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Barometers are among the oldest engineered sensors. Historically, they have been primarily used either as environmental sensors to measure the atmospheric pressure for weather forecast, or as altimeters for aircrafts. With the advent of MEMS-based barometers and their systematic embedding in smartphones and wearable devices, a vast breadth of new applications for the use of barometers has emerged. For instance, it is now possible to use barometers, in conjunction with other sensors, to track and identify a wide range of human activity classes. However, the effectiveness of barometers in the growing field of human activity recognition critically hinges on our understanding of the numerous factors affecting the atmospheric pressure, as well as on the properties of the sensor itself-sensitivity, accuracy, variability, etc. This review article thoroughly details all these factors and presents a comprehensive report of the numerous studies dealing with one or more of these factors, in the particular framework of human activity tracking and recognition.

Introduction

Barometers have been around for a very long time. While the air was thought to be weightless till the early 1640s, this changed when the Italian physicist and mathematician Evangelista Torricelli showed that a column of air exerts a significant force that can be measured by the amount of liquid displaced by the pressing air. This led to the discovery that "air has weight", and the invention of a measurement device that quantifies the atmospheric pressure [START_REF] Magie | A Source Book in Physics[END_REF]. In the latter part of 1640s, Blaise Pascal perfected the experiment and showed the finiteness of air pressure, leading to the hypothesis that the height of the atmosphere itself is finite, and to the proposition that altitude can be measured as proportional to the atmospheric pressure [START_REF] Pascal | The Physical Treatises of Pascal: The Equilibrium of Liquids and the Weight of the Mass of the Air[END_REF]. The SI derived unit, the Pascal (Pa), is named after Pascal's contributions to hydrodynamics, and is now officially used to measure the force applied by an atmospheric column of air above a unit surface area.

For the first two centuries after the invention of the barometer, this device was constructed using glass tubes filled with liquids such as water or mercury [START_REF] Middleton | The History of the Barometer[END_REF]. In 1844, a new design appeared with the development of the aneroid barometer, that is purely mechanical, does not contain liquids, and shows the measurement value on a face dial [START_REF] Figuier | [END_REF]. These devices took a quantum leap with the advent of micro-fabrication in the 1960s that allowed the miniaturization of the barometer and accelerometer to a size smaller than 0.1 mm, what is now commonly known as Micro Electro Mechanical Systems (MEMS).

With the successive advancements in integrated-circuits and digitization of the sensor readings, the manufacturing and the computational cost of these miniaturized devices were significantly driven down, thus paving the way for their widespread adoption in consumer products, especially in mobile phones. Currently MEMS-based barometers are by far the most commonly found type of barometers in wearable devices and smartphones. In 2015, one of the pioneers in MEMS manufacturing, Bosch (Robert Bosch GmbH) claimed to manufacture 1 billion MEMS sensors per year for automotive and non-automotive applications in one production facility in Germany [START_REF]Five billion Bosch MEMS sensors[END_REF]. This company also claims to have their MEMS devices (including barometers) embedded in every second smartphone in the world [START_REF]Five billion Bosch MEMS sensors[END_REF]. Although this claim cannot be independently verified, it still points to the massive scale of production for this type of sensor, and underscores the ubiquitous availability of MEMS barometers.

Historically, barometers were used for weather forecast and thus chiefly as environmental sensors.

As a measurement device of ambient pressure, barometers have been recently used to measure evapotranspiration (transfer of water from land to atmosphere) in a given environment, improving motor vehicle engine efficiency by modifying air-fuel mixture, and to count steps based on the slight disturbances in air pressure during body movements [START_REF]Barometric Pressure Sensors: The Design Engineer's Guide: Avnet Abacus[END_REF]. Thanks to the relation between pressure and altitude, barometers are also widely used as altimeters to measure altitude, in particular in airplanes and Unmanned Aerial Vehicles (UAVs). Recent applications include their use in warehouses for precise automated placement, retrieval, and monitoring of objects on shelves, and indoor/outdoor navigation of humans and vehicles. It is worth highlighting that there is still significant opportunities for the use of barometers in a vast range of additional applications. Clearly, the full potential of barometers has not yet been taken advantage of, in particular in the Internet of Things (IoT) realm and with future consumer devices, particularly in the fast-growing area of wearable devices.

In particular, the ubiquity of MEMS barometers in smartphones and other wearable devices makes them natural candidates as data sources for the study of human activities and to the field of Human Activity (and mobility) Recognition (HAR) [START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF]. Broadly speaking, HAR consists in using data from various types of sensors carried by individuals to automatically understand what type of activity they are carrying out. It consists therefore in choosing sensors that will be influenced by the activity, annotating a certain amount of data (that will serve as "training data") thanks to ground truth knowledge (i.e., the knowledge of the precise conditions in which the data was collected), and devising a classification task using typical machine learning frameworks to classify the rest of the data. The human activities considered can be broadly classified under two main classes: (1) Ambulation, and [START_REF] Pascal | The Physical Treatises of Pascal: The Equilibrium of Liquids and the Weight of the Mass of the Air[END_REF] Transportation [START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF]. Ambulation refers to all movements and idle states of our human body (walking, idle, running, sitting, etc.), while transportation refers to our movement through vehicles (cars, buses, bicycles, etc.) [START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF]. In HAR research, such activities are considered under two conditions: (1) Natural ones, and (2) Laboratory. These conditions lie at the two extremes of a spectrum: "natural" refers to individuals behaving normally, within their usual environment, without any defined procedure and without being influenced by their being monitored, while laboratory conditions refer to a set-up that is especially designed for a human subject, who is given explicit instructions to perform a given activity.

In reality, most experiments with human subjects happen somewhere in between these two extreme conditions.

Inertial Measurement Units (IMU)-comprising accelerometer and gyroscope, along with magnetometer-are the most commonly used sensors to track human activity. Although the first accelerometer was invented by the English physicist George Atwood in 1783, this sensor has not been used in any commercial applications till the 1920s, but this changed with the advent of motor vehicles, including airplanes [START_REF]Accelerometer -Research Article from World of Invention[END_REF]. Smartphones have been equipped from the start with accelerometers, whose signals are widely used to recognize most activity classes [START_REF] Del Rosario | Tracking the evolution of smartphone sensing for monitoring human movement[END_REF].

Until the 1990s, it seems that there is almost no reference in the literature to the use of barometers in tracking human activities. That changed with the silicon and digital revolution, which contributed to the effective use of barometers to track a range of human activities in the late 1990s. Initially, consumer devices such as mobile phones were equipped with barometers to improve GPS-based localization by reporting altitude or altitude changes [START_REF] Del Rosario | Tracking the evolution of smartphone sensing for monitoring human movement[END_REF]. Today, barometers along with a suite of sensors like IMU and magnetometer are used-individually or through sensor fusion-to track a wide range of human activities. Such use of barometer to track human activities is a fairly recent phenomenon. In the last two decades, the barometers were found to improve some activity class recognition that involves change in height, such as fall or vertical mobility. In some applications such as recognizing Vertical Displacement Activity (VDA), the accelerometer has been replaced by or at least given less importance than barometers, which are more energy efficient, require less signal processing and yield less noisy signals than IMU signals. Most smartphones have barometers allowing to predict changes in altitude with an accuracy of the order of 1 meter. However, an effective tracking of human activities is best obtained with the combined use of these important sensors, each providing unique information on the subject's state.

It is however important to note that our ability to properly leverage the potential of barometers for HAR purposes critically hinges on our understanding of the physical properties of the atmospheric pressure. Indeed, the measure of the ambient pressure by a barometer is influenced by the static and dynamic properties of its environment [? ]. Its effective use as a signal thus requires dedicated data post-processing techniques and classifiers, in general to account for external factors: for instance, if one is tracking altitude changes and vertical displacement activity, the variations in the local atmospheric pressure have to be accounted for. Measures are moreover affected by the sensor itself, whose accuracy and manufacturing imperfections can introduce noise and variability between devices. Hence, it is fair to say that the numerous factors affecting barometric pressure (see Sec. 4), if not properly understood and accounted for, can hinder the effective use of barometers to detect and identify particular classes of human activity.

The current review is non-exhaustive but intentionally limited to the use of barometric sensors for the most common classes of human activity. This choice is justified by the wide range of applications offered and the fact that barometers now pervade many mobile devices (wearables and smartphones, cars, etc). The applications explored are also primarily limited to the recent developments in using MEMS-based barometers for consumer goods/electronics. It is worth stressing that this review does not address the vast breadth of Machine Learning (ML) or other advanced classifiers used to interpret the sensed data, and identify a given activity with a given accuracy. However, the details provided in this review are most useful for the further development and design of effective ML/classifier strategies. This review is organized as follows: Sec. 2 introduces the general sensor data collection process to track human activity. Section 3 looks specifically into the use of barometers in human activity and mobility recognition. Section 4 describes the factors that affect barometric pressure and quantifies the order of magnitude of each effect based on a range of studies reported in the literature. This section is enriched by data especially collected for illustration purposes. Lastly, Sec. 5 explores the potential directions of future research in HAR using barometric sensors.

General sensor data collection process to track human activities

Barometers are part of the suite of sensors used to track, recognize, analyze, and ultimately understand human activities. As such, the characteristics of the data collection process is similar to the one of other types of sensors. They include the characteristics of sensors, their placement and orientation, the sampling frequency, the environmental conditions. The type of application (activity class, diversity of sample population) and the method to record the ground truth and annotate a part of the data have also to be carefully designed. Data collection and annotation are indeed critical to the effectiveness of subsequent stages of classification-e.g., data pre-processing, feature engineering and identification-in the overall workflow of sensed data associated with human activity recognition.

Similarly, an informed decision on the data collection procedure depends on the specific problem under study and on the particular class of human activity being investigated. Depending on the sensor characteristics and the class to be recognized, data collection methods must be tailored to shed light on the phenomena under investigation for better accuracy and performance. The success of such data-processing activity not only depends on acquiring the data, but also in being able to effectively process it and extract meaningful features and patterns.

Sensors and sensor suites

Smartphones and watches are by far the most common and straightforward way to collect data in a natural setting. Nonetheless, some research groups studying particular behaviors and phenomena required a custom-built wearable sensor design for both laboratory testing as well as for operations in real-life conditions. For instance, 3-axis accelerometers are the most widely used sensors [START_REF] Janidarmian | A comprehensive analysis on wearable acceleration sensors in human activity recognition[END_REF][START_REF] Twomey | A Comprehensive Study of Activity Recognition Using Accelerometers[END_REF], followed by 3-axis gyroscopes and magnetometers. Since these inertial sensors are now commonly found in today's smartphones and other MEMS devices, many recent studies use a combination of these sensors to improve classification accuracy [START_REF] Shoaib | Fusion of smartphone motion sensors for physical activity recognition[END_REF][START_REF] Chung | Sensor data acquisition and multimodal sensor fusion for human activity recognition using deep learning[END_REF], although a 3-axis accelerometer alone can extract good quality data resulting in excellent classification results [START_REF] Willetts | Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants[END_REF]. Wearable devices may also contain environmental sensors that measure for instance temperature, light, atmospheric pressure and sound to assist in context detection, and/or physiological sensors such as heart rate for medical research [START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF] and personal fitness purposes. In transport mode recognition, GPS is the most widely used sensor [START_REF] Yang | A review of GPS trajectories classification based on transportation mode[END_REF], followed by telecommunication data [START_REF] Huang | Transport mode detection based on mobile phone network data: A systematic review[END_REF][START_REF] Mun | Parsimonious mobility classification using GSM and WiFi traces[END_REF], WiFi access points [START_REF] Sapiezynski | Tracking human mobility using WiFi signals[END_REF][START_REF] Jahromi | Simulating human mobility patterns in urban areas[END_REF], and travel surveys [START_REF] Jiang | Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore[END_REF]. In general, location-based sensors operate based on a combination of inertial sensors to build robust recognition systems that can distinguish between different travel modes, including walking and being idle [START_REF] Prelipcean | Transportation mode detection-an in-depth review of applicability and reliability[END_REF]. Fusion of environmental sensor data with inertial and location-based sensed data provides sufficient information to detect what is commonly known as 'Activities of Daily Living' (ADL). In this context, barometric pressure sensors have traditionally been considered as environmental sensors used to measure ambient pressure. However, they are also capable of sensing movement/activity in ways similar to inertial sensors, especially when considering vertical movements.

Placement and orientation of the sensor

Placement and orientation of the sensor might influence the characteristics of the captured signal thereby affecting the recognition accuracy: indeed, the training data might then fail to account for all the possible variations, resulting often in a sparse feature space. Numerous studies have focused on ways to alleviate this particular effect, and provided solutions that range from collecting diverse data to independent features not affected by such parameters [START_REF] Kunze | Sensor placement variations in wearable activity recognition[END_REF][START_REF] Ustev | device and orientation independent human activity recognition on mobile phones[END_REF][START_REF] Khan | Human activity recognition via an accelerometer-enabled-smartphone using Kernel Discriminant Analysis[END_REF]. Chen et al. [START_REF] Chen | Robust Human Activity Recognition Using Smartphone Sensors via CT-PCA and Online SVM[END_REF] proposed the use of coordinates transformation along with principal component analysis (PCA) to reduce this issue associated with orientation changes. Several groups have also studied the question of optimal sensor placement [START_REF] Pannurat | Analysis of optimal sensor positions for activity classification and application on a different data collection scenario[END_REF][START_REF] Maurer | Activity recognition and monitoring using multiple sensors on different body positions[END_REF]. Interestingly, while this issue affects many sensors, this is not the case for barometric pressure sensors whose readings are widely independent of their on-body position and orientation [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF], even if they are dependent on a range of environmental conditions.

Sampling frequency

The temporal resolution of the data is directly related to the sampling frequency of the sensor used. For the vast majority of sensors used to carry out human activity recognition, the sampling frequency typically ranges from 10 Hz to 100 Hz, with the rate going as high as 512 Hz. It is commonly reported that the characteristic frequencies of most human activities are below 10 Hz, and therefore the optimal sampling rate-based on the Shannon-Nyquist theorem-is 20 Hz [START_REF] Jerri | The Shannon sampling theorem-Its various extensions and applications: A tutorial review[END_REF]. Khan et al. [START_REF] Khan | Optimising sampling rates for accelerometer-based human activity recognition[END_REF] reviewed 5 public datasets and showed that the sampling rate considered could be reduced between 48% and 86%, with a minimal sampling rate of approximately 12 Hz [START_REF] Khan | Optimising sampling rates for accelerometer-based human activity recognition[END_REF]. Yan et al. [START_REF] Yan | Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach[END_REF] also studied the effect of sampling rate on energy consumption and they concluded that a higher sampling rate increases energy load without providing additional meaningful information, in agreement with the results reported in [START_REF] Khan | Optimising sampling rates for accelerometer-based human activity recognition[END_REF]. From the energy perspective, Yan et al. [START_REF] Yan | Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach[END_REF] concluded that a shorter dataset with a higher sampling rate is preferable to a longer dataset at a lower sampling rate. It is worth adding that the optimal sampling rate also depends on the type of human activity to be recognized [START_REF] Khan | Optimising sampling rates for accelerometer-based human activity recognition[END_REF] and on the type of sensor used. For instance, when studying human mobility, sampling GPS data or other location signals at rates comparable to those of accelerometers is unnecessary. Hence, the GPS signals are typically sampled at around 1 Hz [START_REF] Feng | Transportation mode recognition using GPS and accelerometer data[END_REF][START_REF] Shen | Should we change the rules for trip identification for GPS travel records[END_REF]. For pressure signals, barometers have been sampled at rates as low as 1 Hz [START_REF] Münzner | CNN-based sensor fusion techniques for multimodal human activity recognition[END_REF].

Activity classes

Lara & Labrador [START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF] thoroughly reviewed a comprehensive list of human activities recognized and categorized in the literature, including ambulation, transportation, gestures, exercises and daily living activities. The activity classes may of course occur concomitantly and may therefore be composite [START_REF] Blanke | Remember and transfer what you have learned-recognizing composite activities based on activity spotting[END_REF], interleaved, concurrent or overlapping [START_REF] Helaoui | Recognizing interleaved and concurrent activities: A statistical-relational approach[END_REF]. For data with low sampling frequency, i.e. lower than 1 Hz, more than one activity could be performed during the same time interval. In particular, the class of vertical displacement activities (VDA) has generally been recognized in the literature as part of the larger class of ambulation activities. Similar to accelerometers, barometers are very well suited for the recognition of VDA. In addition, barometers can accurately determine altitude changes for VDA occurring at a sampling rate lower than 1 Hz.

Nature of data

Several groups have collected their own datasets to fit the specific needs and requirements of their studies [START_REF] Cleland | Collection of a Diverse, Realistic and Annotated Dataset for Wearable Activity Recognition[END_REF][START_REF] Chen | Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition[END_REF]. Many benchmark datasets are also publicly available, and are commonly used to validate new methods [START_REF] Thomas Plötz | Feature Learning for Activity Recognition in Ubiquitous Computing[END_REF][START_REF] Garcia-Ceja | Multi-view stacking for activity recognition with sound and accelerometer data[END_REF][START_REF] Jordao | Human Activity Recognition Based on Wearable Sensor Data: A Standardization of the State-of-the-Art[END_REF][START_REF] Murad | Deep recurrent neural networks for human activity recognition[END_REF]. The recent review article [START_REF] De-La-Hoz-Franco | Sensor-based datasets for human activity recognition-A systematic review of literature[END_REF] reported details of several key benchmark public datasets and provided a rich analysis on the content and application-context studies. The datasets collected and made available publicly either were collected in laboratory conditions [START_REF] Wang | An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors[END_REF], or are real-world ones-where participants had instructions to perform specific activities given implicitly [START_REF] Banos | Daily living activity recognition based on statistical feature quality group selection[END_REF], explicitly [START_REF] Khan | Human activity recognition via an accelerometer-enabled-smartphone using Kernel Discriminant Analysis[END_REF], or instead were allowed to move freely while being unobtrusively observed [START_REF] Chung | Sensor data acquisition and multimodal sensor fusion for human activity recognition using deep learning[END_REF]. These datasets have been claimed to be semi-naturalistic or realistic even when the subjects were given scripted instructions [START_REF] Anguita | A Public Domain Dataset for Human Activity Recognition Using Smartphones[END_REF][START_REF] Nazabal | Human Activity Recognition by Combining a Small Number of Classifiers[END_REF]. Lara & Labrador [START_REF] Lara | Centinela: A human activity recognition system based on acceleration and vital sign data[END_REF] reported on subjects performing interleaving activities as they naturally occur, in sequence rather than segmented to reach realistic conditions.

Truly realistic data correspond to data collected while people go about their Activities of Daily Living (ADL) [START_REF] Willetts | Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants[END_REF]. As highlighted in [START_REF] Bao | Activity Recognition from User-Annotated Acceleration Data BT -UbiComp 2002: Ubiquitous Computing[END_REF], the use of purely realistic data would however require a long data collection period. Hence, segmented data obtained by a set of experiments corresponding to various activity classes are typically collected for training. Some studies such as [START_REF] Bota | A Semi-Automatic Annotation Approach for Human Activity Recognition[END_REF] and [START_REF] Inoue | Deep recurrent neural network for mobile human activity recognition with high throughput[END_REF] have managed to deal with this issue by considering segmented data for training and activities of daily living or sequence data for validation.

Class imbalance

The problem of class imbalance in datasets-the fact that some activities are more prevalent than others and are therefore over-represented-is a recurrent condition found in both public and private datasets and known to affect recognition accuracy [START_REF] Nazabal | Human Activity Recognition by Combining a Small Number of Classifiers[END_REF][START_REF] Guan | Ensembles of Deep LSTM Learners for Activity Recognition using[END_REF][START_REF] Ermes | Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions[END_REF]. For instance, data corresponding to physically tiring activities, or difficult to obtain for other reasons, naturally forms an under-represented portion of the data, thereby leading to inherent data imbalance [START_REF] Chen | Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition[END_REF]. This issue can be offset by oversampling the minority class or under-sampling the majority class. Chen & Shen [START_REF] Chen | Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition[END_REF] used the so-called Synthetic Minority Over-sampling Technique (SMOTE) for oversampling the minority class while Trung [START_REF] Trung | Dealing with Imbalanced Data Sets for Human Activity Recognition Using Mobile Phone Sensors[END_REF] used a modified version of it. Guan et al. [START_REF] Guan | Ensembles of Deep LSTM Learners for Activity Recognition using[END_REF] also proposed to use an ensemble of deep learning models to offset such data imbalance. Other studies have tackled the problem by simply using F1-score to report classification accuracy that takes into factor the different sizes of each class [START_REF] Guan | Ensembles of Deep LSTM Learners for Activity Recognition using[END_REF][START_REF] Capela | Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants[END_REF]. This issue can occur in applications using barometers, as the number of altitude changes in human mobility for any given continuous experiment is usually very limited, and these changes have moreover typically a rather high inter-event time in ADL.

Diversity in physical characteristics

Data collection methods can contribute to the generalization in recognition models by allowing diverse characteristics or parameters to be incorporated into the training dataset. These characteristics should be representative of the final dataset to which the model is applied. One of the important parameters is the user herself, whose diverse physical characteristics can be challenging to integrate or model [START_REF] Cleland | Collection of a Diverse, Realistic and Annotated Dataset for Wearable Activity Recognition[END_REF]. Studies generally report the user's age, height, weight, body mass index (BMI) and physical ailments, etc. for context and applicability of the study [START_REF] Capela | Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants[END_REF][START_REF] Almaslukh | A robust deep learning approach for position-independent smartphone-based human activity recognition[END_REF][START_REF] Nweke | Analysis of Multi-Sensor Fusion for Mobile and Wearable Sensor Based Human Activity Recognition[END_REF][START_REF] Mehrang | An activity recognition framework deploying the random forest classifier and a single optical heart rate monitoring and triaxial accelerometer wrist-band[END_REF]. In the case of barometers, the height of the user/carrier has only a limited effect on the use of a barometer, and the resolution of most wearable sensors are within the range of placement difference. It is thus safe to assume that the barometer sensor works independently of the physical characteristics of the carrier.

Annotation techniques

Stikic et al. [START_REF] Stikic | Weakly supervised recognition of daily life activities with wearable sensors[END_REF] note that the accuracy of annotation is subject to a trade-off between length of the data collection and the time and effort required for labelling the dataset. Indeed, if direct observation is required for accuracy, this results in a prohibitively expensive requirement. De la hoz Franco et al. [START_REF] De-La-Hoz-Franco | Sensor-based datasets for human activity recognition-A systematic review of literature[END_REF] carried out a meta review of 374 papers on Human Activity Recognition (HAR) and found that 60% of the used data were annotated. However, most studies record ground truth by resorting to experiments in a laboratory setup with the help of researchers and supporting infrastructure [START_REF] Maurer | Activity recognition and monitoring using multiple sensors on different body positions[END_REF][START_REF] Nweke | Analysis of Multi-Sensor Fusion for Mobile and Wearable Sensor Based Human Activity Recognition[END_REF][START_REF] Mehrang | An activity recognition framework deploying the random forest classifier and a single optical heart rate monitoring and triaxial accelerometer wrist-band[END_REF].

Some studies have also relied on subject self-reporting [START_REF] Cleland | Collection of a Diverse, Realistic and Annotated Dataset for Wearable Activity Recognition[END_REF][START_REF] Incel | ARService: A Smartphone based Crowd-Sourced Data Collection and Activity Recognition Framework[END_REF][START_REF] Anjum | Activity recognition using smartphone sensors[END_REF], which are known to be error-prone due to the obvious difficulty in marking precise times while carrying out the activities of daily living.

Chung et al. [START_REF] Chung | Sensor data acquisition and multimodal sensor fusion for human activity recognition using deep learning[END_REF] recorded ground truth by unobtrusively following the subjects one at a time. Video capturing [START_REF] Münzner | CNN-based sensor fusion techniques for multimodal human activity recognition[END_REF][START_REF] Nazabal | Human Activity Recognition by Combining a Small Number of Classifiers[END_REF][START_REF] Capela | Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants[END_REF][START_REF] Sztyler | On-body localization of wearable devices: An investigation of position-aware activity recognition[END_REF], audio recording [START_REF] Khan | A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer[END_REF] and GPS localization have been highlighted as methods of direct observation without requiring to monitor the subjects under constrained controlled conditions.

Recording ground-truth data for long term studies of ADL has been repeatedly acknowledged to be impractical and/or prohibitively manpower intensive [START_REF] Bao | Activity Recognition from User-Annotated Acceleration Data BT -UbiComp 2002: Ubiquitous Computing[END_REF][START_REF] Tam | Human Activity Recognition with Wearable Sensors[END_REF]. For instance, Willetts et al. [START_REF] Willetts | Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants[END_REF] used automatic cameras to record ground truth every 20 seconds for 143 participants over 24 hours. This shows the interest of automated methods such as the active learning methods developed by Bota et al. [START_REF] Bota | A Semi-Automatic Annotation Approach for Human Activity Recognition[END_REF] that require the manual annotation of a small subset of the data, while the rest is automatically labeled.

A practical, privacy-sensitive and unobtrusive annotation method for studies using barometers to track humans over long durations is manual labeling of the data. Unlike the signal sensed by accelerometers or other inertial sensors, barometric pressure can indeed be less complex to interpret.

However, this process comes with several challenges, one of which being the lack of complete understanding of all the factors that influence barometric pressure. This important issue is addressed in detail in Section 4.

On the use of barometer in human activity and mobility recognition

For the sake of studying human activity and mobility recognition, the barometer has been primarily used to measure changes in altitude (or elevation). The scale of the altitude changes varies from a fall to vertical displacements like moving uphill, climbing a deck of stairs, riding an elevator, etc. In recent applications, the patterns of the time series of barometric signals are shown to be a good indicator of the underlying activities such as walking, idle and transportation. The rate of pressure change can help to identify the mode of vertical transport and determine the vertical velocity of air vehicles. Barometers are widely embedded in wearable devices and used for vertical transport detection [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF][START_REF] Lang | Classifying Elevators and Escalators in 3D Pedestrian Indoor Navigation Using Foot-Mounted Sensors[END_REF][START_REF] Xia | Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning[END_REF][START_REF] Kronenwett | Elevator and Escalator Classification for Precise Indoor Localization[END_REF][START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF][START_REF] Liu | Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer[END_REF][START_REF] Elhoushi | Using portable device sensors to recognize height changing modes of motion[END_REF], indoor positioning and navigation [START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF][START_REF] Pipelidis | A novel approach for dynamic vertical indoor mapping through crowd-sourced smartphone sensor data[END_REF][START_REF] Haque | A Sensor Fusion-Based Framework for Floor Localization[END_REF][START_REF] Shen | Barometer-aided Wi-Fi floor localization using crowdsourcing[END_REF], building monitoring [START_REF] Wu | Monitoring building door events using barometer sensor in smartphones[END_REF], health monitoring [START_REF] Leuenberger | Classification of stair ascent and descent in stroke patients[END_REF][START_REF] Bianchi | Barometric pressure and triaxial accelerometry-based falls event detection[END_REF], vehicle tracking [START_REF] Dimri | Using barometer for traffic congestion detection[END_REF][START_REF] Ho | From pressure to path: Barometer-based vehicle tracking[END_REF], transport mode detection [START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF], and GPS localization improvement [START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF].

One of the earliest works on using barometer to classify vertical movement is due to Sagawa et al. [START_REF] Sagawa | Classification of human moving patterns using air pressure and acceleration[END_REF] and dates back to 1998. In [START_REF] Sagawa | Classification of human moving patterns using air pressure and acceleration[END_REF], Sagawa et al. collected 83 minutes of data using both accelerometer and barometer at a 100 Hz sampling frequency from 6 males between 20 and 40 years of age. Their classification model was trained offline using cut-off values selected heuristically. Since then, recognition and identification procedures have greatly improved thanks to a number of factors including: new sensor types, larger range of sampling rates, user and device characteristics, modes of carriage, power consumption, real-time demand, classification models, and finally ground truth availability.

Barometric pressure sensor

MEMS Barometers are miniature sensors (< 0.1 mm) manufactured by prominent companies such as Bosch [START_REF] Dimri | Using barometer for traffic congestion detection[END_REF][START_REF] Bolanakis | Evaluating performance of MEMS barometric sensors in differential altimetry systems[END_REF][START_REF] Del Rosario | A comparison of activity classification in younger and older cohorts using a smartphone[END_REF], ST Microelectronics [START_REF] Dimri | Using barometer for traffic congestion detection[END_REF][START_REF] Bolanakis | Evaluating performance of MEMS barometric sensors in differential altimetry systems[END_REF][START_REF] Wang | Low-power fall detector using triaxial accelerometry and barometric pressure sensing[END_REF], and Measurement Specialities [START_REF] Bollmeyer | Precise indoor altitude estimation based on differential barometric sensing for wireless medical applications[END_REF]. As mentioned previously, they are commonly found in wearable devices and smartphones. They have high precision but relatively lower absolute accuracy than table-top barometers. Specifically, the accuracy in measuring absolute pressure is low in these sensors but their relative pressure accuracy is shown to be as low as ±1.2 Pa [START_REF] Bollmeyer | Precise indoor altitude estimation based on differential barometric sensing for wireless medical applications[END_REF][START_REF] Bao | Barometer measurement error modeling and correction for UAH altitude tracking[END_REF], with average mobile devices having resolution of ±12 Pa [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF].

It is worth adding that the measured absolute pressure varies from one device to another due to manufacturing differences and other technical factors [START_REF] Bolanakis | Evaluating performance of MEMS barometric sensors in differential altimetry systems[END_REF].

Processing barometric sensor data

Barometers are constrained by their resolution and sampling frequency, which limit precision and accuracy, and the use of their data is further constrained by the presence of noise. Some studies have used filtering and signal modeling to overcome the latter problem. For instance, moving average filters over a given time window is widely used for that purpose [START_REF] Pipelidis | A novel approach for dynamic vertical indoor mapping through crowd-sourced smartphone sensor data[END_REF][START_REF] Bollmeyer | Precise indoor altitude estimation based on differential barometric sensing for wireless medical applications[END_REF][START_REF] Sabatini | A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements[END_REF], followed by other Finite Impulse Response (FIR) filters [START_REF] Ghimire | Pedestrian motion state classification using pressure sensors[END_REF] and Infinite Impulse Response (IIR) filters [START_REF] Bianchi | Barometric pressure and triaxial accelerometry-based falls event detection[END_REF][START_REF] Ghimire | Pedestrian motion state classification using pressure sensors[END_REF][START_REF] Voleno | Energy expenditure estimation using triaxial accelerometry and barometric pressure measurement[END_REF][START_REF] Moncada-Torres | Activity classification based on inertial and barometric pressure sensors at different anatomical locations[END_REF] such as double exponential smoothing [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF][START_REF] Liu | Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer[END_REF]. Signal modeling like sinusoidal fitting model [START_REF] Massé | Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients[END_REF] and sigmoidal nonlinear fitting are commonly used to increase the contrast of elevation changes [START_REF] El Achkar | Instrumented shoes for activity classification in the elderly[END_REF].

The time series data of barometric pressure is generally converted to statistical [START_REF] Elhoushi | Using portable device sensors to recognize height changing modes of motion[END_REF][START_REF] Figueira | Body Location Independent Activity Monitoring[END_REF], spectral [START_REF] Elhoushi | Using portable device sensors to recognize height changing modes of motion[END_REF][START_REF] Figueira | Body Location Independent Activity Monitoring[END_REF], temporal [START_REF] Elhoushi | Using portable device sensors to recognize height changing modes of motion[END_REF][START_REF] Figueira | Body Location Independent Activity Monitoring[END_REF] or wavelet-based features [START_REF] Leuenberger | Classification of stair ascent and descent in stroke patients[END_REF][START_REF] Ejupi | Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor[END_REF], before being fed into a classifier. These features are designed to enhance the detection of the specific activity of interest. Most used features are based on the rate of change of pressure [START_REF] Liu | Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer[END_REF][START_REF] Elhoushi | Using portable device sensors to recognize height changing modes of motion[END_REF][START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF][START_REF] Bollmeyer | Precise indoor altitude estimation based on differential barometric sensing for wireless medical applications[END_REF][START_REF] Monteiro | Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones[END_REF] (also known as vertical velocity or simply the slope) and the standard deviation of differential pressure (dp) [START_REF] Wu | Monitoring building door events using barometer sensor in smartphones[END_REF][START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF], that differentiates altitude changes from other environmental factors that influence ambient pressure.

Classifiers for sensed barometric pressure

The choice of the classifier depends on the application at hand. It also depends on the range of pressure variations and durations under consideration. Some studies have only considered indoor pressure profiles of individuals [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF][START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF], while few have considered the full Activities of Daily Living (ADL) that include both indoor and outdoor events like transportation [START_REF] Dimri | Using barometer for traffic congestion detection[END_REF][START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF]. A person carrying a barometer is indeed affected by factors present outside their specific environment, which seriously limits the scope of many studies of HAR using barometer data. Barometric pressure is more straightforward than inertial sensors in conveying sensed information due to its fairly direct reading, which greatly simplifies the use of classifiers. The most widely used classifiers are decision trees [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF][START_REF] Lang | Classifying Elevators and Escalators in 3D Pedestrian Indoor Navigation Using Foot-Mounted Sensors[END_REF][START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF][START_REF] Del Rosario | A comparison of activity classification in younger and older cohorts using a smartphone[END_REF][START_REF] Wang | Low-power fall detector using triaxial accelerometry and barometric pressure sensing[END_REF][START_REF] Ghimire | Pedestrian motion state classification using pressure sensors[END_REF], Support Vector Machines (SVM) [START_REF] Leuenberger | Classification of stair ascent and descent in stroke patients[END_REF][START_REF] Dimri | Using barometer for traffic congestion detection[END_REF][START_REF] Nam | Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor[END_REF][START_REF] Loh | Fitness activity classification by using multiclass support vector machines on head-worn sensors[END_REF] and threshold based models [START_REF] Bianchi | Barometric pressure and triaxial accelerometry-based falls event detection[END_REF][START_REF] El Achkar | Instrumented shoes for activity classification in the elderly[END_REF][START_REF] Anastasopoulou | Classification of human physical activity and energy expenditure estimation by accelerometry and barometry[END_REF][START_REF] Kim | Floor detection using a barometer sensor in a smartphone[END_REF]. Clustering models such as hierarchical clustering [START_REF] Shen | Barometer-aided Wi-Fi floor localization using crowdsourcing[END_REF][START_REF] Ye | Scalable floor localization using barometer on smartphone[END_REF] and k-Means clustering [START_REF] Pipelidis | A novel approach for dynamic vertical indoor mapping through crowd-sourced smartphone sensor data[END_REF], Bayesian-based classifiers [START_REF] Haque | A Sensor Fusion-Based Framework for Floor Localization[END_REF]100,101], LSTM models [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF]102] and fuzzy inference models [START_REF] Massé | Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients[END_REF] have also been used. Hidden Markov Models take advantage of logical activity sequences that can be associated with some activity sequences (such as riding an elevator before and after walking) [103], while fuzzy inference models take advantage of context and behavioral constraints [START_REF] Massé | Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients[END_REF].

Liu et al. [START_REF] Liu | Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer[END_REF] compared classifiers such as Random Forest, J48 decision trees, Artificial Neural Networks (ANN), SVM and Naïve Bayes to classify horizontal displacement activity from vertical displacement activity; the Random Forest classifier was found to have the highest accuracy. Vanini et al. [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF] compared the performance of Bayesian networks, Decision trees and Recurrent Neural Network (RNN) models to recognize VDA. It has been found that RNN have a 99% accuracy while Decision trees provide the optimal trade-off in terms of computational cost, energy efficiency and accuracy. Some applications do not require any classifiers. For instance, state estimation like altitude and vertical velocity can be determined using a Kálmán filter or one of its many variants [START_REF] Sabatini | A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements[END_REF][START_REF] Loh | Fitness activity classification by using multiclass support vector machines on head-worn sensors[END_REF][104][105][106].

As another example, Bollmeyer et al. [START_REF] Bollmeyer | Precise indoor altitude estimation based on differential barometric sensing for wireless medical applications[END_REF] solely used the differential pressure to estimate altitude. Ho et al. [START_REF] Ho | From pressure to path: Barometer-based vehicle tracking[END_REF] used the so-called Dynamic Time Warping (DTW) technique to establish the correlations between the pressure time series data and known geographical elevations to track vehicles. Similarly, Hyuga et al. [107] found ways to use the variance of differential pressure to account for the variations in barometric pressure associated with air velocity and the built environment; they used similarity measures between pressure and known altitude to locate a train/user in a rail network.

Applications

Barometer-only studies: Very few studies dedicated to tracking human activity and/or mobility are solely relying on the use of a barometer, despite the fact that their potential for applications is promising. For instance, barometers have been used to measure altitude as a stand-alone measuring instrument for a very long time. Taking this concept one step further, Bolanakis [START_REF] Bolanakis | Evaluating performance of MEMS barometric sensors in differential altimetry systems[END_REF] used a dual-device system to estimate the altitude of an airplane above a landing area and find the orientation angle of wings.

The surface of the land on which we move and travel, including transportation routes, is uneven. This topographical feature can be estimated using barometric pressure, and the subtle changes in elevation along the travel routes can be exploited for localization of vehicles. As stated before, this is however challenging due to two major factors that affect barometric pressure-built environment like tunnels, bridges, etc., and the air velocity during motion. However, Hyuga et al. [107] used the pauses of trains in stations between successive train rides to locate a user/train in a subway route by computing the successive altitude changes and comparing them with known relative elevations of train stations.

Similarly to accelerometer data, the signal pattern encoded in a barometer output carries sufficient information to recognize a range of human activities. Ghimire et al. [START_REF] Ghimire | Pedestrian motion state classification using pressure sensors[END_REF] observed the change in air pressure when a person walks with hands swinging and used this gait pattern to count steps. The pressure fluctuations due to vehicle motion was used by Sankaran et al. [START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF] to differentiate between the distinct patterns produced by vehicles as opposed to walking and standing idle.

In climate controlled buildings, changes in barometric pressure can be detected during indoor-to-outdoor transition. Wu et al. [START_REF] Wu | Monitoring building door events using barometer sensor in smartphones[END_REF] moreover showed the possibility to detect the opening or closing of a building's entrance doors, even with a barometer located far from the doors, and even analyzed the patterns to determine the type of door (automatic or manual). They highlighted implications to building monitoring and security.

Applications that use only barometer data are more common in the studies concerned with floor localization and recognition of VDA. In the absence of location sensors, the challenge with floor localization is to have a reference pressure and associate it with the data measured by the considered wearable devices at the moment they enter a given building. To obtain such a reference pressure, Li [108] recommends receiving it from a location that is similar to the environment in which it is deployed; this setup is important as the reference pressure obtained from reference stations can potentially experience different environmental effects. Xia et al. [START_REF] Xia | Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning[END_REF] showed that the barometric pressure pattern can change from floor to floor in idle settings, and hence, installed a calibrated barometer in each floor to collect multiple reference pressures. Ye et al. [START_REF] Ye | Scalable floor localization using barometer on smartphone[END_REF] applied an infrastructure-independent approach by constructing an encounter network-determined by comparing simultaneous pressure changes-and use a root node to calibrate all the mobile sensors.

This method is of course prone to errors and the lack of calibration has been shown to result in an accuracy of only 70%.

The challenge for recognizing VDA using only barometer data is that the sensor data should ideally be free from all factors other than altitude that affect barometric pressure. This can be guaranteed if the sensor data is collected from a controlled environment where no other factors that can be mistaken for VDA occur. As shown by Bollemeyer et al. [START_REF] Bollmeyer | Precise indoor altitude estimation based on differential barometric sensing for wireless medical applications[END_REF], Ghimire et al. [START_REF] Ghimire | Pedestrian motion state classification using pressure sensors[END_REF], and Muralidharan et al. [START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF],

this can be achieved by limiting the studies to indoors where only weather, sensor accuracy and built environment effects are impacting the barometric readings. Liu et al. [104] collected experimental data from outdoors like mountain climbing while avoiding activities that cause adverse pressure gradients like transportation. Vanini et al. [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF] have demonstrated their VDA recognition capability while considering ambulation and transportation, with however a limited set of activities, including in particular only cable-cars as outdoors transportation mode.

In summary, in a specific environment and considering selected modes of activity, recognition performance of VDA using barometer can be very high. More generally, in any given environment, barometers are shown to perform far better or similarly to other sensors when detecting VDA, and represent the only viable way to extract the magnitude of vertical displacement. Vanini et al. [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF] report that with barometer data, one achieves similar performance in classifying VDA compared to accelerometer and GPS, but a superior one in energy efficiency and independence in terms of sensor location and orientation. Muralidharan et al. [START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF] similarly showed that barometer-only classification is significantly more accurate (99%) in recognizing modes of VDA compared to accelerometer-based classification (85%). However, the accuracy for accelerometer-based classification drops below 30% when the mobile phone is used for taking calls or playing games.

Multi-sensor studies: As just mentioned, few studies have employed barometer as the sole sensor in their application. It is usually integrated with other sensors like inertial sensors [START_REF] Liu | Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer[END_REF][START_REF] Del Rosario | A comparison of activity classification in younger and older cohorts using a smartphone[END_REF], environmental sensors (light, temperature, sound, etc.) [109,110], location-based sensors (GPS) [START_REF] Pipelidis | A novel approach for dynamic vertical indoor mapping through crowd-sourced smartphone sensor data[END_REF][START_REF] Loh | Fitness activity classification by using multiclass support vector machines on head-worn sensors[END_REF], and communication infrastructure (WiFi, Bluetooth, RFID, etc.) [START_REF] Haque | A Sensor Fusion-Based Framework for Floor Localization[END_REF][START_REF] Shen | Barometer-aided Wi-Fi floor localization using crowdsourcing[END_REF]100,110]. Several studies are dedicated to improving the sensor fusion of inertial sensors with barometer, which constitutes a critical step in the optimization of activity recognition [START_REF] Sabatini | A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements[END_REF]110,111].

In most classical HAR analyses, the classification accuracy in detecting VDA based on sensory data without pressure is usually low [START_REF] Moncada-Torres | Activity classification based on inertial and barometric pressure sensors at different anatomical locations[END_REF]; this is not seen as a critical issue since VDA is not the focus or priority. Increasingly, barometer has been recognized as an important sensor in HAR, where accurate recognition of VDA is critical to many applications [106]. Hence, a majority of applications that aim to measure altitude or track altitude changes employ a barometer as part of their sensory suite. For instance, in health monitoring applications, the inclusion of barometer has been shown to improve VDA recognition [START_REF] Wang | An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors[END_REF][START_REF] Leuenberger | Classification of stair ascent and descent in stroke patients[END_REF][START_REF] Nam | Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor[END_REF], fall detection [START_REF] Bianchi | Barometric pressure and triaxial accelerometry-based falls event detection[END_REF][START_REF] Wang | Low-power fall detector using triaxial accelerometry and barometric pressure sensing[END_REF][START_REF] Ejupi | Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor[END_REF], estimation of energy expenditure and physical activity [START_REF] Wang | An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors[END_REF][START_REF] El Achkar | Instrumented shoes for activity classification in the elderly[END_REF][START_REF] Anastasopoulou | Classification of human physical activity and energy expenditure estimation by accelerometry and barometry[END_REF]112].

Accelerometers are still the predominantly used sensors in HAR, and have been widely used as stand-alone sensors in recognizing many activities of daily living. They complement barometer-based recognition algorithm in detecting ambulatory movements such as walking, and their use helps also distinguish stairs climbing from other modes of vertical transportation like elevator and escalator [69, 101]-and even elevator from escalator [START_REF] Kronenwett | Elevator and Escalator Classification for Precise Indoor Localization[END_REF]. Sankaran et al. [START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF], however, point to the high cost associated with the use of accelerometers: demands in data acquisition (position and orientation dependent), high sampling rate, complex processing and classification training.

For indoor localization and navigation applications, obtaining reference pressure to calibrate all mobile sensors is critical for the system to work. This is more easily obtained in multi-sensor applications. Pipelidis et al. [START_REF] Pipelidis | A novel approach for dynamic vertical indoor mapping through crowd-sourced smartphone sensor data[END_REF] used light sensors to detect the transition between indoor and outdoor so as to derive a reference pressure at ground level, which subsequently serves the detection of floor levels. Communication infrastructures like WiFi, Bluetooth and RFID are also used to provide additional location information to help assist indoor localization or transmit location specific data such as reference pressures in a floor to assist barometers for calibration purposes. Tachikawa et al. [110] even combined WiFi signal with microphone and other inertial sensory data to detect the type of indoor location-restroom, desk, elevator, etc.

Barometers are known to speed up the GPS localization through their altitude estimation [START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF].

Conversely, the altitude information can be accessed from GPS localization [104]. Furthermore, GPS or any location information can help distinguish the transportation modes from ambulation, where the changes in barometric pressure can easily be misunderstood for altitude changes. Even though the elevation changes are present in our transportation paths, the altitude estimation from barometric pressure due to air velocity during motion can be predominant. Some studies have used the barometric pressure instead of GPS to track a vehicle [START_REF] Wang | An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors[END_REF][START_REF] Dimri | Using barometer for traffic congestion detection[END_REF], but this can be very misleading as the significant changes in pressure due to vehicle motion and the built environment like tunnels and bridges have not been fully taken into account or even properly understood.

To summarize and categorize the vast breadth of applications of barometers for HAR, we have gathered all this information into Table 1. 

Factors affecting barometric pressure

Atmospheric pressure is the force applied per unit area by a column of air above a specified 

Climate and weather

The atmospheric pressure distribution on the planet is caused by the differential heating of the sun at different latitudes, which varies from the tropics to the polar regions [116]. Earth's tilt also contributes to the heating difference, as well as the nature of the surface being heated, i.e. ocean or land [116]. Moisture content in the air greatly affects the pressure distribution as the dry and moist air are heated differently. The differential heating hence produces high-and low-pressure regions on the planet. Due to seasonal differences in heating, the corresponding pressure distribution also changes seasonally [116].

The pressure distribution creates isobaric contours-i.e. the point along which atmospheric pressure is constant [116]. By a combination of the pressure differences in these isobaric regions and the Coriolis force generated by the earth's rotation, the air is moved from one place to another, creating wind. The resulting forces impact various scales, creating both the long-term climatic system of the planet and the short-term weather patterns observed locally.

It is very important to note that all weather patterns observed are caused by very small changes in pressure-i.e the maximum change in the sea-level atmospheric pressure never exceeds 5% of the absolute atmospheric pressure [116]. A gentle breeze (15 km/hr) creates a pressure difference of 10 Pa and a strong breeze (45 km/hr) creates 100 Pa difference [125]. Although the magnitude of wind factor is significant, their time scales are often slower than the scale of the human activity to be predicted.

During the estimation of floor height, Liu et al. [104] showed that a windy day produces error in their estimation of floor height, while Sankaran et al. [START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF] found that a windy day produced no significant change in their prediction of mobility. Sanakaran et al. [START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF] further noted that neither wind nor rain had any significant impact in HAR. Similarly, Vanini et al. [START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF], while performing their VDA classification, found that neither cloudy nor rainy weather had any impact whatosever. Bao et al. [START_REF] Bao | Barometer measurement error modeling and correction for UAH altitude tracking[END_REF] estimated the error caused by the wind and developed a model that takes into account the dynamic pressure change to remove this effect based on the wind speed. [START_REF] Bollmeyer | Precise indoor altitude estimation based on differential barometric sensing for wireless medical applications[END_REF] observed that temperature and humidity changes in a room have very little impact on barometric pressure. For instance, a temperature change of 10 degrees Celsius causes a ±1 Pa change, while a humidity change from 10% to 90% creates a pressure difference of less than 0.12 Pa.

Muralidharan et al. [START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF] observed that the type of building space (tall, short, narrow and/or wide) and building pressurization also have little effects on barometric pressure measurement. They recorded pressure differences of less than 20 Pa even across multiple days. Xia et al. [START_REF] Xia | Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning[END_REF] similarly found no significant effects due to air-conditioning in their prediction of floor location.

Even if HVAC systems and the built environment have little effects on HAR, the transition between indoor and outdoor has been shown to produce noticeable pressure changes. Wu et al. [START_REF] Wu | Monitoring building door events using barometer sensor in smartphones[END_REF] found that a constant pressure difference of 25 Pa between the interior and exterior of a building measured pressure differences between a room and the exterior of approximately 40 Pa.

Air velocity during motion

Vehicles like cars and buses are in quasi-equilibrium with their environment due to the vents and ducts allowing the airflow in. This means that the barometric pressure inside a vehicle is very close to the exterior pressure. Note that the term 'exterior' denotes the air pressure in the immediate vicinity of the vehicle and not the ambient pressure far from it, which could be drastically different. This is due to the fact that ambient pressure is increased by the vehicle's motion near its surface where the dynamic pressure increases and the static pressure falls. The stagnation pressure on the surface caused by stopping the airflow near the surface produces a pressure distribution across the vehicle. This, in turn, creates pressure fluctuations inside the vehicle whenever its motion changes. However, this effect is transient and a quasi-equilibrium is reached quickly between interior and exterior. Figures 3a and 3b illustrate this behavior when a barometer is carried by a human subject during a bus and car ride respectively, where limited pressure fluctuations (∼ 50 Pa) are observed.

On the other hand, the transition between stationary and moving vehicle can be quite noticeable.

Ho et al. [START_REF] Ho | From pressure to path: Barometer-based vehicle tracking[END_REF] found that the opening of a door/window during driving creates pressure changes of up to 30 Pa. During a car ride, they showed that switching the air-conditioning on and off created a pressure difference of 50 Pa [START_REF] Ho | From pressure to path: Barometer-based vehicle tracking[END_REF]. It is very challenging to attribute it to climate-control system alone as the air-conditioning also brings in ventilated fresh air from the outside. However, Dimri et al. [START_REF] Dimri | Using barometer for traffic congestion detection[END_REF] observed that although there is a range of pressure jumps between different driving conditions (window open/closed, door open/closed, and AC on/off), this did not affect the prediction of whether a vehicle was stationary or in motion. This shows that during vehicle motion, air velocity can substantially determinate the pressure jumps more than the vehicle environment itself. More importantly, the pressure fluctuations experienced by the vehicle during its motion are predominant. This is shown in Fig. 3 c, where successive accelerations and decelerations of the train create significant pressure drops and rises respectively when it leaves and approaches a stop.

This effect can be severely amplified by the built environment such as tunnels for instance.

Vehicles passing through a tunnel experience a "piston effect", where air is pulled inside the tunnel as the air is pushed back by the vehicle in motion [122,126]. This is shown in Figure 3b, where the car , where the car climbed and descended on an elevated bridge just before entering a tunnel. In panel (c), the acceleration of the train as it leaves the stop creates a sudden pressure drop, and a rise in pressure is subsequently observed as it approaches a stop, followed by a small dip in pressure as the train comes to equilibrium with the station environment, thus creating a repeating pressure pattern. Data was recorded by carrying a custom-made device (barometer model -BMP280) in different transport modes with a sampling rate ∼ 0.06 Hz.

Altitude

Atmospheric pressure falls as we travel vertically upward above the earth's surface. This is due to the earth's gravitational pull of air molecules to the surface, which gives rise to a pressure gradient equals to -ρg, where ρ is the air density and g is the local acceleration of gravity. As a consequence, the rate of change of altitude with pressure is almost linear near the earth's surface while it is almost exponential at higher altitudes when taking into account the variations of the air density with pressure and temperature [115]. This is again due to gravity which is stronger near the earth's surface combined with the fact that air molecules in lower atmosphere are compressed by the air molecules above them [127]. For all purposes involving human activity under 10 km altitude above sea-level, it is safe to assume a linear relationship with altitude that typically shows a pressure decrease of 115 Pa per 10 meters climb [115]. As an illustration of the magnitude of the effect in the context of human activities, Figure 4 shows the barometric pressure change due to change in elevation through different vertical mobility modes such as elevator, escalator, and stairs.

Pressure-altitude relation: The pressure-altitude relationship can be derived from the fundamental equation for fluids at rest [128]. Assuming an incompressible fluid in isothermal conditions, the change in elevation is given by

z 2 -z 1 = - p 2 -p 1 γ , (1) 
where γ = ρg is the specific weight of air with density ρ = 1.225 kg/m 3 and acceleration due to gravity g = 9.81 m/s 2 at standard sea-level conditions. This pressure-altitude elevation holds with negligible errors as long as the elevation under study is less than 10 km from sea-level [128], which is the case in most studies. 

Sensor accuracy

The quality of measurement of barometric pressure is limited by the sensor's accuracy. Both absolute and relative barometric pressure can change between devices due to differences in sensors and their characteristics. Here, the ensuing measurement errors are defined as caused by such inherent limitations of the sensor and not due to other factors, such as the environmental ones discussed previously [START_REF] Haque | A Sensor Fusion-Based Framework for Floor Localization[END_REF][START_REF] Bao | Barometer measurement error modeling and correction for UAH altitude tracking[END_REF].

Device dependency: The device dependency is introduced to account for differences between devices and software platforms [66,99, Sensor drift: Some sensors exhibit a drift in time due to faulty manufacturing or old age. Ho et al. [START_REF] Ho | From pressure to path: Barometer-based vehicle tracking[END_REF] found this to be a temporary drift with a non-Gaussian distribution, and were able to remove it by modeling the noise as an Ohnstein-Uhlenbeck diffusion process-a process that pushes the drift towards its mean or center.

Sampling frequency: the recording frequency determines the completeness of the data. Weather stations generally send out data every hour, while mobile barometers embedded in mobile devices can be designed to output at a rate of 1 ∼ 20 Hz [START_REF] Bianchi | Barometric pressure and triaxial accelerometry-based falls event detection[END_REF][START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF][START_REF] Del Rosario | A comparison of activity classification in younger and older cohorts using a smartphone[END_REF][START_REF] Wang | Low-power fall detector using triaxial accelerometry and barometric pressure sensing[END_REF][START_REF] Figueira | Body Location Independent Activity Monitoring[END_REF][START_REF] Monteiro | Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones[END_REF]104,114] or higher [START_REF] Kronenwett | Elevator and Escalator Classification for Precise Indoor Localization[END_REF][START_REF] Moncada-Torres | Activity classification based on inertial and barometric pressure sensors at different anatomical locations[END_REF]105].

Depending on the activity to be recognized, this sampling frequency should be set appropriately to capture the actual time scale of the activity. As an illustration, Figure 5-b shows the time series of barometric pressure recorded by two devices with different sampling rates -1 Hz and 0.06 Hz. It shows that altitude might not be accurately estimated during certain periods if the sampling rate is not high enough. 

Future research

Today, barometers are found in almost (if not all) wearable devices and smartphones. The vast breadth of applications listed in this review underscores the tremendous potential use in extracting barometric pressure data on a massive scale. Some attempts with limited scope are reported in Table 1.

However, the systematic use of barometer data could be envisioned at large scale and on long time scales as a tool to study some aspects of the behavior of large populations of humans (or other living creatures) in their free-living environment, similarly to what has been done with mobile phone call detail records for studies of communications and mobility.

Tracking human activities inevitably leads to privacy issues. Anonymity of individuals cannot be guaranteed even with coarse spatial and temporal resolutions of the collected data [129].

Re-identification of individuals from seemingly anonymous data has been shown to be effectively performed due to unique signatures of human mobility [129,130]. This issue arises as well with the use of barometers, where re-identification of human subjects could be possible using the tracking of altitude changes during the start and end of each day. In effect, barometer can be used to perform the so-called last-mile tracking that increases the spatial resolution from a block to a floor. This is a particularly pronounced problem in highly vertical cities, and a proper framework to protect the privacy should take into account the potential use of barometer data when tracking human activity.

Furthermore, barometers are increasingly used as a practical complement to other sensors for tracking human activities. Methods that enable sensor data fusion of barometric signals to other sensory data need to evolve to fully realize the barometers' full potential.

The application of barometers to study gait patterns, step count, environmental monitoring, building monitoring, vehicle tracking, and health monitoring should be more widely explored. For instance, when aiming at the detection of VDA, barometric signal data need to be considered not only to recognize altitude changes but also to determine the mode of vertical transport (stairs climbing, slope, escalator or elevator ride). In studying epidemic disease propagation for example, it makes a significant difference to recognize whether the subject is in an elevator (closed space) or on an escalator (open space).

Table 1 also shows that for many applications, not all the factors that can influence pressure are always considered, even after taking into consideration the limited scope of these studies. These factors are not always fully understood and their magnitude is not universally agreed upon due to the wide range of conditions under which these experiments are performed (see Fig. 1). It is thus crucial to understand and quantify all the factors affecting the barometric pressure when working on a particular problem or application related to human activity tracking and recognition. Some of these effects may be irrelevant, while others might impair our ability to properly identify patterns of activity from the sensed data. Section 4 of the present review endeavors to move in this direction by reviewing the fundamental properties of atmospheric pressure and inspecting their interaction with several environmental conditions that arise when a barometer is carried by a human. It also brings together a range of studies from different fields of science and engineering that have contributed to improve the understanding of the factors influencing atmospheric and barometric pressure and to quantify their respective magnitude (see Fig. 1). 

  area[115]. It is caused by the gravitational pull of air molecules to the earth's surface. Atmospheric pressure as measured by a barometer is also called the barometric pressure.Local atmospheric pressure is affected by several factors. From a fundamental point of view, these factors include the atmosphere's fluid properties such as density, moisture content, temperature, and motion. Speaking more generally, we can attribute the change in local barometric pressure to more abstract factors such as climate and weather [116-118], air velocity during motion, altitude, and built environment, with intricate interplays between all these factors. The magnitudes of the resultant effects vary and the corresponding ranges can be quantified for specific circumstances. Several studies have attempted to quantify these effects and provide a rich understanding of the factors that influence barometric pressure.

Table 2 .FactorsFigure 1 .

 21 Figure 1. Orders of magnitude of changes in pressure and of the corresponding timescales for several factors influencing barometric pressure.

Figure 2 a

 2 shows an example of the effect of wind on barometer data: the pressure fluctuations when the sensor is exposed to wind are slightly but not significantly more erratic than the noise due to the sensor resolution. Similar to surface heating, the upper part of the atmosphere is heated differently over the period of a day. The resulting diurnal temperature variations give rise to a diurnal pressure cycle (Fig 2 b) [117]. This behavior has been well documented since the 1830's [118], with a semi-diurnal cycle with two peaks around 9am-12pm and 9pm-12am, depending on the latitude [108]. In the tropics, the first late morning/afternoon cycle has the highest amplitude due to maximum heating during the day, while the second night cycle has a lesser amplitude given the reduced solar heating [117]. In the mid-latitude regions, these peaks are shown to have similar amplitudes for both cycles [117]. The highest pressure variations are reported closer to the equator with 320 Pa between maxima and minima, while the mid-latitude difference does not exceed 80 Pa [117]. Besides the periodical pressure variation, the absolute pressure also changes from day-to-day [108]. These changes are, however, prominent in mid-latitude regions (∼ 600 Pa on average) while it is smaller in the tropic (∼ 70 Pa on average).Ho et al. analyzed pressure data from 2, 309 U.S. cities and observed that these variations are less than 100 Pa per hour during 99% of the time[START_REF] Ho | From pressure to path: Barometer-based vehicle tracking[END_REF], while Liu et al.[START_REF] Liu | Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer[END_REF] observed that they could exceed 100-Pa for intervals larger than one hour and remained stable over short intervals of less than one minute. The time scale of the diurnal pressure cycle is hence much larger than many human activity time scales, and these slow variations are not concerning for applications related to study and classification of human behavior[START_REF] Vanini | Using barometric pressure data to recognize vertical displacement activities on smartphones[END_REF]100]. Ho et al.[START_REF] Ho | From pressure to path: Barometer-based vehicle tracking[END_REF] used reference pressure from nearby weather stations to alleviate this effect when identifying the correct elevation of a vehicle path. Bao et al.[START_REF] Bao | Barometer measurement error modeling and correction for UAH altitude tracking[END_REF] modeled the first-order difference of this pressure cycle as a white Gaussian stochastic process. Other studies have focused on using relative pressure changes called differential pressure instead of the absolute pressure[START_REF] Muralidharan | Barometric phone sensors: More hype than hope[END_REF][START_REF] Ye | Scalable floor localization using barometer on smartphone[END_REF]100].

Figure 2 .

 2 Figure 2. Climate and Weather (a) Diurnal pressure cycle in Singapore (b) Effect of wind. Recorded by custom-made device (barometer model -BMP280) with ∼ 1 Hz sampling rate.

4. 2 .

 2 Built environmentAmbient pressure can be controlled in an enclosed space using mechanical systems like Heating, Ventilation, and Air-conditioning (HVAC) systems[119]. Absolute and relative barometric pressure can thus be affected by these control systems. Buildings are positively pressurized compared to the exterior so as to have an outflow of air[120]. The magnitude of pressure differences is recommended by architects and regulatory authorities based on the function of the space. A minimum of 2.5 Pa is required for general living spaces, while a clean or aseptic isolation room is kept in a pressure difference of 12 ∼ 50 Pa to avoid contamination from outside.

creates a pressure difference of 20 ∼

 20 40 Pa measured by barometer integrated to smartphones when carried during a door opening. Similarly, Bollmeyer et al. [84] found a 30 Pa jump when a door is opened and a 20 Pa jump when a window is opened. Lstiburek et al. [121] showed in 2002 that indoor air-conditioning can lead to pressure changes of approximately 2 Pa. More recently, Xu et al. [101]

  entering a tunnel leads to a drastic change of more than 200 Pa in the pressure measured inside the car. This effect has been shown to create a train of compression waves throughout the tunnel similar to sonic booms[123]. Sankaran et al.[START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF] showed that the pressure fluctuations during underground subway rides can exceed 200 Pa compared to a bus ride that shows fluctuations of ∼ 50 Pa.Barnes et al. [124] analyzed road vehicle passage through tunnels in the Boston metropolitan area and found that the smaller the clearance between vehicle top and the tunnel roof, the higher the negative pressure drop on the sensor fixed to the tunnel roof, measuring a drop of 100 to 250 Pa for a clearance of 1.4 m to 0.4 m. During subway rides, we can clearly distinguish between a train stop and motion[START_REF] Sankaran | Using mobile phone barometer for low-power transportation context detection[END_REF] (see also Figure3c). By combining this behavior with relative elevation data of train stations, Hyuga et al.[107] used the pressure jumps to estimate the location of a user during a subway ride.

Figure 3 .

 3 Figure 3. Illustration of the effect of air velocity during motion (a) Bus ride (b) Car ride and the effect of built environment (Tunnel) (c) Subway train ride. Each panel shows the effect of air velocity during motion on the barometric pressure, with different modes of transport showing different types of changes. Subway train rides yield the highest changes in magnitude ( ∼ 200 Pa), while bus and car rides show relatively smaller amplitude changes ( ∼ 50 Pa), except when a car is entering a tunnel.The panels also show the effect of elevation changes during travel. In panel (a), there is a fall and rise in pressure around 18 : 35, corresponding to a climb and descent on the road path. Similarly, a drop and rise in pressure is observed in panel (b), where the car climbed and descended on an elevated bridge just before entering a tunnel. In panel (c), the acceleration of the train as it leaves the stop creates a sudden pressure drop, and a rise in pressure is subsequently observed as it approaches a stop, followed by a small dip in pressure as the train comes to equilibrium with the station environment, thus creating a repeating pressure pattern. Data was recorded by carrying a custom-made device (barometer model -BMP280) in different transport modes with a sampling rate ∼ 0.06 Hz.

Figure 4 .

 4 Figure 4. Effect of variations of altitude during human activity and motion. (a) Elevator (b) Escalator (c) Stairs. Data was collected by carrying a mobile device with a sampling rate ∼ 1 Hz on different modes of vertical mobility. For panel (a), the elevator was intentionally stopped at each floor in the first part of the data collection, to show the ability to distinguish single floor changes. In the second part, only one stop was made between the first and last floor. Finally, the last part of the data correspond to an uninterrupted elevator ride between the first and last floor. The data in panel (b) was collected by continuously climbing and descending on the same escalator, and the data in panel (c) was collected while using stairs. The escalator climb and descend in panel (c) corresponds to an average pressure difference of 80.7 Pa with a standard deviation of 3 Pa, showing the accuracy in recording relative pressure changes. Moreover, the relative pressure of 80 Pa corresponds to a height of 6.6 meters according to Eq. (1), close to the measured height of 7.3 meters and within the sensor resolution of ±1 meter.

Figure 5 .

 5 Figure 5. Sensor accuracy (a) Device dependency: Two mobile phones were simultaneously carried by a human subject on an escalator to record the barometric pressure at ∼ 1 Hz sampling rate. The absolute pressure measured by each device is significantly different, while the relative pressure is practically constant. (b) Effect of sampling frequency: A mobile phone and a custom-built device were simultaneously carried by a human subject on stairs. They were both embedded with the same MEMS barometer model BMP280 but with different sampling rates, ∼ 1 Hz and ∼ 0.062 Hz respectively. This panel shows how the sampling rate affects the detection of altitude changes.

Table 1 .

 1 Categorized literature related to the application or use of barometers for human activity recognition

	Reference Sensors		Use of barometer	Factors		Contributions and	Activity	Location	Time
						considered	applications	class	period
						influencing			
						barometric			
						pressure				
	[111]	Barometer,	Estimate altitude	Altitude		Improved IMU-Barometer	-	Indoor	Short
		Accelerometer	and	correct			Sensor fusion	term
		and		accelerometer					
		Gyroscope	errors						
	[82]	Barometer,	Estimate altitude	Altitude		Identify		ambulation	Ambulation Indoor	Short
		Accelerometer	changes				activities including VDA	term
		and								
		Gyroscope							
	[71]	Barometer,	Estimate altitude	Altitude		Vertical indoor mapping	Ambulation Indoor	Short
		Light and	and floor level						and	term
		GPS									outdoor
	[101]	Barometer	Calculate vertical	Altitude, climate	Floor localization	Ambulation Indoor	Short
		and		displacement and	and weather, and				term
		Accelerometer	estimate	floor	built environment			
				level						
	[86]	Barometer,	Estimate altitude	Altitude	and	Improved sensor fusion to	Ambulation Indoor	Short
		Accelerometer	changes		Climate	&	track vertical motions	term
		and				Weather				
		Gyroscope							
	[72]	WiFi	and	Estimate altitude	Altitude, climate	Improved	barometer	Ambulation Indoor	Short
		Barometer	and	altitude	& weather and	measurement error model	and long
				changes		sensor accuracy	and sensor fusion for floor	term
								localization	
	[93]	Barometer	Estimate altitude	Altitude		Improved accuracy by	Ambulation Indoor	Short
		and		changes				including barometer for fall	term
		Accelerometer					detection		
	[89]	Barometer,	Estimate altitude	Altitude		Improved	accuracy	in	Ambulation Indoor	Short
		Accelerometer	changes				recognizing	ambulation	term
		and						activities including VDA
		Gyroscope							
	[112]	Barometer	Estimate altitude	Altitude, climate	Detection	of	VDA	Ambulation Indoor	Short
		and		changes		& weather and	improved the estimation of	and	and long
		Accelerometer			sensor accuracy	energy consumption and	outdoor	term
								physical activity
	[73]	WiFi	and	Estimate altitude	Altitude	and	Improved floor localization	-	Indoor	Short
		Barometer			sensor accuracy	from crowd sourcing using	term
								few devices equipped with
								barometer	
	[85]	Barometer	Estimate altitude	Altitude, climate	Barometer	measurement	-	Outdoor	Short
						& weather and	error	modeling	and	term
						sensor accuracy	correction to track air
								vehicle		
	[68]	Barometer	Estimate altitude	Altitude, climate	Identify VDA and mode of	Ambulation Indoor	Short
				changes	and	& weather, built	vertical transport	and long
				mode of vertical	environment, and				term
				transportation	sensor accuracy			

  Lstiburek et al. [121] list the four types of pressure field experienced by a building: 1. exterior field-outside a building, 2. interior field-inside a building room, corridors, stairwells, etc., 3. interstitial field-building cavities, and 4. air conveyance system field-air supply, heating, exhaust systems, etc. The temperature, moisture, and pressure inside a building hence fluctuate over the day by the interaction of these pressure fields caused by the building structure, climate & weather, and the mechanical systems inside the structure [121]. Bollmeyer et al.

  100,108,113], manufacturing inconsistencies, and inappropriate calibration by the manufacturer[100]. Figure5-a illustrates how the time series of barometric pressure readings from two devices can differ. Absolute barometric pressure need thus to be calibrated between several devices for comparison[START_REF] Xia | Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning[END_REF]. This can be done before deployment or performed actively by using a reference pressure from nearby weather stations[START_REF] Bao | Barometer measurement error modeling and correction for UAH altitude tracking[END_REF]108], building or floor level[START_REF] Xia | Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning[END_REF]. For instance, Ye et al.[START_REF] Ye | Scalable floor localization using barometer on smartphone[END_REF] used active peer-to-peer calibration when users detect each other and use the encounter network to calibrate all the devices. It is thus difficult or impossible to use barometers to measure absolute atmospheric pressure accurately without careful calibration, several studies have shown that it is possible to produce consistent relative pressure measurements[START_REF] Liu | Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer[END_REF][START_REF] Ye | Scalable floor localization using barometer on smartphone[END_REF]100,113]. The relative pressure however is also affected by the sensor's resolution, drift and noise.Sensor resolution: The accuracy of the barometer is dependent on the built-in resolution of the sensor. Barometers embedded in mobile devices have generally a relative accuracy of ±10 Pa[START_REF] Xia | Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning[END_REF][START_REF] Ye | Scalable floor localization using barometer on smartphone[END_REF] 104], while commercially available high-resolution sensors can reach an accuracy of ±1 Pa[START_REF] Haque | A Sensor Fusion-Based Framework for Floor Localization[END_REF][START_REF] Bianchi | Barometric pressure and triaxial accelerometry-based falls event detection[END_REF][START_REF] Bao | Barometer measurement error modeling and correction for UAH altitude tracking[END_REF][START_REF] Massé | Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients[END_REF].

Sensor resolution is also affected by the measurement errors caused by noise. Haque et al.

[START_REF] Haque | A Sensor Fusion-Based Framework for Floor Localization[END_REF] 

used Allan Deviation (ADEV), a time domain analysis, to estimate the non-stationary errors of four different barometer models and listed the random noise processes that are dominant for a given observation period.
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