
HAL Id: hal-03031759
https://hal.science/hal-03031759v1

Submitted on 30 Nov 2020 (v1), last revised 24 Apr 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From branchings to flows: a study of an Edmonds’ like
property to arc-disjoint branching flows

Cláudio Carvalho, Jonas Costa, Cláudia Linhares Sales, Raul Lopes, Ana
Karolinna Maia, Nicolas Nisse

To cite this version:
Cláudio Carvalho, Jonas Costa, Cláudia Linhares Sales, Raul Lopes, Ana Karolinna Maia, et al.. From
branchings to flows: a study of an Edmonds’ like property to arc-disjoint branching flows. [Research
Report] UFC; INRIA; CNRS; Université Côte d’Azur; I3S. 2020. �hal-03031759v1�

https://hal.science/hal-03031759v1
https://hal.archives-ouvertes.fr

On the characterization of networks with multiple arc-disjoint
branching flows∗,†

Cláudio Carvalho1, Jonas Costa1,2, Cláudia Linhares Sales1, Raul Lopes1, A.
Karolinna Maia1,3, and Nicolas Nisse2

1Departamento de Computação, Centro de Ciências, Universidade Federal do Ceará,
Fortaleza - CE, CEP 60440-900, Brasil

2Université Côte d’Azur, Inria, CNRS, I3S, Sophia-Antipolis, France
3LIRMM, CNRS, Université de Montpellier, Montpellier, France

November 30, 2020

Abstract

An s-branching flow f in a network N = (D,u), such that u is the capacity function,
is a flow that reaches every vertex in V (D) \ {s} from s while loosing exactly one unit of
flow in each vertex other than s. It is known that the hardness of the problem of finding
k arc-disjoint s-branching flows in a network N is linked to the capacity u of the arcs
in N : for fixed c, the problem is solvable in polynomial time if every arc has capacity
n − c and, unless the Exponential Time Hypothesis (ETH) fails, there is no polynomial
time algorithm for it for most other choices of the capacity function when every arc has
the same capacity. The hardness of a few cases remains open. We further investigate a
conjecture that aims to characterize networks admitting k arc-disjoint s-branching flows,
generalizing a result that provides such characterization when all arcs have capacity n−1,
based on Edmonds’ branching theorem. We show that, in general, the conjecture is false.
However, it holds for some special classes of digraphs, as branchings and spindles with
parallel arcs.

1 Introduction

Let D = (V,A) be a digraph. If e is an arc of D from a vertex v to a vertex w, we may refer
to e as vw. The in-degree of a vertex X ⊆ V (D), denoted by d−D(v), is the number of arcs
with tail outside of X and head inside of X. If X = {v}, we simply write d−D(v) instead of
d−D({v}) (omitting the braces).

A network N = (D,u) is formed by a digraph D = (V,A) with a capacity function
u : A(D) → Z+. If all arcs in D have capacity λ, we simply write u ≡ λ. A flow in N is a
function f : A(D) → Z+ such that f(vw) ≤ u(vw), ∀vw ∈ A(D). For a vertex v ∈ V (D),
we define f+(v) =

∑
vw∈A f(vw) and f−(v) =

∑
wv∈A f(wv), that is, f+(v) and f−(v) is

the amount of flow leaving and entering v, respectively. The balance vector of a flow f in a
∗This work is partly funded by FUNCAP Pronem 4543945/2016, CNPq project 304831/2017-4, STIC-

AmSud project GALOP and the french Agence Nationale de la Recherche under contract Digraphs ANR-19-
CE48-0013-01.
†Emails: claudio@lia.ufc.br, jonascosta@lia.ufc.br, linhares@lia.ufc.br, raul.lopes@lia.ufc.br, karol-

maia@ufc.br, nicolas.nisse@inria.fr

1

network N = (D,u) is the function bf : V (D) → Z associating each vertex v ∈ V (D) to the
value f+(v) − f−(v). If bf (v) = `, we may also say that v has balance `. An (s, t)-cut on a
network N = (D, c) is a set of arcs of the form (S, S), where S, S form a partition of V (D)
such that s ∈ S and t ∈ S. The capacity of an (s, t)-cut is the sum of the capacities of arcs
with tail in S and head in S and it is denoted by u(S, S). For other concepts on graphs and
digraphs, we follow standard terminology as in [3, 5].

Flows are widely studied as they allow, with a certain elegance and simplicity, modeling
problems in different areas of study such as transportation, logistics and telecommunications.
In the theoretical field, they are used to solve various problems in graphs and digraphs. A
long list of results related to flows can be found in [1, 9]. In this work, we deal with one
variation of the problem where, roughly speaking, k arc-disjoints flows, having in common the
same source and relaxed conservation property have to be found. We show that an “Edmonds
like” condition, proposed in [6], is not sufficient to guarantee the existence of such flows, even
if that is the case for some classes of digraphs, as we are going to prove.

Since a flow in a network can be entirely described by its associated balance vector, the
goal of a flow problem can be seen as finding a flow f whose balance vector respects a given
set of properties. In the classical Maximum Flow problem, given a network N = (D,u) and
a pair of vertices s, t ∈ V (D), the objective is to find a flow f in N maximizing bf (s) such
that bf (v) = 0 for all v ∈ V (D) \ {s, t} and bf (s) = −bf (t). Such a flow f is known as an
(s, t)-flow and, in this case, we say that f has value bf (s). This problem can be solved in
polynomial time [10]. In the decision version of Maximum Flow, we are given an integer k
and the goal is to decide if the network admits an (s, t)-flow of value at least k. By applying
a simple reduction to this problem (see [3, Lemma 4.2.2]), we can solve in polynomial time
any flow problem in which the aim is to find a flow g with

∑
v∈V (D) bg(v) = 0.

The possibility of considering the existence of simultaneous flows in a network gives more
power of modeling for this already so useful tool. In [8], a more general version of the flow
problem was investigated. There, the goal was to find a collection of (si, ti)-flows that sum a
specific value r and such that the sum of all the flows in each arc respects its capacity. It was
shown that this version of the problem is NP-hard.

Two flows f and g in a network N = (D,u) are arc-disjoint if f(vw) · g(vw) = 0, ∀vw ∈
A(D). In [2], the problem of finding arc-disjoint flows was introduced and studied. The
authors considered many constraints showing that some generalize important problems, known
to be hard, and that there are cases where polynomial-time algorithms are possible. Amongst
other hardness results, they showed that the following are NP-complete: the problem of
deciding if there are two arc-disjoint flows in a network where all arcs have capacity one, the
problem of deciding if there are two arc-disjoint flows with the same balance vectors in a
network where all arcs have capacity at most 2, and the problem of deciding if there are two
arc-disjoint (s, t)-flows in a network where all arcs have capacity at most two.

We say that a digraph D is an s-branching if there is a directed path from s to every
other vertex in D and the underlying graph of D is a tree. We also say that D has root
s. There is an extensive literature concerning the study of branchings, given their relevance
both from practical and theoretical point of view due to its numerous applications. A classical
result of J. Edmonds [7] characterizes the digraphs containing k arc-disjoint s-branchings and
a later proof of the same theorem done in [13] gives a polynomial-time algorithm to find such
branchings if they exist. Another algorithm to find the branchings is given in [17].

Theorem 1.1 (Edmonds’ branching theorem). A digraph D = (V,A) has k arc-disjoint
s-branchings if and only if d−D(X) ≥ k for all X ⊆ V (D) \ {s} with X 6= ∅.

A stronger version of this result, that allows each branching to have its own set of roots, is

2

proved in [15]. There are many applications for Edmonds’ Theorem on arc-disjoint branchings:
it can be used, for example, to prove Menger’s Theorem [14], to characterize arc-connectivity
[16], and to characterize branching cover [11]. The problem of finding disjoint branchings was
recently studied in the setting of temporal graphs in [18].

An s-branching flow in a network N = (D,u) is a flow f such that bf (s) = n − 1 and
bf (v) = −1 for every v ∈ V (D) \ {s}. In other words, f reaches all vertices of D and each
vertex other than s retains one unit of flow. Finding one s-branching flow in a given network
is easy: since

∑
v∈V (D) bf (v) = 0, we can reduce this problem to the problem of finding one

(s, t)-flow, as discussed above. We can also find k arc-disjoint s-branching flows in polynomial
time when u ≡ n− 1. In [2] it was shown that, in this case, N admits an s-branching flow if
and only if D contains an s-branching. Thus, applying Theorem 1.1, the authors provided a
characterization of networks admitting k arc-disjoint s-branching flows, which are exactly the
networks constructed on digraphs containing k arc-disjoint s-branchings. They also provided
a polynomial time algorithm that finds such flows if they exist. We now discuss how the
tractability of this problem, in general, depends on the choice of the capacity function.

In [2], the authors showed that the problem of deciding if a network has k arc-disjoint
s-branching flows is NP-complete if every arc has capacity at most two, and in [4] this result
was extended to networks with capacity at most `, for every fixed ` ≥ 2. For most choices of
larger capacities, the problem remains hard. In [4] it was shown that, unless the Exponential
Time Hypothesis [12] fails, there is no polynomial time algorithm for the problem of finding
k arc-disjoint s-branching flows in a network N = (D,u) with u ≡ λ for any choice of λ such
that n/2 ≤ λ ≤ n− (log n)1+ε, ε > 0. In [6] the authors adapted this last proof to show that
the same same holds if (log n)1+ε ≤ λ ≤ n/2. The last two results have an intersection point,
which is when u ≡ n/2. The two constructions result in the same network in this case, and
it is worth noticing that it gives a polynomial time reduction. So, for u ≡ n/2, the problem
is NP-hard. On the positive side, in [4] it was also shown that the problem is solvable in
polynomial time when λ = n− c for fixed c ≥ 1.

Let N = (D,u) be a network, s ∈ V (D), and k, λ be non-negative integers. We say that
D is (k, λ, s)-sufficient if u ≡ λ and, for every X ⊆ V (D) \ {s} with X 6= ∅, we have

d−D(X) ≥ k
⌈
|X|
λ

⌉
. (1)

In [6], the authors considered a natural extension of Theorem 1.1 to arc-disjoint s-branching
flows and digraphs (k, λ, s)-sufficient. It is not hard to visualize the relationship between this
property and the one in the statement of Theorem 1.1: if λ = n − 1, then every arc of D
has enough capacity to send as many units of flow as needed to reach set X ⊆ V (D). Thus,
capacities are not an issue and Inequality 1 states that d−D(X) ≥ k, as in Theorem 1.1, since
|X| ≤ n− 1. For other choices of λ, note that every s-branching flow on N must reach a set
of vertices X with at least |X| units of flow to cover it. Thus each s-branching flow in N uses
at least d|X|/λe arcs to cover X. More formally, the following was proved.

Proposition 1.2. [6] Let N = (D,u) be a network with u ≡ λ and s ∈ V (D). For all
1 ≤ λ ≤ n− 1, If N admits k arc-disjoint s-branching flows, then D is (k, λ, s)-sufficient.

In order to obtain a characterization similar to that one given in Theorem 1.1, Conjecture
1.3 was proposed.

Conjecture 1.3. [6] Let N = (D,u) be a network with u ≡ λ and s ∈ V (D). For all
1 ≤ λ ≤ n− 1, if D is (k, λ, s)-sufficient, then N admits k arc-disjoint s-branching flows.

3

The authors showed that this conjecture is true when D is a multi-path, which is a directed
path, with, eventually, parallel arcs. In this work, we further investigate Conjecture 1.3,
showing that, although it is not true in general, it holds for some particular choices of k and
λ and for some special classes of digraphs.

In Section 2 we show our positive results regarding Conjecture 1.3, namely, that it holds
when k = 1 or λ = 1; when D is an s-branching where parallel arcs are allowed; and when
D is a collection of internally disjoint multi-paths starting at s and all ending on the same
vertex t ∈ V (D). Finally, we show that a simple condition over d−D(X), stronger than the
one presented in the statement of Conjecture 1.3, guarantees the existence of k arc-disjoint
s-branching flows in D. We remark that our proofs are constructive and yield polynomial
time algorithms that find the flows or decide that they do not exist. In Section 3 we show
that the conjecture is false in general, giving, for any choices of k ≥ 2 and λ ≥ 2, a network
whose digraph satisfies the properties in the statement of Conjecture 1.3 and does not contain
k arc-disjoint s-branching flows. In the same section, we also show that it is NP-complete to
decide if a network N = (D,u) admits k arc-disjoint s-branching flows, even if D satisfies the
conditions in the statement of Conjecture 1.3. Finally, we close the paper with some open
questions (Section 4).

2 Special networks with k arc-disjoint branching flows

In this section, we show some positive occurrences of Conjecture 1.3. The results given here
not only show that Conjecture 1.3 is valid for the corresponding cases, but they also imply in
polynomial-time algorithms to find the desired flows in the networks N = (D,u) for which D
is (k, λ, s)-sufficient.

We first consider the cases of k or λ with value 1, and for that we need the three following
results.

Theorem 2.1 (Max-flow Min-cut). In any network N = (D,u) with source s and sink t, the
value of a maximum flow is equal to the capacity of a minimum cut.

Theorem 2.2 ([2]). Let k be an integer and N = (D,u) be a network with u ≡ 1 and a
prescribed balance vector b such that b 6≡ 0. There exist k arc-disjoint flows in N , all with
balance vector b, if and only if N has a flow f with balance vector bf ≡ kb. Hence one can
decide the existence of these flows in polynomial time.

Lemma 2.3 (Adapted from [3]). Given a network N = (D,u) and a prescribed balance
vector b. Let M =

∑
v:b(v)>0 and let N ′ = (D′, u′) be a network defined as follows:

• V (D′) = V (D) ∪ {s′, t′};

• A(D′) = A(D) ∪ {s′u : u ∈ V (D), b(u) > 0} ∪ {vt′ : v ∈ V (D), b(v) < 0};

• u′(a) = u(a),∀a ∈ A(D), u′(s′u) = b(u) if b(u) > 0 and u′(vt′) = −b(v) if b(v) < 0.

Then, N admits a flow f with balance b if and only if N ′ admits a (s′, t′)-flow f ′ with
value M .

Theorem 2.4 (Conjecture 1.3 for λ = 1 or k = 1). Let D be a (k, λ, s)-sufficient digraph.
Then, if λ = 1 or k = 1, the network N = (D,u), admits k arc-disjoint s-branching flows.

4

Proof. We start by showing a result that is common to both cases. Let bf be the following
balance vector: bf (s) = k(n − 1) and bf (v) = −k, for all v ∈ V (D) − s, where n = |V (D)|.
Let N ′ be the network obtained from N and bf , as described in Lemma 2.3, and (S, S) be
a minimum (s′, t′)-cut in N ′. We show that c(S, S) = k(n − 1) which, by the Theorem 2.1,
implies that there is an (s′, t′)-flow with value k(n− 1) in N ′. Remark that, by construction
of N ′, u′(s′s) = k(n− 1), u′(vt′) = k and u′(a) = λ for every a ∈ A(D). It’s easy to see that
c(S, S) ≤ k(n − 1) because c(s′, V (D′) − s′) = k(n − 1). Then, we might assume that s ∈ S
and we define X = S \ {t}. It follows that

c(S, S) = c(S,X) + c(S, {t′}) = λd−D(X) + k(n− |X| − 1). (2)

Case λ = 1. Since D is (k, 1, s)-sufficient, d−D(X) ≥ k|X| and resuming (2), we have
c(S, S) ≥ k|X|+ k(n− |X| − 1) = k(n− 1). Thus, c(S, S) = k(n− 1) and, by the Lemma 2.3,
N admits a flow with balance bf . The result follows from Theorem 2.2 which states that N
admits k arc-disjoint s-branching flows if and only if it admits a single flow f with balance
bf .

Case k = 1. Here, D is (1, λ, s)-sufficient, which means that d−D(X) ≥ (|X|/λ), and so
λd−D(X) ≥ |X|. Replacing this in (2), we obtain c(S, S) ≥ |X|+ n− |X| − 1 = n− 1. Thus,
c(S, S) = k(n − 1). Similarly to the previous case, we conclude, by the Lemma 2.3, that N
admits a flow f with balance bf . As k = 1, we have that f is a branching flow and the result
follows.

We call a digraph D = (V,A) a multi-branching if D is a out-branching when we ignore
its parallel arcs (see example in Figure 1a).

s

(a)

s

t

(b)

Figure 1: Examples of multi-branching (a) and multi-spindle (b)

Lemma 2.5. Let D be a (k, λ, s)-sufficient digraph and let W be a nonempty subset of V (D)\
{s} such that N+

D (V (D) \W) = {w}, w ∈W . Then D[W] is (k, λ, w)-sufficient.

Proof. Since w is the unique vertex of W which has in-neighbours in V (D) \ W , then we
have d−D[W](v) = d−D(v) for every v ∈ W \ {w}. Thus, for every X ⊆ W \ {w} we have
d−D[W](X) = d−D(X).

Theorem 2.6 (Conjecture 1.3 for multi-branchings). Let D be a (k, λ, s)-sufficient
multi-branching. Then the network N = (D,u), with u ≡ λ, admits k arc-disjoint s-branching
flows.

5

Proof. We are going to use induction on the height h of the multi-branching with root s D
to construct k arc-disjoint s-branching flows f1, f2, . . . , fk in N .

The base case is h = 1. In this case D is a star and, since it is (k, λ, s)-sufficient, there
are at least k arcs from s to every other vertex and we can use one arc for each flow fj , for
j ∈ [k].

Induction step: Suppose that the Conjecture 1.3 holds for multi-branchings of height
h < q. Assume that D has height q and let r1, r2, ..., rp be the out-neighbours of s in D.

Let Bri be the subgraph of Bs that is a multi-branching with root ri, for each i ∈ [p].
Observe that, by Lemma 2.5, Bri is (k, λ, ri)-sufficient and has height hi ≤ q − 1, thus, by
induction hypothesis, Bri has k arc-disjoint ri-branching flows f i1, f i2, . . . , f ik. We know that
d−(ri) ≥ k

⌈
|Bri |
λ

⌉
and then we can use

⌈
|Bri |
λ

⌉
of these arcs to send the proper amount of

flow from s to ri on each xj to complete the k s-branching flows.

Since a multi-path is also a multi-branching, Theorem 2.6 generalizes the result of [6] for
multi-paths. We call a multi-spindle the class of digraphs D`, for ` ≥ 1, formed by a source
vertex s, a sink vertex t, ` pairwise internally vertex-disjoint multi-paths P1, . . . , P` from s to
t (see example in Figure 1b), each with pi ≥ 1 internal vertices, 1 ≤ i ≤ `, respectively.

Theorem 2.7 (Conjecture 1.3 for multi-spindles). If D is a (k, λ, s)-sufficient digraph
in D`, then the network N = (D,u) with u ≡ λ admits k arc-disjoint s-branching flows.

Proof. Let D be a digraph in D` that is (k, λ, s)-sufficient. By definition, D is composed by
the multi-paths P1, P2, . . . , P` and V (Pi) ∩ V (Pj) = {s, t} for every 1 ≤ i < j ≤ `. We
denote the pi internal vertices of Pi by vipi , v

i
pi−1, . . . , v

i
2, v

i
1 in this order, for every i ∈ [`]. For

every j ∈ [pi], we define rij ≥ 0 so that d−(vij) = kdj/λe+ rij . Remark that d−(vij) ≥ kdj/λe,
otherwise the set {vij , vij−1, . . . , vi1} would contradict the fact that D is (k, λ, s)-sufficient, since
the only arcs entering in it are those arriving in vij . Considering only the vertices with an
index multiple of λ, that is, the vertices vijλ for every 1 ≤ j ≤ bpi/λc, let

r(Pi) =

{
k, if pi ≤ λ,
min{rijλ | 1 ≤ j ≤ bpi/λc}, otherwise.

For all i ∈ [`], we define ei as the number of arcs from vi1 to t and mi = min{r(Pi), ei}.
Let k′ =

∑`
i=1mi.

Assume without loss of generality that P1, P2, . . . , Pq are the paths on which r(Pi) ≤ ei,
for i ∈ [`]. Then k′ =

∑q
i=1 r(Pi) +

∑`
i=q+1 ei. Consider the set X =

⋃q
i=1Xi ∪ {t}, where

Xi = {vijiλ, v
i
(jiλ)−1 . . . , v

i
1} and d−(vijiλ) = kji + r(Pi). We have that

d−D(X) =

q∑
i=1

d−(Xi) +
∑̀
i=q+1

ei = k

q∑
i=1

ji +

q∑
i=1

r(Pi) +
∑̀
i=q+1

ei = k

q∑
i=1

ji + k′. (3)

Since D is (k, λ, s)-sufficient and |Xi| = jiλ

d−D(X) ≥ k
⌈
|X|
λ

⌉
= k

⌈
1

λ
+
λ
∑q

i=1 ji
λ

⌉
= k

q∑
i=1

ji + k. (4)

Combining (3) and (4) we conclude that k′ ≥ k. To finally construct the k arc disjoint
branching flows, we need the following claim.

6

Claim 2.8. There are k arc-disjoint flows xi1, . . . , x
i
k on the network Ni = (Pi, u), with u ≡ λ,

such that xi1, . . . x
i
mi

are branching flows in Ni and ximi+1, . . . , x
i
k are branching flows in Ni−t.

Proof. We show how to construct the flows xi1, xi2, . . . , xik. For every j ∈ [pi], the vertex vij
must receive j + 1 units of flow on the first mi flows and j units on remaining k −mi flows.
Since d−D(v

i
j) = d−Pi

(vij) ≥ kdj/λe, we can use a distinct group of dj/λe arcs to send j units
of flow on each one of the k flows and we only have to argue how to send the extra unit for
the flows xi1, . . . ximi

. If j is a multiple of λ, then there are at least another r(Pi) extra arcs
entering vij that can be used to send the extra unit because r(Pi) ≤ mi (note that, if r(Pi) = 0
then mi = 0 and no extra unit is needed). Otherwise, j is not multiple of λ and when we
send j units of flow through dj/λe arcs, there is an arc that will not be used in the maximum
capacity and so we can use it to send the extra unit. Applying this method iteratively from
vipi to vi1, we arrive at vi1 with 2 units of flow on the flows xi1, . . . ximi

and we can send the
extra unit of each flow to t because mi ≥ ei. ♦

For each i ∈ [`], we compute the flows xi1, xi2, . . . , xik as in the Claim 2.8. Observe that k′

is the number of flows that reach t. If k′ = k, then we can rename these k flows in such a
way that each xj =

⋃`
i=1 x

i
j is an s-branching flow on N . Finally, if k′ > k, we take a flow

that reaches t and we modify it so that it doesn’t reach t anymore, and we repeat this process
until there are only k flows that reach t.

It is worth to notice that the above proofs for multi-branchings and multi-spindles together
with Proposition 1.2, besides giving a complete characterization of the digraphs in these classes
having k arc-disjoint branching flows, they lead to polynomial-time algorithms to find such
flows, once testing the (k, λ, s)-sufficiency for multi-branchings and multi-spindles can be
done in polynomial time. The algorithms work for every value of λ, even those for which the
problem of finding k arc-disjoint branching flows is known to be hard in general.

We end this section showing that, for particular choices of d−(X) and λ, a simple stronger
condition than the one presented in the statement of Conjecture 1.3 is sufficient to find k
arc-disjoint s-branching flows in a given network.

Theorem 2.9. Let N = (D,u) be a network with u ≡ λ, and p be an integer such that
pλ ≥ n− 1. If d−D(X) ≥ pk for all X ⊆ V (D) \ {s} with X 6= ∅, then N admits k arc-disjoint
s-branching flows.

Proof. By Theorem 1.1, there are pk arc-disjoint s-branchings B1, . . . , Bpk in D. For i ∈ [k],
let Di be the digraph formed by B(i−1)p+1 ∪ · · · ∪ Bip and N i = (Di, c).

Now, for every non-empty X ⊆ V (D) \ {s}, we conclude that d−Di
(X) ≥ p since each Bi

with i ∈ [pk] must reach X at least once. Moreover, by our choice of p, we have that every
N i is (1, λ, s)-sufficient. Thus, by Theorem 2.4, we have that each N i admits an s-branching
flow xi. Finally, as every arc of D appears in at most one digraph Di, we conclude that the
s-branching flows x1, . . . , xk are pairwise arc-disjoint. The result follows since each of these
flows can be promptly used to construct an s-branching flow in N , by copying arcs and flow
functions used by each flow xj with j ∈ [k].

3 Counterexamples and hardness results

In this section, we first prove that Conjecture 1.3 is not always true, by showing how to
construct a family of digraphs that contradicts it. Next, we show that it is NP-complete to
decide if there are k s-branching flows in (k, λ, s)-sufficient digraphs.

7

Theorem 3.1. For all λ ≥ 2 and for all even k ≥ 2, there exists a (k, λ, s)-sufficient digraph
D such that the network N = (D,u), with u ≡ λ, does not admit k arc-disjoint s-branching
flows.

Proof. Given an even k ≥ 2 and λ ≥ 2, start the construction of N by adding the vertices
s, a, b, c and d then add an arc from s to every other vertex along with the arcs ab, ac, bd, and
cd. Subdivide the arc bd (cd) λ− 2 times and let B (C) be the union of {b} ({c}) and the set
of vertices obtained by the subdivisions of bd (cd) (Note that if λ = 2 nothing changes at this
step, which means that B = {b} and C = {c}), and then double the arcs between vertices of
B (C). Let P be a path with λ vertices and denote by e and f , respectively, the first and last
vertex of P . Triple the first λ− 2 arcs of P and double the last one (the one that enters f).
After that, add P to D along with the arcs de, fa and two parallel arcs se. To complete the
construction, replace each arc by k/2 copies of itself and set u ≡ λ. See Figure 2.

sa d

b

c

ef

...

...

...

Figure 2: Counter-example for k = 2 and λ ≥ 2

Here, we say that a set X ⊆ V (D) is satisfied if d−D(X) ≥ kd|X|/λe.To prove that D
is (k, λ, s)-sufficient, we show the cases where k = 2 because for a larger k we multiply the
in-degree of each subset of V (D) − s by k/2. Observe that, except for s, every vertex has
in-degree at least 2 in D and that for every X ⊆ V (D)− s each vertex from {a, b, c, d} which
belongs to X sums at least one unit to the its in-degree and the vertex e sums two. Consider
a set X ⊆ V (D)−s. If D[X] has a cycle, then d−D(X) ≥ 5, once X necessarily contains a, d, P
and either B or C (or both), but its also true that |X| ≥ 2λ+1, which means that should be
at least one extra arc entering in X for it to be satisfied. To verify the existence of this extra
arc assume without loss of generality that B ⊂ X (the case where C ⊂ X is symmetric) and
take the longest (z, d)-path in D[X] such that z ∈ C. If no such path exists, there is at least
one arc going from C to d which was not counted before and if the path exists, then either
z = c or the two arcs yz enters X, where y is the in-neighbor of z which, by the choice of z,
cannot be in X.

Now consider that D[X] is acyclic. Note that each source in D[X] contributes with at
least two units in the in-degree of X. Since each weak component of D[X] has at least
one source, then every X with |X| ≤ λis satisfied. Similarly, the same also holds when
λ < |X| ≤ 2λ if D[X] has more then one weak component or only one component with many
sources. Otherwise D[X] has only one weak component W with a single source w, and we
have 5 cases:

• w ∈ B. Observe that in this case {d, e} ⊂ X, once that |X| ≥ λ + 1 and |B| = λ − 1,
which means that d−D(X) ≥ 5.

• w ∈ C. It’s analogous to the previous one.

8

• w = a. In this case, there are at least two vertices from {b, c, d} in X. That is,
d−(X) ≥ 4.

• w = d. If d is the source, then e ∈ X, and thus d−D(X) ≥ 5.

• w ∈ V (P). Except for f , every vertex of P has in-degree three and since X must
contains a, then d−D(X) ≥ 4. When w = f , besides a, X must also contains at least one
vertex from {b, c} which guaranties d−D(X) ≥ 4.

When 2λ + 1 ≤ |X| ≤ 3λ, the in-degree of X must be at least 6. We start with the case
that D[X] has just one weak component. If w is a source in D[X], again we have 5 subcases:

• w ∈ B. In this case, since |B∪{d}| = λ, either there is a vertex in C which is also a
source in D[X] or a ∈ X. In both situations, d, e ∈ X because |B ∪ C| < 2λ. Thus,
d−D(X) ≥ 6.

• w ∈ C. It’s analogous to the previous one.

• w = a. Once |{a, d} ∪B ∪ C| = 2λ, if a is a source, there is a path in D[X] that starts
in a, goes through B or C, d and ends in some vertex of P .

• w = d. When d is a source, for sure {a, b, c, d, e} ⊂ X.

• w ∈ V (P). Here, in order to avoid cycles, we know that if w = f , necessarily a, b, c and
d are also included in X and if w 6= f , at least a, b and c are included in X but, in this
case, w already contributes with 3 for the in-degree of X. Thus d−D(X) ≥ 6.

If D[X] has more than 2 weak components we already know that d−D(X) ≥ 6. If D[X] has
two weak components Y, Z, one of them, lets say Y , has at least λ+ 1 vertices and hence, as
in the previous cases, d−D(Y) ≥ 4. Thus, d−(X) ≥ 6.

Notice that if there are k arc-disjoint s-branching flows x1, x2, . . . , xk in N , as d−D(B) =
d−D(C) = k, each one of these k arcs has to be used by a different flow, and carry at least
λ− 1 units of flow, that is, one unit for each vertex of B and C. Now observe that k/2 of the
arcs which enter in B come from a and the same for the ones that enter C, and then a must
receive λ units of flow on each of it’s k incoming arcs in order to send the proper amount of
flow to B and C. Assume without loss of generality that the k/2 copies of sa are going to be
used by x1, x2, . . . , xk/2 and the k/2 copies of fa are left for xk/2+1, xk/2+2, . . . , xk. Since the
in-degree of f is also equal to k, f can receive at most λ units of flow of each x1, x2, . . . , xk
and hence it can send at most λ− 1 units of any of these flows to a. Therefore, N does not
admits N k arc-disjoint s-branching flows.

So, by Theorem 3.1, there are networksN = (D,u), withD being (k, λ, s)-sufficient, which
have k arc-disjoint s-branching flows and others that do not have such flows. We believe it
is not always computationally easy to check the (k, λ, s)-sufficiency of a digraph, but, even if
we know that D has such property, it is hard to decide if the desired flows exist.

Theorem 3.2. Given a Network N = (D,u), with u ≡ λ and a (k, λ, s)-sufficient digraph D,
as inputs, it is NP-complete to decide whether N admits k arc-disjoint s-branching flows, for
every fixed k ≥ 2.

Proof. We are going to reduce the Partition problem to our problem. The Partition
problem consists in deciding whether a given set of natural numbers S = {a1, a2, . . . , aq}, on
which

∑q
i=1 ai = 2λ, admits J ⊂ S, such that

∑
aj∈J aj = λ. From S, we construct a network

9

N = (D,u) such that D is a (k, λ, s)-sufficient network that admits k arc-disjoint branching
flows x1, x2, . . . , xk if and only if S is a yes instance of the Partition problem. We can
assume that ai ≤ λ, for i ∈ [q], otherwise we have a no-instance.

We begin the construction by adding a vertex s, a multi-path P0 = (v01, v
0
2, . . . , v

0
λ) and,

for every i ∈ [q], multi-paths Pi = (vi1, v
i
2, . . . , v

i
λ−ai), each one with k parallel arcs between

consecutive vertices. Also, for every i ∈ [q], we add one arc viλ−aiv
0
1 and k parallel arcs svi1.

We then add k − 2 parallel arcs sv01. See Figure 3. Finally, we set u ≡ λ to conclude the
construction.

v01 v02 v0λ
k
... k

... ...

v11 v12 v1λ−a1
k
... k

... ...
v21 v22 v2λ−a2

k
... k

... ...

vq1 vq2 vqλ−aq
k
... k

... ...

s

...

k
...

k
...

k ...

k-2
...

Figure 3: The network N = (D, c) constructed from an instance of the Partition problem

First, let us check thatD is (k, λ, s)-sufficient. By contradiction, assume that there exists a
set X ⊆ V −s such that d−D(X) < k d|X|/λe. Note that X 6= V (D)−s since |V −s| = (q−1)λ
and d−(V −s) = kq+(k−2). Recall that the in-degree of every vertex of Pi is k and thus the
in-degree of X is at least k. Therefore X cannot be entirely contained in a unique Pi, i ∈ [q],
once, in this case, |X| ≤ λ and then d|X|/λe = 1. Similarly, X cannot be entirely contained in
P0, since beside the k−2 arcs from s, there are other q arcs arriving in v01 and q ≥ 2 (otherwise
S is a no-instance of the Partition problem). Now, let I = {i : 1 ≤ i ≤ q, V (Pi) ∩X 6= ∅}.
Observe that d−D(X) ≥ k|I|. We are going now to consider the following cases:

(i) V (P0) ∩ X = ∅. Then |X| ≤ λ|I| and d|X|/λe ≤ |I|, so d−D(X) ≥ k|I| ≥ k d|X|/λe, a
contradiction to the choice of X.

(ii) X ∩ V (P0) 6= ∅. Then |X| ≤ λ|I|+ λ = λ(|I|+ 1). Take the small j such that v0j ∈ X.
We analyze two possibilities:

(ii.1) j > 1. Then there are k arcs v0j−1v
0
j that enter X, that is, d−(X) ≥ k|I| + k ≥

k d|X|/λe since |X| ≤ λ(|I|+ 1), a contradiction.

(ii.2) j = 1. Therefore v01 ∈ X and d−(X) ≥ k|I| + k − 2. Again, we consider some
cases:

(ii.2.1) If there are y, z ∈ [q] such that vyλ−ay , v
z
λ−az 6∈ X, then vyλ−ayv

0
1, v

z
λ−azv

0
1

contribute with two to the in-degree of X, and again we have d−(X) ≥
k|I|+ k.

(ii.2.2) If there is only one y ∈ [q] such that vyλ−ay 6∈ X while there is some other
vertex of Py inX, then d−(X) ≥ kq+k−1, which is a contradiction because
|X| < qλ. Thus, |I| = q− 1 and d−(X) ≥ k(q− 1)+ k− 1 = kq− 1. That
is, d−(X) ≥ kq − k. As |X| < λ(q − 1), we have that d−(X) ≥ k d|X|λe,
a contradiction.

10

(ii.2.3) If all the last vertices are in X, then d−(X) ≥ d−(V − s), and we have
another contradiction, since |X| < |V (D)− s|.

As we got a contradiction on each case, it follows that D is (k, λ, s)-sufficient.

Now we assume that there exists J ⊂ S, such that
∑

j∈J aj = λ. In order to construct the
arc-disjoint s-branching flows x1, x2, . . . , xk in N , we are going to specify only the amount of
flow in the arcs that leave s on each flow. Note that this is sufficient because every vertex in
V (D)− s has a unique out-neighbour.

For every j ∈ J and i ∈ S − J , we construct x1 and x2 in the following way: for two
different copies of the arc svj1, we set x1(sv

j
1) = λ and x2(sv

j
1) = λ− aj . Additionally, for two

different copies of the arc svi1, we set x1(svi1) = λ−ai and x2(svi1) = λ. We also set x1(sv01) =
x2(sv

0
1) = 0 for every copy of sv01. Observe that x1(v

j
λ−ajv

0
1) = aj and x1(v

j
λ−ajv

0
1) = 0, that

is,
∑

m∈[q] x1(v
m
λ−amv

0
1) = λ = |V (P0)|, and since the same holds for x2, both x1 and x2 are

s-branching flows.
For 2 < r ≤ k and ` ∈ {0} ∪ [q], we set xr(sv`1) = |V (P`)|, and we follow decreasing one

unit of flow on each vertex of P`, always choosing different arcs for each flow, in order to make
them arc-disjoint.

Finally, we assume that there exist k arc-disjoints s-branching flows x1, x2, . . . , xk in N .
We first claim that xr(viλ−aiv

0
1) ≤ ai, for all r ∈ [k], i ∈ [q]. Since x1, x2, . . . , xk are arc-

disjoints, there is only one flow xt which is positive in viλ−ai . If xt(viλ−aiv
0
1) > ai, then, as

|V (Pi)| = λ− ai, vi1 must receive more than λ units of flow in xt, that is, xt uses at least two
copies of the arc svi1. This is a contradiction because there are only k copies of svi1 and each
flow must use exactly one copy. Thus, the claim follows, and

∑
r∈[k]

∑
i∈[q] xr(v

i
λ−aiv

0
1) ≤ 2λ.

In fact, this sum is equal to 2λ, because each xr must reach v01 with λ units of flow and
there are only k − 2 copies of sv01. Let x1 and x2 be the flows that reach v01 without using
the copies of sv01. Considering x1, we define J = {aj : x1(v

j
λ−ajv

0
1) = aj}. Therefore, since∑

j∈J aj =
∑

i∈[q] x1(v
i
λ−ai) = λ, S is an yes instance of the Partition problem.

Observe that, by the proof of Theorem 3.2, the digraphs constructed from negative in-
stances of the Number partition problem are also counterexamples for Conjecture 1.3.

4 Concluding remarks

In this work, we studied the characterization of networks admitting k arc-disjoint s-branching
flows. We showed that, in some cases (Theorems 2.6 and 2.7), an “Edmonds like” condition
(see Equation 1) is enough to guarantee the existence of the k-arc disjoint s-branching flows,
but, in other cases, a stronger statement will be needed (Section 3). This disproves Conjecture
1.3 in general, although the cases for which it is valid are still interesting because, among other
reasons, they have been resulting in polynomial-time algorithms for them.

There are still many compelling cases of Conjecture 1.3 that worth to be analyzed. For
instance, the case of networks with λ = n− c, for fixed c ≥ 1, over (k, λ, s)-sufficient digraphs
is more restricted than the one considered in Theorem 2.9. The result in [4] states that the
problem of deciding whether such networks admit k arc-disjoint s-branching flows is XP with
parameter c. It is not known if this problem is FPT with the same parameter, and we believe
that Conjecture 1.3 holds for this case.

Another direction of this research would be to work in the characterization through a
stronger condition, as cited before. Some interesting complexity questions are still open, such
is a possible dichotomy in DAG’s between the easy and hard cases. In other words, it would

11

be very interesting to know if there a class of digraphs H, all of which are DAGs, such that
Conjecture 1.3 holds for every D ∈ H and not for every D 6∈ H.

References

[1] Ahuja, R. Network flows : theory, algorithms, and applications. Prentice Hall, Engle-
wood Cliffs, N.J, 1993.

[2] Bang-Jensen, J., and Bessy, S. (Arc-)disjoint flows in networks. Theoretical Com-
puter Science 526 (2014), 28–40.

[3] Bang-Jensen, J., and Gutin, G. Z. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

[4] Bang-Jensen, J., Havet, F., and Yeo, A. The complexity of finding arc-disjoint
branching flows. Discrete Applied Mathematics 209 (2016), 16–26.

[5] Bondy, J. A., and Murty, U. S. R. Graph theory, vol. 244 of Graduate Texts in
Mathematics. Springer, New York, 2008.

[6] Costa, J., Linhares Sales, C., Lopes, R., and Maia, A. Um estudo de redes com
fluxos ramificados arco-disjuntos. Matemática Contemporânea 46 (2019), 230–238.

[7] Edmonds, J. Edge-disjoint branchings. Combinatorial Algorithms (1973).

[8] Even, S., Itai, A., and Shamir, A. On the complexity of timetable and multicom-
modity flow problems. SIAM Journal on Computing 5, 4 (1976), 691–703.

[9] Ford, D. R., and Fulkerson, D. R. Flows in Networks. Princeton University Press,
Princeton, NJ, USA, 1962.

[10] Ford, L. R., and Fulkerson, D. R. Maximal flow through a network. Canadian
Journal of Mathematics 8 (1956), 399–404.

[11] Frank, A. Covering branchings. Acta Scientiarium Mathematicarum (Szeged) 41
(1979), 77–81.

[12] Impagliazzo, R., Paturi, R., and Zane, F. Which problems have strongly exponen-
tial complexity? Journal of Computer and System Sciences 63, 4 (2001), 512–530.

[13] Lovász, L. On two minimax theorems in graph. Journal of Combinatorial Theory,
Series B 21, 2 (1976), 96 – 103.

[14] Menger, K. Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10, 1 (1927),
96–115.

[15] Schrijver, A. Combinatorial optimization: polyhedra and efficiency, vol. 24. Springer
Science & Business Media, 2003.

[16] Shiloach, Y. Edge-disjoint branching in directed multigraphs. Inf. Process. Lett. 8, 1
(1979), 24–27.

[17] Tarjan, R. A good algorithm for edge-disjoint branching. Information Processing
Letters 3, 2 (1974), 51–53.

12

[18] V. Campos, R. Lopes, A. M., and Silva, A. Edge-disjoint branchings in tempo-
ral graphs. In Proc. of the 31st International Workshop on Combinatorial Algorithms
(IWOCA) (2020), vol. 12126 of LNCS, pp. 112–115.

13

	Introduction
	Special networks with k arc-disjoint branching flows
	Counterexamples and hardness results
	Concluding remarks

