node). The ‘no-change-point’ message is now

split in two, one message being sent to the next node, li+1, and the other one being a

self-passing message (i.e., sent to itself, li). The authors seek the relative weight w(li)

assigned to the self-passing message which gives an average run-length increase of 1 (i.e.

E(lt+1|lit, no change) = li + 1). They find w(li) = li+1−li−1
li+1−li for i 6= N and w(lN) = 1. The

next node, li+1, hence receives the message (1− w(li))(1− q(li))pt(li|x1:t). With the

assumptions mentioned above on q, g, and a, the model can again be understood as ‘a

mixture of delta-rules’.
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We implement these ideas in our τNodes model. Instead of pt(s, τ |x1:t), we consider the

probability distribution pt(s, l|x1:t) and apply the same Bayesian and marginalization

equations used in Eqs. (4) and (5). The main difference of the new model resides in the

transition probability, pt+1(s, l|st, lt), which becomes

pt+1(s, l|st, lt) = 1l=l0 q(st, lt)a(st, τt, s)

+1l=lt,s=st(1− q(st, lt))w(lt)

+1l=lt+1,s=st(1− q(st, lt))(1− w(lt)).

(15)

Combining Eq. (15) to Eqs. (4) and (5) adapted with l, we obtain an update equation

similar to the full Bayesian update equation (Eq. (7)), with an additional term

corresponding to the ability of nodes for self-passing messages. The model is parameterized

by the number of nodes, Nτ , but also by the values of the nodes. We chose the possible

values of the nodes to be in the set {0, 2.5, 5, 7.5, 10, 12.5}. When fitting the model for a

given Nτ , all the models corresponding to every possible choice of Nτ nodes within these

values, were computed, and the best-fitting one was chosen.

Behavior. In the HI condition, the model computes the optimal posterior on the

state, pt(s|x1:t). Thus, as for the τMean model above, the responses in the τNodes model

are the same as those in the optimal model, in the HI condition. In the HD condition, the

greater the number of nodes, the more faithfully the model approximates optimal behavior

(Fig. 13B,C). The learning rates are higher than the optimal ones for short run-lengths,

and lower than the optimal ones for long run-lengths (Fig. 13B). The repetition

propensities are higher than the optimal ones for long run-lengths; for short run-lengths,

they are appreciably closer to the optimal ones, in the model with five nodes, than in the

model with one node (Fig. 13C).

τMaxProb model.
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Figure 13 . Behavior of the limited-memory models, as compared to the
OptimalInference model. A. Schematic illustration of the marginal distribution of the
run-length, p(τ), in each model considered. The OptimalInference model assigns a
probability to each possible value of the run-length, τ , and optimally updates that
distribution upon receiving stimuli (first panel). The τMean model uses a single run-length
which tracks the inferred expected value, 〈τ〉 (second panel). The τNodes model holds in
memory a limited number, Nτ , of fixed hypotheses on τ (“nodes”), and updates a
probability distribution over these nodes; Nτ = 2 in this example (third panel). The
τMaxProb model reduces the marginal distribution by discarding less likely run-lengths; in
this example, 2 run-lengths are stored in memory at any given time (fourth panel). B, C.
Average learning rate (B), and repetition propensity (C), as functions of the run-length, in
the OptimalInference model, the τMean model, and the τNodes model with Nτ = 1, 2, and
5, in the HD condition. The HI condition is not displayed as the τMean and τNodes
models do not differ from the OptimalInference model in this condition. (Continued on the
following page.)
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Figure 13 . D, E. Average learning rate (D), and repetition propensity (E), as functions of
the run-length, in the OptimalInference model and the τMaxProb model with Nτ = 1, 2,
and 5, in the HI condition (top panels) and in the HD condition (bottom panels). F,G.
Normalized Mean Squared Error relative to the learning rate (F) and the repetition
propensity (G), as compared to the OptimalInference model, for the τMean model, which
has no free parameter, and for the τNodes and τMaxProb models with Nτ = 1 to 5.

Derivation. In the τMaxProb model, we assume that we have, at trial t, an

approximation of the joint distribution of the state and the run-length, which we denote by

p̃t(s, τ |x1:t), and we assume that the approximate marginal distribution of the run-lengths,

p̃t(τ |x1:t), is non-vanishing for no more than Nτ values of the run-length. Upon receiving a

new stimulus, we perform a Bayesian update of the approximate joint distribution,

p̃t(s, τ |x1:t), as in Eq. (2), and obtain the posterior, pt+1(s, τ |x1:t+1), from which we derive

the marginal distribution of the run-lengths, pt+1(τ |x1:t+1). If, at trial t, the run-length

takes a given value, τt, then, at trial t+ 1, it can only take one of two values: 0 (if there is

a change point) or τt + 1 (if there is no change point). Hence, if the marginal distribution

at trial t, p̃t(τ |x1:t), is non-vanishing for at most Nτ values, as we assume, then the updated

distribution, pt+1(τ |x1:t+1), is non-vanishing for at most Nτ + 1 values. In the case that this

distribution is non-vanishing for less than Nτ + 1 values, we do not perform further

approximations, at this stage. In the other, more generic case, i.e., if Nτ + 1 values of the

run-length have a non-zero probability, then we identify the most unlikely run-length,

τ ∗ = arg min pt+1(τ |x1:t+1), and we approximate the posterior as

p̃t+1(s, τ |x1:t+1) =


0 if τ = τ ∗

1
Z
pt+1(s, τ |x1:t+1) if τ 6= τ ∗

, (16)

where Z is a normalization constant equal to 1− pt+1(τ ∗|x1:t+1).

Behavior. Even with Nτ = 1 (one memory slot), the τMaxProb model captures

qualitatively the optimal, high learning rates for large run-lengths, in the HD condition

(Fig. 13D, second panel, dotted line). However, in other situations (HD condition for
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shorter run-lengths, and HI condition for all run-lengths), change points are not likely

(q < 0.5). Hence, in most cases, a vanishing run-length, i.e., the hypothesis of a change

point, minimizes the marginal distribution, pt+1(τ |x1:t+1), and its probability vanishes in

our approximation: p̃t+1(τ = 0|x1:t+1) = 0. In other words, change points tend to go by

undetected. Consequently, suppressed learning rates and enhanced repetition propensity

obtain in a model with a single memory slot (Fig. 13D, E).

To compare our suboptimal models to the OptimalInference model, we compute their

normalized mean squared errors (NMSE) with regard to the responses of the optimal

model (as opposed to the responses of the human subjects, as we do in the main text).

With a NMSE for learning rates at 0.21, the τMaxProb model with Nτ = 1 is closer to

optimality than the τMean model (NMSE of 0.88) and the τNodes model with one node

(NMSE of 0.95), in the HD condition (Fig. 13F). The high repetition propensity of the

τMaxProb model, however, leads to a larger error for this measure (NMSE of 1.81), as

compared to the τMean (0.14) and τNodes (0.61) models (Fig. 13G). Adding a second

memory slot allows for a better approximation of the marginal distribution, pt(τ |x1:t), in

the τMaxProb model, as demonstrated by its close-to-optimal behavior with Nτ = 2, both

in terms of learning rates (NMSE of 0.043; compare to the τNodes model: 0.89) and

repetition propensity (0.097; compare to the τNodes model: 0.29) (Fig. 13F, G).

τSample model. The τSample model is identical to the τMaxProb model, except that

the run-length τ ∗ is chosen randomly, i.e., sampled from the distribution

[1− pt+1(τ |x1:t+1)] /zt+1, where zt+1 is a normalization factor. The stochastic nature of the

update rule on the probable run-lengths influences the learning rate and the repetition

propensity. In the case Nτ = 1, there is, at trial t, a single run-length, τt, with

non-vanishing probability. At trial t+ 1, the model subject chooses randomly between the

no-change-point scenario, with τt+1 = τt + 1, and the change-point scenario, with τt+1 = 0.

Hence, the model can incur ‘false positives’ (a change-point scenario is opted for in the

absence of a true change point) and ‘false negatives’ (a true change point goes undetected
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by the model subject), and these occur stochastically. In most trials, the change-point

scenario is less likely than the no-change-point scenario; in the τMaxProb model, the

former would be eliminated, but it occurs with some probability in the τSample model,

leading to false positives, which induce higher learning rates. Similarly, average learning

rates of the τSample model are higher than the optimal ones (Fig. 14A). The false

negatives, in which change points go undetected, result, as in the τMaxProb model, in

higher repetition propensities (Fig. 14C). With increasing memory capacity, Nτ , the

behavior of the model approaches optimality, as reflected in the decrease of the NMSEs for

the learning rates (Fig. 14B) and the repetition propensities (Fig. 14D).

A qualitatively new aspect brought in by the τSample model is the stochasticity in the

inference step, which is reflected in behavioral variability and measured by the standard

deviation of the responses of a model subject. Quantitatively, false negatives have a large

impact on the behavioral variability. A model subject can however correct for a false

negative during the few trials that follow a true change point, i.e., at short run-lengths.

This occurs randomly, in the τSample model, resulting in variability in responses. At

longer run-lengths, the posterior probability of a change point, pt(τ = 0|x1:t), is dominated

by the shape of the change probability, q(τ), rather than by the observed evidence. In the

HI condition, q is constant; hence, the variability reaches a plateau for run-lengths larger

than about 2 (Fig. 14E, top panel). In the HD condition, as q(τ) is an increasing function

of the run-length, the variability increases for run-lengths larger than 5, resulting in the

‘smile shape’ of the curve (Fig. 14E, bottom panel). As the parameter Nτ is increased, the

behavior of the model approaches optimality, and, correspondingly, the standard deviation

of the responses of the model subject decreases (Fig. 14F).

ParticleFilter.

Derivation. The ParticleFilter approximates the posterior by a weighted sum of delta

functions (Eq. (3)). To obtain the approximate posterior at trial t+ 1, upon receiving a

new observation, xt+1, we start by writing the Bayesian update (Eq. (2)) of the
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Figure 14 . Behavior of the τSample model, as compared to the
OptimalInference model. A, C, E. Average learning rate (A), repetition propensity
(C), and standard deviations of responses (E), as a function of run-length, in the
OptimalInference model and the τSample model with Nτ = 1, 2, and 5, in the HI condition
(top panels) and in the HD condition (bottom panels). B, D. Normalized Mean Squared
Error on learning rates (B), and on repetition propensity (D), as compared to the
OptimalInference model, for the τSample model, with Nτ = 1 to 5. F. Standard deviation
of the responses of the τSample model, as a function of Nτ .

approximate posterior at trial t, p̃t(s, τ |x1:t), as

pt+1(s, τ |x1:t+1) = 1
Zt+1

g(xt+1|s)
∑
τt

∫
st

pt+1(s, τ |st, τt)p̃t(s, τ |x1:t)dst, (17)

with the transition probability, pt+1(s, τ |st, τt), defined in Eq. (6). Injecting the expression

of the approximate posterior at trial t (Eq. (3)), we can rewrite the Bayesian update as a



HUMAN INFERENCE IN CHANGING ENVIRONMENTS 69

sum of NP functions:

pt+1(s, τ |x1:t+1) = 1
Zt+1

NP∑
i=1

witg(xt+1|s)pt+1(s, τ |sit, τ it ), (18)

where

pt+1(s, τ |sit, τ it ) =
∑
τt

∫
st

pt+1(s, τ |st, τt)δ(s− sit)δτ,τ i
t
dst. (19)

The interpretation of this form becomes apparent if we introduce, for each particle, a

probability distribution over (s, τ), defined as

πt+1(s, τ |sit, τ it , xt+1) ≡ g(xt+1|s)pt+1(s, τ |sit, τ it )
p(xt+1|sit, τ it )

, (20)

where the denominator is obtained by normalization,

p(xt+1|sit, τ it ) =
∑
τ

∫
s
g(xt+1|s)pt+1(s, τ |sit, τ it )ds. (21)

The distribution πt+1(s, τ |sit, τ it , xt+1) is none other than the Bayesian update of a single

particle (i.e., Eq. (17) with the approximate prior, p̃t(s, τ |x1:t), replaced by δ(s− sit)δτ,τ i
t
),

and the full Bayesian update is a weighted sum of these NP functions:

pt+1(s, τ |x1:t+1) =
NP∑
i=1

witp(xt+1|sit, τ it )
Zt+1

πt+1(s, τ |sit, τ it , xt+1). (22)

To complete the definition of the particle filter, we have to formulate a prescription for

selecting the NP particles at trial t+ 1. Following the literature, instead of sampling the

full Bayesian update, pt+1(s, τ |x1:t+1), we sample independently each component of the

mixture, πt+1(s, τ |sit, τ it , xt+1), to obtain the updated particles, (sit+1, τ
i
t+1). To each sample,

i.e., to each particle, is assigned the weight of the corresponding component in the mixture,

wit+1 = witp(xt+1|sit, τ it )/Zt+1. In the rare cases in which p(xt+1|sit, τ it ) = 0, i.e., if new data

invalidate particle i, and thus, πt+1(s, τ |sit, τ it , xt+1) = 0, we resample a new particle i from
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the other particles.

In practical applications of particle filters, there exists a ‘weight degeneracy’ risk,

whereby the weight of one particle may overwhelm the combined weight of the others. A

common method to mitigate this shortcoming is called ‘resampling’. It is a stochastic

method in which the particles with high weights are likely to be duplicated, while the

particles with low weights are likely to be eliminated. To achieve this, we use the

NP -dimensional categorical distribution parameterized by the NP weights of the particles,

i.e., p(j) = wjt . We sample this distribution NP times, and obtain, thus, a set of NP

indexes, {ji}NP
i=1. We use those to define the new NP particles: for each particle i, we

replace (sit, τ it ) by (sjit , τ jit ), and we set all the weights to 1/NP . In other words, the set of

particles is randomly sampled with replacement, NP times. Particles with low weights are

unlikely to survive this scheme, as compared to particles with high weights. For the sake of

simplicity, we resample at each trial.

A possible consequence of resampling is the ‘sample impoverishment’ problem, i.e., the

loss of particle diversity (all particles end up bearing the same state). A common procedure

in the particle-filter literature that addresses this problem is ‘particle rejuvenation’, which

increases the variability of particles by ‘jittering’ their parameters. Here, however, this

issue is mitigated naturally by the structure of our problem, as a new state is sampled from

the distribution a(s|st) every time a new particle carries a change-point run-length (τ = 0),

thus renewing the set of particles. In addition, introducing a rejuvenation step implies

choosing arbitrarily a transition kernel and an acceptance rule for candidate particles

(usually, the Metropolis-Hastings rule is adopted). Many kernels used in the literature

come with additional parameters. While the rejuvenation method would be an interesting

addition to our model, the performance of our implementation of the particle-filter model

does not warrant the introduction of this new layer of complexity.

Behavior. With a single particle (NP = 1), the posterior is reduced to a unique

sample, (s1
t , τ

1
t ), and, thus, the model subject has access to a single ‘hypothesis’ on the
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change probability, q(τ 1
t ). The particle can then evolve in one of two ways: either it opts,

with this probability, for a change-point scenario, in which the new stimulus, xt+1, is the

only information available on the new state, along with the prior transition probability, and

thus the learning rate is close to 1, or, with probability 1− q(τ 1
t ), a no-change-point

scenario is opted for, and the particle stays put (s1
t+1 = s1

t ), i.e., the learning rate vanishes.

As a result, when averaged over several instantiations of the particle filter, the behavior of

the learning rate as a function of run-length resembles that of the change probability, q(τ),

i.e., constant in the HI condition, and increasing in the HD condition (Fig. 15B), a

behavior qualitatively different from either that of the OptimalInference model or the

human responses. But it is sufficient to add no more than a second particle for the model

to capture the main trends in the learning rate (a decreasing learning rate in the HI

condition and smile shape in the HD condition). The NMSE drops sharply from 2.2 for

NP = 1 to less than 0.7 for NP = 2. As additional particles are included in the model, the

latter approaches optimality (the NMSE becomes less than 0.1 for NP ≥ 70) (Fig. 15C).

As mentioned, sampling in the particle filter induces variability in behavior: two particle

filters receiving the same sequence of observations do not respond with the same sequence

of estimates. Since the stochasticity stems from the sampling of an (approximate)

posterior, the resulting variability scales with the width of the posterior. As measured by

the standard deviation of responses, it decreases with the run-length, in the HI condition.

In the HD condition, it decreases at short run-lengths before increasing at longer

run-lengths (Fig. 15F). This behavior reproduces, at least qualitatively, that of the

subjects (compare to Fig. 5C). The greater the number of particles in a particle filter, the

closer the latter approximates the OptimalInference model; the standard deviation of the

responses is a decreasing function of the number of particles (Fig. 15G).

Since it operates on a low-dimensional spatial representation, the particle filter naturally

predicts a higher repetition propensity than the OptimalInference model does. More

specifically, the posterior is non-vanishing for only a finite (possibly small) set of values at
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each trial, and it is more likely than in the optimal case that the subject model’s estimate

remains unchanged following stimulus presentation. This effect is quantitatively

appreciable, and leads to repetition propensities which are multiples of those in the

OptimalInference model. Again, the repetition propensities decrease toward their optimal

values as the number of particles, NP , increases. The corresponding NMSE drops from 202

for NP = 1 to 24 for NP = 150 (Fig. 15D, E).
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Figure 15 . Illustration of the ParticleFilter model and its behavior. A.
Distribution of particles during inference, compared with the optimal posterior
distribution, for particle filters with NP =1 and 150. Each particle is a point on the (s, τ)
plane, equipped with a weight. Only the spatial components s are represented here, as
vertical bars (grey for NP = 1, green for NP = 150). Bars heights are proportional to the
corresponding weights, but some are truncated due to the choice of scale, which emphasizes
weight diversity. Upon receiving a new stimulus, xt+1 (blue), a particle i is updated by
sampling pt+1(s, τ |sit, τ it , xt+1). This may or may not involve a change point, in which case
sit+1 6= sit. B, D, F. Average learning rate (B), repetition propensity (D), and standard
deviations of responses (F), as a function of run-length, in the OptimalInference model and
the ParticleFilter model with NP = 1, 2, 10, and 100, in the HI condition (top panels) and
in the HD condition (bottom panels). C, E. Normalized Mean Squared Error on learning
rates (C), and on repetition propensity (E), as compared to the OptimalInference model,
for the ParticleFilter model, with NP = 1 to 150. G. Standard deviation of the responses
of the ParticleFilter model, as a function of number of particles, NP .
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Sampling model. In the Sampling model, instead of using the Bayesian posterior to

maximize its expected score, a model subject samples its response from the marginal

posterior on the states, pt(s|x1:t). In spite of this suboptimal selection rule, the average

learning rate as a function of the run-length has a behavior similar to the optimal one

(decreasing in the HI condition, smile-shaped in the HD condition), albeit with higher

average values (Fig. 16A). The repetition propensity also behaves similarly to the optimal

one, but is suppressed in magnitude due to sampling (Fig. 16B). Finally, as expected by

construction, the Sampling model leads to behavioral variability, and the amplitude of the

latter scales with the width of the posterior distribution (Fig. 16C).
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Figure 16 . Behavior of the Sampling model, as compared to the
OptimalInference model. A,B. Average learning rate (A), and repetition propensity
(B), in the Sampling model (dashed lines) and the OptimalInference model (solid lines), as
a function of run-length, in the HI and HD conditions. C. Standard deviations of
responses, as a function of run-length, of the Sampling model in the HI and HD conditions.
The OptimalInference model exhibits no variability.

Normalized Mean Squared Error. This section provides some details on the

Normalized Mean Squared Error we use to compare the results of the various models to the

OptimalInference model and to human data. Let yi(τ) be the value at run-length τ of the

quantity of interest i (learning rate, repetition propensity, or standard deviation of

responses), as observed in data or as resulting from the optimal model, and ŷi(τ) the value

resulting from a suboptimal model. The mean squared error is

MSE(ŷi) = 1
n

∑
τ (ŷi(τ)− yi(τ))2, where n is the number of run-lengths. We want to be



HUMAN INFERENCE IN CHANGING ENVIRONMENTS 74

able to compare the errors for different quantities of interest. By dividing the MSE by the

variance of yi, we obtain the Normalized Mean Squared Error, which is

translation-invariant and scale-invariant:

NMSEi = MSE(ŷi)
Var[yi]

=
∑
τ (ŷi(τ)− yi(τ))2∑
τ (ȳi − yi(τ))2 , (23)

where ȳi is the average yi(τ). For model fitting, we then use the average of this quantity

over the three quantities of interest (“three-error measure”) or over two of them (“two-error

measure”).

Approximate formulation of the Bayesian Information Criterion. For a given

subject in a given condition (HI or HD), we denote the probability of a sequence of T

responses, ŝ1:T , by p(ŝ1:T ). In the models with deterministic inference, the joint probability

of responses is the product of the probabilities of each of the responses in the successive

trials:

p(ŝ1:T ) =
T∏
t=1

p(ŝt). (24)

This independence condition does not hold for the models with stochastic inference. We

describe, here, how we overcome this issue in the case of the ParticleFilter model, which is

the most involved model we consider and the most costly computationally. We denote by

N the number of particles, and we define the ‘internal state’ of a particle filter at time t as

the joint states of its N particles, each defined by a location, st, a run-length, τt, and a

weight, wt. We denote the internal state by σt, and the sequence of the internal states

throughout a run with T trials by σ1:T . The probability of a subject’s sequence of responses

is expressed in terms of the probability of the sequences of internal states, as

p(ŝ1:T ) =
∑
σ1:T

p(ŝ1:T |σ1:T )p(σ1:T ). (25)
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We note that conditional on the internal state, the responses are independent:

p(ŝ1:T |σ1:T ) =
T∏
t=1

p(ŝt|σt). (26)

In other words, a single realization of the particle filter can be thought of as a model with

deterministic inference. To compute the probability of responses, however, we must

determine the distribution of the realizations of the internal states of the particle filters,

p(σ1:T ). The support of this distribution is the Cartesian product of the NT internal states

of the particle filter, and, hence, its size grows exponentially with NT . Estimating a

probability distribution over this space seems computationally intractable; we can,

however, carry out an approximate calculation of the probability distribution.

Our method of approximation relies on a Monte-Carlo estimation: we run M = 500

simulations of the inference model (ParticleFilter or τSample), and consequently we obtain

M points σ1:T in the space of possible sequences of internal states. For each realization of

the internal state, we know the probability distribution of the response, conditional on the

state, p(ŝt|σt). A Monte-Carlo approximation of the probability of a sequence of T

responses, p̃(ŝ1:T ), is then obtained as

p̃(ŝ1:T ) = 1
M

∑
σ1:T

p(ŝ1:T |σ1:T ), (27)

i.e.,

p̃(ŝ1:T ) = 1
M

∑
σ1:T

T∏
t=1

p(ŝt|σt), (28)

where the sum is taken over the M sampled sequences of internal states. This empirical

approximation is satisfactory provided M is sufficiently large, so as to overcome the

exponential growth of the number of possible sequences.

For any sampled sequence of internal states, σ1:T , it is extremely likely that at least one

response, ŝt, has vanishingly small probability given the corresponding internal state, σt,
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i.e., p(ŝt|σt) ≈ 0. In other words, given a sequence of responses, ŝ1:T , it is extremely

unlikely that any one of M sequences of internal states produces ŝ1:T , i.e., it is prohibitively

improbable that any one of M sequences of internal states account simultaneously for 1000

responses. Thus, if we carry out the MonteCarlo approximation naively, we underestimate

severely the likelihood of the data. (We emphasize that, in that case, the low value of the

likelihood does not reflect an inherent inability of the model to account for the data, but

rather the poor sampling of the internal states in the model.)

We can circumvent this practical problem by dividing our experimental runs into shorter

sequences: while our sample is too small for obtaining a useful approximation of the

density of possible sequences of 1000 successive internal states, we can treat this density

over shorter sequences. In the extreme case, we can consider the

(Monte-Carlo-approximated) likelihood of just one response, ŝt, at a trial t:

p̃(ŝt) = 1
M

∑
σ1:T

p(ŝt|σt). (29)

Here, the M samples, σ1:T , are used to estimate a one-dimensional density, instead of a

1000-dimensional density. The joint likelihood of all responses can then be approximated

as the product of the likelihoods of each response, i.e.,

p̃(ŝ1:T ) ≈
T∏
t=1

p̃(ŝt). (30)

This approximation, however, in effect makes the crude assumption that successive

responses are independent, and thus neglects the sequential dependence in responses that a

model may predict. For instance, this approximation vastly underestimates the likelihood

of a model that correctly predicts an appreciable probability of repetitions.

In order to obtain an approximation of the likelihood that takes into account the

sequential dependence of responses, and which can be computed on the basis of M samples,
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we choose to compute the likelihood of responses over sequences of 10 successive trials,

p̃(ŝt:t+9) = 1
M

∑
σ1:T

p(ŝt:t+9|σt:t+9). (31)

We fit the models by evaluating how well they reproduce the responses in all the

10-trial-long sequences. More precisely, we associate to each model a BIC calculated as

BIC = −2 ln
 ∏
t=1,11,...

p̃(ŝt:t+9)
 + k lnn, (32)

where k is the number of parameters in the model under consideration, and n is the

number of data points. The specific choice of sequences with 10 trials is arbitrary; in our

analyses, we repeated the calculations for different choices, which yielded comparable

results. We chose to illustrate this choice as it corresponds to sequences no shorter than

the mean inter-change-point duration, that optimizes the precision of the approximation.

We note that our approximation of the ParticleFilter model’s BIC could be interpreted

as a (possibly still approximate) calculation of the BIC of a different model. Specifically,

the latter would include a particular form of a particle-rejuvenation procedure in which all

the particles are replaced, every 10 trials, by as many new particles, each randomly

sampled from the distribution of possible particles, at these trials. The rejuvenation kernel

would thus be independent of the rejuvenated particle (a possibility considered in the

particle-filter literature, see Chopin, 2002), and the acceptance rate would be equal to 1,

each 10 trials, and to 0 at other trials; thus, it would also be independent of the particle

(which is at odds with the usual form of the rejuvenation procedures introduced in the

literature).

Rational-inattention models and models with fixed repetition probability.

The rational-inattention models we present are inspired by the model introduced by Khaw

et al., 2017. We adopt their notation for the new quantities introduced here to describe the

response-selection process. The major new ingredient in this model is that the subject,
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after having observed a sequence of stimuli, x1:t, is assumed to choose, first, whether to

adjust or to repeat the current estimate (the ‘repetition variable’); the repetition variable is

a Bernoulli random variable parameterized by the probability of adjusting, denoted by

Λt(x1:t, ŝt−1) (and the probability of a repetition is thus 1− Λt(x1:t, ŝt−1)). Second,

conditional on adjusting, the subject randomly chooses a new estimate (the ‘location

variable’), sampled from a distribution which we denote by µt(ŝt|x1:t). Thus, the model

subject’s distribution of responses conditional on the observed stimuli and on the preceding

response is

p(ŝt|x1:t, ŝt−1) = (1− Λt(x1:t, ŝt−1))δ(ŝt − ŝt−1) + Λt(x1:t, ŝt−1)µt(ŝt|x1:t), (33)

where δ is the Dirac delta function.

Following the rational-inattention approach, we assume that the distribution of responses

conditional on the observed stimuli and on the preceding response, p(ŝt|x1:t, ŝt−1),

maximizes, under a constraint detailed below, the expected reward. Although the response

at trial t, ŝt, affects the rewards in subsequent trials, through the ensuing distributions of

responses (Eq. (33)), for the sake of calculations simplicity we will carry out a ’greedy’

optimization in the model. Specifically, we will assume that the distribution of responses

conditional on the observed stimuli and on the preceding response, p(ŝt|x1:t, ŝt−1), is

obtained by considering only the immediate reward in expectation over the state, the

response, and the sequence of past stimuli, i.e., the quantity

R̄ ≡
∫
· · ·

∫
p(x1:t)

∫
p(ŝt|x1:t, ŝt−1)

∫
pt(s|x1:t)R(ŝ, s)dsdŝtdx1 . . . dxt, (34)

where R(ŝ, s) is the reward obtained if the estimate is ŝ and the correct state is s.

In the absence of a constraint, the optimal response is obtained by maximizing the

expected reward implied by the sequence of past stimuli,
∫
pt(s|x1:t)R(ŝ, s)ds, which we

denote by r(ŝt|x1:t). We assume, however, that it is costly for the subject to choose with
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precision the repetition variable and the location variable, and this hampers the ability to

obtain this optimal estimate. Following Khaw et al., 2017, we assume that the repetition

variable (distributed according to 1− Λt(x1:t, ŝt−1)), and the location variable in trials in

which the estimate is not repeated (distributed according to µt(ŝt|x1:t)), each bear a

cognitive cost proportional to measures of the amount of information on the sequence of

stimuli involved in choosing the repetition variable and the location variable, respectively,

defined as

I1 =
∫
· · ·

∫
p(x1:t)DKL(Λt(x1:t, ŝt−1)||Λ̃)dx1 . . . dxt (35)

and I2 =
∫
· · ·

∫
p(x1:t)Λt(x1:t, ŝt−1)DKL(µt(.|x1:t)||µ̃)dx1 . . . dxt, (36)

where Λ̃ and µ̃ are the unconditional (not conditional on x1:t) probability of adjusting and

the distribution of estimates, respectively. The distributions Λt(x1:t, ŝt−1) and µt(ŝt|x1:t) are

obtained as those that maximize the quantity

R̄− ψ1I1 − ψ2I2 (37)

which expresses a trade-off between expected reward and cognitive costs, where ψ1 and ψ2

are numerical coefficients specifying the strength of the information-theoretic costs.

The solution to the optimization problem just posed is given by

µt(ŝt|x1:t) = 1
Z(x1:t)

µ̃(ŝt) exp(ψ−1
2 r(ŝt|x1:t)), (38)

and

ln Λt(x1:t, ŝt−1)
1− Λt(x1:t, ŝt−1) = ln Λ̃

1− Λ̃
+ ψ−1

1 (ψ2 lnZ(x1:t)− r(ŝt−1|x1:t)), (39)

where

Z(x1:t) =
∫
µ̃(ŝ) exp(ψ−1

2 r(ŝ|x1:t))dŝ. (40)
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The unconditional distribution of estimates, µ̃(ŝ), can be approximated by a uniform

distribution on the space of responses; for the sake of simplicity, we use this approximation

in our calculations.

We implement four variants of this model and compute their BICs (Table 2). In a first

variant, no cost weighs on the repetition variable (ψ1 = 0), but a cognitive cost prevents

the model subject from choosing the optimal response (ψ2 6= 0, Table 2, second row). By

contrast, in the second variant of the model the repetition variable is subject to a cost

(ψ1 6= 0), while the location variable is not (ψ2 = 0); the latter follows, however, a

NoisyMax response-selection strategy (Table 2, third row). (If the location variable,

instead, were optimal, the model would assign a vanishing probability to most of the

subjects’ responses, and consequently would yield an infinite BIC.) In a third variant of the

model, there are attentional costs weighing on both the repetition and the location variable

(ψ1 6= 0 and ψ2 6= 0, Table 2, fifth row). In the fourth variant of the model, the location

variable is subject to a cognitive cost (ψ2 6= 0); the repetition variable, however, is not

derived in a rational-inattention approach, but instead is random and governed by a fixed

repetition probability (the first variant, above, is a special case of this fourth variant of the

model, corresponding to a repetition probability set to zero; Table 2, sixth row). For the

sake of comparison, we implement a fifth model that combines a fixed repetition

probability with a NoisyMax strategy for the location variable (this model does not feature

any cognitive cost; Table 2, fourth row).

The five models just presented make use of the OptimalInference strategy. We

implement, in addition, five other models in which the repetition variable and the location

variable are chosen as in these five models, but the OptimalInference strategy is replaced

by the ParticleFilter inference strategy (Table 2, last column).
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Repetition Location BIC
variable variable OptimalInf. ParticleFilter

- NoisyMax 495,063 482,358
- Rational Inattention 524,719 486,217

Rational Inattention NoisyMax 445,189 439,195
Fixed repetition probability NoisyMax 445,354 437,797

Rational Inattention Rational Inattention 471,995 446,187
Fixed repetition probability Rational Inattention 472,810 446,848

Table 2. BICs of the rational-inattention models and the models with fixed
repetition probability, combined with the OptimalInference and the
ParticleFilter inference strategies.
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Appendix A

Supplementary tables: statistical tests
τ̃ 0 1 2 3 4 5 6 7 8 9 10

W .307 .448 .265 .335 .180 .072* .016** .073* .426 .160 .008***

MWU .269 .391 .281 .212 .207 .066* .034** .022** .491 .568 .006***

S .307 .448 .268 .337 .178 .070* .015** .074* .426 .158 .008***

N(HI) 454 521 613 508 461 436 411 360 318 316 240

N(HD) 603 616 707 632 637 521 499 421 387 300 231

Excluding repetitions

W .353 .421 .329 .352 .142 .042** .008*** .151 .391 .202 .034**

MWU .357 .431 .484 .170 .073* .025** .007*** .058* .343 .590 .050**

S .352 .421 .332 .353 .140 .041** .007*** .153 .391 .201 .035**

N(HI) 412 435 495 402 353 333 307 288 237 231 174

N(HD) 553 529 582 497 493 405 379 318 291 226 186
Table A1. p-values for the one-sided statistical tests of equality of the means
of the learning rates in the HI and HD conditions, for each run-length (Fig.
2C). W: Welch’s test. MWU: Mann-Whitney’s U test. S: Student’s test. The N(HI) and
N(HD) lines report the number of observations. The second half of the table reports the
same quantities when excluding all occurrences of repetitions (Suppl. Fig. B2B).
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Condition 1 Condition 2 Avg1 Avg2 W MWU S N1 N2

HI, τ̃ ∈ [5, 6] HI, τ̃ ∈ [9, 10] 0.255 0.208 .0099*** .0476** .0119** 847 556

HI, τ̃ ∈ [5, 6] HD, τ̃ ∈ [5, 6] 0.255 0.209 .0055*** .0089*** .0052*** 847 1020

HI, τ̃ ∈ [9, 10] HD, τ̃ ∈ [9, 10] 0.208 0.264 .0103** .0602* .0100*** 556 531

HD, τ̃ ∈ [5, 6] HD, τ̃ ∈ [9, 10] 0.209 0.264 .0072*** .0173** .0050*** 1020 531

Excluding repetitions

HI, τ̃ ∈ [5, 6] HI, τ̃ ∈ [9, 10] 0.338 0.285 .0203** .0780* .0233** 640 405

HI, τ̃ ∈ [5, 6] HD, τ̃ ∈ [5, 6] 0.338 0.272 .0017*** .0009*** .0016*** 640 784

HI, τ̃ ∈ [9, 10] HD, τ̃ ∈ [9, 10] 0.285 0.340 .0342** .1721 .0345** 405 412

HD, τ̃ ∈ [5, 6] HD, τ̃ ∈ [9, 10] 0.272 0.340 .0066*** .0095*** .0047*** 784 412
Table A2. Learning rates averages under various HI/HD and short/long
run-length conditions, and p-values for one-sided statistical tests of equality
of the means (Fig. 2B). The first two columns indicate the HI/HD and short/long
run-length conditions. Learning rates at trials verifying these two conditions have their
averages reported in the Avg1 and Avg2 columns. Columns W, MWU, and S provide the
p-values for the tests of equality of the means between the two conditions. W: Welch’s test.
MWU: Mann-Whitney’s U test. S: Student’s test. N1 and N2 report the number of
observations for each condition. The second half of the table reports the same quantities
when excluding all occurrences of repetitions (Suppl. Fig. B2A).
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Appendix B

Supplementary figures
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Figure B1 . Learning rates at run-lengths greater than 10. In order to curb the
fluctuations due to the decreasing amount of data at high run-lengths, we use a sliding
window of size 3 over the run-lengths (i.e., we pool together the learning rates
corresponding to three consecutive run-lengths). The number reported on the x-axis is the
center of this sliding window. In the HD condition, the learning rate, after run-length 10,
remains large and appears to increase. In the HI condition, the learning rate keeps
decreasing after run-length 10. Although presumably the learning rate in this condition
should eventually plateau and remain constant, it does not seem that our subjects reach
this stage over the run-lengths for which we have sufficient data to allow for analysis (up to
15).
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Figure B2 . Human learning rates and standard deviations of responses,
excluding all occurrences of repetitions. (A,B) as in Figs. 2B,C; (C) as in Fig. 4C.
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Figure B3 . Skewness in subjects’ responses away from the bounds of the
response range. Same analysis of the skewness as in Fig. 6B, but restricted to the trials
in which the support of the Bayesian posterior is entirely contained in the middle interval
of width half that of the state space (i.e., [75,225], to be compared to the state space,
[0,300]). In both conditions, the correlation between the skewness of the Bayesian posterior
and the empirical skewness of the subjects’ responses is positive and significant (HI:
Pearson’s r = 0.23, p = 2e-12; HD: r = 0.14, p = 4e-4).
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Figure B4 . Human learning rates, repetition propensities, and standard
deviations of responses, from the complete contingent of subjects including the
four subjects excluded from the analysis presented in the main text (see
Methods). (A) as in Fig. 2C; (B) as in Fig. 3B; (C) as in Fig. 4C.
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Figure B5 . Behavior of human subjects in the online inference tasks conducted
by Gallistel et al., 2014 (A), and Khaw et al., 2017 (B). Left panels: Learning
rates as a function of the run-lengths, in trials in which the surprise is greater than .25.
Middle panels: Repetition propensities. Right panels: Standard deviations of responses,
averaged across subjects. In these studies, the stimulus is binary and Bernoulli-distributed.
The task is to infer the parameter of the Bernoulli distribution, which is subject to change
points with a constant probability of 0.5% (to be compared to 10% in the HI condition of
our task.) Moreover, some subjects were presented several times with the same sequence of
stimuli (in different sessions). It is thus possible to examine the variability of responses
within subjects (right panels, across-subject mean of the within-subject
standard-deviations). In all panels, in order to mitigate noise, we pool together the
responses in windows of five consecutive run-lengths.


