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Abstract. Network incidents are largely due to configuration errors,
particularly within network service providers who manage large complex
networks. Such providers offer virtual private networks to their customers
to interconnect their remote sites and provide Internet access. The grow-
ing demand for virtual private networks leads service providers to search
for novel scalable approaches to locate incidents arising from configu-
ration faults. In this paper, we propose a machine learning approach
that aims to locate customer connectivity issues coming from configura-
tions errors, in a BGP/MPLS IP virtual private network architecture.
We feed the learning model with valid and faulty configuration data and
train it using three algorithms: decision tree, random forest and multi-
layer perceptron. Since failures can occur on several routers, we consider
the learning problem as a supervised multi-label classification problem,
where each customer router is represented by a unique label. We carry
out our experiments on three network sizes containing different types
of configuration errors. Results show that multi-layer perceptron has a
better accuracy in detecting faults than the other algorithms, making
it a potential candidate to validate offline network configurations before
online deployment.

Keywords: Configuration Faults Detection · Machine Learning · Vir-
tual Private Networks · BGP/MPLS Networks.

1 Introduction

Demands from companies to interconnect their remote sites and provide them
with Internet access have continued to increase strongly in recent years. BGP/
MPLS IP Virtual Private Networks (VPNs) [15] remain the most reliable and
widely used technology for this purpose. It can also be complementary to SD-
WAN solutions (Software-Defined Networking in a Wide Area Network) which
can be used as an overlay technology to optimize WAN edge infrastructures.

Within network service providers, VPNs multiplication leads to an increase
in the configuration’s complexity, which can cause several faults that impact
the reachability of the customers’ sites. Traditional methods to detect network
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configuration faults generally require to specify a list of formal constraints to ver-
ify the configuration’s validity (e.g., checking type correctness or cross-elements
dependencies). Ensuring the constraints completeness and manually updating
them are well known issues in this context. In this paper, we propose another
approach based on machine learning to detect and locate connectivity incidents
related to configuration faults in BGP/MPLS IP VPNs. Although relying on
machine learning for network management is not new [20], to the best of our
knowledge, it has never been applied for configuration fault detection in the
context of IP VPNs.

The approach we propose relies on a supervised learning paradigm in which a
model is trained thanks to thousands of network configurations that are labeled
as being either valid or not. This classification problem targets specifically the
reachability state of a customer’s site. After the learning process, the goal is to
be able to identify if an unknown configuration provided as an input allows all
the customers’ sites in a VPN to connect to each other and, if it is not the case,
the system should locate the sites that are not reachable. We validated our work
by testing the learning model on three algorithms: decision tree, random forest
and multi-layer perceptron. On a network of 100 client routers, results show that
we obtain an accuracy in detecting faults between 60 and 80 percent depending
on the learning algorithm.

This paper is organized as follows. In Section 2, we briefly review previous re-
lated work. In Section 3, we present BGP/MPLS IP VPNs, including their main
configuration elements and possible errors. We formulate the learning problem in
Section 4 and we explain our approach of data collection and feature engineering
in Section 5. Section 6 provides experimental tests and evaluation results before
concluding the paper in Section 7.

2 Related work

A lot of work on faults localization in the field of computer networks has been
done for more than fifteen years. Various techniques have been used such as
rule-based expert systems, decentralized probabilistic management or temporal
correlation [6]. Other proposals address network configuration verification [3] or
data-plane verification such as Header Space Analysis [9] and Veriflow [11] that
verify if safety properties hold for the current network state. These approaches
present scalability issues and they require that the verified configuration has
been deployed in a live network.

The increase in the size and complexity of networks makes fault detection and
localization a difficult task that requires new scalable approaches, which inspired
researchers to apply machine learning methods for this purpose. Some of these
works target specific networks such as cellular or wireless sensor networks [10,12].
Others are more general, such as [8] in which the authors proposed a supervised
learning model for incident management. Their model is composed of two sub-
models: a classification model to categorize network incidents and a regression
model to predict the duration of incidents, both are fed by data collected from
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application databases related to incident handling processes (customer relation-
ship management, network monitoring system, etc.). However, configuration er-
rors are not taken into account. In [19], a passive monitoring approach is used
to identify and localize the link where the fault occurred. The authors proposed
to capture the loss rate, the end-to-end delay and the aggregated transmission
rate for each source/destination node from traffic in both normal working con-
ditions and failure scenarios. The centralized network monitor then transmits
these metrics as features to the machine learning based fault manager. Again,
the data comes from network state and not configuration.

DeepBGP [2] is an example of related work that targets network configura-
tions. The authors rely on a Graph Neural Network (GNN) model to generate
BGP configurations given the feedback from a validation unit (enhanced by an
Evolution Strategies optimizer) to train the neural network. Although this paper
presents a very interesting approach (such as the use of a GNN that we plan to
study in future work), it does not focus on configuration faults detection, but
on network configuration generation.

Compared to these related work, we propose to identify and locate incidents
caused by configuration faults. We rely on a supervised learning approach, look-
ing at the network configuration as a whole (as opposed to individual devices),
which allows us to detect failures on multiple devices, even if there is a sin-
gle configuration error. Another specificity is the application domain: we focus
on connectivity incidents within network service providers that offer L3 virtual
private networks to their customers.

3 BGP/MPLS IP Virtual Private Networks

IMS Networks is an Internet Service Provider (ISP) that offers, among other
services, IP Virtual Private Networks (VPNs) to its customers [15]. This service
allows the operator to interconnect a set of customer sites through its backbone
while guaranteeing quality of service and isolation of flows for each customer.
The operator’s backbone relies on a Multiprotocol Label Switching (MPLS) ar-
chitecture [16] that assigns a label for each route within a VPN. A customer data
packet is tagged with the label corresponding, in the customer’s VPN, to the
route that is the best match to the packet’s destination and is further encapsu-
lated with another MPLS label used to tunnel the packet across the backbone.
The routes for a particular VPN are exchanged thanks to the Multi-Protocol
Border Gateway Protocol (MP-BGP). Fig. 1 illustrates a simple BGP/MPLS
IP VPN architecture composed of two customers (A and B), each having two
sites. Each VPN site must contain one Customer Edge (CE) router attached to
one or more Provider Edge (PE) routers :

– A CE router is connected to the provider’s network via an access service. It
routes traffic between the customer’s site and the backbone using a routing
protocol such as eBGP (external BGP) or OSPF (Open Shortest Path First).

– A PE router is an edge backbone router to which CE devices are connected
to. It contains a VPN Routing and Forwarding table (VRF) for each VPN.
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The routes within a VRF are learned from the CE it is attached to, as well
as from other PEs via the MP-BGP protocol. The PE router also acts as an
ingress/egress label edge router for the MPLS domain.

Routers in the provider’s network that are not attached to CE devices are
known as “P routers”. They implement primarily MPLS forwarding and control
protocols.

Configuring a complete BGP/MPLS IP VPN architecture is a complex task
as it involves configuring many parameters and many types of protocols. More-
over, the size of the network can also be an issue since a network service provider
can have a large amount of customers deployed on a number of sites ranging from
a few to several hundreds. In the next subsections, we will explain in more depth
the main configuration steps that are required to deploy and run this VPN ser-
vice and the main faults that can occur in this process.

VRF A VRF B VRF A VRF B

PE 1 P PE 2

RRIP/MPLS Backbone

Customer A
Site 1

CE A1

MP-BGP MP-BGP

Customer B
Site 1

CE B1

Customer A
Site 2

CE A2

Customer B
Site 2

CE B2

CE-PE routing CE-PE routing

Fig. 1. BGP/MPLS IP VPN architecture overview.

3.1 BGP/MPLS IP VPNs configuration

To implement BGP/MPLS IP VPNs, it is necessary to go through two main
stages: first, the configuration of the provider’s backbone and second, the con-
figuration of the customers’ VPNs.

Backbone configuration Once the topology and all the routers’ interfaces are
configured, an Interior Gateway Protocol (IGP) must be configured between all
P and PE routers (such as OSPF). Next, MPLS forwarding must be activated,
as well as the Label Distribution Protocol (LDP) to distribute labels between
neighbors in order to establish label switched paths. Finally, MP-BGP must be
configured between all PE routers so that they can afterwards advertise customer
routes. To avoid scalability issues (in which every PE router peers with every
other PE router in a full mesh), an alternative is to use a route reflector (RR)
to centralize MP-BGP sessions (cf. Fig. 1).
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Once the operator’s backbone is configured, it is generally stable and rarely
changes.

VPNs configuration When configuring a VPN instance for a specific customer,
a VRF must be configured on every PE router connected to that customer’s
site. This is done, notably, by specifying a route distinguisher (RD) to ensure
route uniqueness, along with route targets (RT) to determine which VRFs it
should export or import routes to or from. The VRF must also be associated to
the appropriate interface on which the CE is connected to. Regarding CE-PE
routing, we can use eBGP, thereby configuring a direct peering between CE and
PE routers (for a specific VRF). Otherwise, another routing protocol can be
used (e.g., OSPF) and, in this case, route redistribution between the MP-BGP
protocol and this other routing protocol must be configured for that VRF.

It should be noted that, contrary to the backbone’s configuration, several
customer sites (CE routers) can be added, updated or deleted each day, which
requires human expertise to always check the changes before committing the new
configuration. Besides, adding a single customer’s site to the network requires
almost one hundred lines of configuration on the CE and PE routers, which is a
very error-prone task.

3.2 BGP/MPLS L3 VPNs incidents

Within the Network Operation Center (NOC) at IMS Networks, we have ob-
served that the majority of network incidents are due to configuration faults,
hence the interest of this work. In this article, we consider several types of faults
that impact the reachability of CE routers and therefore lead to VPNs disrup-
tions.

Faults on CE-PE routing An error on a customer’s IP subnet on a CE or
misconfiguring the CE-PE routing (e.g., eBGP peering or route redistribution)
are examples of faults that make a CE unreachable to all other CEs of the VPN,
even if they are connected to the same PE.

Faults on VRFs A network engineer can forget to configure a VRF instance
on a PE router or can make a mistake on a specific parameter such as the RD
or RT. Once the configuration has been committed with this type of fault, all
the CE routers of the concerned customer connected to this PE router will be
unreachable.

Faults on MP-BGP A peering configuration fault between a PE router and the
route reflector will prevent establishing the MP-BGP session and therefore the
PE will neither be able to send nor receive VPN routes. All the CEs connected
to this PE will therefore be unreachable. It is also necessary to configure a
BGP instance for each VRF. Forgetting this step will prevent the PE router to
communicate the customer’s routes to the route reflector and thus all the CE
routers of that customer will be unreachable.
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Table 1 summarizes these configuration faults as well as their impact on the
reachability of the customers’ sites.

Table 1. Main configuration faults and their impact

Faults Affected CEs

a) CE-PE
routing config.

faults

Routing error
CE i

between CE i and the PE
CE i subnet

CE i
misconfigured

b) VRFs
configuration

faults

VRF j not configured All CEs of customer j
on PE i connected to PE i

RD/RT misconfigured All CEs of customer j
for VRF j on PE i connected to PE i

c) MP-BGP
configuration

faults

BGP instance not configured All CEs of customer j
for VRF j on PE i connected to PE i

MP-BGP peering error All CEs that are
between PE i and the RR connected to PE i

4 Problem formulation

In this section, we formulate the learning problem and illustrate it on a simple
example.

The general goal of our work is to build a system that can learn if a BGP/
MPLS IP VPN configuration is valid or not. More precisely, the system should
identify if the target configuration allows every customer’s site to be reachable.
If not, it should be able to pinpoint the sites that are not reachable due to a
configuration error.

Let us consider the topology presented in Fig. 1 and two scenarios in which
configuration errors cause reachability issues for one or more CE routers: i) if the
MP-BGP session between PE1 and RR is not properly configured, then CE A1 and
CE B1 connected to PE1 will be unreachable regardless of their VRF configuration
(case c.2 in Table 1); ii) an incorrect RD or RT configured on VRF B on PE2

will prevent routes emanating from CE B2 to be associated to customer’s B VPN
and therefore CE B2 will be unreachable from the customer’s other sites (case
b.2 in Table 1).

Learning if a CE is reachable or not is a classification problem; that is pre-
dicting whether it belongs to a particular category. In our context, there are only
two categories (or classes): reachable or not reachable (in fact the reachability
property does not depend only on the network’s configuration but also on its
state; however we use the term “reachable” for the sake of simplicity). Although
there are two classes, this is not a binary classification problem since one con-
figuration includes many CEs and a single fault can generate reachability issues
for several CEs. In the above topology, the system should be able to classify if
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each CE is reachable or not, hence a vector of 4 labels: [CE A1, CE B1, CE A2,
CE B2]. This is known as a multi-label classification task [18] in which an input x
is mapped to an output binary vector y (with a value of 0 or 1 for each label in
y). Therefore each label represents a particular CE, the value 0 indicating that it
should be reachable (according to the network’s configuration) and 1 indicating
that the CE has a reachability issue. Back to the previous example, the fault
scenarios i) and ii) should generate the binary vectors [1, 1, 0, 0] and [0, 0, 0,
1], respectively.

Fig. 2 illustrates the general workflow of our approach from data collection
and features selection to model validation. After analyzing and selecting the
features, we generate a dataset from labeled configurations and feed it to the
learning model. We repeat these steps by adjusting features and model parame-
ters until we get decent results. It is important to note that this workflow is done
offline before using the verification service. Once the model has been trained, it
is deployed, a network engineer submits an L3 VPN configuration and the results
should be able to predict if it is correct or not before committing the changes
on a production network.

extract
Featurescollect

Datasets

Production network

generate

input

Config.

Model 
training

Model 
validation

OK, deploy

adjust

test
1) Submit config.

2) Connectivity
validation

Configuration faults
detection system

(with labels)

add config.
errors

Fig. 2. General workflow from data collection to model deployment.

5 Configuration data collection and analysis

In the learning paradigm, data collection, analysis and feature extraction are very
important steps since the efficiency of the learning process is directly correlated
to the amount and quality of data. Finding proper features is the key to fully
release the potential of data [20].
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5.1 Data collection and feature engineering

A complete BGP/MPLS IP VPN configuration is composed of many parts re-
lated to physical topology, backbone IGP, MPLS/LDP protocols, VRF tables,
MP-BGP sessions and CE-PE routing.

As explained in the previous section, in this work we focus on configuration
faults that impact VPN connectivity between the customers’ sites. IMS Net-
works’ experience in troubleshooting connectivity issues shows that most of the
incidents come from routing configuration errors on CE and PE devices, and
very few come from the backbone’s configuration (IGP, MPLS/LDP). In addi-
tion, the backbone’s configuration rarely changes while the VPNs’ configuration
can be updated on a daily basis. Therefore, after having collected and analyzed
a complete BGP/MPLS IP VPN configuration, we decided to focus on con-
figuration parameters covering CE-PE routing, VRF tables and MP-BGP. We
formalized these parameters as features having either a binary value indicating
if the configuration parameter is present or not (e.g., MP-BGP active for VRF
v on PE p), or a numerical value with a specific range (e.g., IP prefix with a
range from 1 to 32 and RD/RT with a range from 1 to 100 as we assume that
the maximum number of VRFs is 100). As an example, nine features in our data
model are necessary to add a new VRF with a single CE, which is equivalent to
approximately one hundred lines of configuration in the PE router. The selected
features have a direct impact on the connectivity issues described in section 3.2.
This is an important aspect of feature engineering as the extracted data must
be relevant with respect to the problem that is being addressed [4, 20].

Configuration collection and analysis, as well as features extraction constitute
the first steps of the overall workflow illustrated in Fig. 2.

5.2 Dataset generation

In communication networks, a large amount of data is available: traffic traces,
performance metrics, security alerts, logs, etc. However, network configurations
is the exception since once a configuration is in production, there is no need for
the service provider to maintain hundreds of other configurations. Additionally,
it is very difficult to obtain a large number of configuration errors in a production
network and it is unrealistic to inject faults in the network just to have training
data. We thus decided to generate configuration data based on existing config-
urations specified by and deployed at IMS Networks. This allows us to have a
dataset large enough to be used by the learning model and diverse enough to
contain both correct and incorrect configurations.

To be able to generate realistic configurations, we defined three network
architectures of different sizes which we used to create three different datasets:
a) a small network with 5 PEs, 20 CEs and 3 customers; b) a medium-sized
network with 8 PEs, 50 CEs and 5 customers; and c) a larger network with 10
PEs, 100 CEs and 10 customers. In the three networks, CEs are connected to PEs
and assigned to customers randomly. According to this random allocation, the
features are initialized with either, a value derived from the device or customer
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id (e.g., IP address, route distinguisher), or a binary value indicating if the
configuration parameter is present or not (e.g., VRF v not configured on PE
p). The result is one valid global configuration for each network architecture.
Since we rely on a supervised learning paradigm, we have to assign labels to the
datasets to establish ground truth. In our context, a label exists for each CE in
the network to identify if it is reachable or not (from a configuration point of
view). When generating the global configuration, all the labels are initialized to
0 since there is no configuration error.

For each network architecture, in order to train the model with sufficient
data, we reproduced the configuration 150000 times. We then generated faults
on these configurations (cf. section 3.2). We considered 10 types of faults dis-
tributed in 3 categories: CE-PE routing faults (customer’s IP subnet address
or mask error, eBGP peering error), VRF faults (VRF not configured, bad RD
or RT) and MP-BGP faults (BGP not configured, peering error with RR, VPN
address family extension not activated, BGP instance not configured for VRF).
First, we combined all the faults (CE-PE routing, VRF and MP-BGP faults)
within the same dataset and second, we considered the different fault categories
independently from each other. Therefore, for each network architecture, we gen-
erated several datasets with different categories of faults. For each dataset, the
faults are generated by randomly selecting the type of fault and randomly se-
lecting the device on which to apply the fault. During this process we made sure
to uniformly distribute the errors over the configurations and that, at the end,
each CE would be unreachable in 50% of the data points. Finally, for each fault
added to a configuration, we updated the output labels accordingly (i.e., setting
the labels of the unreachable CEs to 1).

6 Learning to detect reachability issues

This section covers the two last steps of the workflow illustrated in Fig. 2: model
training and validation. We start by explaining the algorithms we relied on to
train our model and then we discuss the test results that vary according to the
algorithm, network size and fault type.

6.1 ML algorithms and evaluation metrics

In order to implement our learning problem, we have tested three different ML
algorithms: decision trees, random forest and multi-layer perceptron. We chose
these three algorithms as they are commonly used in the machine learning com-
munity when dealing with supervised classification problems.

– Decision Tree (DT) is one of the simplest approaches of supervised learning.
During the training, it builds a decision tree which represents a function
that takes as input a vector of features values and returns a “decision” (or
“class”) as output value [17].
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– Random Forest (RF) is an extension of the decision tree classifier, it contains
a set of individual decision trees that operate as an ensemble. The random
forest output class is the most predicted class chosen by each individual
decision tree [5].

– Multi-Layer Perceptron (MLP), or feedforward neural network, is a machine
learning approach that is based on artificial neural networks. It contains at
least three layers of neurons: an input layer, one or more hidden layers and
an output layer. Neurons in layer n are connected to neurons in layer n + 1
with a certain weight. These weights are adjusted during the training process
using back propagation [4, 14].

We tested DT and RF using Scikit-learn [13], a Python module that of-
fers implementations of various machine learning algorithms. For MLP, we used
Keras [7], a high-level neural networks API built on top of TensorFlow [1].

After training the models, to evaluate their performance, we relied on con-
ventional metrics used in classification problems: accuracy, precision, recall and
F1-score. To understand these metrics in our context, we need to define True
Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)
classes. TP and TN represent correctly predicted outcomes for, respectively, pos-
itive instances (a CE with an error, i.e. not reachable) and negative instances (a
CE with no error, i.e. reachable). On the contrary, FP and FN describe incorrect
predictions: predicting a reachability problem that actually does not exist, and
predicting a reachable CE that in fact is not.

In the following definitions, we will refer to a positive CE as a CE containing
an error, i.e. not reachable (labeled 1 in the dataset); and a negative CE as a
CE with no error, i.e. reachable (labeled 0 in the dataset):

– Accuracy represents the proportion of true predictions (i.e. the number of
CE whose reachability state is correctly predicted) among the total number
of predictions (i.e. the total number of CEs).

Accuracy =
TP + TN

TP + TN + FP + FN

– Precision is the ratio of the number of positive CEs correctly predicted over
the total number of CEs predicted as positives.

Precision =
TP

TP + FP

– Recall is the ratio of the number of positive CEs correctly predicted over the
total number of actual positive CEs.

Recall =
TP

TP + FN

– F1-score is the harmonic average of Precision and Recall.

F1-score =
2 × Precision×Recall

Precision + Recall
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6.2 Results and discussion

Our experiments were performed on the datasets described in section 5.2: three
network sizes (20, 50 and 100 client routers) and for each one, different types of
configuration faults. Each dataset contains 150000 configurations and is divided
in two: one for training (containing 70% of the data points), one for testing
(containing 30% of the data points).

Training time We first start by measuring the training time of each algorithm
for each network size and for different levels of configuration faults (first, VRF
tables only; second, adding MP-BGP; third, adding CE-PE routing). The re-
sults are shown in Table 2 (experiments were performed in a VM with 4 vCPU
and 48 GB of RAM). We can see that the number and type of faults does not
have an influence on the training time. This time is fairly constant for the three
algorithms whether faults belong to one, two or three categories. Also, the re-
sults show that MLP training takes more time than DT and RF (approximately
by factors three and two compared to RF for the medium and large networks
respectively). However, the total training time for the larger network with the
three categories of faults is less than twenty two minutes which is very reasonable
for offline training. Indeed, as shown in Fig. 2, the training is done offline before
deploying the system, that is before validating any new configuration update on
the operational network. Therefore the approach does not have any real time
constraints.

Table 2. Comparison of models training time

Small network Medium network Large network
Faults on: DT RF MLP DT RF MLP DT RF MLP
VRFs 0m 8s 1m 42s 8m 49s 0m 46s 4m 47s 15m 32s 2m 31s 10m 2s 21m 20s
+ MP-BGP 0m 10s 1m 53s 8m 45s 0m 42s 4m 52s 15m 57s 1m 56s 9m 3s 21m 37s
+ CE-PE rt. 0m 16s 2m 31s 8m 29 0m 68s 6m 18s 14m 40s 3m 13s 11m 39s 21m 34s

Overall performance of each algorithm In order to evaluate the general
performance of each algorithm, in Fig. 3 and Fig. 4, we plotted the precision,
recall, F1-score and accuracy values calculated using the test datasets for the
small and large networks, respectively. These results were obtained with the
datasets containing all the configuration errors described in section 5.2 (i.e., 10
types of faults).

Overall, we observe that the DT performance is lower than that of RF and
MLP, particularly as the network gets larger (F1-score of 60% for the DT on the
large network). Besides, MLP results are more efficient than RF results on both
graphs, with a bit more on the second one (between RF and MLP, the F1-score
increases by 6% on the small network, and by 17% on the larger network).

Looking at precision and recall, we can see that the F1-score on the large
network (Fig. 4) cannot reach 80% due to a low recall value (for both RF and
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Fig. 3. Precision/Recall/F1-score/Accuracy for the small network dataset.

MLP). A low recall value indicates a high number of false negatives, that is
configuration errors that are not detected (i.e., predicting a CE router as being
reachable while it is actually not). This issue with the recall value will be further
discussed in the subsection related to the impact of configuration error types.
On the contrary, the precision is very high (almost 1 for the small network and
close to 0.9 for the large network) which means that there are very little false
positives, that is a CE router predicted as unreachable is almost always indeed
unreachable.
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Fig. 4. Precision/Recall/F1-score/Accuracy for the large network dataset.



Configuration faults detection in IP VPNs based on machine learning 13

Impact of network size Fig. 5 shows the F1-score value for the small, medium
and large networks with 10 types of configuration faults. It is clear that the
performance of all three algorithms (DT, RF and MLP) is decreasing as the
network gets larger. Increasing the size of the network means adding more PE
and CE devices, more VRFs and thus, in general, more features and labels
for each data point. The learning problem gets therefore more difficult, hence
a decrease in the algorithms accuracy. However, the problem here is that the
number of features and labels increases but the size of the training dataset
remains the same. One way to handle this issue if to increase the size of the
dataset (i.e., the number of correct and incorrect configurations) as we increase
the size of the network. In addition, to improve the MLP’s F1-score (which is
close to 80% for the larger network), we plan on updating some model parameters
such as the number of neural network hidden layers and the number of training
epochs; and we can also target specific error types as we will see in the next
subsection.
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Fig. 5. F1-score for the small, medium and larger network.

Impact of configuration errors To understand more precisely the impact of
the configuration error types on the learning algorithms, we calculated the F1-
score for each algorithm according to the fault category: CE-PE routing, VRF
and MP-BGP (cf. sections 3.2). Results are shown in Fig. 6. One can easily
observe that the performance on a dataset containing only MP-BGP errors is
better than the performance on a dataset containing only VRF errors which is
again better than the performance on a dataset containing only CE-PE routing
errors, and this for all three algorithms. This means that models learn better
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about MP-BGP and VRF faults than CE-PE routing faults. This is confirmed
by Fig. 7 that shows the detailed evaluation metrics for the MLP model.
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Fig. 6. F1-score for the larger network according to the fault type.

The first reason that can explain this fact is related to the impact of the
configuration error on the rest of the network. As presented in Table 1, a fault
on MP-BGP peering between a PE and a RR generates reachability issues on
all the CEs connected to this PE (i.e., multiple labels), while a fault on a VRF
does not impact all the CEs connected to the PE, but only the CEs belonging to
the same customer. Finally, a fault on CE-PE routing affects only the concerned
CE (i.e., one label). It is therefore easier for the learning algorithms to spot
MP-BGP configuration faults and, to a lesser extent, VRF faults.

Other reasons that can explain this difference are the relationships between
the features in the dataset and their data types. In CE-PE routing, the IP ad-
dress and the mask of a customer’s subnet are only configured once on the CE
router and there is no link between this information and the rest of the con-
figuration. Moreover, these features are numerical data, with a high cardinality
(the IP address space) and no numerical relationship between the values. There-
fore the learning algorithm cannot identify if these two features (IP address and
mask) are correct or not. Regarding the RD/RT configuration parameters in a
VRF, although these features are also numerical, they should be identical on
the different sites of the same customer. This logical relationship is learned in
the training process and therefore an error on those parameters can be detected
by the ML algorithm. The recall value plotted in Fig. 7 confirms these assump-
tions: false negatives are more present in the case of CE-PE routing (i.e., unable
to detect an error or the customer’s IP subnet) than in the VRF configuration
(i.e., better performance in detecting RD/RT errors). MP-BGP configuration
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elements are, on the other hand, binary features and have an impact on the
reachability of multiple CE routers, hence an accuracy of almost 1 in Fig. 7.
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Fig. 7. Precision/Recall/F1-score/Accuracy using MLP for the larger network accord-
ing to the fault type.

According to these results, we argue that MLP has a better accuracy in
detecting configuration faults than DT and RF. Furthermore, we find that the
MLP approach can have a much higher performance if it is not used to detect
configuration errors on numerical data that have no direct or indirect relationship
with other parts of the network configuration (such as customers’ IP addresses).
This type of configuration data should rather be verified by other means, such
as rule-based systems.

7 Conclusion and future work

In this paper, we proposed to use supervised machine learning approaches in or-
der to detect and locate reachability incidents between customers’ edge routers
interconnected by virtual private networks. We focused specifically on incidents
caused by configuration errors in BGP/MPLS IP VPNs that remain complex
networks for service providers. In contrast to existing rule-based approaches to
verify configurations, which involve manual requirements engineering to specify
and maintain the set of rules, machine learning approaches rely mainly on correct
and incorrect configurations to learn and detect configuration errors. The learn-
ing system takes as input, before deployment, a new configuration and predicts
connectivity issues before they occur on the production network. Experimental
results have shown better performance and better scalability with the approach
based on neural networks. We are therefore currently working on enhancing this
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model by integrating more configuration features, more fault types and larger
networks.

In future work, in addition to configuration data, we plan to include state
data such as network monitoring events and performance measures. With such
data, we will have to integrate online training in the workflow. Furthermore,
in line with the neural network approach (MLP), considering a Graph Neural
Networks (GNN) model seems a natural direction for future work to represent
the network topology and the routing control plane in order to detect other
network incidents and identify their root cause.
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