
HAL Id: hal-03031759
https://hal.science/hal-03031759v4

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

From branchings to flows: a study of an Edmonds’ like
property to arc-disjoint branching flows

Cláudio Carvalho, Jonas Costa, Raul Lopes, Ana Karolinna Maia, Nicolas
Nisse, Cláudia Linhares Sales

To cite this version:
Cláudio Carvalho, Jonas Costa, Raul Lopes, Ana Karolinna Maia, Nicolas Nisse, et al.. From branch-
ings to flows: a study of an Edmonds’ like property to arc-disjoint branching flows. Discrete Math-
ematics and Theoretical Computer Science, In press, vol. 25:1 (10), pp.15. �10.46298/dmtcs.9302�.
�hal-03031759v4�

https://hal.science/hal-03031759v4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Discrete Mathematics and Theoretical Computer Science .
. vol. 25:1 #10 (2023)

From branchings to flows: a study of an
Edmonds’ like property to arc-disjoint
branching flows

Cláudio Carvalho1∗ Jonas Costa1† Raul Lopes2‡

Ana Karolinna Maia1§ Nicolas Nisse3¶ Cláudia Linhares Sales1‖
1 Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil
2 Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France
3 Université Côte d’Azur, Inria, CNRS, I3S, Sophia-Antipolis, France

revisions 4th Apr. 2022, 9th Nov. 2022; accepted 10th Mar. 2023.

An s-branching flow f in a networkN = (D,u), where u is the capacity function, is a flow that reaches every vertex
in V (D) from s while loosing exactly one unit of flow in each vertex other than s. Bang-Jensen and Bessy [TCS,
2014] showed that, when every arc has capacity n − 1, a network N admits k arc-disjoint s-branching flows if and
only if its associated digraph D contains k arc-disjoint s-branchings. Thus, a classical result by Edmonds stating that
a digraph contains k arc-disjoint s-branchings if and only if the in-degree of every set X ⊆ V (D) \ {s} is at least
k also characterizes the existence of k arc-disjoint s-branching flows in those networks, suggesting that the larger
the capacities are, the closer an s-branching flow is from simply being an s-branching. This observation is further
implied by results by Bang-Jensen et al. [DAM, 2016] showing that there is a polynomial algorithm to find the flows
(if they exist) when every arc has capacity n− c, for every fixed c ≥ 1, and that such an algorithm is unlikely to exist
for most other choices of the capacities. In this paper, we investigate how a property that is a natural extension of
the characterization by Edmonds’ relates to the existence of k arc-disjoint s-branching flows in networks. Although
this property is always necessary for the existence of the flows, we show that it is not always sufficient and that it is
hard to decide if the desired flows exist even if we know beforehand that the network satisfies it. On the positive side,
we show that it guarantees the existence of the desired flows in some particular cases depending on the choice of the
capacity function or on the structure of the underlying graph of D, for example. We remark that, in those positive
cases, polynomial time algorithms to find the flows can be extracted from the constructive proofs.

Keywords: Digraphs, Branchings, Branching flows, Arc-disjoint flows

∗FUNCAP Pronem 4543945/2016.
†FUNCAP Pronem 4543945/2016, CAPES/STIC-AmSud 88881.197438/2018-01 and PhD scholarship granted by CAPES.
‡French Agence Nationale de la Recherche under contract ASSK ANR-18-CE40-0025-01. Work partially done at UFC(MDCC),

with a PhD scholarship by FUNCAP.
§FUNCAP 186-155.01.00/21 and 4543945/2016 (Pronem).
¶French Agence Nationale de la Recherche under contract Digraphs ANR-19-CE48-0013-01.
‖FUNCAP Pronem 4543945/2016, and CNPq project 304831/2017-4.

ISSN 1365–8050 © 2023 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://dmtcs.episciences.org/
https://doi.org/10.46298/dmtcs.9302

2 Cláudio Carvalho et. al

1 Introduction
Let D = (V,A) be a digraph. If e is an arc of D from a vertex v to a vertex w, we may refer to e as
vw. The in-degree of a set X ⊆ V (D), denoted by d−D(X), is the number of arcs with tail outside of X
and head inside of X . If X = {v}, we simply write d−D(v) instead of d−D({v}) (omitting braces). For an
integer n, we denote by [n] the set {1, . . . , n}.

A network N = (D,u) is formed by a digraph D = (V,A) with a capacity function u : A(D)→ Z+.
If all arcs in D have capacity λ, we simply write u ≡ λ. A flow in N is a function f : A(D) → Z+

such that f(vw) ≤ u(vw), ∀vw ∈ A(D) (note that contrary to the classical definition of flows, there is no
need to satisfy the conservation constraints). For a vertex v ∈ V (D), we define f+(v) =

∑
vw∈A f(vw)

and f−(v) =
∑
wv∈A f(wv), that is, f+(v) and f−(v) are the amount of flow leaving and entering v,

respectively. The balance vector of a flow f in a network N = (D,u) is the function bf : V (D) → Z

associating each vertex v ∈ V (D) to the value f+(v)− f−(v). If bf (v) = `, we may also say that v has
balance `. A vertex s ∈ V (D) is a source of f if f+(v) > 0 and f−(v) = 0. An (s, t)-cut on a network
N = (D, c) is a bipartition (S, S = V (D) \ S) of V (D) such that s ∈ S and t ∈ S. The capacity of an
(s, t)-cut is the sum of the capacities of arcs with tail in S and head in S and it is denoted by u(S, S). For
other concepts on graphs and digraphs, we follow standard terminology as in [3, 6].

Flows are widely studied as they allow, with a certain elegance and simplicity, modeling problems in
different areas of study such as transportation, logistics and telecommunications. In the theoretical field,
they are used to solve various problems in graphs and digraphs. A long list of results related to flows can
be found in [1, 10]. In this work, we deal with one variation of the problem where, roughly speaking, k
arc-disjoint flows, having in common the same source and with a prescribed balance vector, have to be
found.

Since a flow in a network can be entirely described by its associated balance vector, the goal of a
flow problem can be seen as finding a flow f whose balance vector respects a given set of properties.
Therefore, the problem that has been considered is: given a digraph D together with a balanced vector
b : V (D) → Z, does there exist a flow f in D such that bf = b? For example, in the decision version
of the classical MAXIMUM FLOW problem we are given a network N = (D,u) together with a positive
integer k and a pair of vertices s, t ∈ V (D), and the goal is to decide ifN admits a flow f with bf (s) ≥ k
such that bf (v) = 0 for all v ∈ V (D) \ {s, t} and bf (s) = −bf (t). Such a flow f is known as an (s, t)-
flow and, in this case, we say that f has value bf (s). This problem can be solved in polynomial time [11]
(see [17, Chapter 10] for a survey on algorithms for MAXIMUM FLOW). Furthermore, by applying a
simple reduction to MAXIMUM FLOW (see [3, Lemma 4.2.2]), we can solve in polynomial time any flow
problem in which the aim is to find a flow g with

∑
v∈V (D) bg(v) = 0.

The possibility of considering the coexistence of flows respecting some properties in a network gives
more power of modeling for this already useful tool. In [9], a more general version of the flow problem
was investigated. There, the goal was to find a collection of (si, ti)-flows that sum to a specific value r
and such that the sum of all the flows in each arc respects its capacity. It was shown that this version of the
problem is NP-hard since it generalizes many hard problems in the literature, including the notoriously
hard DIRECTED DISJOINT PATHS problem.

Two flows f and g in a network N = (D,u) are arc-disjoint if f(vw) · g(vw) = 0, ∀vw ∈ A(D).
In [2], the problem of finding arc-disjoint flows was introduced and studied. The authors considered many
constraints showing that some generalize important problems, known to be hard, and that there are cases
where polynomial-time algorithms are possible. Amongst other results, they showed that the following are

A study of an Edmonds’ like property to arc-disjoint branching flows 3

NP-complete: the problem of deciding if there are two arc-disjoint flows in a network where all arcs have
capacity one, the problem of deciding if there are two arc-disjoint flows with the same balance vectors in
a network where all arcs have capacity at most 2, and the problem of deciding if there are two arc-disjoint
(s, t)-flows in a network where all arcs have capacity at most two.

We say that a digraph D is an s-branching if there is a directed path from s to every other vertex
in D and the underlying(i) graph of D is a tree. We also say that D has root s. There is an extensive
literature concerning the study of branchings (see for example chapter 9 of [3]), given their relevance
both from practical and theoretical point of view due to its numerous applications, some of which we
enumerate below. A classical result by Edmonds [8] characterizes the digraphs containing k arc-disjoint
s-branchings and later proofs of the same theorem done in [14, 19] show polynomial-time algorithms to
find such branchings if they exist.

Theorem 1 (Edmonds’ branching theorem [8]). A digraph D = (V,A) has k arc-disjoint s-branchings
if and only if d−D(X) ≥ k for all X ⊆ V (D) \ {s} with X 6= ∅.

A stronger version of this result, allowing each branching to have its own set of roots, can be seen
in [17, Chapter 53]. There are many applications for Edmonds’ Theorem on arc-disjoint branchings: it
can be used, for example, to prove Menger’s Theorem [16], to characterize arc-connectivity [18], and to
characterize branching cover [12]. The problem of finding disjoint branchings was recently studied in the
setting of temporal graphs in [20]. In this paper, we consider branchings in terms of flow.

An s-branching flow in a networkN = (D,u) is a flow f such that bf (s) = n− 1 and bf (v) = −1 for
every v ∈ V (D) \ {s}. In other words, f reaches all vertices of D and each vertex other than s retains
one unit of flow. Here, we study the problem that, given a digraph D and a source s and an integer k, aims
at deciding whether there exist k arc-disjoint s-branching flows.

Related work: Finding one s-branching flow in a given network is easy: since
∑
v∈V (D) bf (v) = 0, we

can reduce this problem to the problem of finding one (s, t)-flow, as discussed above. We can also find
k arc-disjoint s-branching flows in polynomial time when u ≡ n − 1. In [2] it was shown that, in this
case,N admits an s-branching flow if and only if D contains an s-branching. Thus, applying Theorem 1,
the authors provided a characterization of networks admitting k arc-disjoint s-branching flows, which are
exactly the networks constructed on digraphs containing k arc-disjoint s-branchings. They also provided
a polynomial time algorithm that finds such flows if they exist. We now discuss how the tractability of
this problem, in general, depends on the choice of the capacity function.

In [2], the authors showed that the problem of deciding if a network has k arc-disjoint s-branching flows
is NP-complete if every arc has capacity at most two, and in [4] this result was extended to networks with
capacity at most `, for every fixed ` ≥ 2. For most choices of larger capacities, the problem remains
hard. In [4] it was shown that, unless the Exponential Time Hypothesis [13] fails, there is no polynomial
time algorithm for the problem of finding k arc-disjoint s-branching flows in a networkN = (D,u) with
u ≡ λ for any choice of λ such that n/2 ≤ λ ≤ n − (log n)1+ε, ε > 0, even if D is acyclic. In [7] the
authors adapted this last proof to show that the same holds if (log n)1+ε ≤ λ ≤ n/2. The last two results
have an intersection point, which is when u ≡ n/2. The two constructions result in the same network in
this case, and it is worth noticing that it gives a polynomial time reduction. So, for u ≡ n/2, the problem
is NP-hard. On the positive side, in [4] it was also shown that the problem is solvable in polynomial time
when λ = n − c, for fixed k and c ≥ 1. More precisely, the authors showed that the problem is XP for

(i) The underlying graph of a digraph D is the undirected graph obtained by ignoring the orientation of the arcs of D.

4 Cláudio Carvalho et. al

fixed k and c when the goal is to find k arc-disjoint s-branching flows. This was later improved to an FPT
algorithm with the same parameter in [5].

In short, the results presented in the previous paragraph roughly say that the problem of deciding if
a given network with u ≡ n − c contains k arc-disjoint s-branching flows admits a polynomial time
algorithm for every fixed c ≥ 1, and is unlikely to admit such an algorithm for most other choices of
u under reasonable complexity hypothesis. Thus, any general characterization of networks admitting
such flows must also be hard to verify. In the following, we extend to s-branching flows the property
characterizing networks containing k arc-disjoint s-branchings, which was originally proposed in [7], .

For a vertex s ∈ V (D) and two non-negative integers k, λ, we say that D is (k, λ, s)-sufficient if, for
every X ⊆ V (D) \ {s} with X 6= ∅, we have

d−D(X) ≥ k
⌈
|X|
λ

⌉
. (1)

If N = (D,u) with u ≡ λ is a network constructed on such a digraph, we may also say that N is
(k, λ, s)-sufficient.

It is not hard to visualize the relationship between this property and the one in the statement of Theorem
1: if λ = n− 1, then every arc of D has enough capacity to send as many units of flow as needed to reach
any set X ⊆ V (D). Thus, capacities are not an issue and Inequality 1 states that d−D(X) ≥ k, as in
Theorem 1, since |X| ≤ n− 1. For other choices of λ, note that every s-branching flow onN must reach
a set of vertices X with at least |X| units of flow to cover it. Thus each s-branching flow in N uses at
least d|X|/λe arcs to cover X . More formally, the following was proved.

Proposition 1. [7] Let N = (D,u) be a network with u ≡ λ and s ∈ V (D). If N admits k arc-disjoint
s-branching flows, then D is (k, λ, s)-sufficient.

Our contributions: In Section 2, we show how to construct a family of a (k, λ, s)-sufficient networks
not containing k arc-disjoint s-branching flows. On the positive side, we show that some positive cases of
sufficiency do occur depending on the structure of D and on the choice of k and λ.

In Section 3, we show that (k, λ, s)-sufficiency guarantees the existence of k arc-disjoint s-branching
flows in a network N = (D,u) when D is an s-branching where parallel arcs are allowed, and when D
is a collection of internally disjoint multi-paths starting at s and all ending on the same vertex t ∈ V (D).
In other words, the flows are guaranteed to exist when the underlying simple graph of D is a tree or
a spindle, and thus the considered property characterizes the existence of the flows in those classes of
networks. Additionally, we show that we also have this guarantee in general digraphs when k = 1, when
λ = 1, and when λ = |V (D)| − 2. Finally, we show that, for a network N = (D,u) with u ≡ λ and an
integer p satisfying pλ ≥ n − 1, if d−D(X) ≥ pk for all non-empty X ⊆ V (D) \ {s}, then N admits k
arc-disjoint s-branching flows.

In Section 4, we show that the analyzed property is not enough to improve the tractability of the problem
of finding the desired flows. Namely, we show that it is NP-complete to decide if a network N admits
k arc-disjoint s-branching flows even if its underlying simple graph is constructed by appending a path
to the end of a spindle and we know beforehand that N is (k, λ, s)-sufficient. Since this property can be
easily verified in this class and it is always necessary for the existence of the flows, it is no surprise that it
is not enough to guarantee the existence of the k arc-disjoint s-branching flows.

A study of an Edmonds’ like property to arc-disjoint branching flows 5

In Section 5 we close the paper with some open questions. We remark that polynomial time algorithms
to find the flows can be extracted from the provided constructive proofs of the aforementioned results.

2 Networks on (k, λ, s)-sufficient digraphs not containing the flows
In Figure 1 we give an example of a (2, n − 3, s)-sufficient network that does not contains 2 arc-disjoint
s-branching flows, and we show that it can be generalised to (2, n − c, s)-sufficient networks, for every
fixed c ≥ 3 (Theorem 2). Thus the best that we can expect is that every (2, n − 2, s)-sufficient network
contains the desired s-branching flows. In Section 3 we show that this is indeed true for general networks
(c.f. Theorem 9).

A

B

s

Fig. 1: Example of a network on a (2, n − 3, s)-sufficient digraph that does not contain 2 arc-disjoint s-branching
flows. Here every arc has capacity n− 3.

Theorem 2. For every c ≥ 3, there exists a (2, n − c, s)-sufficient network N which does not admit 2
arc-disjoint s-branching flows.

Proof: LetN be a network as in Figure 1, considering that B has exactly c vertices and |A| = n− c− 1,
with each of the last c vertices of A connected to a different vertex of B. First, we show that N is
(2, n − c, s)-sufficient. For any set X ⊆ V (D) \ {s}, let a = |X ∩ A| and b = |X ∩ B|. Thus,
|X| = a+ b.

If |X| ≤ n − c, then we must show that d−(X) ≥ 2
⌈
|X|
n−c

⌉
= 2. If a > 0, one can see that there are

two arcs entering X ∩A, then d−(X) ≥ 2+ b ≥ 2. Otherwise, we have that b > 0 and d−(X) = 2b ≥ 2.

If |X| > n − c, then we must show that d−(X) ≥ 2
⌈
|X|
n−c

⌉
= 4. Note that in this case a > 0 and

b ≥ 2. So, we have d−(X) ≥ 2 + b ≥ 4.
Now we show that N does not admit 2 arc-disjoint s-branching flows. Observe that each flow can use

at most one arc from A to B, by the size of A and the capacity of the arcs (specially the arcs leaving s to
A). So, there is a vertex v in B that must be reached by each flow through an arc coming from s, but there
is only one arc from s to v.

Next, we show how to construct a family of (k, λ, s)-sufficient networks that do not contain k arc-
disjoint s-branching flows.

Theorem 3. For all λ ≥ 2 and for all even k ≥ 2, there exists a (k, λ, s)-sufficient network N = (D,u),
with u ≡ λ, that does not admit k arc-disjoint s-branching flows.

6 Cláudio Carvalho et. al

Proof: Given an even k ≥ 2 and λ ≥ 2, start the construction of N by adding the vertices s, a, b, c and d
then add an arc from s to every other vertex along with the arcs ab, ac, bd, and cd. Subdivide the arc bd
(cd) λ−2 times and letB (C) be the union of {b} ({c}) and the set of vertices obtained by the subdivisions
of bd (cd) (note that if λ = 2 nothing changes at this step, which means that B = {b} and C = {c}), and
then double the arcs between vertices of B (C). Let P be a path with λ vertices and denote by e and f ,
respectively, the first and last vertex of P . Triple the first λ− 2 arcs of P and double the last one (the one
that enters f). After that, add P to D along with the arcs de, fa and two parallel arcs se. To complete the
construction, replace each arc by k/2 copies of itself and set u ≡ λ. See Figure 2.

sa d

b

c

ef

...

...

...

Fig. 2: Counter-example for k = 2 and λ ≥ 2

Here, we say that a set X ⊆ V (D) is satisfied if d−D(X) ≥ kd|X|/λe.
To prove that D is (k, λ, s)-sufficient, we consider the case where k = 2 because for a larger k we

multiply the in-degree of each subset of V (D) − s by k/2. Observe that, except for s, every vertex has
in-degree at least 2 in D and that for every X ⊆ V (D)− s each vertex from {a, b, c, d} which belongs to
X sums at least one unit to its in-degree and the vertex e sums to two. Consider a set X ⊆ V (D)− s. If
D[X] has a cycle, then d−D(X) ≥ 5, once X necessarily contains a, d, P and either B or C (or both), but
its also true that |X| ≥ 2λ + 1, which means that should be at least one extra arc entering in X for it to
be satisfied. To verify the existence of this extra arc assume without loss of generality that B ⊂ X (the
case where C ⊂ X is symmetric) and take the longest (z, d)-path in D[X] such that z ∈ C. If no such
path exists, there is at least one arc going from C to d which was not counted before and if the path exists,
then either z = c or the two arcs yz enters X , where y is the in-neighbor of z which, by the choice of z,
cannot be in X .

Now consider that D[X] is acyclic. Note that each source in D[X] contributes with at least two units
in the in-degree of X . Since each weak component of D[X] has at least one source, then every X with
|X| ≤ λ is satisfied. Similarly, the same also holds when λ < |X| ≤ 2λ if D[X] has more than one weak
component or only one component with many sources. Otherwise D[X] has only one weak component
W with a single source w, and we have 5 cases:

• w ∈ B. Observe that in this case {d, e} ⊂ X , once that |X| ≥ λ+1 and |B| = λ−1, which means
that d−D(X) ≥ 5.

• w ∈ C. It’s analogous to the previous one.

A study of an Edmonds’ like property to arc-disjoint branching flows 7

• w = a. In this case, there are at least two vertices from {b, c, d} in X . That is, d−(X) ≥ 4.

• w = d. If d is the source, then e ∈ X , and thus d−D(X) ≥ 5.

• w ∈ V (P). Except for f , every vertex of P has in-degree three and since X must contains a, then
d−D(X) ≥ 4. When w = f , besides a, X must also contains at least one vertex from {b, c} which
guaranties d−D(X) ≥ 4.

When 2λ+ 1 ≤ |X| ≤ 3λ, the in-degree of X must be at least 6. We start with the case that D[X] has
just one weak component. If w is a source in D[X], again we have 5 subcases:

• w ∈ B. In this case, since |B∪{d}| = λ, either there is a vertex in C which is also a source in
D[X] or a ∈ X . In both situations, d, e ∈ X because |B ∪ C| < 2λ. Thus, d−D(X) ≥ 6.

• w ∈ C. It’s analogous to the previous one.

• w = a. Once |{a, d} ∪ B ∪ C| = 2λ, if a is a source, there is a path in D[X] that starts in a, goes
through B or C, d and ends in some vertex of P .

• w = d. When d is a source, for sure {a, b, c, d, e} ⊂ X .

• w ∈ V (P). Here, in order to avoid cycles, we know that if w = f , necessarily a, b, c and d are
also included in X and if w 6= f , at least a, b and c are included in X but, in this case, w already
contributes with 3 for the in-degree of X . Thus d−D(X) ≥ 6.

If D[X] has more than 2 weak components, we already know that d−D(X) ≥ 6. If D[X] has two weak
components Y,Z, one of them, say Y , has at least λ + 1 vertices and hence, as in the previous cases,
d−D(Y) ≥ 4. Thus, d−(X) ≥ 6.

Notice that if there are k arc-disjoint s-branching flows x1, x2, . . . , xk in N , as d−D(B) = d−D(C) = k,
each one of these k arcs has to be used by a different flow, and carry at least λ − 1 units of flow, that
is, one unit for each vertex of B and C. Now observe that k/2 of the arcs which enter in B come from
a and the same for the ones that enter C, and then a must receive λ units of flow on each of it’s k
incoming arcs in order to send the proper amount of flow to B and C. Assume without loss of generality
that the k/2 copies of sa are going to be used by x1, x2, . . . , xk/2 and the k/2 copies of fa are left for
xk/2+1, xk/2+2, . . . , xk. Since the in-degree of f is also equal to k, f can receive at most λ units of flow
of each x1, x2, . . . , xk and hence it can send at most λ− 1 units of any of these flows to a. Therefore, N
does not admit k arc-disjoint s-branching flows.

3 Networks on (k, λ, s)-sufficient digraphs containing the flows
In this section, we show some positive results regarding (k, λ, s)-sufficiency. We remark that the con-
structive proofs of those results can be naturally adapted to polynomial-time algorithms to find the desired
flows in those networks.

We say that a digraph D = (V,A) is a multi-branching if D is an out-branching when we ignore its
parallel arcs and, for ` ≥ 1, we denote by D` the class of multi-spindles. That is, the class of digraphs
formed by a source vertex s, a sink vertex t, ` pairwise internally vertex-disjoint multi-paths P1, . . . , P`
from s to t, each with pi ≥ 1 internal vertices, 1 ≤ i ≤ `, respectively. See Figures 3(a) and 3(b) for an
example of a multi-branching and an example of a multi-spindle, respectively.

8 Cláudio Carvalho et. al

s

(a)

s

t

(b)

Fig. 3: Examples of multi-branching (a) and multi-spindle (b)

Theorem 4. Let D be a (k, λ, s)-sufficient multi-branching. Then the network N = (D,u), with u ≡ λ,
admits k arc-disjoint s-branching flows.

The following result is useful for proving Theorem 4.

Lemma 1. Let D be a (k, λ, s)-sufficient digraph and let W be a nonempty subset of V (D) \ {s} such
that N+

D (V (D) \W) = {w}, w ∈W . Then D[W] is (k, λ, w)-sufficient.

Proof: Sincew is the unique vertex ofW which has in-neighbours in V (D)\W , then we have d−D[W](v) =

d−D(v) for every v ∈W \ {w}. Thus, for every X ⊆W \ {w} we have d−D[W](X) = d−D(X).

Proof of Theorem 4: We are going to use induction on the height h of the multi-branching D with root s
to construct k arc-disjoint s-branching flows f1, f2, . . . , fk in N .

The base case is h = 1. In this case D is a star and, since it is (k, λ, s)-sufficient, there are at least k
arcs from s to every other vertex and we can use one arc for each flow fj , for j ∈ [k].

Induction step: Suppose that the statement holds for multi-branchings of height h < q. Assume that D
has height q and let r1, r2, ..., rp be the out-neighbours of s in D.

Let Bri be the subgraph of Bs that is a multi-branching with root ri, for each i ∈ [p]. Observe that,
by Lemma 1, Bri is (k, λ, ri)-sufficient and has height hi ≤ q − 1, thus, by induction hypothesis, Bri
has k arc-disjoint ri-branching flows f i1, f

i
2, . . . , f

i
k. We know that d−(ri) ≥ k

⌈
|Bri
|

λ

⌉
and then we can

use
⌈
|Bri
|

λ

⌉
of these arcs to send the proper amount of flow from s to ri on each xj to complete the k

s-branching flows.

Since a multi-path is also a multi-branching, Theorem 4 generalizes the result of [7] for multi-paths.

Theorem 5. If D is a (k, λ, s)-sufficient digraph in D`, then the network N = (D,u) with u ≡ λ admits
k arc-disjoint s-branching flows.

Proof: Let D be a digraph in D` that is (k, λ, s)-sufficient. By definition, D is composed by the multi-
paths P1, P2, . . . , P` and V (Pi) ∩ V (Pj) = {s, t} for every 1 ≤ i < j ≤ `. We denote the pi
internal vertices of Pi by vipi , v

i
pi−1, . . . , v

i
2, v

i
1 in this order, for every i ∈ [`]. For every j ∈ [pi],

we define rij ≥ 0 so that d−D(v
i
j) = kdj/λe + rij . Remark that d−D(v

i
j) ≥ kdj/λe, otherwise the set

A study of an Edmonds’ like property to arc-disjoint branching flows 9

{vij , vij−1, . . . , vi1} would contradict the fact that D is (k, λ, s)-sufficient, since the only arcs entering in it
are those arriving at vij . Considering only the vertices with an index multiple of λ, that is, the vertices vijλ
for every 1 ≤ j ≤ bpi/λc, let

r(Pi) =

{
k, if pi < λ,

min{rijλ | 1 ≤ j ≤ bpi/λc}, otherwise.

For all i ∈ [`], we define ei as the number of arcs from vi1 to t and mi = min{r(Pi), ei}. Let
k′ =

∑`
i=1mi.

Assume without loss of generality that P1, P2, . . . , Pq are the paths on which r(Pi) ≤ ei, for i ∈ [`].
Then k′ =

∑q
i=1 r(Pi) +

∑`
i=q+1 ei. Now, for every i ∈ [q], we choose a ji ∈ [bpi/λc] which satisfies

d−D(v
i
jiλ

) = kji + r(Pi) and we define Xi = {vijiλ, v
i
(jiλ)−1, . . . , v

i
1}. Consider the set X =

⋃q
i=1Xi ∪

{t}. We have that

d−D(X) =

q∑
i=1

d−D(Xi) +
∑̀
i=q+1

ei = k

q∑
i=1

ji +

q∑
i=1

r(Pi) +
∑̀
i=q+1

ei = k

q∑
i=1

ji + k′. (2)

Since D is (k, λ, s)-sufficient and |Xi| = jiλ

d−D(X) ≥ k
⌈
|X|
λ

⌉
= k

⌈
1

λ
+
λ
∑q
i=1 ji
λ

⌉
= k

q∑
i=1

ji + k. (3)

Combining (2) and (3) we conclude that k′ ≥ k. To finally construct the k arc disjoint branching flows,
we need the following claim.

Claim 1. There are k arc-disjoint flows xi1, . . . , x
i
k on the network Ni = (Pi, u), with u ≡ λ, such that

xi1, . . . , x
i
mi

are branching flows in Ni and ximi+1, . . . , x
i
k are branching flows in Ni − t.

Proof. We show how to construct the flows xi1, x
i
2, . . . , x

i
k. For every j ∈ [pi], the vertex vij must receive

j+1 units of flow on the firstmi flows and j units on remaining k−mi flows. Since d−D(v
i
j) = d−Pi

(vij) ≥
kdj/λe, we can use a distinct group of dj/λe arcs to send j units of flow on each one of the k flows and
we only have to argue how to send the extra unit for the flows xi1, . . . , x

i
mi

. If j is a multiple of λ, then
there are at least another r(Pi) extra arcs entering vij and since mi ≤ r(Pi) they can be used to send the
extra units (note that, if r(Pi) = 0 then mi = 0 and no extra unit is needed). Otherwise, j is not multiple
of λ and when we send j units of flow through dj/λe arcs, there is an arc that will not be used in the
maximum capacity and so we can use it to send the extra unit. Applying this method iteratively from vipi
to vi1, we arrive at vi1 with 2 units of flow on the flows xi1, . . . x

i
mi

and we can send the extra unit of each
flow to t because mi ≤ ei. ♦

For each i ∈ [`], we compute the flows xi1, x
i
2, . . . , x

i
k as in the Claim 1. Observe that k′ is the number

of flows that reach t. If k′ = k, then we can rename these k flows in such a way that each xj =
⋃`
i=1 x

i
j

is an s-branching flow on N . Finally, if k′ > k, we take a flow that reaches t and we modify it so that it
doesn’t reach t anymore, and we repeat this process until there are only k flows that reach t.

It is worth to notice that the above proofs for multi-branchings and multi-spindles together with Propo-
sition 1, besides giving a complete characterization of the digraphs in these classes having k arc-disjoint

10 Cláudio Carvalho et. al

branching flows, they lead to polynomial-time algorithms to find such flows, once testing the (k, λ, s)-
sufficiency for multi-branchings and multi-spindles can be done in polynomial time. The algorithms work
for every value of λ, even those for which the problem of finding k arc-disjoint branching flows is known
to be hard in general.

We now consider the cases of k or λ with value 1 and for that we need the three following results.

Theorem 6 (Max-flow min-cut). In any network N = (D,u) with source s and sink t, the value of a
maximum flow is equal to the capacity of a minimum cut.

Theorem 7. [2] Let k be an integer and N = (D,u) be a network with u ≡ 1 and a prescribed balance
vector b such that b 6≡ 0. There exist k arc-disjoint flows in N , all with balance vector b, if and only
if N has a flow f with balance vector bf ≡ kb. Hence, one can decide the existence of these flows in
polynomial time.

Lemma 2 (Adapted from [3]). Given a network N = (D,u) and a prescribed balance vector b. Let
M =

∑
v:b(v)>0 b(v) and let N ′ = (D′, u′) be a network defined as follows:

• V (D′) = V (D) ∪ {s′, t′};

• A(D′) = A(D) ∪ {s′u : u ∈ V (D), b(u) > 0} ∪ {vt′ : v ∈ V (D), b(v) < 0};

• u′(a) = u(a),∀a ∈ A(D), u′(s′u) = b(u) if b(u) > 0 and u′(vt′) = −b(v) if b(v) < 0.

Then, N admits a flow f with balance b if and only if N ′ admits a (s′, t′)-flow f ′ with value M .

Theorem 8. Let D be a (k, λ, s)-sufficient digraph. Then, if λ = 1 or k = 1, the network N = (D,u)
with u ≡ λ admits k arc-disjoint s-branching flows.

Proof: We start by showing a result that is common to both cases. Let bf be the following balance
vector: bf (s) = k(n − 1) and bf (v) = −k, for all v ∈ V (D) − s, where n = |V (D)|. Let N ′ be
the network obtained from N and bf , as described in Lemma 2, and (S, S) be a minimum (s′, t′)-cut
in N ′. We show that u(S, S) = k(n − 1) which, by the Theorem 6, implies that there is a (s′, t′)-flow
with value k(n − 1) in N ′. Remark that, by construction of N ′, u′(s′s) = k(n − 1), u′(vt′) = k for
every v ∈ D \ s and u′(a) = λ for every a ∈ A(D). It is easy to see that u(S, S) ≤ k(n − 1) because
u(s′, V (D′)− s′) = k(n− 1). Then, we might assume that s ∈ S and we define X = S \ {t′}. It follows
that

u(S, S) = u(S,X) + u(S, {t′}) = λd−D(X) + k(n− |X| − 1). (4)

Case λ = 1. Since D is (k, 1, s)-sufficient, d−D(X) ≥ k|X| and resuming (4), we have u(S, S) ≥
k|X| + k(n − |X| − 1) = k(n − 1). Thus, u(S, S) = k(n − 1) and, by the Lemma 2, N admits a flow
with balance bf . The result follows from Theorem 7 which states thatN admits k arc-disjoint s-branching
flows if and only if it admits a single flow f with balance bf .

Case k = 1. Here, D is (1, λ, s)-sufficient, which means that d−D(X) ≥ (|X|/λ), and so λd−D(X) ≥
|X|. Replacing this in (4), we obtain u(S, S) ≥ |X|+ n− |X| − 1 = n− 1. Thus, u(S, S) = k(n− 1).
Similarly to the previous case, we conclude, by the Lemma 2, thatN admits a flow f with balance bf . As
k = 1, we have that f is a branching flow and the result follows.

We also show that networks on (2, n − 2, s)-sufficient digraphs contain 2 arc-disjoint s-branching
flows. This is a slightly improvement on the result by [2] when k = 2, which states that Edmonds’

A study of an Edmonds’ like property to arc-disjoint branching flows 11

characterization of digraphs containing 2 arc-disjoint s-branchings also characterizes the existence of 2
arc-disjoint s-branching flows.

Theorem 9. Let N = (D,u) be a (2, n − 2, s)-sufficient network with u ≡ n − 2. Then N admits 2
arc-disjoint s-branching flows.

Proof: Since N = (D,u) is a (2, n − 2, s)-sufficient network, then for every X ⊂ V (D) \ {s} we
have d−D(X) ≥ 2, and for X = V (D) \ {s} we have d−D(X) ≥ 4. By Edmonds’ Theorem, D has two
arc-disjoint s-branchings. Let us call these s-branchings Bb and Bg and let us colour blue the arcs used
by Bb, green the arcs used by Bg , and black the arcs of D not used by any of those branchings (observe
that every vertex in V (D) \ {s} is the head of exactly one blue and exactly one green arc). The idea is to
construct the desired s-branching flows using the arcs of Bb and Bg . This will be possible unless we are
forced to send n− 1 units of flow through an arc, which can only happen from an arc that leaves s. In this
particular case, we show how to modify the branchings to avoid the problem.

Let rb1, . . . , r
b
` be the out-neighbours of s in Bb and let Bb1, . . . , B

b
` be the maximal sub-branchings of

Bb \ {s} with roots rb1, . . . r
b
` , respectively. If ` > 1, then we can construct a branching flow fb from Bb

by sending |Bbi | units of flow through srbi , for 1 ≤ i ≤ `, which is possible because u ≡ n− 2. The same
applies to Bg and we will exchange b to g in the above notation when it concerns Bg in the rest of the
proof.

If s has only one out-neighbour rb in Bb, but there is a black arc sv, we can construct fb from Bb ∪ sv.
We have to consider two cases: if v 6= rb, let uv ∈ A(Bb) and let Bbv be the maximal connected subgraph
of Bb \ {u} with root v. Then we send |Bbv| units of flow through sv and |Bb \ {s}| − |Bbv| through srb.
Otherwise, v = rb and we have two copies of the arc sv. So we can send 1 unit of flow through one
and n − 2 through the other. In both cases, for the remaining blue arcs, we just need to adjust the proper
amount of flow. The same applies to Bg .

Thus we can assume w.l.o.g. that every out-neighbour of s in D is either blue or green and, from such
arcs, exactly one is blue (srb) and the remaining are green. Notice that, since d−D(V (D) \ {s}) ≥ 4, there
must be at least three green arcs from s to D \ {s}.

Since Bg is a s-branching, rb appears in only one Bgi , and let us consider a rgj for which Bgj 6= Bgi .
Except for srgj , there are no green arcs entering or leaving Bgj . Then, let E be the set of blue arcs
entering V (Bgj) together with all blue arcs between vertices in V (Bgj). We now recolour blue the arcs in
A(Bgj) ∪ sr

g
j and yellow the arcs in E. After this recolouring, a vertex w 6= s is the head of exactly one

blue arc and one yellow arc if it is in V (Bgj), otherwise it is still the head of exactly one blue and one
green arc. This means that the vertices of V (D) along with the blue arcs will form a s-branching Bb

′
. In

particular, there are two blue arcs leaving s in Bb
′

and we can construct the branching flow fb′ as before.
We now recolour the arcs of E green. Again, we have the guarantee that every vertex in Bgj has exactly

one green arc arriving at it (the former yellow arcs), and, since the green arcs outside A(Bgj)∪ sr
g
j remain

unaltered, the new set of all green arcs also form a s-branching Bg
′
. Once more, we have at least two arcs

leaving s in Bg
′
, and we can construct fg′ as before.

We remark that, by a result of [4], deciding if a network with u ≡ n−2 admits arc-disjoint flows can be
done in polynomial time. Since Theorem 9 completes the proof that a network is (2, n − 2, s)-sufficient
if and only if it admits 2 arc-disjoint s-branching flows (together with Proposition 1), we get that it can be
decided in polynomial time whether a digraph is (2, n− 2, s)-sufficient.

12 Cláudio Carvalho et. al

We end this section showing that, for particular choices of d−D(X) and λ, a simple stronger condition
than the one presented in the statement of Proposition 1 guarantees the existence of k arc-disjoint s-
branching flows in a given network.

Theorem 10. Let N = (D,u) be a network with u ≡ λ and λ ≥ 2, and p be an integer such that
pλ ≥ n − 1. If d−D(X) ≥ pk for all X ⊆ V (D) \ {s} with X 6= ∅, then N admits k arc-disjoint
s-branching flows.

Proof: By Theorem 1, there are pk arc-disjoint s-branchings B1, . . . , Bpk in D. For i ∈ [k], let Di be the
digraph with V (Di) = V (D), with A(Di) = A(B(i−1)p+1) ∪ · · · ∪ A(Bip), and N i = (Di, u).

Now, for every non-emptyX ⊆ V (D)\{s}, we conclude that d−Di
(X) ≥ p since eachBi with i ∈ [pk]

must reach X at least once. Moreover, by our choice of p, we have that every N i is (1, λ, s)-sufficient.
Thus, by Theorem 8, we have that each N i admits an s-branching flow xi. Finally, as every arc of D
appears in at most one digraph Di, we conclude that the s-branching flows x1, . . . , xk are pairwise arc-
disjoint. The result follows since each of these flows can be promptly used to construct an s-branching
flow in N , by copying arcs and flow functions used by each flow xj with j ∈ [k].

4 Hardness of finding the flows in (k, λ, s)-sufficient networks
We showed in Sections 2 and 3 that there are networks N = (D,u), with D being (k, λ, s)-sufficient,
which have k arc-disjoint s-branching flows and others that do not have such flows. We believe it is not
always computationally easy to check the (k, λ, s)-sufficiency of a digraph, but, even if we know that D
has such property, it is hard to decide if the desired flows exist, even if the network is constructed on a
digraph formed by appending a path to the sink vertex of a multi-spindle.

Theorem 11. Given two integers k and λ it is NP-complete to decide whether a (k, λ, s)-sufficient net-
work N = (D,u) with u ≡ λ admits k arc-disjoint s-branching flows.

Proof: We are going to reduce the 3-PARTITION problem to our problem. Given a set of natural numbers
S = {a1, a2, . . . , a3k} and a positive integer λ such that λ/4 < ai < λ/2, for each ai ∈ S, and such that∑3k
i=1 ai = kλ, the 3-PARTITION problem consists in deciding the following: can S be partitioned in k

subsets S1, S2, . . . , Sk so that
∑
aj∈Si

aj = λ, 1 ≤ i ≤ k? Observe that each Si should be composed by
exactly 3 elements of S.

From S, we construct a networkN = (D,u) such that D is a (k, λ, s)-sufficient network that admits k
arc-disjoint branching flows x1, x2, . . . , xk if and only if S is a yes instance of the 3-PARTITION problem.

We begin the construction by adding a vertex s, a multi-path P0 = (v01 , v02 , . . . , v0λ) and, for every
i ∈ [3k], multi-paths Pi = (vi1, v

i
2, . . . , v

i
λ−ai), each one with k parallel arcs between consecutive vertices.

Also, for every i ∈ [3k], we add one arc viλ−aiv
0
1 and k parallel arcs svi1. See Figure 4. Finally, we set

u ≡ λ to conclude the construction.
First, let us check that D is (k, λ, s)-sufficient. By contradiction, assume that there exists a set X ⊆

V (D) − s such that d−D(X) < k d|X|/λe. Note that X 6= V (D) − s since |V − s| = (2k + 1)λ and
d−D(V − s) = k(3k). Recall that the in-degree of every vertex of Pi is k and thus the in-degree of X is
at least k. Therefore X cannot be entirely contained in a unique Pi, i ∈ [3k], once, in this case, |X| ≤ λ
and then d|X|/λe = 1. Similarly, X cannot be entirely contained in P0, since there are 3k arcs arriving
in v01 . Now, let I = {i : 1 ≤ i ≤ 3k, V (Pi) ∩X 6= ∅}. Observe that d−D(X) ≥ k|I|. We are going now
to consider the following cases:

A study of an Edmonds’ like property to arc-disjoint branching flows 13

v01 v02 v0λ
k

... k
... ...

v11 v12 v1λ−a1
k

... k
... ...

v21 v22 v2λ−a2
k

... k
... ...

v3k1 v3k2 v3kλ−a3k
k

... k
... ...

s

...

k
. . .

k
...

k ...

Fig. 4: The networkN = (D, c) constructed from an instance of the 3-PARTITION problem

(i) V (P0) ∩ X = ∅. Then |X| ≤ λ|I| and d|X|/λe ≤ |I|, so d−D(X) ≥ k|I| ≥ k d|X|/λe, a
contradiction to the choice of X .

(ii) X ∩ V (P0) 6= ∅. Then |X| ≤ λ|I| + λ = λ(|I| + 1). Take the smallest j such that v0j ∈ X . We
analyze two possibilities:

(ii.1) j > 1. Then there are k arcs v0j−1v
0
j that enter X , that is, d−(X) ≥ k|I|+ k = k(|I|+ 1) ≥

k d|X|/λe since |I| is a positive integer and |X| ≤ λ(|I|+ 1), a contradiction.

(ii.2) j = 1. Therefore v01 ∈ X and d−(X) ≥ k|I|. Again, we consider some cases:

(ii.2.1) If there are at least k different values of i for which viλ−ai 6∈ X , then such vertices
contribute with k to the in-degree of X , and again we have d−(X) ≥ k|I|+ k.

(ii.2.2) If there is only 1 ≤ l < k different values of i for which viλ−ai 6∈ X , then, in order
to complete the argument, we need to estimate more precisely the size of X . Recall
that λ/4 < ai < λ/2. So, |X| ≤ λ|I| − λ|I|

4 + λ = λ(3|I|4 + 1). Observe that the
amount of arcs entering X is k|I|+ l = 3k|I|

4 + k|I|
4 + l. Since, in this case, |I| > 2k,

we have that k|I|4 ≥ k2

2 > k if k > 2, which we can consider true by the definition
of the 3-PARTITION problem (k < 3 would be directly a negative instance). Then,
d−(X) ≥ 3k|I|

4 + k = k(λ(3|I|4 + 1)/λ), a contradiction.
(ii.2.3) If all the last vertices are in X , then d−(X) ≥ d−(V − s), and we have another

contradiction, since |X| < |V (D)− s|.

As we got a contradiction on each case, it follows that D is (k, λ, s)-sufficient.

Now we assume that there exists k subsets S1, S2, . . . , Sk so that
∑
aj∈Si

aj = λ, 1 ≤ i ≤ k. In order
to construct the arc-disjoint s-branching flows x1, x2, . . . , xk inN , we establish that each of the k copies
of a multiple arc belongs to a different flow.

For every 1 ≤ i ≤ k, we construct xi in the following way: If aj /∈ Si, the arc svj1 of xi will carry
λ − aj units of flow. If aj ∈ Si, the arc svj1 of xi will carry λ units of flow. Since

∑
aj∈Si

aj = λ, the

three arcs vjλ−aj for aj ∈ Si will send the amount of flow needed to complete the branching flow in P0.
Finally, we assume that there exist k arc-disjoint s-branching flows x1, x2, . . . , xk inN . We first claim

that xr(viλ−aiv
0
1) ≤ ai, for all r ∈ [k], i ∈ [q]. Since x1, x2, . . . , xk are arc-disjoint, there is only one

14 Cláudio Carvalho et. al

flow xt which is positive in viλ−ai . If xt(viλ−aiv
0
1) > ai, then, as |V (Pi)| = λ − ai, vi1 must receive

more than λ units of flow in xt, that is, xt uses at least two copies of the arc svi1. This is a contradiction
because there are only k copies of svi1 and each flow must use exactly one copy. Thus, the claim follows.
Each xr must reach v01 with λ units of flow. Since λ/4 < ai < λ/2, each xr should use three arcs of
the type vjλ−ajv

0
1 , and the correspondent aj forms a Sr. Then S1, S2, . . . , Sk is an yes instance of the

3-PARTITION problem.

Observe that, by the proof of Theorem 11, the networks constructed from negative instances of the
3-PARTITION problem are also examples that (k, λ, s)-sufficiency does not guarantee the existence of k
arc-disjoint s-branching flows.

5 Concluding remarks
In this work, we studied the characterization of networks admitting k arc-disjoint s-branching flows. We
showed that, in some cases (Theorems 4 and 5), an “Edmonds like” condition, which we call (k, λ, s)-
sufficiency, is enough to guarantee the existence of the k arc-disjoint s-branching flows but, in other cases,
a stronger statement is needed (Section 2). This proves that (k, λ, s)-sufficiency in general is not enough
to guarantee the existence of the desired s-branching flows in networks, although the cases for which
it does are still interesting because, among other reasons, they have been resulting in polynomial-time
algorithms to find the flows. Some of the positive results we prove consider restrictions on the structure
of the digraphs on which the networks are built: we show that the analyzed property guarantees the
existence of the flows on multi-spindles and on multi-branchings. In other words, we prove that the flows
always exist in (k, λ, s)-sufficient networks built on digraphs whose underlying simple graphs are trees or
spindles.

Another direction of this research would be to work on the characterization through a stronger condi-
tion, as cited before. Some interesting complexity questions are still open, such as a possible dichotomy
in DAG’s between the easy and hard cases. In other words, it would be very interesting to know if there a
class of digraphs H, all of which are DAGs, such that every (k, λ, s)-sufficient network constructed on a
digraph D ∈ H contains k arc-disjoint s-branching flows, but that the same is not true for every D 6∈ H.

References
[1] R. Ahuja. Network flows : theory, algorithms, and applications. Prentice Hall, Englewood Cliffs,

N.J, 1993.

[2] J. Bang-Jensen and S. Bessy. (Arc-)disjoint flows in networks. Theoretical Computer Science,
526:28–40, 2014. doi:https://doi.org/10.1016/j.tcs.2014.01.011.

[3] J. Bang-Jensen and G. Z. Gutin. Digraphs: theory, algorithms and applications. Springer Science
& Business Media, Second edition, 2008.

[4] J. Bang-Jensen, F. Havet, and A. Yeo. The complexity of finding arc-disjoint branching flows. Dis-
crete Applied Mathematics, 209:16–26, 2016. doi:https://doi.org/10.1016/j.dam.
2015.10.012.

[5] S. Bessy, F. Hörsch, A.K. Maia, D. Rautenbach, and I. Sau. FPT algorithms for packing k-safe
spanning rooted sub(di)graphs, 2021. arXiv:2105.01582.

https://doi.org/https://doi.org/10.1016/j.tcs.2014.01.011
https://doi.org/https://doi.org/10.1016/j.dam.2015.10.012
https://doi.org/https://doi.org/10.1016/j.dam.2015.10.012
http://arxiv.org/abs/2105.01582

A study of an Edmonds’ like property to arc-disjoint branching flows 15

[6] J. A. Bondy and U. S. R. Murty. Graph theory, volume 244 of Graduate Texts in Mathematics.
Springer, New York, 2008. URL: http://dx.doi.org/10.1007/978-1-84628-970-5,
doi:10.1007/978-1-84628-970-5.

[7] J. Costa, C. Linhares Sales, R. Lopes, and A.K. Maia. Um estudo de redes com fluxos ramificados
arco-disjuntos. Matemática Contemporânea, 46:230–238, 2019.

[8] J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, 1973.

[9] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems.
SIAM Journal on Computing, 5(4):691–703, 1976. doi:10.1137/0205048.

[10] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ,
USA, 1962.

[11] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

[12] A. Frank. Covering branchings. Acta Scientiarium Mathematicarum (Szeged), 41:77–81, 1979.

[13] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001. doi:https://doi.org/
10.1006/jcss.2001.1774.

[14] L. Lovász. On two minimax theorems in graph. Journal of Combinatorial Theory, Series B, 21(2):96
– 103, 1976. URL: http://www.sciencedirect.com/science/article/pii/
0095895676900496, doi:https://doi.org/10.1016/0095-8956(76)90049-6.

[15] C. McDiarmid. Integral decomposition in polyhedra. Math. Program., 25(2):183–198, 1983. doi:
10.1007/BF02591770.

[16] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–115, 1927. URL:
http://eudml.org/doc/211191.

[17] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer Science
& Business Media, 2003.

[18] Y. Shiloach. Edge-disjoint branching in directed multigraphs. Inf. Process. Lett., 8(1):24–27, 1979.
doi:10.1016/0020-0190(79)90086-3.

[19] R. Tarjan. A good algorithm for edge-disjoint branching. Information Processing Letters, 3(2):51–
53, 1974. doi:10.1016/0020-0190(74)90024-6.

[20] A. Marino V. Campos, R. Lopes and A. Silva. Edge-disjoint branchings in temporal graphs. In Proc.
of the 31st International Workshop on Combinatorial Algorithms (IWOCA), volume 12126 of LNCS,
pages 112–115, 2020. doi:10.1007/978-3-030-48966-3_9.

[21] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs. In Proceedings
of the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79, pages 1–12, New
York, NY, USA, 1979. ACM. URL: http://doi.acm.org/10.1145/800135.804393,
doi:10.1145/800135.804393.

http://dx.doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1137/0205048
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/https://doi.org/10.1006/jcss.2001.1774
https://doi.org/https://doi.org/10.1006/jcss.2001.1774
http://www.sciencedirect.com/science/article/pii/0095895676900496
http://www.sciencedirect.com/science/article/pii/0095895676900496
https://doi.org/https://doi.org/10.1016/0095-8956(76)90049-6
https://doi.org/10.1007/BF02591770
https://doi.org/10.1007/BF02591770
http://eudml.org/doc/211191
https://doi.org/10.1016/0020-0190(79)90086-3
https://doi.org/10.1016/0020-0190(74)90024-6
https://doi.org/10.1007/978-3-030-48966-3_9
http://doi.acm.org/10.1145/800135.804393
https://doi.org/10.1145/800135.804393

	Introduction
	Networks on (k,l,s)-sufficient digraphs not containing the flows
	Networks on (k, l, s)-sufficient digraphs containing the flows
	Hardness of finding the flows in (k,l,s)-sufficient networks
	Concluding remarks

