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Abstract15

An s-branching flow f in a network N = (D, u), where u is the capacity function, is a flow that16

reaches every vertex in V (D) from s while loosing exactly one unit of flow in each vertex other than17

s. Bang-Jensen and Bessy [TCS, 2014] showed that, when every arc has capacity n − 1, a network N18

admits k arc-disjoint s-branching flows if and only if its associated digraph D contains k arc-disjoint19

s-branchings. Thus a classical result by Edmonds stating that a digraph contains k arc-disjoint20

s-branchings if and only if the indegree of every set X ⊆ V (D) \ {s} is at least k also characterizes21

the existence of k arc-disjoint s-branching flows in those networks, suggesting that the larger the22

capacities are, the closer an s-branching flow is from simply being an s-branching. This observation23

is further implied by results by Bang-Jensen et al. [DAM, 2016] showing that there is a polynomial24

algorithm to find the flows (if they exist) when every arc has capacity n − c, for every fixed c ≥ 1,25

and that such an algorithm is unlikely to exist for most other choices of the capacities. In this paper,26

we investigate how a property that is a natural extension of the characterization by Edmonds’ relates27

to the existence of k arc-disjoint s-branching flows in networks. Although this property is always28

necessary for the existence of the flows, we show that it is not always sufficient and that it is hard29

to decide if the desired flows exist even if we know beforehand that the network satisfies it. On the30

positive side, we show that it guarantees the existence of the desired flows in some particular cases31

depending on the choice of the capacity function or on the structure of the underlying graph of D,32

for example. We remark that, in those positive cases, polynomial time algorithms to find the flows33

can be extracted from the constructive proofs.34
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1 Introduction48

Let D = (V, A) be a digraph. If e is an arc of D from a vertex v to a vertex w, we may refer49

to e as vw. The in-degree of a set X ⊆ V (D), denoted by d−
D(X), is the number of arcs50

with tail outside of X and head inside of X. If X = {v}, we simply write d−
D(v) instead of51

d−
D({v}) (omitting braces). For an integer n, we denote by [n] the set {1, . . . , n}.52

A network N = (D, u) is formed by a digraph D = (V, A) with a capacity function53

u : A(D) → Z+. If all arcs in D have capacity λ, we simply write u ≡ λ. A flow in N is a54

function f : A(D) → Z+ such that f(vw) ≤ u(vw), ∀vw ∈ A(D). For a vertex v ∈ V (D),55

we define f+(v) =
∑

vw∈A f(vw) and f−(v) =
∑

wv∈A f(wv), that is, f+(v) and f−(v) are56

the amount of flow leaving and entering v, respectively. The balance vector of a flow f in a57

network N = (D, u) is the function bf : V (D) → Z associating each vertex v ∈ V (D) to the58

value f+(v) − f−(v). If bf (v) = ℓ, we may also say that v has balance ℓ. A vertex s ∈ V (D)59

is a source of f if f+(v) > 0 and f−(v) = 0. An (s, t)-cut on a network N = (D, c) is a set60

of arcs of the form (S, S), where S, S form a partition of V (D) such that s ∈ S and t ∈ S.61

The capacity of an (s, t)-cut is the sum of the capacities of arcs with tail in S and head in S62

and it is denoted by u(S, S). For other concepts on graphs and digraphs, we follow standard63

terminology as in [3, 6].64

Flows are widely studied as they allow, with a certain elegance and simplicity, modeling65

problems in different areas of study such as transportation, logistics and telecommunications.66

In the theoretical field, they are used to solve various problems in graphs and digraphs. A67

long list of results related to flows can be found in [1, 10]. In this work, we deal with one68

variation of the problem where, roughly speaking, k arc-disjoints flows, having in common69

the same source and with a prescribed balance vector, have to be found.70

Since a flow in a network can be entirely described by its associated balance vector, the71

goal of a flow problem can be seen as finding a flow f whose balance vector respects a given72

set of properties. For example, in the decision version of the classical Maximum Flow73

problem we are given a network N = (D, u) together with a positive integer k and a pair74

of vertices s, t ∈ V (D), and the goal is to decide if N admits a flow f with bf (s) ≥ k such75

that bf (v) = 0 for all v ∈ V (D) \ {s, t} and bf (s) = −bf (t). Such a flow f is known as an76

(s, t)-flow and, in this case, we say that f has value bf (s). This problem can be solved in77

polynomial time [11] (see [16, Chapter 10] for a survey on algorithms for Maximum Flow).78

Furthermore, by applying a simple reduction to Maximum Flow (see [3, Lemma 4.2.2]),79

we can solve in polynomial time any flow problem in which the aim is to find a flow g with80 ∑
v∈V (D) bg(v) = 0.81

The possibility of considering the coexistence of flows respecting some properties in a82

network gives more power of modeling for this already useful tool. In [9], a more general83

version of the flow problem was investigated. There, the goal was to find a collection of84

(si, ti)-flows that sum to a specific value r and such that the sum of all the flows in each85

arc respects its capacity. It was shown that this version of the problem is NP-hard since it86

generalizes many hard problems in the literature, including the notoriously hard Directed87

Disjoint Paths problem.88

Two flows f and g in a network N = (D, u) are arc-disjoint if f(vw) · g(vw) = 0,89

∀vw ∈ A(D). In [2], the problem of finding arc-disjoint flows was introduced and studied.90

The authors considered many constraints showing that some generalize important problems,91
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known to be hard, and that there are cases where polynomial-time algorithms are possible.92

Amongst other results, they showed that the following are NP-complete: the problem of93

deciding if there are two arc-disjoint flows in a network where all arcs have capacity one, the94

problem of deciding if there are two arc-disjoint flows with the same balance vectors in a95

network where all arcs have capacity at most 2, and the problem of deciding if there are two96

arc-disjoint (s, t)-flows in a network where all arcs have capacity at most two.97

We say that a digraph D is an s-branching if there is a directed path from s to every98

other vertex in D and the underlying1 graph of D is a tree. We also say that D has root s.99

There is an extensive literature concerning the study of branchings, given their relevance100

both from practical and theoretical point of view due to its numerous applications, some101

of which we enumerate below. A classical result by Edmonds [8] characterizes the digraphs102

containing k arc-disjoint s-branchings and later proofs of the same theorem done in [14,18]103

show polynomial-time algorithms to find such branchings if they exist.104

▶ Theorem 1 (Edmonds’ branching theorem [8]). A digraph D = (V, A) has k arc-disjoint105

s-branchings if and only if d−
D(X) ≥ k for all X ⊆ V (D) \ {s} with X ̸= ∅.106

A stronger version of this result, allowing each branching to have its own set of roots,107

can be seen in [16, Chapter 53]. There are many applications for Edmonds’ Theorem on108

arc-disjoint branchings: it can be used, for example, to prove Menger’s Theorem [15], to109

characterize arc-connectivity [17], and to characterize branching cover [12]. The problem of110

finding disjoint branchings was recently studied in the setting of temporal graphs in [19].111

An s-branching flow in a network N = (D, u) is a flow f such that bf (s) = n − 1 and112

bf (v) = −1 for every v ∈ V (D) \ {s}. In other words, f reaches all vertices of D and each113

vertex other than s retains one unit of flow. Finding one s-branching flow in a given network114

is easy: since
∑

v∈V (D) bf (v) = 0, we can reduce this problem to the problem of finding one115

(s, t)-flow, as discussed above. We can also find k arc-disjoint s-branching flows in polynomial116

time when u ≡ n − 1. In [2] it was shown that, in this case, N admits an s-branching flow if117

and only if D contains an s-branching. Thus, applying Theorem 1, the authors provided a118

characterization of networks admitting k arc-disjoint s-branching flows, which are exactly the119

networks constructed on digraphs containing k arc-disjoint s-branchings. They also provided120

a polynomial time algorithm that finds such flows if they exist. We now discuss how the121

tractability of this problem, in general, depends on the choice of the capacity function.122

In [2], the authors showed that the problem of deciding if a network has k arc-disjoint123

s-branching flows is NP-complete if every arc has capacity at most two, and in [4] this result124

was extended to networks with capacity at most ℓ, for every fixed ℓ ≥ 2. For most choices of125

larger capacities, the problem remains hard. In [4] it was shown that, unless the Exponential126

Time Hypothesis [13] fails, there is no polynomial time algorithm for the problem of finding127

k arc-disjoint s-branching flows in a network N = (D, u) with u ≡ λ for any choice of λ128

such that n/2 ≤ λ ≤ n − (log n)1+ε, ε > 0, even if D is acyclic. In [7] the authors adapted129

this last proof to show that the same holds if (log n)1+ε ≤ λ ≤ n/2. The last two results130

have an intersection point, which is when u ≡ n/2. The two constructions result in the same131

network in this case, and it is worth noticing that it gives a polynomial time reduction. So,132

for u ≡ n/2, the problem is NP-hard. On the positive side, in [4] it was also shown that133

the problem is solvable in polynomial time when λ = n − c, for fixed k and c ≥ 1. More134

precisely, the authors showed that the problem is XP for fixed k and c when the goal is to135

1 The underlying graph of a digraph D is the undirected graph obtained by ignoring the orientation of
the arcs of D.

CVIT 2016
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find k arc-disjoint s-branching flows. This was later improved to an FPT algorithm with the136

same parameter in [5].137

In short, the results presented in the previous paragraph roughly say that the problem138

of deciding if a given network with u ≡ n − c contains k arc-disjoint s-branching flows139

admits a polynomial time algorithm for every fixed c ≥ 1, and is unlikely to admit such an140

algorithm for most other choices of u under reasonable complexity hypothesis. Thus any141

general characterization of networks admitting such flows must also be hard to verify. In the142

following, we extend to s-branching flows the property characterizing networks containing k143

arc-disjoint s-branchings, which was originally proposed in [7], .144

For a vertex s ∈ V (D) and two non-negative integers k, λ, we say that D is (k, λ, s)-145

sufficient if, for every X ⊆ V (D) \ {s} with X ̸= ∅, we have146

d−
D(X) ≥ k

⌈
|X|
λ

⌉
. (1)147

148

If N is a network constructed on such a digraph, we may also say that N is (k, λ, s)-sufficient.149

It is not hard to visualize the relationship between this property and the one in the150

statement of Theorem 1: if λ = n − 1, then every arc of D has enough capacity to send as151

many units of flow as needed to reach set X ⊆ V (D). Thus, capacities are not an issue and152

Inequality 1 states that d−
D(X) ≥ k, as in Theorem 1, since |X| ≤ n − 1. For other choices of153

λ, note that every s-branching flow on N must reach a set of vertices X with at least |X|154

units of flow to cover it. Thus each s-branching flow in N uses at least ⌈|X|/λ⌉ arcs to cover155

X. More formally, the following was proved.156

▶ Proposition 2. [7] Let N = (D, u) be a network with u ≡ λ and s ∈ V (D). If N admits157

k arc-disjoint s-branching flows, then D is (k, λ, s)-sufficient.158

In Section 2, we show how to construct a family of a (k, λ, s)-sufficient networks not containing159

k arc-disjoint s-branching flows. On the positive side, we show that some positive cases of160

sufficiency do occur depending on the structure of D and on the choice of k and λ.161

In Section 3, we show that (k, λ, s)-sufficiency guarantees the existence of k arc-disjoint162

s-branching flows in a network N = (D, u) when D is an s-branching where parallel arcs are163

allowed, and when D is a collection of internally disjoint multi-paths starting at s and all164

ending on the same vertex t ∈ V (D). In other words, the flows are guaranteed to exist when165

the underlying simple graph of D is a tree or a spindle, and thus the considered property166

characterizes the existence of the flows in those classes of networks. Additionally, we show167

that we also have this guarantee in general digraphs when k = 1, when λ = 1, and when168

λ = |V (D)| − 2. Finally, we show that, for a network N = (D, u) with u ≡ λ and an integer169

p satisfying pλ ≥ n − 1, if d−
D(X) ≥ pk for all non-empty X ⊆ V (D) \ {s}, then N admits k170

arc-disjoint s-branching flows.171

In Section 4, we show that the analyzed property is not enough to improve the tractability172

of the problem of finding the desired flows. Namely, we show that it is NP-complete to decide173

if a network N admits k arc-disjoint s-branching flows even if its underlying simple graph is174

constructed by appending a path to the end of a spindle and we know beforehand that N175

is (k, λ, s)-sufficient. Since this property can be easily verified in this class and it is always176

necessary for the existence of the flows, it is no surprise that it is not enough to guarantee177

the existence of the k arc-disjoint s-branching flows.178

In Section 5 we close the paper with some open questions. We remark that polynomial179

time algorithms to find the flows can be extracted from the provided constructive proofs of180

the aforementioned results.181
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2 Networks on (k, λ, s)-sufficient digraphs not containing the flows182

In Figure 1 we give an example of a (2, n − 3, s)-sufficient network that does not contains 2183

arc-disjoint s-branching flows, and we remark that it is easy to generalise this example to184

(2, n − c, s)-sufficient networks, for every fixed c ≥ 3, and thus the best that we can expect is185

that every (2, n − 2, s)-sufficient network contains the desired s-branching flows. In Section 3186

we show that this is indeed true for general networks (c.f. Theorem 13).

s

Figure 1 Example of a network on a (2, n − 3, s)-sufficient digraph that does not contain 2
arc-disjoint s-branching flows. Here every arc has capacity n − 3.

187

Next, we show how to construct a family of (k, λ, s)-sufficient networks that do not contain188

k arc-disjoint s-branching flows.189

▶ Theorem 3. For all λ ≥ 2 and for all even k ≥ 2, there exists a (k, λ, s)-sufficient network190

N = (D, u), with u ≡ λ, that does not admit k arc-disjoint s-branching flows.191

Proof. Given an even k ≥ 2 and λ ≥ 2, start the construction of N by adding the vertices192

s, a, b, c and d then add an arc from s to every other vertex along with the arcs ab, ac, bd, and193

cd. Subdivide the arc bd (cd) λ − 2 times and let B (C) be the union of {b} ({c}) and the set194

of vertices obtained by the subdivisions of bd (cd) (note that if λ = 2 nothing changes at this195

step, which means that B = {b} and C = {c}), and then double the arcs between vertices of196

B (C). Let P be a path with λ vertices and denote by e and f , respectively, the first and197

last vertex of P . Triple the first λ − 2 arcs of P and double the last one (the one that enters198

f). After that, add P to D along with the arcs de, fa and two parallel arcs se. To complete199

the construction, replace each arc by k/2 copies of itself and set u ≡ λ. See Figure 2.200

sa d

b

c

ef

...

...

...

Figure 2 Counter-example for k = 2 and λ ≥ 2

Here, we say that a set X ⊆ V (D) is satisfied if d−
D(X) ≥ k⌈|X|/λ⌉.201

To prove that D is (k, λ, s)-sufficient, we consider the case where k = 2 because for a202

larger k we multiply the in-degree of each subset of V (D) − s by k/2. Observe that, except203

for s, every vertex has in-degree at least 2 in D and that for every X ⊆ V (D) − s each vertex204

from {a, b, c, d} which belongs to X sums at least one unit to its in-degree and the vertex e205

CVIT 2016
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sums to two. Consider a set X ⊆ V (D) − s. If D[X] has a cycle, then d−
D(X) ≥ 5, once X206

necessarily contains a, d, P and either B or C (or both), but its also true that |X| ≥ 2λ + 1,207

which means that should be at least one extra arc entering in X for it to be satisfied. To208

verify the existence of this extra arc assume without loss of generality that B ⊂ X (the209

case where C ⊂ X is symmetric) and take the longest (z, d)-path in D[X] such that z ∈ C.210

If no such path exists, there is at least one arc going from C to d which was not counted211

before and if the path exists, then either z = c or the two arcs yz enters X, where y is the212

in-neighbor of z which, by the choice of z, cannot be in X.213

Now consider that D[X] is acyclic. Note that each source in D[X] contributes with at214

least two units in the in-degree of X. Since each weak component of D[X] has at least215

one source, then every X with |X| ≤ λ is satisfied. Similarly, the same also holds when216

λ < |X| ≤ 2λ if D[X] has more then one weak component or only one component with many217

sources. Otherwise D[X] has only one weak component W with a single source w, and we218

have 5 cases:219

w ∈ B. Observe that in this case {d, e} ⊂ X, once that |X| ≥ λ + 1 and |B| = λ − 1,220

which means that d−
D(X) ≥ 5.221

w ∈ C. It’s analogous to the previous one.222

w = a. In this case, there are at least two vertices from {b, c, d} in X. That is, d−(X) ≥ 4.223

w = d. If d is the source, then e ∈ X, and thus d−
D(X) ≥ 5.224

w ∈ V (P ). Except for f , every vertex of P has in-degree three and since X must contains225

a, then d−
D(X) ≥ 4. When w = f , besides a, X must also contains at least one vertex226

from {b, c} which guaranties d−
D(X) ≥ 4.227

When 2λ + 1 ≤ |X| ≤ 3λ, the in-degree of X must be at least 6. We start with the case228

that D[X] has just one weak component. If w is a source in D[X], again we have 5 subcases:229

w ∈ B. In this case, since |B∪{d}| = λ, either there is a vertex in C which is also a source230

in D[X] or a ∈ X. In both situations, d, e ∈ X because |B ∪ C| < 2λ. Thus, d−
D(X) ≥ 6.231

w ∈ C. It’s analogous to the previous one.232

w = a. Once |{a, d} ∪ B ∪ C| = 2λ, if a is a source, there is a path in D[X] that starts in233

a, goes through B or C, d and ends in some vertex of P .234

w = d. When d is a source, for sure {a, b, c, d, e} ⊂ X.235

w ∈ V (P ). Here, in order to avoid cycles, we know that if w = f , necessarily a, b, c and d236

are also included in X and if w ≠ f , at least a, b and c are included in X but, in this237

case, w already contributes with 3 for the in-degree of X. Thus d−
D(X) ≥ 6.238

If D[X] has more than 2 weak components we already know that d−
D(X) ≥ 6. If D[X]239

has two weak components Y, Z, one of them, say Y , has at least λ + 1 vertices and hence, as240

in the previous cases, d−
D(Y ) ≥ 4. Thus, d−(X) ≥ 6.241

Notice that if there are k arc-disjoint s-branching flows x1, x2, . . . , xk in N , as d−
D(B) =242

d−
D(C) = k, each one of these k arcs has to be used by a different flow, and carry at least243

λ − 1 units of flow, that is, one unit for each vertex of B and C. Now observe that k/2 of the244

arcs which enter in B come from a and the same for the ones that enter C, and then a must245

receive λ units of flow on each of it’s k incoming arcs in order to send the proper amount246

of flow to B and C. Assume without loss of generality that the k/2 copies of sa are going247

to be used by x1, x2, . . . , xk/2 and the k/2 copies of fa are left for xk/2+1, xk/2+2, . . . , xk.248

Since the in-degree of f is also equal to k, f can receive at most λ units of flow of each249

x1, x2, . . . , xk and hence it can send at most λ − 1 units of any of these flows to a. Therefore,250

N does not admits k arc-disjoint s-branching flows. ◀251
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3 Networks on (k, λ, s)-sufficient digraphs containing the flows252

In this section, we show some positive results regarding (k, λ, s)-sufficiency. We remark253

that the constructive proofs of those results can be naturally adapted to polynomial-time254

algorithms to find the desired flows in those networks.255

We say that a digraph D = (V, A) is a multi-branching if D is a out-branching when we256

ignore its parallel arcs and, for ℓ ≥ 1, we denote by Dℓ the class of multi-spindles. That257

is, the class of digraphs formed by a source vertex s, a sink vertex t, ℓ pairwise internally258

vertex-disjoint multi-paths P1, . . . , Pℓ from s to t, each with pi ≥ 1 internal vertices, 1 ≤ i ≤ ℓ,259

respectively. See Figures 3a and 3b for an example of a multi-branching and an example of a260

multi-spindle, respectively.261

s

(a)

s

t

(b)

Figure 3 Examples of multi-branching (a) and multi-spindle (b)

▶ Theorem 4. Let D be a (k, λ, s)-sufficient multi-branching. Then the network N = (D, u),262

with u ≡ λ, admits k arc-disjoint s-branching flows.263

The following result is useful for proving Theorem 4.264

▶ Lemma 5. Let D be a (k, λ, s)-sufficient digraph and let W be a nonempty subset of265

V (D) \ {s} such that N+
D (V (D) \ W ) = {w}, w ∈ W . Then D[W ] is (k, λ, w)-sufficient.266

Proof. Since w is the unique vertex of W which has in-neighbours in V (D) \ W , then we267

have d−
D[W ](v) = d−

D(v) for every v ∈ W \ {w}. Thus, for every X ⊆ W \ {w} we have268

d−
D[W ](X) = d−

D(X). ◀269

Proof of Theorem 4. We are going to use induction on the height h of the multi-branching270

with root s D to construct k arc-disjoint s-branching flows f1, f2, . . . , fk in N .271

The base case is h = 1. In this case D is a star and, since it is (k, λ, s)-sufficient, there272

are at least k arcs from s to every other vertex and we can use one arc for each flow fj , for273

j ∈ [k].274

Induction step: Suppose that the statement holds for multi-branchings of height h < q.275

Assume that D has height q and let r1, r2, ..., rp be the out-neighbours of s in D.276

Let Bri be the subgraph of Bs that is a multi-branching with root ri, for each i ∈ [p].277

Observe that, by Lemma 5, Bri
is (k, λ, ri)-sufficient and has height hi ≤ q − 1, thus, by278

induction hypothesis, Bri has k arc-disjoint ri-branching flows f i
1, f i

2, . . . , f i
k. We know that279

d−(ri) ≥ k
⌈

|Bri
|

λ

⌉
and then we can use

⌈
|Bri

|
λ

⌉
of these arcs to send the proper amount of280

flow from s to ri on each xj to complete the k s-branching flows. ◀281
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Since a multi-path is also a multi-branching, Theorem 4 generalizes the result of [7] for282

multi-paths.283

▶ Theorem 6. If D is a (k, λ, s)-sufficient digraph in Dℓ, then the network N = (D, u) with284

u ≡ λ admits k arc-disjoint s-branching flows.285

Proof. Let D be a digraph in Dℓ that is (k, λ, s)-sufficient. By definition, D is composed286

by the multi-paths P1, P2, . . . , Pℓ and V (Pi) ∩ V (Pj) = {s, t} for every 1 ≤ i < j ≤ ℓ. We287

denote the pi internal vertices of Pi by vi
pi

, vi
pi−1, . . . , vi

2, vi
1 in this order, for every i ∈ [ℓ]. For288

every j ∈ [pi], we define ri
j ≥ 0 so that d−

D(vi
j) = k⌈j/λ⌉ + ri

j . Remark that d−
D(vi

j) ≥ k⌈j/λ⌉,289

otherwise the set {vi
j , vi

j−1, . . . , vi
1} would contradict the fact that D is (k, λ, s)-sufficient,290

since the only arcs entering in it are those arriving at vi
j . Considering only the vertices with291

an index multiple of λ, that is, the vertices vi
jλ for every 1 ≤ j ≤ ⌊pi/λ⌋, let292

r(Pi) =
{

k, if pi < λ,

min{ri
jλ | 1 ≤ j ≤ ⌊pi/λ⌋}, otherwise.

293

For all i ∈ [ℓ], we define ei as the number of arcs from vi
1 to t and mi = min{r(Pi), ei}.294

Let k′ =
∑ℓ

i=1 mi.295

Assume without loss of generality that P1, P2, . . . , Pq are the paths on which r(Pi) ≤ ei, for296

i ∈ [ℓ]. Then k′ =
∑q

i=1 r(Pi) +
∑ℓ

i=q+1 ei. Now, for every i ∈ [q], we choose a ji ∈ [⌊pi/λ⌋]297

which satisfies d−
D(vi

jiλ) = kji + r(Pi) and we define Xi = {vi
jiλ, vi

(jiλ)−1 . . . , vi
1}. Consider298

the set X =
⋃q

i=1 Xi ∪ {t}. We have that299

d−
D(X) =

q∑
i=1

d−
D(Xi) +

ℓ∑
i=q+1

ei = k

q∑
i=1

ji +
q∑

i=1
r(Pi) +

ℓ∑
i=q+1

ei = k

q∑
i=1

ji + k′. (2)300

Since D is (k, λ, s)-sufficient and |Xi| = jiλ301

d−
D(X) ≥ k

⌈
|X|
λ

⌉
= k

⌈
1
λ

+
λ

∑q
i=1 ji

λ

⌉
= k

q∑
i=1

ji + k. (3)302

Combining (2) and (3) we conclude that k′ ≥ k. To finally construct the k arc disjoint303

branching flows, we need the following claim.304

▷ Claim 7. There are k arc-disjoint flows xi
1, . . . , xi

k on the network Ni = (Pi, u), with305

u ≡ λ, such that xi
1, . . . xi

mi
are branching flows in Ni and xi

mi+1, . . . , xi
k are branching flows306

in Ni − t.307

Proof. We show how to construct the flows xi
1, xi

2, . . . , xi
k. For every j ∈ [pi], the vertex vi

j308

must receive j + 1 units of flow on the first mi flows and j units on remaining k − mi flows.309

Since d−
D(vi

j) = d−
Pi

(vi
j) ≥ k⌈j/λ⌉, we can use a distinct group of ⌈j/λ⌉ arcs to send j units310

of flow on each one of the k flows and we only have to argue how to send the extra unit311

for the flows xi
1, . . . , xi

mi
. If j is a multiple of λ, then there are at least another r(Pi) extra312

arcs entering vi
j and since mi ≤ r(Pi) they can be used to send the extra units (note that, if313

r(Pi) = 0 then mi = 0 and no extra unit is needed). Otherwise, j is not multiple of λ and314

when we send j units of flow through ⌈j/λ⌉ arcs, there is an arc that will not be used in315

the maximum capacity and so we can use it to send the extra unit. Applying this method316

iteratively from vi
pi

to vi
1, we arrive at vi

1 with 2 units of flow on the flows xi
1, . . . xi

mi
and we317

can send the extra unit of each flow to t because mi ≤ ei. ◁318
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For each i ∈ [ℓ], we compute the flows xi
1, xi

2, . . . , xi
k as in the Claim 7. Observe that k′ is319

the number of flows that reach t. If k′ = k, then we can rename these k flows in such a way320

that each xj =
⋃ℓ

i=1 xi
j is an s-branching flow on N . Finally, if k′ > k, we take a flow that321

reaches t and we modify it so that it doesn’t reach t anymore, and we repeat this process322

until there are only k flows that reach t. ◀323

It is worth to notice that the above proofs for multi-branchings and multi-spindles together324

with Proposition 2, besides giving a complete characterization of the digraphs in these classes325

having k arc-disjoint branching flows, they lead to polynomial-time algorithms to find such326

flows, once testing the (k, λ, s)-sufficiency for multi-branchings and multi-spindles can be327

done in polynomial time. The algorithms work for every value of λ, even those for which the328

problem of finding k arc-disjoint branching flows is known to be hard in general.329

We now consider the cases of k or λ with value 1 and for that we need the three following330

results.331

▶ Theorem 8 (Max-flow min-cut). In any network N = (D, u) with source s and sink t, the332

value of a maximum flow is equal to the capacity of a minimum cut.333

▶ Theorem 9. [2] Let k be an integer and N = (D, u) be a network with u ≡ 1 and a334

prescribed balance vector b such that b ̸≡ 0. There exist k arc-disjoint flows in N , all with335

balance vector b, if and only if N has a flow f with balance vector bf ≡ kb. Hence one can336

decide the existence of these flows in polynomial time.337

▶ Lemma 10 (Adapted from [3]). Given a network N = (D, u) and a prescribed balance338

vector b. Let M =
∑

v:b(v)>0 b(v) and let N ′ = (D′, u′) be a network defined as follows:339

V (D′) = V (D) ∪ {s′, t′};340

A(D′) = A(D) ∪ {s′u : u ∈ V (D), b(u) > 0} ∪ {vt′ : v ∈ V (D), b(v) < 0};341

u′(a) = u(a), ∀a ∈ A(D), u′(s′u) = b(u) if b(u) > 0 and u′(vt′) = −b(v) if b(v) < 0.342

Then, N admits a flow f with balance b if and only if N ′ admits a (s′, t′)-flow f ′ with343

value M .344

▶ Theorem 11. Let D be a (k, λ, s)-sufficient digraph. Then, if λ = 1 or k = 1, the network345

N = (D, u) with u ≡ λ admits k arc-disjoint s-branching flows.346

Proof. We start by showing a result that is common to both cases. Let bf be the following347

balance vector: bf (s) = k(n − 1) and bf (v) = −k, for all v ∈ V (D) − s, where n = |V (D)|.348

Let N ′ be the network obtained from N and bf , as described in Lemma 10, and (S, S) be349

a minimum (s′, t′)-cut in N ′. We show that c(S, S) = k(n − 1) which, by the Theorem 8,350

implies that there is an (s′, t′)-flow with value k(n − 1) in N ′. Remark that, by construction351

of N ′, u′(s′s) = k(n − 1), u′(vt′) = k and u′(a) = λ for every a ∈ A(D). It’s easy to see that352

c(S, S) ≤ k(n − 1) because c(s′, V (D′) − s′) = k(n − 1). Then, we might assume that s ∈ S353

and we define X = S \ {t}. It follows that354

c(S, S) = c(S, X) + c(S, {t′}) = λd−
D(X) + k(n − |X| − 1). (4)355

Case λ = 1. Since D is (k, 1, s)-sufficient, d−
D(X) ≥ k|X| and resuming (4), we have356

c(S, S) ≥ k|X| + k(n − |X| − 1) = k(n − 1). Thus, c(S, S) = k(n − 1) and, by the Lemma 10,357

N admits a flow with balance bf . The result follows from Theorem 9 which states that N358

admits k arc-disjoint s-branching flows if and only if it admits a single flow f with balance359

bf .360
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Case k = 1. Here, D is (1, λ, s)-sufficient, which means that d−
D(X) ≥ (|X|/λ), and so361

λd−
D(X) ≥ |X|. Replacing this in (4), we obtain c(S, S) ≥ |X| + n − |X| − 1 = n − 1. Thus,362

c(S, S) = k(n − 1). Similarly to the previous case, we conclude, by the Lemma 10, that N363

admits a flow f with balance bf . As k = 1, we have that f is a branching flow and the result364

follows. ◀365

We also show that networks on (2, n − 2, s)-sufficient digraphs contain 2 arc-disjoint366

s-branching flows. This is a slightly improvement on the result by [2] when k = 2, which367

states that Edmonds’ characterizaion of digraphs containing 2 arc-disjoint s-branchings also368

characterizes the existence of 2 arc-disjoint s-branching flows. With our terminology, the369

result in [2] states the following:370

▶ Theorem 12. [2] If D is a (k, n − 1, s)-sufficient digraph, then the network N = (D, u ≡371

n − 1) admits k arc-disjoint s-branching flows.372

▶ Theorem 13. Let N = (D, u) be a (2, n − 2, s)-sufficient network with u ≡ n − 2. Then373

N admits 2 arc-disjoint s-branching flows.374

Proof. Applying Theorem 12 to the network N ′ = (D, u ≡ n − 1), we obtain two arc-disjoint375

s-branching flows f ′
b and f ′

r. By a result of [2], we may assume that the arcs used by f ′
b and376

f ′
r induce s-branchings in D. We colour blue the arcs used by f ′

b, red the arcs used by f ′
r,377

and black the arcs not used by any of those flows. We remark that, since the blue arcs and378

the red arcs form a s-branching each, every vertex in V (D) \ {s} is the head of exactly one379

blue and exactly one red arc.380

If every e ∈ A(D) has f ′
b(e) ≤ n−2 and f ′

r(e) ≤ n−2, then both flows can be transformed381

into arc disjoint s-branching flows fb and fr in N by simply choosing fb(e) = f ′
b(e) and382

fr(e) = f ′
r(e) for all e ∈ A(D). Assume now that this is not the case and let X = V (D) \ {s}.383

If there are arcs e and a with f ′
b(e) = f ′

r(a) = n − 1 then, since |X| = n − 1 and D384

is (k, n − 2, s)-sufficient, there are two black arcs e′ and a′ entering X and thus we can385

construct two arc-disjoint s-branching flows fb and fr in N as follows: for every blue arc y386

in the unique blue path from s to the head of e′, define fb(y) = f ′
b(y) − 1, define f ′

b(e′) = 1,387

and construct fr similarly using a′ to route one unit of flow from s to X. Without loss of388

generality, we can now assume that there is a blue arc e with f ′
b(e) = n − 1 from s to a vertex389

v ∈ X and that f ′
r(a) ≤ n − 2 for every a ∈ E(D). Notice that every arc entering X has tail390

s.391

If there is a black arc entering X, then we can apply the same argument used in the392

previous case to construct an s-branching flow fb in N that is arc disjoint from f ′
r. Thus we393

can assume that every arc from s to X is either blue or red and that, from such arcs, exactly394

one is blue and the remaining are red. Notice that there must be at least three red arcs from395

s to X since |X| ≥ n − 1 and D is (2, n − 2, s)-sufficient.396

Since each vertex in X is incident to exactly one red arc, there is a vertex w ∈ X such397

that the arc sw is red and there is no red path from w to the head v of e. Let R be the398

arborescence formed by the set of vertices reachable from w using only red arcs, together399

with such red arcs. Clearly there are no red arcs entering or leaving V (R) since f ′
r is an400

s-branching flow. Finally, let B be the set of blue arcs entering V (R) together with all401

blue arcs between vertices in V (R). We now construct two arc disjoint s arborescences by402

recolouring blue the arcs in A(R) and red the arcs in B.403

Let Fr be the arborescence on V (D) containing only the set of red arcs, minus the arcs404

in A(R), added of the arcs in B, and Fb be the arborescence on V (D) containing only set of405

blue arcs, minus the arcs in B, added of the arcs in A(R). Formally, A(Fr) = ({e | f ′
r(e) >406
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0} \ A(R)) ∪ B and A(FB) = ({e | f ′
b(e) > 0} \ B) ∪ A(R). We claim that Fr and Fb are407

arc-disjoint s-arborescences. First, consider Fb. Since R is an arborescence and Fb preserves408

the blue arcs leaving V (R), there is path in Fb from s to every other arc in V (D). For Fr,409

first notice that there is an arc tu ∈ B for every u ∈ V (R) since every vertex in V (D) is the410

head of one blue arc. Moreover, every vertex in V (D) \ V (R) is reachable from s through a411

path using only red arcs in not in A(R) and thus we can reach every vertex in V (R) from s412

by using red arcs not in A(R) and then arcs in B, and the claim follows. Finally, the fact413

that there are at least three red arcs entering arcs implies that Fr contains at least two arcs414

entering X and, since v ̸∈ V (R) and sw ∈ Fb, there are two arcs in Fb entering X. Thus we415

can construct two arc-disjoint s-branching flows in (D, n − 2) by applying ideas similar to416

the previous cases where we assumed that there were two black arcs entering X, and the417

result follows. ◀418

We remark that, by a result of [4], deciding if a network with u ≡ n−2 admits arc-disjoint419

flows can be done in polynomial time. Since Theorem 13 completes the proof that a network420

is (2, n − 2, s)-sufficient if and only if it admits 2 arc-disjoint s-branching flows (together421

with Proposition 2), we get that it can be decided in polynomial time whether a digraph is422

(2, n − 2, s)-sufficient.423

We end this section showing that, for particular choices of d−
D(X) and λ, a simple stronger424

condition than the one presented in the statement of Proposition 2 guarantees the existence425

of k arc-disjoint s-branching flows in a given network.426

▶ Theorem 14. Let N = (D, u) be a network with u ≡ λ and λ ≥ 2, and p be an integer427

such that pλ ≥ n − 1. If d−
D(X) ≥ pk for all X ⊆ V (D) \ {s} with X ̸= ∅, then N admits k428

arc-disjoint s-branching flows.429

Proof. By Theorem 1, there are pk arc-disjoint s-branchings B1, . . . , Bpk in D. For i ∈ [k],430

let Di be the digraph with V (Di) = V (D), with A(Di) = A(B(i−1)p+1) ∪ · · · ∪ A(Bip), and431

N i = (Di, u).432

Now, for every non-empty X ⊆ V (D) \ {s}, we conclude that d−
Di

(X) ≥ p since each Bi433

with i ∈ [pk] must reach X at least once. Moreover, by our choice of p, we have that every434

N i is (1, λ, s)-sufficient. Thus, by Theorem 11, we have that each N i admits an s-branching435

flow xi. Finally, as every arc of D appears in at most one digraph Di, we conclude that the436

s-branching flows x1, . . . , xk are pairwise arc-disjoint. The result follows since each of these437

flows can be promptly used to construct an s-branching flow in N , by copying arcs and flow438

functions used by each flow xj with j ∈ [k]. ◀439

4 Hardness of finding the flows in (k, λ, s)-sufficient networks440

We showed in Sections 2 and 3 that there are networks N = (D, u), with D being (k, λ, s)-441

sufficient, which have k arc-disjoint s-branching flows and others that do not have such flows.442

We believe it is not always computationally easy to check the (k, λ, s)-sufficiency of a digraph,443

but, even if we know that D has such property, it is hard to decide if the desired flows exist,444

even if the network is constructed on a digraph formed by appending a path to the sink445

vertex of a multi-spindle.446

▶ Theorem 15. Given two integers k, λ and (k, λ, s)-sufficient network N = (D, u) with447

u ≡ λ, it is NP-complete to decide whether N admits k arc-disjoint s-branching flows.448

Proof. We are going to reduce the 3-Partition problem to our problem. Given a set of449

natural numbers S = {a1, a2, . . . , a3k} and a positive integer λ such that λ/4 < ai < λ/2, for450
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each ai ∈ S, and such that
∑3k

i=1 ai = kλ, the 3-Partition problem consists in deciding the451

following: can S be partitioned in k subsets S1, S2 . . . Sk so that
∑

aj∈Si
aj = λ, 1 ≤ i ≤ k?452

Observe that each Si should be composed by exactly 3 elements of S.453

From S, we construct a network N = (D, u) such that D is a (k, λ, s)-sufficient network454

that admits k arc-disjoint branching flows x1, x2, . . . , xk if and only if S is a yes instance of455

the 3-Partition problem.456

We begin the construction by adding a vertex s, a multi-path P0 = (v0
1 , v0

2 , . . . , v0
λ) and,457

for every i ∈ [3k], multi-paths Pi = (vi
1, vi

2, . . . , vi
λ−ai

), each one with k parallel arcs between458

consecutive vertices. Also, for every i ∈ [3k], we add one arc vi
λ−ai

v0
1 and k parallel arcs svi

1.459

See Figure 4. Finally, we set u ≡ λ to conclude the construction.460

v0
1 v0

2 v0
λ

k
... k

... ...

v1
1 v1

2 v1
λ−a1

k
... k

... ...
v2

1 v2
2 v2

λ−a2

k
... k

... ...

v3k
1 v3k

2 v3k
λ−a3k

k
... k

... ...

s

...

k
. . .

k
...

k ...

Figure 4 The network N = (D, c) constructed from an instance of the 3-Partition problem

First, let us check that D is (k, λ, s)-sufficient. By contradiction, assume that there461

exists a set X ⊆ V (D) − s such that d−
D(X) < k ⌈|X|/λ⌉. Note that X ̸= V (D) − s since462

|V − s| = (2k + 1)λ and d−
D(V − s) = k(3k). Recall that the in-degree of every vertex of Pi463

is k and thus the in-degree of X is at least k. Therefore X cannot be entirely contained464

in a unique Pi, i ∈ [3k], once, in this case, |X| ≤ λ and then ⌈|X|/λ⌉ = 1. Similarly,465

X cannot be entirely contained in P0, since there are 3k arcs arriving in v0
1 . Now, let466

I = {i : 1 ≤ i ≤ 3k, V (Pi) ∩ X ̸= ∅}. Observe that d−
D(X) ≥ k|I|. We are going now to467

consider the following cases:468

(i) V (P0) ∩ X = ∅. Then |X| ≤ λ|I| and ⌈|X|/λ⌉ ≤ |I|, so d−
D(X) ≥ k|I| ≥ k ⌈|X|/λ⌉, a469

contradiction to the choice of X.470

(ii) X ∩V (P0) ̸= ∅. Then |X| ≤ λ|I|+λ = λ(|I|+1). Take the smallest j such that v0
j ∈ X.471

We analyze two possibilities:472

(ii.1) j > 1. Then there are k arcs v0
j−1v0

j that enter X, that is, d−(X) ≥ k|I| + k =473

k(|I| + 1) ≥ k ⌈|X|/λ⌉ since I is a positive integer and |X| ≤ λ(|I| + 1) implying474

(|I| + 1) ≥ |X|/λ, a contradiction.475

(ii.2) j = 1. Therefore v0
1 ∈ X and d−(X) ≥ k|I|. Again, we consider some cases:476

(ii.2.1) If there are at least k different values of i for which vi
λ−ai

̸∈ X, then477

such vertices contribute with k to the in-degree of X, and again we have478

d−(X) ≥ k|I| + k.479

(ii.2.2) If there is only 1 ≤ l < k different values of i for which vi
λ−ai

̸∈ X,480

then, in order to complete the argument, we need to estimate more481

precisely the size of X. Recall that λ/4 < ai < λ/2. So, |X| ≤ λ|I| −482
λ|I|

4 + λ = λ( 3|I|
4 + 1). Observe that the amount of arcs entering X is483
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k|I| + l = 3k|I|
4 + k|I|

4 + l. Since, in this case, |I| > 2k, we have that484

k|I|
4 ≥ k2

2 > k if k > 2, which we can consider true by the definition of485

the 3-Partition problem (k < 3 would be directly a negative instance).486

Then, d−(X) ≥ 3k|I|
4 + k = k(λ( 3|I|

4 + 1)/λ), a contradiction.487

(ii.2.3) If all the last vertices are in X, then d−(X) ≥ d−(V − s), and we have488

another contradiction, since |X| < |V (D) − s|.489

As we got a contradiction on each case, it follows that D is (k, λ, s)-sufficient.490

Now we assume that there exists k subsets S1, S2 . . . Sk so that
∑

aj∈Si
aj = λ, 1 ≤ i ≤ k.491

In order to construct the arc-disjoint s-branching flows x1, x2, . . . , xk in N , we establish that492

each of the k copies of a multiple arc belongs to a different flow.493

For every 1 ≤ i ≤ k, we construct xi in the following way: If aj /∈ Si, the arc svj
1 of xi494

will carry λ − aj units of flow. If aj ∈ Si, the arc svj
1 of xi will carry λ units of flow. Since495 ∑

aj∈Si
aj = λ, the three arcs vj

λ−aj
for aj ∈ Si will send the amount of flow needed to496

complete the branching flow in P0.497

Finally, we assume that there exist k arc-disjoints s-branching flows x1, x2, . . . , xk in498

N . We first claim that xr(vi
λ−ai

v0
1) ≤ ai, for all r ∈ [k], i ∈ [q]. Since x1, x2, . . . , xk are499

arc-disjoints, there is only one flow xt which is positive in vi
λ−ai

. If xt(vi
λ−ai

v0
1) > ai, then,500

as |V (Pi)| = λ − ai, vi
1 must receive more than λ units of flow in xt, that is, xt uses at least501

two copies of the arc svi
1. This is a contradiction because there are only k copies of svi

1 and502

each flow must use exactly one copy. Thus, the claim follows. Each xr must reach v0
1 with λ503

units of flow. Since λ/4 < ai < λ/2, each xr should use three arcs of the type vj
λ−aj

v0
1 , and504

the correspondent aj forms a Sr. Then S1, S2, . . . , Sk is an yes instance of the 3-Partition505

problem. ◀506

Observe that, by the proof of Theorem 15, the networks constructed from negative507

instances of the 3-partition problem are also examples that (k, λ, s)-sufficiency does not508

guarantee the existence of k arc-disjoint s-branching flows.509

5 Concluding remarks510

In this work, we studied the characterization of networks admitting k arc-disjoint s-branching511

flows. We showed that, in some cases (Theorems 4 and 6), an “Edmonds like” condition,512

which we call (k, λ, s)-sufficiency, is enough to guarantee the existence of the k arc-disjoint513

s-branching flows but, in other cases, a stronger statement is needed (Section 2). This514

proves that (k, λ, s)-sufficiency in general is not enough to guarantee the existence of the515

desired s-branching flows in networks, although the cases for which it does are still interesting516

because, among other reasons, they have been resulting in polynomial-time algorithms to find517

the flows. Some of the positive results we prove consider restrictions on the structure of the518

digraphs on which the networks are built: we show that the analyzed property guarantees the519

existence of the flows on multi-spindles and on multi-branchings. In other words, we prove520

that the flows always exist in (k, λ, s)-sufficient networks built on digraphs whose underlying521

simple graphs are trees or spindles.522

Another direction of this research would be to work on the characterization through a523

stronger condition, as cited before. Some interesting complexity questions are still open,524

such as a possible dichotomy in DAG’s between the easy and hard cases. In other words, it525

would be very interesting to know if there a class of digraphs H, all of which are DAGs, such526

that every (k, λ, s)-sufficient network constructed on a digraph D ∈ H contains k arc-disjoint527

s-branching flows, but that the same is not true for every D ̸∈ H.528
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