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Arc spaces and wedge spaces for toric varieties

Introduction

The space of arcs X ∞ of an algebraic variety X was introduced by J. Nash in the 60's [START_REF] Nash | Arc structure of singularities[END_REF]. His aim was, when X is defined over a field k of characteristic zero, to recover properties of the resolutions of singularities of X from invariants of its space of arcs. His work was done just after the proof of Resolution of Singularities in characteristic zero by H. Hironaka. Nash's work was made known by H. Hironaka in the 70's and afterwards by M. Lejeune-Jalabert [START_REF] Lejeune-Jalabert | Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogénes[END_REF]. Later, in the 90's, M. Kontsevich [START_REF] Kontsevich | Lecture at Orsay[END_REF] and J. Denef and F. Loeser [START_REF] Denef | Germs of arcs on singular algebraic varieties and motivic integration[END_REF] set up a theory of motivic integration on X ∞ based on the existence of resolutions of singularities of X. Their development provided strong techniques for studying the space of arcs as a scheme.

The arc families considered by Nash, as well as the irreducible subsets of X ∞ of nonzero motivic measure considered in [START_REF] Denef | Germs of arcs on singular algebraic varieties and motivic integration[END_REF] correspond to certain fat points of the scheme X ∞ : they are stable points (3.1 in [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF]), i.e. the stability property in [START_REF] Denef | Germs of arcs on singular algebraic varieties and motivic integration[END_REF] holds in a nonempty open subset of their set of zeroes. These stable points are points of finite codimension in X ∞ , and we proved in [START_REF] Reguera | A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF] the following finiteness property: if P is a stable point, then the complete local ring O X∞,P is a Noetherian ring, i.e. has finite embedding dimension. This algebraic result led us to prove a Curve Selection Lemma in the space of arcs ( [START_REF] Reguera | A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF] corollary 4.8) that has frequently been applied in the last ten years, especially dealing with Nash's question of understanding the decomposition of the set X Sing ∞ of arcs centered in Sing X into its irreducible components. In the same direction, we have given a minimal system of coordinates of (X ∞ ) red at a stable point P and computed the embedding dimension of O X∞,P when char k = 0 ( [START_REF] Reguera | Coordinates at stable points of the space of arcs[END_REF] and [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF]). This last result was extended to positive characteristic in [START_REF] De Fernex | Differentials on the arc space[END_REF]. The technique we applied in [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF] is a study of the graded algebra associated to a divisorial valuation, following the line started in [START_REF] Spivakovsky | Valuations in function fields of surfaces[END_REF]. From this study we have also obtained in [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF] a lower bound for dim O X∞,P .

It is our purpose to understand algebraic properties of the local rings O X∞,P where P is a stable point of the space of arcs X ∞ of a variety X over a perfect field k of any characteristic. In particular, our interest in dim O X∞,P and in the property of irreducibility of O X∞,P is due to the following fact: We know that, assuming the existence of a resolution of singularities of X, the ring O X∞,P is irreducible and one dimensional if and only if for every resolution of singularities X of X, every wedge on X centered at P lifts to X and, if this holds, then P is the generic point of an irreducible component of X Sing ∞ ([26] corollary 5.12). The 1-dimensionality and irreducibility of O X∞,P has been proved to hold when P is the stable point defined by any essential valuation of a toric variety ( [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF] theorem 3.16), by nonuniruled ( [START_REF] Lejeune-Jalabert | Exceptional divisors that are not uniruled belong to the image of the Nash map[END_REF] theorem 3.3) and by terminal valuations if char k = 0 ( [START_REF] De Fernex | Terminal vauations and the Nash problem[END_REF] theorem 1.1), giving a partial answer to the Nash proposal. Here the following idea is underlying: based on our Curve Selection Lemma we have translated the question of knowing whether an essential valuation is defined by an irreducible component of X Sing ∞ into a problem of lifting wedges to a resolution of singularities of X. But there are examples of essential valuations for which this does not hold ( [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF], [START_REF] De Fernex | Three dimensional counter-examples to the Nash problem[END_REF], [START_REF] Johnson | Arc spaces of cA-type singularities[END_REF]). A natural question arises here: interpreting each irreducible component of O X∞,P as a family of arcs lifting to some morphism Y i → X, not necessarily a resolution of singularities, where i runs through a finite set.

The purpose of this article is to study higher dimensional local rings O X∞,P , where P is a stable point of X ∞ . We will give an example to show that, in general, the rings O X∞,P and O (X∞) red ,P are not catenary. Moreover, even though O X∞,P is irreducible, we will show that the complete ring O X∞,P may have irreducible components of different dimensions. We had already given examples of Noetherian 1-dimensional local rings O (X∞) red ,P which are analytically ramified ( [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] corollary 5.6), but the fact that O X∞,P is not equidimensional was not known until now. It opens a new question: understanding the analytic irreducible components of the rings O X∞,P and their geometric sense.

In this article we go back to the setting in S. Ishii and J. Kollár's work [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF] and [START_REF] Ishii | The arc space of a toric variety[END_REF]. We import valuative techniques, developed by J. Novacoski and M. Spivakovsky [START_REF] Novacoski | Reduction of local uniformization to the rank one case[END_REF] for the Local Uniformization Problem, which play an essential role in our proof. Precisely, we consider a normal toric variety X and a toric stable point P , i.e. defined by a multiple of a toric divisorial valuation, or equivalently, by a lattice element v in the cone σ defining the corresponding affine chart. Then, each chain of toric prime ideals contained in P gives rise to a (finite) partition w : v = ∑ j n j w j of v, where the w j 's are minimal lattice elements of σ and the n j 's are positive integers. Our main result (theorem 5.6) states that Spec O X∞,P has as many irreducible components as possible partitions w of v, and the dimension of the corresponding irreducible component I w is the length ∑ j n j of w. We conclude that the dimension of O X∞,P is equal to the toric heigth tcht P of P , i.e. the maximal length of chains of toric prime ideals contained in P .

Moreover, to each w we associate a toric morphism ρ w : Y w → X, where Y w is a smooth variety, and a stable point Q w of Y w ∞ whose image in X ∞ is P ; the set I w is the image of the morphism Spec O Y w ∞ ,Q w → Spec O X∞,Pv induced by ρ w ∞ . Then, every wedge centered at P lifts to some of the Y w 's. That is, we have obtained a property of lifting wedges to a finite family of regular varieties in this toric case. Applying this, a going up theorem is proved (proposition 5.3), of which a consequence is theorem 5.6. More precisely, we apply local uniformization of valuations which are composition of discrete valuations, which is a theorem due to Novacoski and Spivakovsky [START_REF] Novacoski | Reduction of local uniformization to the rank one case[END_REF], and the finiteness property of the stable points of the space of arcs of any variety [START_REF] Reguera | A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF].

As consequence of theorem 5.6, we obtain that the invariant tcht P ev , v minimal lattice element of σ and e ≥ 1, is greater or equal to the Mather-Jacobian log discrepancy of the prime divisor D v defined by v. Moreover, when X is Q-Gorenstein, we prove (theorem 6.2) that the maximum of dim O X∞ ,Pev e

, e ≥ 1, is greater or equal to a(D v ; X) and, in fact, a(D v ; X) is equal to dim I e for some e ≥ 1 and some irreducible component I of Spec O X∞,Pev . This result for toric varieties opens new questions and new ideas to study the space of arcs for more general classes of varieties.

Preliminaires

2.1.

Let k be a perfect field and let X be a variety over k, i.e. X is a reduced separated k-scheme of finite type. Given a field extension

k ⊆ K, a K-arc on X is a k-morphism Spec K[[t]] → X. Let X ∞ denote the space of arcs of X. More precisely, if, for n ∈ N, X n denotes the k-scheme of n-jets, whose K-rational points are the k-morphisms Spec K[t]/(t) n+1 → X, then X ∞ = lim ← X n .
We denote by j n : X ∞ → X n , n ≥ 0, the natural projections. The space of arcs X ∞ is a k-scheme whose K-rational points are the K-arcs on X, for any field extension k ⊆ K. Moreover, for every k-algebra A, we have a natural isomorphism [START_REF] Abhyankar | On the valuations centered in a local domain[END_REF] Hom

k (Spec A, X ∞ ) ∼ = Hom k (Spec A[[t]], X).
Given P ∈ X ∞ , with residue field κ(P ), we denote by h P : Spec κ(P )[[t]] → X the induced κ(P )-arc on X. The image P 0 in X of the closed point of Spec 

m k = Spec k[x 1 , . . . , x m ] is (A m k ) ∞ = Spec k[X 0 , X 1 , . . . , X n , . . .] where for n ≥ 0, X n = (X 1,n , . . . , X m,n ) is an m-uple of variables. For any f ∈ k[x 1 , . . . , x m ], let ∑ ∞ n=0 F n t n be the Taylor expansion of f ( ∑ n X n t n ), hence F n ∈ k[X 0 , . . . , X n ]. If X ⊆ A m k is affine, and I X ⊂ k[x 1 , . . . , x r ] is the ideal defining X in A m k , then we have X ∞ = Spec k[X 0 , X 1 , . . . , X n , . . .] / ({F n } n≥0,f ∈I X ). 2.2. If X is affine and irreducible, a point P of X ∞ is a stable point of X ∞ if there exist n 1 ∈ N, and G ∈ O X∞ \ P , G ∈ O Xn 1 such that, for n ≥ n 1 , the map X n+1 -→ X n induces a trivial fibration j n+1 (Z(P )) ∩ (X n+1 ) G -→ j n (Z(P )) ∩ (X n ) G with fiber A d k , where d = dim X, (X n ) G is the open subset X n \ Z(G)
of X n and j n (Z(P )) is the closure of j n (Z(P )) in X n with the reduced structure (3.1 in [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF], see also the stability property [START_REF] Denef | Germs of arcs on singular algebraic varieties and motivic integration[END_REF] lemma 4.1). This definition extends to a variety X, not necessarily affine and irreducible, so that the set of stable points of X ∞ is the disjoint union of the sets of stable points of the spaces of arcs of the irreducible components of X ( [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] and [START_REF] Reguera | Corrigendum: A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF]). Applying [START_REF] Denef | Germs of arcs on singular algebraic varieties and motivic integration[END_REF] Even this weaker question is still unsolved: Question 2.4. Given a variety X and a stable point P of X ∞ , is it true that dim O X∞,P = dim O X∞,P ? 2.5. We will deal with the following stable points: Let ν be a divisorial valuation on X. There exists a proper and birational morphism π : Y → X with Y normal, and a divisor E on Y such that ν = ν E is the valuation defined by E. For every e ≥ 1, let

Y eEreg ∞ := {Q ∈ Y ∞ / ν Q (I E ) = e}, where I E is the ideal defining E in an open affine subset of Reg(Y ). Then Y eEreg ∞ is an irreducible subset of Y ∞ , let N eE be the closure of π ∞ (Y eEreg ∞
), which is irreducible, and let P eE be the generic point of N eE . Note that P eE only depends on e and on the divisorial valuation ν = ν E . We have that P eE is a stable point of X ∞ ([26] proposition 4.1, see also [START_REF] Reguera | A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF] proposition 3.8).

We will also deal with wedges: Given r ∈ N, a r-dimensional K-wedge, or a

K-r-wedge is a k-morphism Φ : Spec K[[ξ, t]] → X, or equivalently (see (1)), a k-morphism φ : Spec K[[ξ]] → X ∞ , where ξ := (ξ 1 , . . . , ξ r ) are variables, that is, a K-(r -1)-wedge (resp. an arc) on X ∞ if r ≥ 2 (resp. r = 1). Given a K-r-wedge Φ, the image in X ∞ of the closed point (resp. generic point) of Spec K[[ξ]
] by φ will be called the special arc (resp. generic arc) of Φ. Note that a wedge Φ whose special arc is

P ∈ X ∞ is equivalent to a local k-morphism O X∞,P → K[[ξ]], and also to a local k-morphism O X∞,P → K[[ξ]].
3. On stable points of the space of arcs of a toric variety

3.1.

In this section we will study stable points of the space of arcs of normal toric varieties. For more details on toric varieties see [START_REF] Kempf | Toroidal embeddings I[END_REF], [START_REF] Oda | Convex bodies and algebraic geometry[END_REF], [START_REF] Fulton | Introduction to Toric Varieties[END_REF], [START_REF] Cox | Toric varieties[END_REF]. See also [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF], [START_REF] Ishii | The arc space of a toric variety[END_REF] for the study of the space of arcs of a normal toric variety.

Let N be the free Z-module Z d and let M be its dual Hom Z (N, Z).

Let N R := N ⊗ Z R, M R := M ⊗ Z R and < , >: M R × N R → R the canonic bilinear map.
Given a fan Σ in N R , let X := X Σ be the corresponding normal toric variety. Let T ∼ = (k * ) d be the d-dimensional torus seating inside X Σ . Then T acts on X Σ .

An equivariant resolution of X is a resolution of singularities π : Y → X of X (i.e. π is a proper, birational k-morphism, with Y smooth, such that the induced morphism Y \ π -1 (Sing X) → X \ Sing X is an isomorphism) which respects the action of the torus. Each equivariant resolution of X Σ is a morphism X Σ ′ → X Σ where Σ ′ is a regular subdivision of Σ. Here recall that a subdivision Σ ′ of Σ is regular if it consists of regular cones, and a cone is regular if its generators can be extended to a basis of N . It follows that any normal toric variety has an equivariant resolution.

A toric divisorial valuation is a divisorial valuation ν on X Σ for which there exists an equivariant resolution π :

X Σ ′ → X Σ such that the center of ν on X Σ ′ is a divisor. Hence the center of ν on X Σ ′ is the adherence D α ′ of the orbit O α ′ of a 1-dimensional cone α ′ ∈ Σ ′ . The divisorial valuation ν = ν D α ′ is centered on Sing X if and only if α ′ ∈ Σ ′ \ Σ.
An essential divisorial valuation on X is a divisorial valuation ν on X such that, for every resolution of singularities π : Y → X, the center of ν on Y is an irreducible component of the exceptional locus of π. We know that the essential divisorial valuations are precisely the toric divisorial valuations which are essential for the equivariant resolutions ([15] corollary 3.17, see also [START_REF] Bouvier | Diviseurs essentiels, composantes essentielles des variétés toriques singulières[END_REF]).

3.2.

Suppose that X is an affine normal toric variety. Hence X = X Σ (also denoted X = X σ ) where Σ is the fan defined by a (convex rational) cone σ in N R and its faces. More precisely,

X := Spec k[σ ∨ ∩ M ] where σ ∨ ⊂ M R is the dual cone of σ. The semigroup σ ∨ ∩ M is finitely generated and k[σ ∨ ∩ M ] is a k-algebra
of finite type which is generated as a k-vector space by {ℵ u } u∈σ ∨ ∩M , where ℵ u • ℵ u ′ := ℵ u+u ′ . In fact, we may suppose with no loss of generality that σ is a strongly convex cone (i.e. σ ∩ (-σ) = {0}, or equivalently, dim X = d), then the torus T = X {0} = Spec k[M ] is inside X = X σ . More precisely, there exists {u 1 , . . . , u d } ⊂ σ ∨ ∩ M which is a basis of the free Z-module M . Let us extend it to a system of generators {u 1 , . . . , u m } of the semigroup σ ∨ ∩ M , so that the morphism of k-algebras given by

k[x 1 , . . . , x m ] → k[σ ∨ ∩ M ], x i → ℵ ui for 1 ≤ i ≤ r, is surjective. Then T = Spec k[{ℵ ui , ℵ -ui } 1≤i≤d ] = k[x 1 , . . . , x d ] x1•••x d ∼ = (k * ) d is a torus and O X is a quotient of k[x 1 , . . . , x m ], that is, X = Spec k[x 1 , . . . , x m ] / I X .
Here I X is defined as follows: let

(2) Λ := { a = (a 1 , . . . , a m ) ∈ Z m / m ∑ i=1 a i u i = 0 } . For every a ∈ Λ set J + (a) = {i /1 ≤ i ≤ m, a i > 0}, J -(a) = {i /1 ≤ i ≤ m, a i < 0} and
(3)

f a := ∏ i∈J + (a) x ai i - ∏ j∈J -(a)
x -aj j .

Then I X is the ideal generated by {f a } a∈Λ . Moreover, I X is finitely generated, hence it is generated by {f a } a∈GΛ where G Λ is some finite subset of Λ. The torus

T = k[x 1 , . . . , x d ] x1•••x d ∼ = (k * ) d is
a dense open subset of X and the action of T lifts to X. In fact, for any u ∈ (σ ∨ ) • ∩ M , where • means the relative interior, we have

(4) (O X ) l ∼ = (k[x 1 , . . . , x m ] / I X ) l ∼ = k[x 1 , . . . , x d ] x1•••x d
where l = ℵ u . In particular, we may take

l = x 1 • • • x d in (4).
In this affine case, the essential divisorial valuations are precisely the divisorial valuations defined by D v := O <v> where v runs between the minimal elements of [START_REF] Bouvier | Diviseurs essentiels, composantes essentielles des variétés toriques singulières[END_REF] and [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF]). Here recall that a cone τ is singular if it is not regular. The order in σ ∩ N is defined as follows: given v, v ′ ∈ σ ∩ N , we define:

S := N ∩ (∪ τ ∈Σ τ singular • τ ) (see
v ≤ v ′ iff v ′ ∈ v + σ. Then, for any subset A of σ ∩ N , v ∈ A is a minimal element in A if there does not exist v ′ ∈ A with v ′ ≤ v. 3.3. If P is a stable point of X ∞ then ν P : k[σ ∨ ∩ M ] → N ∪ {∞} is a valuation ([26] proposition 3.7 (i), see 2.
2), hence it determines an element of σ ∩ N . In fact, the map M → Z given by u → ν P (ℵ u ) defines an element v P of Hom Z (M, Z) ∼ = N . Then we have [START_REF] Cox | Toric varieties[END_REF] < u, v P >= ν P (ℵ u ) for all u ∈ M.

Therefore, < u, v P >≥ 0 for u ∈ σ ∨ ∩ M , and thus v P ∈ σ ∩ N . Here note that ν P may not be the divisorial valuation defined by v P .

Conversely we will next define, for each v ∈ σ ∩ N , a stable point P v of X ∞ . It will satisfy the property that it is infimum, with respect to inclusion, between stable points P of X ∞ such that v P = v. That is, v Pv = v and, for any stable point P of X ∞ such that v P = v we have P v ⊆ P . Lemma 3.4. Let X = X σ be an affine normal toric variety. Given v ∈ σ ∩ N , set

c i := < u i , v >, which is a nonnegative integer, for 1 ≤ i ≤ m. Then, the ideal ( {X i,0 , . . . , X i,ci-1 } m i=1 ) O (X∞) red
is a prime ideal of O (X∞) red . Moreover, the prime ideal P v of O X∞ which induces is a stable point of X ∞ and the valuation ν Pv is the divisorial valuation defined by v.

Proof. First, we have

O (X∞) red = k[X 0 , X 1 , . . . , X n , . . .] / √ ({F a,n } n≥0,a∈GΛ ).
and hence

O (X∞) red / ( {X i,0 , . . . , X i,ci-1 } m i=1 ) = = k[{{X i,n } 1≤i≤m,n≥ci ] / ({H / H ∈ √ ({F a,n } n≥0,a∈GΛ )).
where, given

H ∈ k[X 0 , X 1 , . . . , X n , . . .], by H we mean the element in k[{{X i,n } 1≤i≤m,n≥ci ] representing the class of H modulo ( {X i,0 , . . . , X i,ci-1 } m i=1
) . Let us consider the isomorphism of k-algebras 

δ : k[X 0 , X 1 , . . . , X n , . . .] -→ k[{{X i,n } 1≤i≤m,n≥ci ]. given by δ(X i,n ) = X i,ci+n , 1 ≤ i ≤ m, n ≥ 0. Note that, given a ∈ Λ, if we set c a := ∑ i∈J + (a) a i c i , then we have δ(F a,n ) = F a,
) = ({ H / H ∈ √ ({F a,n } n≥0,a∈GΛ ) }) .
Therefore δ induces an isomorphism ( 6)

O (X∞) red / ( {X i,0 , . . . , X i,ci-1 } m i=1
) ∼ = O (X∞) red and, since O (X∞) red is a domain, we conclude the first assertion of the lemma.

For the second one, since P v is the ideal

√ ( {X i,0 , . . . , X i,ci-1 } m i=1
) O X∞ , hence it is the radical of a finitely generated ideal, to prove that it is a stable point of X ∞ it suffices to show that [START_REF] Ein | Singularities with respect to Mather-Jacobian discrepancies[END_REF] P v ̸ ∈ (Sing X) ∞ .

Let ν := ν v be the toric divisorial valuation defined by the orbit of

< v > in X Σ ′ where Σ ′ is a subdivision of σ which contains < v >. Given l ∈ k[σ ∨ ∩ M ], we have L 0 ̸ ∈ √ ({F a,n } n≥0,a∈GΛ ). In addition, if l = ∑ u∈σ ∨ ∩M λ u ℵ u , then ν v (l) = inf{< u, v > / λ u ̸ = 0} and hence δ(L 0 ) = L ν(l) (see [11] 3.3 or [4] section 1.1). Since L 0 ̸ = 0 in O (X∞) red , this implies that L ν(l) ̸ ∈ ( {X i,0 , . . . , X i,ci-1 } m i=1
) O (X∞) red and hence L ν(l) ̸ ∈ P v . From this it follows that ν v is the valuation ν Pv defined by P v and also that P v is not in the space of arcs of the hypersurface l = 0. In particular, taking l an element of the Jacobian ideal of X, this implies that (7) holds. Remark 3.5. Let l be an element of the Jacobian ideal of X and keep the notation as before. Then δ induces an isomorphism

( O X∞ / ( {X i,0 , . . . , X i,ci-1 } m i=1
))

L ν(l) ∼ = (O X∞ ) L0 . Since (O X∞ ) L0 is a domain, it follows that P v (O X∞ ) L ν(l) = ( {X i,0 , . . . , X i,ci-1 } m i=1 ) (O X∞ ) L ν(l)
is finitely generated in (O X∞ ) L ν(l) .

Definition 3.6. With the notation in lemma 3.4, the ideal P v will be called the toric stable point of

X ∞ associated to v ∈ σ ∩ N . In general, if X = X Σ is a normal toric variety, a stable point P of X ∞ is called a toric stable point if there exists σ ∈ Σ such that P lies in (X σ ) ∞ and P is the toric stable point of (X σ ) ∞ associated to some v ∈ σ ∩ N . Remark 3.7. Note that, in this general case X = X Σ , if P is a stable point of (X Σ ) ∞ , there exists a unique σ ∈ Σ such that P is a point in (X σ ) ∞ . In addition σ is a cone of dimension d = dim X. Moreover, if P is a toric stable point, then the element v ∈ σ ∩ N such that P = P v is precisely v P . Note also that, if ν E is the toric divisorial valuation defined by the 1-dimensional cone < v > determined by v in a subdivision of σ, v E is a primitive element in < v > and e ∈ N is such that v = e v E then
, with the notation in 2.5, we have P v = P eE . Definition 3.8. Let X = X Σ be a normal toric variety and let P be a toric stable point of X ∞ . We define the toric height tcht P of P as the superior of the lengths r of chains of toric stable points of

X ∞ contained in P . Note that, if P is a point in (X σ ) ∞ where σ is a cone in Σ, hence P = P v where v ∈ σ ∩ N , then the chain is in fact a chain of toric stable points of (X σ ) ∞ (8) P v0 ⊂ P v1 ⊂ . . . ⊂ P vr-1 ⊂ P vr = P v , where v 0 , . . . v r-1 , v r = v ∈ σ ∩ N. Given v ∈ σ ∩ N , by a partition of v we mean w = {(w j ; n j )} 1≤j≤s where s ∈ N, w 1 , . . . , w s are minimal elements of σ ∩ N and n 1 , . . . , n s ∈ N \ {0} are such that v = n 1 w 1 + . . . + n s w s .
We denote by W v the set of all partitions of v.

Given a partition w = {(w j ; n j )} 1≤j≤s of v, we define the length of w by

l(w) := s ∑ i=1 n i .
Corollary 3.9. Let X = X σ be an affine normal toric variety and let P = P v be a toric stable point of X ∞ . Then we have

dim O X∞,P = dim O (X∞) red ,P ≥ tcht P. Moreover, if v = 0 ∈ N then tcht P = 0 and, if v ̸ = 0 then tcht P = sup {r/ there exist w 1 , . . . , w r ∈ σ ∩ N \ {0} such that v = w 1 + • • • + w r } = sup { l(w) / w ∈ W v } .
Proof. The first assertion follows from the definition of Krull dimension. For the second one note that, given v 1 , v 2 ∈ σ∩N , we have [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF] section 3). Hence, given a chain of toric prime ideals (8) of maximal length, we must have [START_REF] De Fernex | Three dimensional counter-examples to the Nash problem[END_REF]. From this the result follows.

P v1 ⊂ P v2 if and only if < u, v 1 > < < u, v 2 > for every u ∈ σ ∨ ∩ M , or equivalently, v 2 -v 1 ∈ (σ ∨ ) ∨ ∩ N = σ ∩ N ([
v 0 = 0 ∈ N and v = w 1 + . . . + w r where w i = v i -v i-1 ∈ σ ∩ N \ {0}. Conversely, if v = w 1 + . . . + w r where w i ∈ σ ∩ N \ {0} then take v 0 = 0 and v i = w 1 + . . . + w i , 1 ≤ i ≤ r, in
In the next section we will show that, in general, O (X∞) red ,P is not a catenary ring (corollary 4.4). We will also show that, if X = X Σ is a normal toric variety and P is a toric stable point of X ∞ , then dim O X∞,P = dim O (X∞) red ,P = tcht P.

Therefore, following question 2.4, we ask: Question 3.10. Let X = X σ be an affine normal toric variety and let P = P v , v ∈ σ ∩ N , be a toric stable point of X ∞ . Is it true that dim O X∞,Pv = tcht P v ? 3.11. Now, let us describe the completion O X∞,P of the local ring O X∞,P of the space of arcs X ∞ of a toric variety X at a toric stable point P . First, we may suppose with no loss of generality that that X is affine, that is X = X σ where σ is a cone in N R . Moreover, we may suppose that σ is a strongly convex cone. Let v ∈ σ ∩ M be defining P , i.e. P = P v . We will first embed X in a complete intersection variety X ′ ⊂ A m k of the same dimension d, so that we have ( 9)

O (X∞) red ,P ∼ = O (X ′ ∞ ) red ,P and O X∞,P ∼ = O X ′ ∞ ,P
where we also denote by P the point induced by P in (X ∞ ) red , X ′ ∞ and (X ′ ∞ ) red (see [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] proposition 3.7 (ii) and theorem 3.13).

Keep the notation in

3.2, i.e. {u 1 , . . . , u d } ⊂ σ ∨ ∩ M is a basis of the free Z-module M , {u 1 , . . . , u d , . . . , u m } a system of generators of the semigroup σ ∨ ∩ M , and O X = k[σ ∨ ∩M ] ∼ = k[x 1 , . . . , x m ] / I X
where we identify the class of x i with ℵ ui and I X is the ideal generated by {f a } a∈Λ (see ( 2) and ( 3)). Now, since {u 1 , . . . , u d } is a Z-basis of M , for every j, d + 1 ≤ j ≤ m, there exists a j = (a j,1 , . . . , a j,m ) ∈ Λ with a j,j = 1 and a j,l = 0 for d + 1 ≤ l ≤ m, l ̸ = j. That is, [START_REF] De Fernex | Differentials on the arc space[END_REF] 

u j + ∑ i∈J + j \{j} a j,i u i = ∑ i∈J - j b j,i u i .
where

J + j := J + (a j ) ⊆ {1, . . . , d} ∪ {j} and J - j := J -(a j ) ⊆ {1, . . . , d} and b j,i = -a j,i for i ∈ J - j . For d + 1 ≤ j ≤ m, let f j := f a j ∈ I X (see (3)), that is, ( 11 
)
f j = ∏ i∈J + j x aj,i i - ∏ i∈J - j x bj,i i = x j ∏ i∈J + j \{j} x aj,i i - ∏ i∈J - j x bj,i i .
We define X ′ to be the complete intersection variety in A m k given by

X ′ = Spec k[x 1 , . . . , x d , x d+1 , . . . , x m ] / ({f j } m j=d+1 ). Then X ′ contains X and, if we set l := x 1 • • • x d then X ′ \ Z(l) = X \ Z(l), precisely (O X ′ ) l = (O X ) l ∼ = k[x 1 , . . . , x d ] x1•••x d
(see ( 4)). From this it follows that, if, with the notation in lemma 3.4,

c i :=< u i , v > for 1 ≤ i ≤ m, then ( O (X∞) red ) Lc ∼ = ( O (X ′ ∞ ) red ) Lc where L c := X 1,c1 • • • X d,c d , hence L c ̸ ∈ P v
and we conclude (9) (see [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] proof of proposition 3.7 (ii) and theorem 3.13).

3.12.

Let us now follow the procedure in [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] corollary 5.6 to describe the ring

O X ′ ∞ ,Pv . First, for d + 1 ≤ j ≤ m, set f ′ j := ∂fj ∂xj = ∏ i∈J + j \{j} x aj,i i
and 10)). Note that F ′ ϵj does not belong to P v (lemma 3.4). For n ≥ 0, we have

ϵ j := ν v (f ′ j ) = ∑ i∈J + j \{j} a j,i c i = ∑ i∈J - j b j,i c i -c j (recall (
(12) ∂F j,ϵj +n X j,n = F ′ j,ϵj mod ( {X i,0 , . . . , X i,ci-1 } m i=1 ) ∂F j,ϵj +n X j,n ′ = 0 mod ( {X i,0 , . . . , X i,ci-1 } m i=1 ) for n ′ > n.
This implies that from F j,ϵj +n , n ≥ c j , we can eliminate X j,n modulo

( {X i,0 , . . . , X i,ci-1 } m i=1 ) in the ring ( O X ′ ∞ ) ∏ m j=d+1 F ′ j,ϵ j
. In addition, we have

(13) ∂F j,n X j,n ′ = 0 mod ( {X i,0 , . . . , X i,ci-1 } m i=1 ) for n ′ < n < ϵ j ,
and hence

F j,n ∈ ( {X i,0 , . . . , X i,ci-1 } m i=1 ) for 0 ≤ n ≤ ϵ j + c j -1. Therefore ( O X ′ ∞ ) ∏ m j=d+1 F ′ j,ϵ j / ( {X i,0 , . . . , X i,ci-1 } m i=1 ) ∼ = k [{X i,n } 1≤i≤d, n≥ci ] ∏ m j=d+1 F ′ j,ϵ j
is a domain, and hence

( {X i,0 , . . . , X i,ci-1 } m i=1 ) ( O X ′ ∞ ) ∏ m j=d+1 F ′ j,ϵ j
is a prime ideal.

We conclude that

P v ( O X ′ ∞ ) ∏ m j=d+1 F ′ j,ϵ j = ( {X i,0 , . . . , X i,ci-1 } m i=1 ) ( O X ′ ∞ ) ∏ m j=d+1 F ′ j,ϵ j
and the residue field of

P v in O X ′ ∞ is κ(P v ) ∼ = k ({X i,n } 1≤i≤d, n≥ci ) .
We consider the embedding

κ(P v ) → O X ′ ∞ ,Pv which sends X i,n , 1 ≤ i ≤ d, n ≥ c i , to X i,n ∈ O X ′ ∞ ,P . In particular, for d + 1 ≤ j ≤ m, n ≥ c j , we have defined X (0) j,n ∈ κ(P v ) such that X j,n -X (0) j,n ∈ ( {X i,0 , . . . , X i,ci-1 } m i=1
)

. Arguing recursively on r ≥ 1 and n ≥ c j , with the lexicographical order on (r, n), applying [START_REF] Ishii | The arc space of a toric variety[END_REF] and reasoning as in corollary 5.6 in [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] it follows that, for d

+ 1 ≤ j ≤ m, r ≥ 0, n ≥ c j , there exists X (r) j,n ∈ κ(P v )[{X i,0 , . . . , X i,ci-1 } m i=1 ] such that, (14) F j,ϵj +n ≡ F ′ j,ϵj • (X j,n -X (r) j,n ) mod ( {X i,0 , . . . , X i,ci-1 } m i=1
) r+1 .

Therefore, the above equalities define series

X j,n ∈ κ(P v ) [[ {X i,0 , . . . , X i,ci-1 } m i=1
]] , n ≥ c j , and we conclude: Proposition 3.13. The following holds:

(15) O X∞,Pv ∼ = O X ′ ∞ ,Pv ∼ = ∼ = κ(P v ) [[ {X i,0 , . . . , X i,ci-1 } m i=1 ]] / ( { F j,n } d+1≤j≤m 0≤n≤ϵj +cj -1
) where ( 16)

κ(P v ) ∼ = k ({X i,n } 1≤i≤d, n≥ci ) .
and, for d+1

≤ j ≤ m, 0 ≤ n ≤ ϵ j +c j -1, F j,n is obtained from F j,n by substituting X j,n ′ by the series X j,n ′ ∈ κ(P v ) [[ {X i,0 , . . . , X i,ci-1 } m i=1
]] for c j ≤ n ′ ≤ n.

3.14.

Let us give another description of the ring O X∞,Pv which is motivated by the Weierstrass factorization of the series defined by a deformation of a general element in the subset Z

(P ) of X ∞ . Recall that {u i } d i=1 ⊂ σ ∨ ∩ M is a Z-basis of M and {u * i } d i=1 ⊂ N its dual basis. For 1 ≤ j ≤ m set (17) x j (t) := t cj + cj -1 ∑ n=0 X j,n t n , x j (t) := d ∏ i=1   ∑ n≥0 U i,n t n   <uj ,u * i > • x j (t)
where U i,n and X j,n are variables. Note that, for the binomial equations

f j , d + 1 ≤ j ≤ m, we have (18) f j (x 1 (t), . . . , x m (t)) =   ∑ n≥0 Λ j,n t n   f j (x 1 (t), . . . , x m (t))
where Λ j,n ∈ k

[ {U i,n ′ } 1≤i≤d 0≤n ′ ≤n ] are such that ∑ n≥0 Λ j,n t n = d ∏ i=1   ∑ n≥0 U i,n t n   <uj + ∑ r∈J + j \{j} aj,rur,u * i >
(recall [START_REF] De Fernex | Differentials on the arc space[END_REF]). Let us consider the Taylor development of f j (x 1 (t), . . . , x m (t)):

(19) f j (x 1 (t), . . . , x m (t)) = F j,0 + F j,1 t + . . . + F j,cj +ϵj -1 t cj +ϵj -1 .
where

F j,n ∈ k [ {X i,n ′ } 1≤i≤m, 0≤n ′ ≤min{cj -1,n} ]
In fact, if we set X j,cj := 1, X j,n := 0 for n > c j and

X n = (X 1,n , . . . , X m,n ) then F j,n = F j,n (X 0 , . . . , X n ). Note that F j,n = 0 for n ≥ c j + ϵ j .
Proposition 3.15. The following holds:

(20) O X∞,Pv ∼ = O X ′ ∞ ,Pv ∼ = ∼ = κ(P v ) [[ { X i,0 , . . . , X i,ci-1 } m i=1 ]] / ( {F j,n } d+1≤j≤m 0≤n≤ϵj +cj -1
) and ( 21)

κ(P v ) ∼ = k ({U i,n } 1≤i≤d, n≥0 ) .
Proof. First note that there is an isomorphism of fields

k ({X i,n } 1≤i≤d, n≥ci ) ∼ = k ({U i,n } 1≤i≤d, n≥0 ) X i,n → U i,n-ci .
Therefore, applying [START_REF] Johnson | Arc spaces of cA-type singularities[END_REF], we obtain the isomorphism [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF].

Now, set

A := k ({U i,n } 1≤i≤d, n≥0 ) [[ { X i,0 , . . . , X i,ci-1 } m i=1 ]] / ( {F j,n } d+1≤j≤m 0≤n≤ϵj +cj -1 )
Since A is a complete local ring, in order to define a local morphism Θ :

O X ′ ∞ ,Pv → A it suffices to define a local morphism O X ′ ∞ ,Pv → A. By the representability property of X ∞ (see (1)), it is equivalent to define θ : O X ′ → A[[t]]
such that the arc defined by the morphism θ 0 :

O X ′ → κ(P v )[[t]] obtained by composition of θ with A[[t]] → A/( { X i,0 , . . . , X i,ci-1 } m i=1 )[[t]], is the point P v of X ′ ∞ .
Recall that

O X ′ = k[x 1 , . . . , x d , x d+1 , . . . , x m ] / ({f j } m j=d+1 ).
Let us define θ :

O X ′ → A by (22) θ(x j ) := d ∏ i=1   ∑ n≥0 U i,n t n   <uj ,u * i > • ( t cj + cj -1 ∑ n=0 X j,n t n ) ∈ A for 1 ≤ j ≤ m.
(recall the equalities ( 17)). By ( 18) and ( 19), we have that, for d

+ 1 ≤ j ≤ m, θ(f j ) =   ∑ n≥0 Λ j,n t n   ( cj +ϵj -1 ∑ n=0 F j,n t n ) = 0 ∈ A.
Hence θ is well defined. Moreover, the arc θ 0 :

O X ′ → κ(P v )[[t]
] is given by

θ 0 (x j ) := d ∏ i=1   ∑ n≥0 U i,n t n   <uj ,u * i > • t cj for 1 ≤ j ≤ m
which defines the point P v of X ′ ∞ (recall the isomorphism ( 21)). Therefore θ defines a morphism of local rings Θ :

O X ′ ∞ ,Pv → A. Now let B := k ( {X i,n } 1≤i≤d n≥ci ) [[ { X j,0 , . . . , X j,cj -1 } m j=1 ]] / ( { F j,n } d+1≤j≤m 0≤n≤ϵj +cj -1
) .

Applying the isomorphism (15) in proposition 3.13, we have defined a morphism Θ : B -→ A. In fact, Θ is induced by the morphism of k-algebras

Θ : k ( {X i,n } 1≤i≤d n≥ci ) [[ { X j,0 , . . . , X j,cj -1 } m j=1 ]] -→ -→ k ( {U i,n } 1≤i≤d n≥0 ) [[ { X j,0 , . . . , X j,cj -1 } m j=1 ]] .
obtained by identifying the coefficients in t n , n ≥ 0, in the series

∑ n≥0 X i,n t n =   ∑ n≥0 U i,n t n   • ( t ci + ci-1 ∑ n=0 X i,n t n ) for 1 ≤ i ≤ d and, for d + 1 ≤ j ≤ m, identifying (23 
) cj -1 ∑ n=0 X j,n t n = d ∏ i=1   ∑ n≥0 U i,n t n   <uj ,u * i > • ( t cj + cj -1 ∑ n=0 X j,n t n ) mod (t cj ) that is, Θ sends {X j,n } cj -1
n=0 to the first c j terms of the right hand side term in [START_REF] Novacoski | Reduction of local uniformization to the rank one case[END_REF].

Note that Θ is an isomorphism. Let Θ -1 be its inverse. Then, from the second equality in ( 12), ( 13), ( 14) and ( 18) it follows that, for d

+ 1 ≤ j ≤ m, 0 ≤ n ≤ ϵ j + c j -1, Θ( F j,n ) = Λ j,n;n F j,0 +. . .+ Λ j,0;n F j,n +Γ j,n+1;n F j,n+1 +. . .+Γ j,ϵj +cj -1;n F j,ϵj +cj -1 where Λ j,n ′ ;n , Γ j,r;n ∈ k ( {U i,n } 1≤i≤d n≥0 ) [[ { X j,0 , . . . , X j,cj -1 } m j=1 ]] and Λ j,n ′ ;n = Λ j,n ′ , Γ j,r;n = 0 mod ( { X j,0 , . . . , X j,cj -1 } m j=1 ) for 0 ≤ n ′ ≤ n, n +1 ≤ r ≤ ϵ j +c j -1. Since Λ j,0 = ∏ d i=1 U <uj + ∑ r∈J + j \{j} aj,rur,u * i > i,0
is invertible, Λ j,0;n is also invertible, and from this it follows that

Θ -1 ( {F j,n } d+1≤j≤m 0≤n≤ϵj +cj -1 ) ⊆ ( { F j,n } d+1≤j≤m 0≤n≤ϵj +cj -1
) .

Therefore Θ -1 induces a morphism A → B which is the inverse of Θ :

B → A.
That is, Θ is an isomorphism and this concludes the proof.

Applying wedges to compute the dimension of O X∞,Pv

In this section we will prove that, given a toric stable point P of the space of arcs of a normal toric variety X, the dimension of the ring O X∞,P is greater or equal the toric height of P . The main idea in this section is to apply wedges in order to understand Spec O X∞,P .

Assume that X = X σ is affine and let

P = P v where v ∈ σ ∩ N . Recall that a K-r-wedge on X is a k-morphism Φ : Spec K[[ξ, t]] → X where ξ = (ξ 1 , . . . , ξ r ), or equivalently φ : Spec K[[ξ]] → X ∞ . The special arc of Φ is P v if the image by φ of the closed point of K[[ξ]] is P v , or equivalently, it induces a morphism φ : Spec K[[ξ]] → Spec O X∞,Pv (see 2.5). Lemma 4.1. Given a K-r-wedge Φ : Spec K[[ξ, t]] → X, there exist {w j } s j=1 ⊂ σ ∩ N and irreducible elements {p j } s j=1 of K[[ξ, t]] such that (p j , p j ′ ) = 1 for j ̸ = j ′ and the morphism of rings Φ ♯ : k[σ ∨ ∩ M ] → K[[ξ, t]] induced by Φ is given by (24) ℵ u → o u s ∏ j=1 p <u,wj > j for u ∈ σ ∨ ∩ M, where o u is a unit in K[[ξ, t]],
and moreover, the morphism

ℵ u → o u , u ∈ σ ∨ ∩ M ,
defines a wedge on the torus

ψ : Spec K[[ξ, t]] -→ T = Spec k[M ].
Furthermore, {w j } s j=1 ⊂ σ∩N are uniquely determined and the irreducible elements p j , 1 ≤ j ≤ s, are uniquely determined modulo product by a unit.

In addition, if the wedge Φ is centered at a stable point P then we have

(25) v P = s ∑ j=1 ord t p j (0, t) w j . Proof. Recall that {u i } d i=1 ⊂ σ ∨ ∩ M is a Z-basis of M and {u * i } d i=1 ⊂ N its dual basis. Since K[[ξ, t]]
is factorial, by looking at the factorization of the images of

x i = ℵ ui , 1 ≤ i ≤ d, by Φ ♯ : k[σ ∨ ∩ M ] → K[[ξ, t]], we obtain a finite number of irreducible elements {p j } s j=1 in K[[ξ, t]],
with (p j , p j ′ ) = 1 for j ̸ = j ′ , uniquely determined modulo product by a unit, such that, for every

u ∈ σ ∨ ∩ M , Φ ♯ (ℵ u ) factors in K[[ξ, t]] as a product of powers of {p j } s j=1 modulo a unit. Moreover, for 1 ≤ j ≤ s, w j := ∑ d i=1 ord pj Φ ♯ (ℵ ui ) u * i is the unique element in N which satisfies ord pj Φ ♯ (ℵ u ) =< u, w j > for all u ∈ σ ∨ ∩ M.
Since < u, w j > ≥ 0 for all u ∈ σ ∨ , we have that w j ∈ σ ∩ N for 1 ≤ j ≤ s. Thus, Φ ♯ is defined by [START_REF] Oda | Convex bodies and algebraic geometry[END_REF] where o u is a unit in K [[ξ, t]]. In addition, the morphism

ℵ u → o u , u ∈ σ ∨ ∩ M , defines a wedge on the torus ψ : Spec K[[ξ, t]] -→ T .
Now, the condition that Φ is centered at P implies that, 5) and ( 24)). Therefore (25) holds.

< u, v P > = ν P (ℵ u ) = ord t   s ∏ j=1 p j (0, t) <u,wj >   = s ∑ j=1 ord t p j (0, t) < u, w j > for all u ∈ σ ∨ ∩ M (recall (
Corollary 4.2. If v is a minimal element in σ ∩ N \ {0} then the following holds:

(i) Spec O X∞,Pv is irreducible and dim O X∞,Pv = 1. (ii) dim O X∞,Pv = 1.
Proof. By [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] corollary 5.12, it suffices to prove that there exists a resolution of singularities Y → X of X such that, for every wedge Φ : Spec K[[ξ, t]] → X whose special arc is P v , Φ lifts to Y . Let Σ ′ be a regular subdivision of the fan Σ defined by σ, and let Y = X Σ ′ → X be the corresponding resolution of singularities. Let Φ : Spec K[[ξ, t]] → X be a wedge with special arc P v . Then, from lemma 4.1 it follows that Φ ♯ is defined by

ℵ u → o u p <u,v>
where p ∈ K [[ξ, t]] is irreducible and ord t p(0, t) = 1. In fact, since v Pv = v is a minimal element of σ ∩ N , in [START_REF] Reguera | A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF] only one term appears. Then, there exists a d-dimensional cone σ ′ in Σ ′ such that v ∈ σ ′ . The wedge Φ lifts to X σ ′ , hence to X Σ ′ . This concludes the proof. [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] defines a saturated chain of prime ideals in O X∞,Pv .

where v 0 = 0 ∈ N , v 1 , . . . , v r-1 , v r = v ∈ σ ∩N . If v l+1 -v l is a minimal element of σ ∩ N for 0 ≤ l < r, then
Proof. First note that P 0 = √ (0) (see lemma 3.4). Now, fix l, 0 ≤ l ≤ r -1, and set c l,i :=< u i , v l > for 1 ≤ i ≤ m. By the definition of P v l , the natural morphism

O X∞ → O (X∞) red induces an isomorphism O X∞ / P v l ∼ = O (X∞) red / ({ X i,0 , . . . , X i,c l,i -1 } m i=1
) .

Therefore, applying [START_REF] Denef | Germs of arcs on singular algebraic varieties and motivic integration[END_REF], we obtain an isomorphism

O X∞ / P v l ∼ = O (X∞) red . The image of P v l+1 is P w l+1 O (X∞) red where w l+1 := v l+1 -v l . Therefore (O X∞ / P v l ) Pv l+1 ∼ = O (X∞) red ,Pw l+1
and this is a 1-dimensional ring, since w l+1 is a minimal element of σ ∩ N (corollary 4.2). Therefore there is no prime ideal strictly contained between P l and P l+1 , hence ( 26) is a saturated chain of prime ideals in O X∞ . Since all these prime ideals are contained in P v , it defines a saturated chain of prime ideals in O X∞,Pv .

Corollary 4.4. In this corollary, let X be the toric 3-dimensional variety defined by the cone σ =< (1, 1, 0), (1, 0, 1), (0, 1, 1) > in R 3 . Let P = P (2,2,2) be the stable point of X ∞ defined by the element (2, 2, 2) of σ ∩Z 3 . Then the following two chains define saturated chains of prime ideals in the ring O X∞,P

(i) √ (0) = P (0,0,0) ⊂ P (1,1,1) ⊂ P (2,2,2) . (ii) √ (0) = P (0,0,0) ⊂ P (1,1,0) ⊂ P (2,1,1) ⊂ P (2,2,2) .
Therefore the rings O X∞,P and O (X∞) red ,P are not catenary.

Proof. It follows from corollary 4.3 because, for (i), (1, 1, 1) is a minimal element of σ ∩ N and, for (ii), (1, 1, 0), (1, 0, 1) and (0, 1, 1) are minimal elements of σ ∩ N .

Remark 4.5. The toric variety in corollary 4.4 appears in [START_REF] De Fernex | Terminal vauations and the Nash problem[END_REF] example 6.3, to give a an example of an essential valuation ν E which is not terminal but belongs to the image of the Nash map, i.e. the set N E (see 2.5) is an irreducible component of the set X Sing ∞ of arcs centered in Sing X. The fact that the ring O (X∞) red ,P is not in general catenary was found out in a joint discussion with M. Mustata.

4.6.

Given v ∈ σ ∩ N , recall the definition of W v (definition 3.8). For each w = {(w j ; n j )} 1≤j≤s ∈ W v , we define a morphism

ρ w : Y w := Spec (k[y 1 , . . . , y s , z 1 , . . . , z d ]) z1•••z d -→ X = Spec k[σ ∨ ∩ M ].
given by ( 27)

ℵ u → y <u,w1> 1 • • • y <u,ws> s • z <u,u * 1 > 1 • • • z <u,u * d > d for u ∈ σ ∨ ∩ M. where recall that {u * i } d i=1 ⊂ N is the dual basis of {u i } d i=1 . Note that ρ w is a dominant morphism. It induces a morphism (ρ w ) ∞ : Y w ∞ -→ X ∞ . We have Y w ∞ = Spec (k[Y 0 , Z 0 ]) Z1,0•••Z d,0 [Y 1 , Z 1 . . . , Y n , Z n , . . .]
where Y n = (Y 1,n , . . . , Y s,n ), Z n = (Z 1,n , . . . , Z d,n ) are uples of variables. Hence,

Q w := (Y 1,0 , . . . , Y 1,n1-1 , . . . , Y s,0 , . . . , Y s,ns-1 )
is a prime ideal of Y w ∞ . In fact, Q w is a stable point of Y w ∞ because it is finitely generated and Y w is regular. In an analogous way as in propositions 3.13 and 3.15, we have: Proposition 4.7. The following holds:

(28) O Y w ∞ ,Q w ∼ = κ(Q w )[[Y 1,0 , . . . , Y 1,n1-1 , . . . , Y s,0 , . . . , Y s,ns-1 ]] where (29) κ(Q w ) ∼ = k ( {Y j,n } 1≤j≤s n≥nj ∪ {Z i,n } 1≤i≤d n≥0 )
is the residue field of Q w . Moreover, we also have

(30) O Y w ∞ ,Q w ∼ = k ( {Z i,n } 1≤i≤d n≥0 ∪ {V j,n } 1≤j≤s n≥0 ) [[ { Y j,0 , . . . , Y j,nj -1 } s j=1 ]]
and the isomorphism k

( {Y j,n ′ , Z i,n } 1≤i≤d,1≤j≤s n≥0,n ′ ≥nj ) [[ {Y j,n } 1≤j≤s 0≤n≤nj -1 ]] -→ -→ k ( {Z i,n , V j,n } 1≤i≤d,1≤j≤s n≥0 ) [[ { Y j,n } 1≤j≤s 0≤n≤nj -1 ]]
is defined by Z i,n → Z i,n for 1 ≤ i ≤ d, n ≥ 0, and, for 1 ≤ j ≤ s, n ≥ 0, the image of Y j,n is determined by identifying the coefficients in t n in the following equality

(31) ∑ n≥0 Y j,n t n =   ∑ n≥0 V j,n t n   ( t nj + nj -1 ∑ n=0 Y j,n t n ) .
4.8. The image of the prime ideal Q w of Y w ∞ by (ρ w ) ∞ is the stable point P v of X ∞ . In fact, since w ∈ W v , from the definition of ρ w in [START_REF] Reguera | Coordinates at stable points of the space of arcs[END_REF] and the expressions ( 16) and ( 29) of κ(P v ) and κ(Q w ) respectively, it follows that κ(P v ) ⊂ κ(Q w ). Hence the point in X ∞ defined by the arc

ρ w • h Q w : Spec κ(Q w )[[t]] → X is P v . Therefore (ρ w ) ∞ induces a morphism (Y w ∞ , Q w ) -→ (X ∞ , P v ) hence, a morphism of local rings: ρ ♯ w : O X∞,Pv -→ O Y w ∞ ,Q w .
Let P w be the kernel of this morphism and let

I w := Spec O X∞,Pv / P w which is the image of the morphism ρ w : Spec O Y w ∞ ,Q w → Spec O X∞,Pv induced by ρ ♯ w . Finally set (32) R w := κ(P v ) [[ { Y j,0 , . . . , Y j,nj -1 } 1≤j≤s ]] .
Lemma 4.9. The following holds

(33) O Y w ∞ ,Q w ∼ = R w ⊗ k k ( {V j,n } 1≤j≤s n≥0
) .

Moreover, the morphism ρ

♯ w : O X∞,Pv → O Y w ∞ ,Q w factors through the inclusion ι : R w → O Y w ∞ ,Q w induced

by (33). That is, there exists a morphism of local rings ϱ

♯ w : O X∞,Pv → R w such that ι • ϱ ♯ w = ρ ♯ w .
We conclude that I w is the image of the induced morphism ϱ w : Spec R w → Spec O X∞,Pv .

Proof. For the isomorphism (33), applying [START_REF] Zariski | Commutative Algebra[END_REF] it suffices to prove that

(34) κ(Q w ) ∼ = κ(P v ) ( {V j,n } 1≤j≤s n≥0
) .

Recall that 21) in proposition 3.15 and (30) in proposition 4.7). By the definition of ρ w in ( 27), the images [START_REF] Nash | Arc structure of singularities[END_REF]). From ( 35) and (36) it follows that the inclusion κ(P v ) → κ(Q w ), expressed in terms of ( 21) and ( 30), is given by

κ(P v ) ∼ = k ({U i,n } 1≤i≤d, n≥0 ) , κ(Q w ) ∼ = k ({Z i,n } 1≤i≤d,n≥0 ∪ {V j,n } 1≤j≤s,n≥0 ) ((
ρ ♯ w (X i,n ) of X i,n , n ≥ 0, in O Y w ∞ ,Q w are determined by the equalities (35) ∑ n≥0 ρ ♯ w (X i,n ) t n = d ∏ i ′ =1   ∑ n≥0 Z i ′ ,n t n   <ui,u * i ′ > • s ∏ j=1   ( ∑ n≥0 V j,n t n ) ( t nj + nj -1 ∑ n=0 Y j,n t n )   <ui,wj > for 1 ≤ i ≤ m. Recall that (36) ∑ n≥0 X i,n t n = d ∏ i ′ =1   ∑ n≥0 U i ′ ,n t n   <ui,u * i ′ > • ( t ci + ci-1 ∑ n=0 X i,n t n ) (see
U i,0 → Z i,0 G i,0 (V 0 ) U i,n → Z i,n G i,0 (V 0 ) + n-1 ∑ n ′ =0 Z i,n ′ G i,n-n ′ (V 0 , . . . , V n-n ′ ) for 1 ≤ i ≤ d, n ≥ 1, where, if g i (y 1 , . . . , y s ) = y <ui,w1> 1 • • • y <ui,ws> s , then G i,n ′ (V 0 , . . . , V n ′ ) is defined by the Taylor expansion of g i ( ∑ n≥0 V n t n ). Here V n := (V 1,n , . . . , V d,n ) for n ≥ 0. Since G i,0 = V <ui,w1> 1,0 • • • V <ui,ws> s,0 is nonzero, hence invertible in κ(P v ) ({V j,n } 1≤j≤s,n≥0 ), (34) follows.
Moreover, it also follows that ρ ♯ w : 

O X∞,Pv -→ O Y w ∞ ,Q w is defined by the previous inclusion κ(P v ) → κ(Q w ) and the images ρ ♯ w (X i,n ) of X i,n , 1 ≤ i ≤ m, n ≥ 0, which are determined by (37) t ci + ci-1 ∑ n=0 ρ ♯ w (X i,n ) t n = s ∏ j=1 ( t nj + nj -1 ∑ n=0 Y j,n t n )<u i,w1> for 1 ≤ i ≤ m. Therefore ρ ♯ w (X i,n ), 1 ≤ i ≤ m, n ≥ 0,
′ ) = 1 for j ̸ = j ′ , such that the morphism of rings Φ ♯ : O X = k[σ ∨ ∩ M ] → K[[ξ, t]] induced by Φ is given by ℵ u → o u ∏ s j=1 p <u,wj > j
, where o u is a unit in K[[ξ, t]] ((24) in lemma 4.1). Moreover, we can suppose that the p j 's are in their Weierstrass form. Precisely, for each j, 1 ≤ j ≤ s, let µ j := ord t p j (0, t), which is a nonnegative integer since the special arc of Φ is the stable point P v . By the Weierstrass preparation theorem ( [START_REF] Bourbaki | Algèbre Commutative[END_REF] chapter VII, 3.8, proposition 6), we have

p j = γ j ( t µj + λ j,µj -1 (ξ)t µj -1 + λ j,µj -2 (ξ)t µj -2 + . . . + λ j,0 (ξ) )
where γ j is a unit in K [[ξ, t]] and the λ i (ξ)'s are elements of the maximal ideal (ξ) of K [[ξ]]. We may suppose with no loss of generality that

p j = t µj + λ j,µj -1 (ξ)t µj -1 + λ j,µj -2 (ξ)t µj -2 + . . . + λ j,0 (ξ) for 1 ≤ j ≤ s. Let ϕ T : Spec K[[ξ, t]] -→ T = Spec k[M ] be the morphism on the torus induced by ℵ u → o u , u ∈ σ ∨ ∩ M , and let ς i := ϕ ♯ T (ℵ ui ), 1 ≤ i ≤ d. Then, for u ∈ M , ϕ ♯ T (ℵ u ) = ς <u,u * 1 > 1 • • • ς <u,u * d > d , hence, (38) o u = ς <u,u * 1 > 1 • • • ς <u,u * d > d for u ∈ σ ∩ M.
Since Φ is centered at P v , we have v = ∑ s j=1 µ j w j ((25) in lemma 4.1). Suppose first that all the w j 's are minimal elements in σ ∩ N . Then w = {(w j ; µ j )} 1≤j≤s is an element of W v and Φ lifts to Y w . In fact, the assignment 27) and ( 38)). Hence the first assertion of the theorem is proved in this case. For the second assertion, note first that Φ w may not be centered in Q w . Nevertheless

y j → p j for 1 ≤ j ≤ s, z i → ς i for 1 ≤ i ≤ d defines a morphism Φ w : Spec K[[ξ, t]] → Y w such that ρ w • Φ w = Φ (recall (
φ ♯ : O X∞,Pv → K[[ξ]
] defines an inclusion on the residue fields φ ♯ : κ(P v ) → K.

Let us define

ψ ♯ : R w = κ(P v ) [[ { Y j,0 , . . . , Y j,µj -1 } 1≤j≤s ]] -→ K[[ξ]]
whose restriction to κ(P v ) is φ ♯ and such that

ψ ♯ (Y j,n ) = λ j,n (ξ) for 1 ≤ j ≤ s, 0 ≤ n ≤ µ j -1.
Then, for the induced morphism

ψ : Spec K[[ξ]] → Spec R w , we have φ = ϱ w • ψ.
In general, i.e. if some of the w j is not a minimal element in σ ∩ N , there exist minimal elements w ′ 1 , . . . , w ′ s ′ in σ ∩ N and, for 1 ≤ j ≤ s, a partition

w j = n j,1 w ′ 1 + . . . + n j,s ′ w ′ s ′ where the n j,k 's are integers ≥ 0. Let n ′ l = ∑ 1≤j≤s n j,l µ j , 1 ≤ l ≤ s ′ , and set w = {(w ′ l ; n ′ l )} 1≤l≤s ′ .
Then w ∈ W v and the assignment

y l → s ∏ j=1 p n j,l j for 1 ≤ l ≤ s ′ , z i → ς i for 1 ≤ i ≤ d
defines a lifting of Φ to Y w . For the second assertion, we define ψ ♯ : R w → K [[ξ]] whose restriction to κ(P v ) is φ ♯ : κ(P v ) → K and such that ψ ♯ (Y j,n ) is given identifying the coefficients in t n , 0 ≤ n < n ′ l , in

t n ′ l + n ′ l -1 ∑ n=0 ψ ♯ (Y l,n ) t n = s ∏ j=1 ( t µj + µj -1 ∑ n=0 λ j,n (ξ) t n )n j,l for 1 ≤ l ≤ s ′ .
Then, the induced morphism ψ : Spec K[[ξ]] → Spec R w satisfies φ = ϱ w • ψ. This concludes the proof.

Remark 4.11. Note that the special arc of the r-wedge Φ w may not be Q w . In fact, recall that κ(Q w ) ∼ = κ(P v ) ({V j,n } 1≤j≤s,n≥0 ) (see (34)). Thus, if K is an algebraic field extension of κ(P v ) then K does not contain κ(Q w ) and thus the special arc of Φ w is not Q w . Remark 4.12. Suppose that char k = 0. Let σ be a strongly convex simplicial cone, i.e. σ is generated by d vectors v 1 , . . . , v d which are linearly independent. Equivalently, X σ has only finite quotient singularities ([5] theorem 3.1.

19). Let us consider the morphism

ρ : Y := Spec k[y 1 , . . . , y d ] -→ X, ℵ u → y <u,v1> 1 • • • y <u,v d > d for u ∈ σ ∨ ∩ M.
Fix a partition of the form w = {(v j ; n j )} 1≤j≤d , whose minimal elements are the extremal elements {v i } d i=1 of σ, and let v := [ξ, t]] → X lifts to Y w if and only if there exists a finite algebraic field extension K ′ of K such that the induced K ′ -r-wedge Φ ′ : Spec K ′ [[ξ, t]] → X lifts to Y . In fact, for the if part, recall lemma 4.2 and note that ρ factors by ρ w : the morphism ζ : Y → Y w defined by ξ, t]] and ℵ u → o u defines a wedge on T (lemma 4.1). There exist minimal elements v ando 

∑ d i=1 n i v i . Then, a K-r-wedge Φ : Spec K[
y i → y i , z i → 1 for 1 ≤ i ≤ d satisfies ρ = ρ w • ζ. Now, if Φ lifts to Y w , there exist irreducible elements {p i } d i=1 of K[[ξ, t]] such that Φ ♯ (ℵ u ) = o u ∏ d j=1 p <u,vj > j , u ∈ σ ∨ ∩ M , where o u is a unit in K[[
+ 1 , . . . , v + d of σ ∨ ∩ M such that < v + i , v j > = 0 if i ̸ = j. Set d i :=< v + i , v i >,
i := o v + i for 1 ≤ i ≤ d. Since char k = 0, there exists a finite algebraic field extension K ′ of K and o ′ i ∈ K ′ [[ξ, t]], 1 ≤ i ≤ d, such that (o ′ i ) di = o i . Then ℵ u → ∏ d j=1 (o ′ j p j ) <u,vj > defines a lifting of Φ ′ to Y .
The following lemma generalizes this remark. It will be applied in section 5. Lemma 4.13. Suppose that char k = 0. Let σ be a strongly convex cone. Let v ∈ σ and let w = {(w j ; n j )} 1≤j≤s be a partition of v. Suppose that s ≥ d and that 

{w i } d i=1 are Q-linearly independent. Let us consider the morphism ρ : Y := Spec k[y 1 , . . . , y s ] -→ X, ℵ u → y <u,w1> 1 • • • y <u,ws> s for u ∈ σ ∨ ∩ M Let Q be the stable point in Y ∞ defined by (Y 1,0 , . . . , Y
= I w . Proof. Recall that {u i } d i=1 ⊂ σ ∨ ∩ M is a basis of the free Z-module M . Since {w i } d i=1 ⊂ σ ∩ N are Q-linearly independent, we have (39) det (< u i , w j >) 1≤i,j≤d > 0.
Let us consider the following commutative diagram

Spec k[y 1 , . . . , y s , z ′ 1 , . . . , z ′ d ] z ′ 1 •••z ′ d =: Y ′ Y w Spec k[y 1 , . . . , y s ] = Y X . - - ? ? ρ η w ρ w η
where η w is defined by y j → y j , 1 ≤ j ≤ s and z i → ∏ d l=1 (z ′ l ) <ui,w l > , 1 ≤ i ≤ d, and η is defined by y i → z ′ i y i for 1 ≤ i ≤ d. In fact, for the commutativeness of the diagram, recall the definition of ρ w in [START_REF] Reguera | Coordinates at stable points of the space of arcs[END_REF] and the fact that, for

u ∈ σ ∨ ∩ M , u = d ∑ i=1 < u, u * i > u i , hence < u, w l > = d ∑ i=1 < u, u * i > • < u i , w l >, 1 ≤ l ≤ d.
Note that η w is a dominant and finite morphism by (39). Hence, since char k = 0, it induces an inclusion Let us fix w = {(w j ; n j )} 1≤j≤s in W v . We will next consider the image by 

O (Spec k[z1,••• ,z d ]z 1 •••z d )∞ → O (Spec k[z ′ Spec O Y ′ ∞ ,Q ′ Spec O Y w ∞ ,Q w Spec O Y∞,Q Spec O X∞,Pv . - - ? ? ρ η w ρ w η The inclusion κ(Q w ) ⊆ κ(Q ′ ) induces an inclusion O Y w ∞ ,Q w = κ(Q w )[[{Y j,0 , . . . , Y j,nj -1 } s j=1 ]] → O Y ′ ∞ ,Q ′ = κ(Q ′ )[[{Y j,0 , . . . , Y j,nj -1 } s j=1 ]] thus η w is dominant. Therefore Im ρ w = Im ρ w • η w = Im ρ • η ⊆ Im ρ. On the other hand, if ζ : Y → Y w is defined by y j → y j , 1 ≤ j ≤ s and z i → 1, 1 ≤ i ≤ d, then ρ = ρ w • ζ. Thus ρ = ρ w • ζ where ζ : Spec O Y∞,Q → Spec O Y w ∞ ,Q w is induced by ζ.
ϱ w : Spec R w → Spec O X∞,Pv of chains of prime ideals of R w . First, given a prime ideal Q of R w , we define (40) ν Q (y j ) := min{n / Y j,n-1 ∈ Q} if Y j,0 ∈ Q, ν Q (y j ) := 0 otherwise for 1 ≤ j ≤ s. Note that ν Q (y j ) ≤ n j for 1 ≤ j ≤ s.
v P = s ∑ j=1 ν Q (y j ) w j .
Proof. Applying the definition of ν P , proposition 3.15, (36) and (37), it follows that, for 1 ≤ i ≤ m, we have

ν P (x i ) = min {n / X i,n-1 ∈ P } = min {n / X i,n-1 ∈ P } = = s ∑ j=1 ν Q (y j ) < u i , w j > = < u i , s ∑ j=1 ν Q (y j )w j > .
Since x i = ℵ ui , 1 ≤ i ≤ m, and {u 1 , . . . , u d } is a basis of M , from this the lemma follows.

4.16.

Given ℓ := (ℓ 1 , . . . , ℓ s ) ∈ (Z ≥0 ) s with ℓ j ≤ n j for 1 ≤ j ≤ s, let Q ℓ be the ideal of R w defined by

Q ℓ := (Y 1,0 , . . . , Y 1,ℓ1-1 , . . . , Y s,0 , . . . , Y s,ℓs-1 ) ⊂ R w . From the definition of R w (see (32)) it follows that Q ℓ is a prime ideal of R w . Let Q e ℓ be the extension of Q ℓ to O Y w ∞ ,Q w . By (31) in proposition 4.7 we have Q e ℓ = (Y 1,0 , . . . , Y 1,ℓ1-1 , . . . , Y s,0 , . . . , Y s,ℓs-1 ) O Y w ∞ ,Q w . From proposition 4.7 it follows that Q e ℓ is a prime ideal of O Y w ∞ ,Q w . In addition we have ϱ w ( Q ℓ ) = ρ w ( Q e ℓ )
. Now, let us consider the following saturated chain of prime ideals in R w :

(41) (0) = Q (0,...,0) ⊂ Q (1,0,...,0) ⊂ Q (2,0,...,0) ⊂ . . . ⊂ Q (n1,0,...,0) ⊂ Q (n1,1,...,0) ⊂ . . . ⊂ Q (n1,n2,0,...,0) ⊂ . . . ⊂ Q (n1,...,ns-1,0) ⊂ . . . ⊂ Q (n1,...,ns-1) ⊂ Q (n1,...,ns)
Next we will consider its image by ϱ w .

Lemma 4.17. The chain of prime ideals in O X∞,Pv (42) 

P w = ϱ w ( Q (0,...,0) ) ⊂ ϱ w ( Q (1,0,...,0) ) ⊂ ϱ w ( Q (2,0,...,0) ) ⊂ . . . ⊂ ϱ w ( Q (n1,0,...,0) ) ⊂ ϱ w ( Q (n1,1,...,0) ) ⊂ . . . ⊂ ϱ w ( Q (n1,...,ns) ) = P v O X∞,
O Y w ∞ ,Q w O Y w ∞ ,Q w O (X∞) red ,Pv O X∞,Pv . - - 6 6 (ρ w ) ♯ ∞ ρ ♯ w
where the vertical arrows are induced by (ρ w ) ∞ and the horizontal arrows are injective ( [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] proposition 4.5, since ρ w : Y w → X is a dominant morphism. For the general case, we need to apply the specific form of the morphism ρ w . In fact, after replacing X by X ′ (resp. Y w by Y ′ ) where X ′ → X and Y ′ → Y w are birational proper equivariant morphisms, and applying [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] proposition 4.1, it suffices to show the injectivity of (ρ w ) ♯ ∞ in the case in which X is regular (and toric). In this case, X = Spec k[x 1 , . . . , x d ] and ρ w : Y w → X is given by

corollary 4.3). Let us show that (ρ w ) ♯ ∞ : O (X∞) red ,Pv → O Y w ∞ ,Q w is injective. If char k = 0 this follows from
x i = ℵ ui → z i • y <ui,w1> 1 • • • y <ui,ws> s for 1 ≤ i ≤ d. Then, X ∞ = Spec = k[X 0 , . . . , X n , . . .]
, where X n = (X 1,n , . . . , X d,n ) and, for 1 ≤ i ≤ d and n ≥ 0, we have

(ρ w ) ♯ ∞ (X i,n ) = Z i,n • Y <ui,w1> 1,0 • • • Y <ui,ws> s,0 mod ({Y j,n ′ } 1≤j≤s,1≤n ′ ≤n ) . This implies that (ρ w ) ♯ ∞ : O X∞ → O Y w ∞ is injective in this regular case. Thus (ρ w ) ♯ ∞ : O (X∞) red ,Pv → O Y w ∞ ,Q w is injective. Now, recall that P w is the kernel of ρ ♯ w . Therefore we have P w ∩ O (X∞) red ,Pv = (0)
and hence the contraction of P w by the morphism

O X∞,Pv → O X∞,Pv is √ (0). Even more, for ℓ ∈ (Z ≥0 ) s with ℓ j ≤ n j , 1 ≤ j ≤ s, the contraction of Q e ℓ = Q ℓ O Y w ∞ ,Q w by the morphism O Y w ∞ → O Y w ∞ ,Q w is the prime ideal Q ℓ := (Y 1,0 , . . . , Y 1,ℓ1-1 , . . . , Y s,0 , . . . , Y s,ℓs-1 ) ⊂ O Y w ∞ = k[Y 0 , Z 0 , . . . , Y n , Z n , . . .] and the image of Q ℓ by (ρ w ) ∞ : Y ∞ → X ∞ is the toric stable prime ideal P ∑ j ℓj wj . Since ρ w ( Q e ℓ ) = ϱ w ( Q ℓ ) it follows that the image of Q ℓ by Spec R w → Spec O X∞,Pv is P ∑ j ℓj wj O X∞,Pv .
We conclude then that the image of the chain (42) by the morphism ϱ w : Spec R w → Spec O X∞,Pv is defined by the following chain of prime ideals in

O X∞ √ (0) ⊂ P w1 ⊂ P 2w1 ⊂ . . . ⊂ P n1w1 ⊂ P n1w1+w2 ⊂ . . . . . . ⊂ P n1w1+...+nsws = P v .
This chain is saturated by corollary 4.3, and has length n 1 + . . . + n s = l(w). But this chain also defines the image by Spec O X∞,Pv → Spec O X∞,Pv of the chain (42). Therefore (42) has length l(w). This concludes the proof. Therefore we have dim O Y w ∞ ,Q w ≥ tcht P v . Proof. It follows from lemma 4.17 and corollary 4.14.

Irreducible components of Spec O X∞,P

In this section we will describe the irreducible components of Spec O X∞,P and their respective dimensions, where X is a normal toric variety and P is a toric stable point in X ∞ . For this, we will apply two main results: local uniformization of valuations which are composition of discrete valuations, which is consequence of the reduction of local uniformization to the rank one case by Novacoski and Spivakovsky [START_REF] Novacoski | Reduction of local uniformization to the rank one case[END_REF], and the finiteness property of the stable points of the space of arcs of any variety [START_REF] Reguera | A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF]. We will also apply the property, proved in lemma 4.10, that every wedge on a normal toric variety X centered at a toric stable point P lifts to some variety Y w .

Let us first recall the concept of composition of valuations: Let k ⊆ K be a field extension, and let ν 1 be a valuation on K. We denote by R ν1 the valuation ring, M ν1 its maximal ideal and k ν1 := R ν1 /M ν1 . Let ν 2 be a valuation of the residue field k ν1 . Then the ring

R := {g ∈ R ν1 / g modM ν1 ∈ R ν2 }
is the valuation ring of a valuation ν, which is called composite of ν 1 with ν 2 , and denoted by ν = ν 1 • ν 2 (see [START_REF] Zariski | Commutative Algebra[END_REF] chapter VI, section 10). That is, R ν = R, its maximal ideal is

M ν := {g ∈ R ν1 / g modM ν1 ∈ M ν2 }
and the ideal

P := M ν1 ∩ R ν , which is contained in M ν1 , satisfies (R ν ) P = R ν1 and R ν / P ∼ = R ν2 . Lemma 5.1. Let (A, ℘) be a Noetherian local domain of dimension ≥ 1. Let (0) ⊂ P 1 ⊂ . . . ⊂ P r = ℘
be a saturated chain of prime ideals of A. Then, there exists a valuation ring R ν of the fraction field F r(A) of A dominating A, and a saturated chain of prime ideals in

R ν (0) = Q 0 ⊂ Q 1 ⊂ . . . ⊂ Q r = M ν such that Q l ∩ A = P l , 1 ≤ l ≤ r. Moreover, ν can be taken to be the composition of r discrete valuations, precisely ν = ν 1 • . . . • ν r where R ν l ∼ = (R ν ) Q l / Q l-1 is a discrete valuation ring for 1 ≤ l ≤ r.
Proof. We argue by induction on r. For r = 1 we have that A ℘ is a Noetherian local domain of dimension 1, hence it is clear that the result holds: it suffices to consider the normalization of A ℘ . Now suppose that r ≥ 2 and we have proved the result for r -1. Let (0) ⊂ P 1 ⊂ . . . ⊂ P r be a saturated chain of prime ideals of A. Then A Pr-1 is a Noetherian ring and (0)

⊂ P 1 A Pr-1 ⊂ . . . ⊂ P r-1 A Pr-1
is a saturated chain of prime ideals in A Pr-1 . Therefore, by the inductive hypothesis, there exists a valuation ν ′ of F r(A Pr-1 ) = F r(A) which is composition of r -1 discrete valuations and there exists a saturated chain of prime ideals (0

) ⊂ Q ′ 1 ⊂ . . . ⊂ Q ′ r-1 = M ν ′ in R ν ′ such that (43) Q ′ l ∩ A Pr-1 = P l A Pr-1 for 1 ≤ l ≤ r -1. Precisely, we have ν ′ = ν 1 • . . . • ν r-1 where, for 1 ≤ l ≤ r -1, (44) R ν l = (R ν ′ ) Q ′ l / Q ′ l-1
is a discrete valuation ring. Now, A ℘ /P r-1 is a 1-dimensional Noetherian local domain whose fraction field is k ν ′ . Therefore there exists a discrete valuation ν r of k ν ′ dominating A ℘ /P r-1 . 43) and (44) we conclude that ν and the chain of the Q l 's satisfy the lemma. Proposition 5.2. Let X be a variety over a perfect field k and let P be a stable point of X ∞ . Given a minimal prime ideal P 0 of O X∞,P and a saturated chain of prime ideals in O X∞,P :

Let us consider the composite valuation

ν = ν ′ • ν r = ν 1 • . . . • ν r-1 • ν r and the chain of ideals (0) ⊂ Q 1 ⊂ . . . ⊂ Q r-1 ⊂ Q r := M ν where Q l is the contraction of Q ′ l to R ν , 1 ≤ l ≤ r -1. Then (R ν ) Qr-1 = R ν ′ and R ν / Q r-1 ∼ = R νr , hence from (
P 0 ⊂ P 1 ⊂ . . . ⊂ P r-1 ⊂ P r = P O X∞,P
there exists a finite algebraic field extension K of κ(P ) and a K-r-wedge Φ : Spec K[[ξ, t]] → X with special arc P such that, for 0 ≤ l ≤ r, the image of (ξ 1 , . . . , ξ l ) by the induced morphism φ :

Spec K[[ξ]] → Spec O X∞,P is P l .
Proof. We may suppose with no loss of generality that X is irreducible. If r = 0 then P is the generic point of X ∞ \ (Sing X) ∞ ([26] theorem 2.9). Therefore O (X∞) red ,P is a field, and also is O X∞,P , since it is isomorphic to O (X∞) red ,P ([26] theorem 3.13). Hence the result is clear in this case.

Suppose that r ≥ 1. The ring O X∞,P is a Noetherian ring ([25] corollary 4.6), hence we may apply lemma 5.1 to the Noetherian local domain O X∞,P / P 0 . We obtain that there exists a valuation ν of F r( O X∞,P / P 0 ), which is the composition of r discrete valuations, and a saturated chain of prime ideals in R ν , (45

) (0) = Q 0 ⊂ Q 1 ⊂ . . . ⊂ Q r = M ν ,
such that the contraction of Q i to O X∞,P is P i , 0 ≤ i ≤ r. Since ν is composition of r discrete valuations and local uniformization holds for discrete valuations, by [START_REF] Novacoski | Reduction of local uniformization to the rank one case[END_REF] theorem 3.1, ν admits local uniformization. That is, there exists a finitely generated O X∞,P -algebra R contained in R ν such that R := R Mν ∩R is a regular ring.

Even more (proof of [START_REF] Novacoski | Reduction of local uniformization to the rank one case[END_REF] theorem 3.1), if

(0) = Q 0 ⊂ Q 1 ⊂ . . . ⊂ Q r = M,
is the chain induced by (45) in R, i.e.

Q i = Q i ∩ R, 0 ≤ i ≤ r,
and M is the maximal ideal of R, then a regular system of parameters {ξ 1 , . . . , ξ r } of M can be obtained with the following property: ξ 1 is a regular system of parameters of Q 1 R Q1 and,

for 2 ≤ i ≤ r -1, the class of ξ i in R Qi / Q i-1 is a regular system of parameters of Q i R Qi / Q i-1
and, in addition, {ξ 1 , . . . , ξ i } is a regular system of parameters of where P 0 is a minimal prime ideal of O X∞,P , there exists w ∈ W and there exists a chain of prime ideals in R w :

Q i R Qi for 1 ≤ i ≤ r. Then the completion of R is K[[ξ 1 , . . . , ξ r ]],
(47) (0) = Q 0 ⊂ Q 1 ⊂ . . . ⊂ Q r-1 ⊂ Q r such that the image of Q l by ϱ w is P l for 0 ≤ l ≤ r.
Proof. We may suppose that X is affine and defined by a strongly convex cone σ, and P = P v where v ∈ σ ∩ M . Then, taking W := W v , the result is satisfied. In fact, given a chain (46) of prime ideals of O X∞,P , by proposition 5.2 there exists a K-r-wedge Φ : Spec K[[ξ, t]] → X, with special arc P such that, for 0 ≤ l ≤ r, the image of (ξ 1 , . . . , ξ l ) by the induced morphism φ : Spec K[[ξ]] → Spec O X∞,P is P l . Then, by lemma 4.10, there exists w ∈ W v such that φ lifts to a morphism ψ w : Spec K[[ξ]] → Spec R w , i.e. we have ϱ w • ψ w = φ. Therefore, if we define Q l to be the image of (ξ 1 , . . . , ξ l ) by ψ w , then we obtain a chain (47) with ϱ w ( Q l ) = P l for 0 ≤ l ≤ r.

The following can be said about the uniqueness of w in proposition 5. For any chain of prime ideals in O X∞,Pv which is a saturation of (42), w is the unique element in W v satisfying that the saturated chain lifts to a chain of prime ideals in R w .

Proof. Let P 0 ⊂ P 1 ⊂ . . . ⊂ P r-1 ⊂ P r = P O X∞,Pv be a saturation of (42). That is, there exist integers 1

≤ l 1,1 < l 1,2 < . . . < l 1,n1 < l 2,1 < . . . < l 2,n2 < . . . < l s,ns-1 < l s,ns = r such that, for 1 ≤ j ≤ s, 1 ≤ n ≤ n j , P lj,n = ϱ w ( Q (n1,...,nj-1,n,0,...,0) ).
Hence, by lemma 4.17, the contraction of P lj,n to O X∞ is P v j,l where v j,l = n 1 w 1 + . . . + n j-1 w j-1 + nw j .

By proposition 5.3, there exist w ′ ∈ W v and a chain of prime ideals in R w ′ :

(0) = Q 0 ⊂ Q 1 ⊂ . . . ⊂ Q r-1 ⊂ Q r such that the image of Q l by ϱ w ′ : Spec R w ′ → Spec O X∞,Pv is P l , for 0 ≤ l ≤ r. Set w ′ = {(w ′ i , n ′ i )} s ′ i=1 where w ′ 1 , . . . , w ′ s ′ are minimal elements of σ ∩ N and n ′ 1 , . . . , n ′ s ′ ∈ N \ {0} are such that v = n ′ 1 w ′ 1 + . . . + n ′ s ′ w ′ s ′ .
Proof. It follows from lemma 4.9, corollary 4.14 and proposition 5.5. (see also remark 3.7).

Corollary 5.7. Let X be a normal toric variety and let P be a toric stable point in X ∞ . Then we have dim O X∞,P = dim O (X∞) red ,P = tcht P.

Remark 5.8. The integer tcht P has appeared in [START_REF] Bourqui | Finite formal model of toric singularities[END_REF] dealing with the dimension of the minimal formal model of local rings O X∞,γ , γ a k-point in Z(P ) ⊂ X ∞ . Corollary 5.9. Let X be the 3-dimensional toric variety defined by the cone σ =< (1, 1, 0), (1, 0, 1), (0, 1, 1) > in R 3 , as in corollary 4.4. Let P = P (2,2,2) be the stable point of X ∞ defined by the element (2, 2, 2) of σ ∩ Z 3 . Then the ring O X∞,P is irreducible but it is not analytically irreducible. Moreover, O X∞,P ∼ = O (X∞) red ,P is not equidimensional.

Proof. There are two different of partitions of (2, 2, 2) in σ ∩ N :

(2, 2, 2) = 2(1, 1, 1) (2, 2, 2) = (1, 1, 0) + (1, 0, 1) + (0, 1 , 1) 
(see also corollary 4.4). Thus, applying theorem 5.6 it follows that Spec O X∞,P has two irreducible components: one of dimension 2 and the other of dimension 3.

Relation with discrepancies

In this section we will discuss the relation of dim O X∞,PeE , with the log discrepancy and with the Mather-Jacobian log discrepancy of X with respect to E. After studying the toric case and some other examples, we will propose some questions.

Given a variety X over a perfect field k and a divisorial valuation ν on X, there exists a proper and birational morphism π : Y → X, with Y normal, such that the center of ν on Y is a divisor E of Y . We also denote by ν E the valuation ν. Then, the image of the canonical homomorphism dπ : π * (∧ d Ω X ) → ∧ d Ω Y is an invertible sheaf at the generic point of E, i.e. there exists a nonnegative integer k E such that the fibre at E of the sheaf dπ(π * (∧ d Ω X )) is isomorphic to the fibre at E of O Y (-k E E). We call k E the Mather discrepancy of X with respect to the prime divisor E. Note that k E only depends on the divisorial valuation ν = ν E . Then, the Mather-Jacobian log discrepancy of X with respect to E is

a M J (E; X) := k E -ν E (Jac X ) + 1
where Jac X is the Jacobian ideal of X (see [START_REF] Ishii | Mather discrepancy and the arc spaces[END_REF], [START_REF] Ein | Singularities with respect to Mather-Jacobian discrepancies[END_REF]). In [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF] we proved that, for any variety X over a field k of characteristic zero, a divisorial valuation ν E and a positive integer e, we have The result (i) has been extended to positive characteristic in [START_REF] De Fernex | Differentials on the arc space[END_REF]. Now let X = X Σ be a toric variety and let us consider a toric divisorial valuation, hence defined by a minimal lattice element v of some cone of Σ (see 3.1). Recall that D v := O <v> is an irreducible Weil divisor on some resolution of singularities X Σ ′ of X Σ . Corollary 6.1. Let X = X Σ be a normal toric variety and let us consider a toric divisorial valuation, hence defined by a minimal element v of σ ∩ N for some cone σ of Σ, and a positive integer e. Then we have e a M J (D v ; X) ≤ tcht P ev ≤ e( k Dv + 1).

Proof. If char k = 0 , then the corollary is a direct consequence of the results in [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF]: see (i) and (ii) above. For k perfect of positive characteristic, we also obtain the second inequality by the extension of (i) in [START_REF] De Fernex | Differentials on the arc space[END_REF].

Moreover, the proof in [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF] only uses the hypothesis char k = 0 to determine a minimal system of generators of P eE /P 2 eE (recall the finiteness property of the stable points [START_REF] Reguera | A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF] theorem 4.1). But, if X = X Σ is a normal toric variety and E = D v , then, for char k ≥ 0, a minimal system of generators of P ev /P 2 ev is defined as follows: Let {u 1 , . . . , u d } ⊂ σ ∨ ∩ M which is a basis of the free Z-module M , as in 3.2, and such that ord Dv π * (dx 1 ∧ . . . ∧ dx d ) is minimal, hence equal to k Dv . Here recall that

x i = ℵ ui , 1 ≤ i ≤ d, hence (49) k Dv + 1 = d ∑ i=1 < u i , v > .
From (15) in proposition 3.13 it follows that the classes of {X i,0 , . . . , X i,ci-1 } d i=1 define a minimal system of generators of P ev /P 2 ev , where c i = e < u i , v > for 1 ≤ i ≤ m. In fact, from the definition of f j , d + 1 ≤ j ≤ m, (see [START_REF] Fulton | Introduction to Toric Varieties[END_REF]) we obtain

F j,n ∈ ( {X i,0 , . . . , X i,ci-1 } m i=1 ) 2 for d + 1 ≤ j ≤ m, 0 ≤ n < ϵ j .
Moreover, from the first equality in [START_REF] Ishii | The arc space of a toric variety[END_REF] it follows that, for d + 1 ≤ j ≤ m and 0 ≤ n ≤ c j -1 (hence ϵ j ≤ n + ϵ j ≤ ϵ j + c j -1), X j,n appears with nonzero coefficient in the linear part of F j,ϵj +n , thus we can eliminate X j,n from F j,ϵj +n in [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF] and conclude the assertion. Note that we have proved that embdim O X∞,Pev = ∑ d i=1 c i = e ( k Dv + 1) by (49), thus we recover (i). Moreover, since we have obtained a minimal system of generators of P ev /P 2 ev , theorem 4.1 in [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF] can be applied, hence (ii) holds in this case for any char k ≥ 0. From this and corollary 5.7 the result follows.

Suppose now that X is a normal Q-Gorenstein variety, thus K X is a Q-Cartier divisor, i.e. there exists a positive integer r such that rK X is Cartier. Here O(K X ) ∼ = i * Ω d Xreg where i : X reg := X \ Sing X → X is the inclusion. Let ν be a divisorial valuation and let π : Y → X be a proper birational morphism with Y normal such that the center of

ν on Y is a Weil divisor E of Y . The discrepancy Q-divisor K Y /X := K Y -1 r π * (rK X ) is well defined. The log discrepancy of X with respect to E is a(E; X) := k E + 1
where k E = ord E (K Y /X ) only depends on the divisorial valuation ν = ν E . We have

a M J (E; X) ≤ a(E; X)
and equality holds if X is a normal complete intersection ( [START_REF] Ein | Singularities with respect to Mather-Jacobian discrepancies[END_REF] proposition 2.20).

Now let X = X Σ be a toric variety. Recall that K X = ∑ α∈Σ(1) D α where Σ(1) is the set of 1-dimensional cones of Σ. Then, an affine normal toric variety X σ is Q-Gorenstein if and only if there exists u σ ∈ N Q such that < u σ , v i > = 1 for all extremal vectors v i , 1 ≤ i ≤ r of σ ([5] proposition 11.4.12). Here recall that the extremal vectors of σ are the primitive vectors of the 1-dimensional faces of σ, thus for such a u σ we have div (ℵ -uσ ) = K X .

Finally, let us show that Y \ ρ -1 (Sing X) is simply connected. Let N := Z d and let ∆ be the cone (R ≥0 ) d in N R , so that Y is the toric affine variety defined by ∆. Let ρ : N → N be the morphism of lattices induced by ρ. Hence, if v i = (0, . . . , 0, 1, 0, . . . , 0), 1 in the i-th position, then ρ( v i ) = v i for 1 ≤ i ≤ d. Let Σ (resp. Σ) be the fan in N R (resp. N R ) defining X\Sing X (resp. Y \ρ -1 (Sing X)). Then, codim(X, Sing X) ≥ 2 implies that v i ∈ Σ(1), 1 ≤ i ≤ d, and hence v 1 = (1, 0, . . . , 0), v 2 = (0, 1, 0, . . . , 0), . . . , v d = (0, . . . , 0, 1) ∈ Σ(1). We conclude that Y \ρ -1 (Sing X) is simply connected (see [START_REF] Oda | Convex bodies and algebraic geometry[END_REF] proposition 1.9). Therefore ρ : Y → X is the universal cover of X \ Sing X.

Example 6.3.

As in corollary 4.4 and corollary 5.9, let X be the toric 3-dimensional variety defined by the cone σ =< (1, 1, 0), (1, 0, 1), (0, 1, 1) > in R 3 . It has an isolated singularity at the origin O. In addition,

u σ = ( 1 2 , 1 2 , 1 2 ) is in σ ∨ ∩ N Q and satisfies < u σ , v i >= 1 for all extremal vectors v i , 1 ≤ i ≤ 3 of σ.
Therefore X is a normal Q-Gorenstein singularity. The blowing up of X at O defines an equivariant resolution of singularities Y of X. In fact, Y is the toric variety defined by the elementary subdivision of σ by vR ≥0 , where v = (1, 1, 1), which is a minimal element of σ ∩ N . We have

a(D v ; X) = 1 + k v = < u σ , v > = 3 2 hence k v = 1
2 > 0 and we conclude that (X, O) is a terminal singularity. Now, dim O X∞,Pv = 1 (corollary 4.2) and a M J (D v ; X) = k v -ν v (Jac X ) + 1 = 2 -3 + 1 = 0, hence Example 6.4. Let us show in the next example that the inequality in theorem 6.2 may be strict. Let X be the toric surface defined by the cone σ =< (1, 0), [START_REF] Bourqui | Finite formal model of toric singularities[END_REF][START_REF] Bouvier | Diviseurs essentiels, composantes essentielles des variétés toriques singulières[END_REF] > and let v = (1, 1), a primitive element of σ. Then 1 + k v = < (1, - 1 2 ), v >= 1 2 . On the other hand, there are two partitions of 4(1, 1): (4, 4) = (1, 0) + (3, 4), (4, 4) = 4(1, 1). Thus, by theorem 5.6, O X∞,P4v has two irreducible components: one of dimension 2 and another of dimension 4. In this case, 4(1 + k v ) = 2 < 4 = tcht P 4v . Therefore, the inequality a(D v ; X) < sup e tcht Pev e is strict. Theorem 6.2 above motivates questions 6.5 and 6.6 below. Question 6.5, which is weaker than question 6.6, follows the line in [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF] Suppose that a(E; X) > 0. Does there exist a positive integer e and an irreducible component I of the ring O X∞,P eE whose dimension is e a(E; X) ? Even more, in case that e and an irreducible component I of O X∞,P eE exist as before, we would like to understand the geometric sense of I. Remark 6.7. Note first that from [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF] theorem 4.1 it follows that question 6.5 has an affirmative answer if X is normal and complete intersection, since in this case a(E; X) = a M J (E; X). But question 6.6 is unknown in this case.

If X is nonsingular at the center P 0 of ν E , then the ring O X∞,P eE is regular and essentially of finite type over a field, and dim O X∞,P eE = ea(E; X) ( [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] proposition 4.2 and [27] corollary 2.9). Therefore, Spec O X∞,P eE is irreducible and dim O X∞,P eE = ea(E; X). Hence questions 6.5 and 6.6 have affirmative answer in this case. Moreover, since (X, P 0 ) is nonsingular, its universal cover is trivial. Therefore, as in theorem 6.2, the irreducible component I of Spec O X∞,P eE whose dimension is ea(E; X) is obtained from the space of arcs of the universal cover of X (in this case I = Spec O X∞,P eE ). Now, given a normal Q-Gorenstein variety and a divisorial valuation ν = ν E , keep the notation in question 6.5. Since π : Y → X is proper and birational, there exists a stable point Q eE of Y ∞ whose image by π ∞ is P eE and we have that the induced morphism O X∞,P eE → O Y∞,Q eE is surjective ( [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] A divisorial valuation ν over a variety X is called a terminal valuation if there exists a prime exceptional divisor E on a minimal model Y → X such that ν = ν E (see [START_REF] De Fernex | Terminal vauations and the Nash problem[END_REF]). In this case, from T. de Fernex and R. Docampo's work [START_REF] De Fernex | Terminal vauations and the Nash problem[END_REF], and [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] corollary 5.12, it follows that dim O X∞,P E = 1. On the other hand, if X is normal and Q-Gorenstein and ν E a terminal valuation then a(E; X) ≤ 1 ([14] theorem 8.2.12), hence question 6.5 has an affirmative answer in this case. In particular, this implies that question 6.5 has an affirmative answer for essential valuations over normal Q-Gorenstein surfaces. Essential valuations on a variety X are those divisorial valuations on X whose center on any resolution of singularities p : X → X is an irreducible component of the exceptional locus of p.

Next, we will study questions 6.5 and 6.6 in a family of 3-dimensional varieties with isolated terminal singularities. This family was given by J. Johnson and J. Kollár [START_REF] Johnson | Arc spaces of cA-type singularities[END_REF] to illustrate examples of essential valuations ν E which do not belong to the image of the Nash map, i.e. N E is not an irreducible component of X Sing 

i, 1 ≤ i ≤ [ m 2 ]
, and let us consider the divisorial valuation ν Ei . We have ν Ei (x) = ν Ei (y) = ν Ei (z) = i, ν Ei (w) = 1 and a(E i ; X) = k Ei + 1 = i + 1. Recall that X is a normal hypersurface, therefore from [START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF] theorem 4.1 it follows that dim O X∞,P eE i ≥ e(k Ei + 1) = e(i + 1) for e ∈ Z >0 . Moreover, let Y be the A 1singularity xy = z 2 in A 3 k , obtained by intersecting X with (w = 0), and let ν F be its essential valuation. Following the ideas in proposition 3.13, or more precisely in [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] 

Corollary 4 . 3 .

 43 Given v ∈ σ ∩ N \ {0}, let us consider a chain of prime ideals in O X∞ (26) P v0 ⊂ P v1 ⊂ . . . ⊂ P vr-1 ⊂ P vr = P v ,

Lemma 4 . 15 .

 415 Let Q be a prime ideal of R w . Let P := ϱ w ( Q) and denote by P the contraction of P by the morphism O X∞ → O X∞,Pv . Then

Corollary 4 . 18 .

 418 Given v ∈ σ ∩ N and w in W v , we have that I w is an irreducible subset of Spec O X∞,Pv and dim I w ≥ l(w).

3 : 5 . 4 .

 354 Lemma Let X = X σ be an affine normal toric variety, let v ∈ σ ∩ N and w = {(w j ; n j )} s j=1 an element of W v . Let us consider the chain of prime ideals in O X∞,Pv (42)P w = ϱ w ( Q (0,...,0) ) ⊂ ϱ w ( Q (1,0,...,0) ) ⊂ ϱ w ( Q (2,0,...,0) ) ⊂ . . . ⊂ ϱ w ( Q (n1,0,...,0) ) ⊂ ϱ w ( Q (n1,1,...,0) ) ⊂ . . . ⊂ ϱ w ( Q (n1,...,ns) ) = P v O X∞,Pv .

  (i) embdim O (X∞) red ,P eE = e ( k E + 1) ([21] theorem 3.4), (ii) dim O X∞,P eE ≥ e a M J (E; X) ([21] theorem 4.1).

3 2 =

 2 a(D v ; X) > dim O X∞,Pv = 1 > a M J (D v ; X) = 0.Let us next consider the stable point P 2v . In corollary 5.9 we showed that O X∞,P2v has two irreducible components: one of dimension 2 and another of dimension3 = 2(1 + k v ). In this case 2(1 + k v ) = tcht P 2v , that is, a(D v ; X) = dim O X∞,P2v2 ≤ sup e dim O X∞,Pev e .

Question 6 . 5 .

 65 theorem 4.1 (see (ii) at the beginning of this section). Let X be a normal Q-Gorenstein variety and let ν = ν E be a divisorial valuation, i.e. the center of ν on Y , π : Y → X a proper birational morphism with Y normal, is a Weil divisor E of Y . Do we have a(E; X) ≤ sup e dim O X∞,P eE e ?

1 and question 6 . 5

 165 proposition 4.1). Since Y is normal and E a divisor of Y , Y is regular at the generic point of E, hence dim O Y∞,Q eE = e and we conclude that dim O X∞,P eE ≥ e. Therefore sup e dim O X∞,P eE e ≥ has an affirmative answer whenever a(E; X) ≤ 1.

∞ . Example 6 . 8 .

 68 Let m ≥ 2 and let X = X(m) be the hypersurface defined byxy = z 2 -w m in A 4 k ,where k is a field of characteristic zero. It has an isolated singularity at the origin O which is a cA 1 -type singularity. If we blow up O, the variety obtained has a unique singular point and it is locally X(m -2). After [ m 2 ] blowing ups of closed points we obtain a resolution of singularities of X. Its exceptional locus consists on[ m 2 ] irreducible divisors E 1 , . . . , E [ m 2 ], where E i is the strict transform of the exceptional locus of the i-th blow up. If m is odd and m ≥ 5 (resp. m even or m = 3) then ν E1 and ν E2 (resp. ν E1 ) are the essential valuations ([START_REF] Johnson | Arc spaces of cA-type singularities[END_REF] lemmas 13 to 17) and, for all m, we have N E1 = X Sing ∞ , i.e. N E1 is the unique irreducible component of X Sing ∞ ([16] theorem 1).

Fix

  

  W 0 is a nonempty closed subset of W 0 whose defining ideal is the radical of a finitely generated ideal ([START_REF] Reguera | Corrigendum: A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF] proposition C.9).Stable points are fat points in the following sense: if P ∈ X ∞ is stable then the image of the arc h P : Spec κ(P )[[t]] → X is dense on an irreducible component of X ([26] proposition 3.7 (i)). The local ring O X∞,P of X ∞ at a stable point P is irreducible of finite dimension ([26] theorem 2.9), but in general it is not reduced and non Noetherian ([START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] example 3.16). However we have:Finiteness property of the stable points ([25] theorem 4.1).Let P be a stable point of X ∞ , then the formal completion O (X∞) red ,P of the local ring of (X ∞ ) red at a stable point P is a Noetherian ring. Moreover, if X is affine, then there exists G ∈ O X∞ \ P such that the ideal P X∞,P ∼ = O (X∞) red ,P ([26] theorem 3.13 if char k = 0; if char k > 0 the proof in[START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF] holds if we take Hasse-Schmidt derivations). ([26] question 3.17). Let P be a stable point of X. Is the ring O (X∞) red ,P a Noetherian ring?

	(	O (X∞) red	)	G .	(	O (X∞) red	)	G is a finitely generated ideal of
		Furthermore, we have O The following is still an open question:		
		Question 2.3.				

lemma 4.1 and [25] lemma 4.2 it can be shown that stable points of a variety X, whose irreducible components are {X} c i=1 , are characterized as follows: P ∈ X ∞ is stable if and only if Z(P ) is not contained in ∪ c i=1 (Sing X i ) ∞ and there exists an open affine subscheme W 0 of X ∞ , such that N ∩

  Therefore Im ρ ⊆ Im ρ w and we conclude that Im ρ = Im ρ w .Proof. It follows from lemmas 4.9 and 4.10 applied to 1-wedges on X. In fact, since the ring O X∞,Pv is Noetherian ([25] corollary 4.6), givenP ′ ∈ Spec O X∞,Pv , there exists a k-morphism φ : Spec K[[ξ]] → Spec O X∞,Pv , where K is a field extension of κ(P v ), such that the image of the closed (resp. generic) point of Spec K[[ξ]] is the maximal ideal of O X∞,Pv (resp. P ′ ). Equivalently, φ defines a wedge Φ : Spec K[[ξ, t]] → X with special arc P v . By lemma 4.10, there exists w ∈ W v such that Φ lifts to Spec R w . Applying lemma 4.9, this implies that P ′ lies in the image I w of ϱ w .

	Corollary 4.14. We have (	)		∪	
	Spec O X∞,Pv	red	=	w∈Wv	I w .

  Pv contracts in O X∞,Pv to the chain defined by √ (0) ⊂ P w1 ⊂ P 2w1 ⊂ . . . ⊂ P n1w1 ⊂ P n1w1+w2 ⊂ . . . . . . ⊂ P n1w1+...+nsws = P v . Proof. Recall that, since Y w is regular, the local ring O Y w ∞ ,Q w is also regular ([26] proposition 4.2). Hence we have a commutative diagram of morphisms:

	Therefore the chain (42) has length l(w).

  where K is a finite algebraic extension of κ(P ), since k ν is a finite algebraic extension of κ(P ) by Abhyankar's inequality ([1] theorem1). Here note that r = dim O X∞,P / P 0 because O X∞,P is a catenary ring. Therefore, the inclusion of O X∞,P in R = K[[ξ]] induces the desired wedge Φ.The following result is a direct consequence of proposition 5.2 and lemma 4.10: Let X be a normal toric variety and let P be a toric stable point of X ∞ . There exist a finite set W and, for each w ∈ W, a morphism ϱ w : Spec R w → Spec O X∞,P , where R w is a regular local ring with residue field κ(P v ), satisfying the following property: For every saturated chain of prime ideals in O X∞,P : P 1 ⊂ . . . ⊂ P r-1 ⊂ P r = P O X∞,P

	Proposition 5.3. (46)	P 0 ⊂

  corollary 5.6, we may describe the ring O X∞,P eE i and obtain that O X∞,P eE i / (W 0 , . . . , W e-1 ) ∼ = O Y∞,P eiF ⊗ κ(P eiF ) κ(P eEi ). Since O X∞,P eE i is a catenary ring and dim O Y∞,P eiF = ei, we conclude that dim O X∞,P eE i ≤ ei + e and hence dim O X∞,P eE i = e(k Ei + 1) = e(i + 1). Equivalently, dim O X∞,P eE i e = a(E i ; X) for every e ≥ 1. In addition, O X∞,P eE i is a complete intersection ring, hence every irreducible component of Spec O X∞,P eE i has dimension e(k Ei + 1). This answers affirmatively questions 6.5 and 6.6 in this case.

,••• ,z ′ d ] z ′ 1 •••z ′ d )∞ . Let Q ′ be the stable point in Y ′ ∞ defined by (Y 1,0 , . . . , Y1,n1-1 , . . . , Y d,0 , . . . , Y s,ns-1 ). Then, its image by η w is Q w . Hence we have a commutative diagram
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We will prove, by induction on (j, n), 1 ≤ j ≤ s, 1 ≤ n ≤ n j , with the lexicographic order, that after a possible reordering of the w ′ i 's, we have w ′ i = w i for 1 ≤ i ≤ j and (48)

(see definition in (40)). In fact, for (j, n) = (1, 1), since v l1,1 = w 1 and w 1 is a minimal element of σ ∩ N , from lemma 4.15 applied to the ideal Q l1,1 of R w ′ it follows that there exists i, 1 ≤ i ≤ s ′ , such that w ′ i = w 1 and ν Q l 1,1 (y i ) = 1. We may suppose that i = 1. Now fix (j, n) and suppose that (48) holds for (j ′ , n ′ ) < (j, n). If n = 1 then, by the inductive hypothesis and since

to the ideal Q lj,1 of R w ′ . We may suppose that i ′ = j. Hence (48) holds for (j, 1). Finally, if n > 1 then, by the inductive hypothesis, we have w ′ i = w i for 1 ≤ i ≤ j and

Then, v lj,n = ∑ j-1 i=1 n i w i + nw j and w j is a minimal element of σ ∩ N , imply that ν Q l j,n (y j ) = ν Q l j,n-1 (y j ) + 1 by lemma 4.15. This proves (48). Now, from (48) it follows that s ′ ≥ s and that, after a possible reordering of the w ′ i 's, we have w ′ j = w j and n j ≤ n ′ j for 1 ≤ j ≤ s. Then, since Proof. Let us consider the chain (42) of prime ideals in O X∞,Pv

By lemma 5.4, any chain of prime ideals in O X∞,Pv which is a saturation of (42) lifts to R w . Therefore, it has length less or equal l(w) = dim R w . Since the chain (42) has length ∑ j n j = l(w), we conclude that (42) is a saturated chain of prime ideals in O X∞,Pv . Therefore, P w is a minimal prime ideal of O X∞,Pv and, since O X∞,Pv / P w is a catenary ring, dim I w = dim O X∞,Pv / P w = l(w). Theorem 5.6. Let X = X Σ be a normal toric variety and let P be a toric stable point of X ∞ . There exist a finite set W and, for each w ∈ W, a morphism ρ w : Y w → X, where Y w is a smooth variety, and a stable point

∞ → X ∞ is P , such that the following holds: There is a one to one correspondence between elements w ∈ W and irreducible components of Spec O X∞,Pv . Moreover, the irreducible component corresponding to an element w is the image I w of the morphism Moreover, there exist a positive integer e and an irreducible component I of Spec O X∞,Pev whose dimension is e a(D v ; X). More precisely, if char k = 0 then I can be obtained as the image of an irreducible component of Spec O Y∞,Q where Y → X is the universal cover of X \ Sing X, and

Proof. We may suppose that X is affine, i.e. X = X σ where σ is a strongly convex cone. Let v 1 , . . . , v r be the extremal vectors of σ∩N . Let

we have d ≤ r and there exists some expression of the form

where

On the other hand, let e ∈ N be such that eq i ∈ Z for 1 ≤ i ≤ r. Then (50) induces a partition w = {(v i , eq i )} r i=1 of ev. By theorem 5.6, the ring Spec O X∞,Pev has an irreducible component I w of dimension

From this and corollary 5.7, the first part of the theorem follows.

For the last part, suppose that char k = 0. There exist d extremal vectors which are Q-linearly independent, let us suppose they are v 1 , . . . , v d . Then we may consider an expression (50) where only v 1 , . . . , v d appear, i.e. v = q 1 v 1 +. . .+q d v d . The corresponding partition of ev is w = {(v i , eq i )} d i=1 and the irreducible component I = I w of Spec O X∞,Pev is obtained as follows: Let ρ : Y := Spec k[y 1 , . . . , y d ] → X be given by ℵ u → y <u,v1>

and let Q = (Y 1,0 , . . . , Y Note first that codim(X, Sing X) ≥ 2 and, since K X = -div (ℵ uσ ), we have

with the notation of remark 4.12. This implies that ρ is a finite étale morphism over X \ Sing X.

In general ρ is not finite. Let σ

We have that ρ 0 is a finite morphism and π is an equivariant morphism which contracts the subvarieties of X σ0 defined by the faces of σ 0 which are not faces of σ, thus ρ is not finite. However, if τ is a face of σ 0 which is not a face of σ, then τ • ⊂ σ • , hence the subvariety O τ defined by τ contracts to the origin, which is contained in Sing X. Therefore ρ 0 , and also ρ, is finite and étale over X \ Sing X.