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Abstract: Barometers are among the oldest engineered sensors. Historically, they have been primarily1

used either as environmental sensors to measure the atmospheric pressure for weather forecast, or as2

altimeters for aircrafts. With the advent of MEMS-based barometers and their systematic embedding3

in smartphones and wearable devices, a vast breadth of new applications for the use of barometers4

has emerged. For instance, it is now possible to use barometers, in conjunction with other sensors, to5

track and identify a wide range of human activity classes. However, the effectiveness of barometers6

in the growing field of human activity recognition critically hinges on our understanding of the7

numerous factors affecting the atmospheric pressure, as well as on the properties of the sensor8

itself—sensitivity, accuracy, variability, etc. This review article thoroughly details all these factors and9

presents a comprehensive report of the numerous studies dealing with one or more of these factors,10

in the particular framework of human activity tracking and recognition.11

Keywords: Barometer; Barometric pressure; Human activity recognition (HAR); Vertical12

displacement activity (VDA)13

1. Introduction14

Barometers have been around for a very long time. While the air was thought to be weightless15

till the early 1640s, this changed when the Italian physicist and mathematician Evangelista Torricelli16

showed that a column of air exerts a significant force that can be measured by the amount of liquid17

displaced by the pressing air. This led to the discovery that “air has weight", and the invention of a18

measurement device that quantifies the atmospheric pressure [1]. In the latter part of 1640s, Blaise19

Pascal perfected the experiment and showed the finiteness of air pressure, leading to the hypothesis20

that the height of the atmosphere itself is finite, and to the proposition that altitude can be measured21

as proportional to the atmospheric pressure [2]. The SI derived unit, the Pascal (Pa), is named after22

Pascal’s contributions to hydrodynamics, and is now officially used to measure the force applied by an23

atmospheric column of air above a unit surface area.24

For the first two centuries after the invention of the barometer, this device was constructed using25

glass tubes filled with liquids such as water or mercury [3]. In 1844, a new design appeared with26

the development of the aneroid barometer, that is purely mechanical, does not contain liquids, and27

shows the measurement value on a face dial [4]. These devices took a quantum leap with the advent of28

micro-fabrication in the 1960s that allowed the miniaturization of the barometer and accelerometer to a29
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size smaller than 0.1 mm, what is now commonly known as Micro Electro Mechanical Systems (MEMS).30

With the successive advancements in integrated-circuits and digitization of the sensor readings, the31

manufacturing and the computational cost of these miniaturized devices were significantly driven32

down, thus paving the way for their widespread adoption in consumer products, especially in mobile33

phones. Currently MEMS-based barometers are by far the most commonly found type of barometers34

in wearable devices and smartphones. In 2015, one of the pioneers in MEMS manufacturing, Bosch35

(Robert Bosch GmbH) claimed to manufacture 1 billion MEMS sensors per year for automotive and36

non-automotive applications in one production facility in Germany [5]. This company also claims37

to have their MEMS devices (including barometers) embedded in every second smartphone in the38

world [5]. Although this claim cannot be independently verified, it still points to the massive scale of39

production for this type of sensor, and underscores the ubiquitous availability of MEMS barometers.40

Historically, barometers were used for weather forecast and thus chiefly as environmental sensors.41

As a measurement device of ambient pressure, barometers have been recently used to measure42

evapotranspiration (transfer of water from land to atmosphere) in a given environment, improving43

motor vehicle engine efficiency by modifying air-fuel mixture, and to count steps based on the slight44

disturbances in air pressure during body movements [6]. Thanks to the relation between pressure and45

altitude, barometers are also widely used as altimeters to measure altitude, in particular in airplanes46

and Unmanned Aerial Vehicles (UAVs). Recent applications include their use in warehouses for precise47

automated placement, retrieval, and monitoring of objects on shelves, and indoor/outdoor navigation48

of humans and vehicles. It is worth highlighting that there is still significant opportunities for the use49

of barometers in a vast range of additional applications. Clearly, the full potential of barometers has50

not yet been taken advantage of, in particular in the Internet of Things (IoT) realm and with future51

consumer devices, particularly in the fast-growing area of wearable devices.52

In particular, the ubiquity of MEMS barometers in smartphones and other wearable devices53

makes them natural candidates as data sources for the study of human activities and to the field of54

Human Activity (and mobility) Recognition (HAR) [7]. Broadly speaking, HAR consists in using55

data from various types of sensors carried by individuals to automatically understand what type of56

activity they are carrying out. It consists therefore in choosing sensors that will be influenced by the57

activity, annotating a certain amount of data (that will serve as "training data") thanks to ground truth58

knowledge (i.e., the knowledge of the precise conditions in which the data was collected), and devising59

a classification task using typical machine learning frameworks to classify the rest of the data. The60

human activities considered can be broadly classified under two main classes: (1) Ambulation, and (2)61

Transportation [7]. Ambulation refers to all movements and idle states of our human body (walking,62

idle, running, sitting, etc.), while transportation refers to our movement through vehicles (cars, buses,63

bicycles, etc.) [7]. In HAR research, such activities are considered under two conditions: (1) Natural64

ones, and (2) Laboratory. These conditions lie at the two extremes of a spectrum: "natural" refers to65

individuals behaving normally, within their usual environment, without any defined procedure and66

without being influenced by their being monitored, while laboratory conditions refer to a set-up that is67

especially designed for a human subject, who is given explicit instructions to perform a given activity.68

In reality, most experiments with human subjects happen somewhere in between these two extreme69

conditions.70

Inertial Measurement Units (IMU)—comprising accelerometer and gyroscope, along with71

magnetometer—are the most commonly used sensors to track human activity. Although the first72

accelerometer was invented by the English physicist George Atwood in 1783, this sensor has not been73

used in any commercial applications till the 1920s, but this changed with the advent of motor vehicles,74

including airplanes [8]. Smartphones have been equipped from the start with accelerometers, whose75

signals are widely used to recognize most activity classes [9].76

Until the 1990s, it seems that there is almost no reference in the literature to the use of barometers77

in tracking human activities. That changed with the silicon and digital revolution, which contributed to78

the effective use of barometers to track a range of human activities in the late 1990s. Initially, consumer79
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devices such as mobile phones were equipped with barometers to improve GPS-based localization80

by reporting altitude or altitude changes [9]. Today, barometers along with a suite of sensors like81

IMU and magnetometer are used—individually or through sensor fusion—to track a wide range of82

human activities. Such use of barometer to track human activities is a fairly recent phenomenon. In the83

last two decades, the barometers were found to improve some activity class recognition that involves84

change in height, such as fall or vertical mobility. In some applications such as recognizing Vertical85

Displacement Activity (VDA), the accelerometer has been replaced by or at least given less importance86

than barometers, which are more energy efficient, require less signal processing and yield less noisy87

signals than IMU signals. Most smartphones have barometers allowing to predict changes in altitude88

with an accuracy of the order of 1 meter. However, an effective tracking of human activities is best89

obtained with the combined use of these important sensors, each providing unique information on the90

subject’s state.91

It is however important to note that our ability to properly leverage the potential of barometers92

for HAR purposes critically hinges on our understanding of the physical properties of the atmospheric93

pressure. Indeed, the measure of the ambient pressure by a barometer is influenced by the static and94

dynamic properties of its environment [? ]. Its effective use as a signal thus requires dedicated data95

post-processing techniques and classifiers, in general to account for external factors: for instance, if one96

is tracking altitude changes and vertical displacement activity, the variations in the local atmospheric97

pressure have to be accounted for. Measures are moreover affected by the sensor itself, whose accuracy98

and manufacturing imperfections can introduce noise and variability between devices. Hence, it is fair99

to say that the numerous factors affecting barometric pressure (see Sec. 4), if not properly understood100

and accounted for, can hinder the effective use of barometers to detect and identify particular classes101

of human activity.102

The current review is non-exhaustive but intentionally limited to the use of barometric sensors for103

the most common classes of human activity. This choice is justified by the wide range of applications104

offered and the fact that barometers now pervade many mobile devices (wearables and smartphones,105

cars, etc). The applications explored are also primarily limited to the recent developments in using106

MEMS-based barometers for consumer goods/electronics. It is worth stressing that this review does107

not address the vast breadth of Machine Learning (ML) or other advanced classifiers used to interpret108

the sensed data, and identify a given activity with a given accuracy. However, the details provided in109

this review are most useful for the further development and design of effective ML/classifier strategies.110

This review is organized as follows: Sec. 2 introduces the general sensor data collection process111

to track human activity. Section 3 looks specifically into the use of barometers in human activity and112

mobility recognition. Section 4 describes the factors that affect barometric pressure and quantifies the113

order of magnitude of each effect based on a range of studies reported in the literature. This section114

is enriched by data especially collected for illustration purposes. Lastly, Sec. 5 explores the potential115

directions of future research in HAR using barometric sensors.116

2. General sensor data collection process to track human activities117

Barometers are part of the suite of sensors used to track, recognize, analyze, and ultimately118

understand human activities. As such, the characteristics of the data collection process is similar to119

the one of other types of sensors. They include the characteristics of sensors, their placement and120

orientation, the sampling frequency, the environmental conditions. The type of application (activity121

class, diversity of sample population) and the method to record the ground truth and annotate a part122

of the data have also to be carefully designed. Data collection and annotation are indeed critical to123

the effectiveness of subsequent stages of classification—e.g., data pre-processing, feature engineering124

and identification—in the overall workflow of sensed data associated with human activity recognition.125

Similarly, an informed decision on the data collection procedure depends on the specific problem126

under study and on the particular class of human activity being investigated. Depending on the sensor127

characteristics and the class to be recognized, data collection methods must be tailored to shed light128
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on the phenomena under investigation for better accuracy and performance. The success of such129

data-processing activity not only depends on acquiring the data, but also in being able to effectively130

process it and extract meaningful features and patterns.131

2.1. Sensors and sensor suites132

Smartphones and watches are by far the most common and straightforward way to collect data in133

a natural setting. Nonetheless, some research groups studying particular behaviors and phenomena134

required a custom-built wearable sensor design for both laboratory testing as well as for operations135

in real-life conditions. For instance, 3-axis accelerometers are the most widely used sensors [10,11],136

followed by 3-axis gyroscopes and magnetometers. Since these inertial sensors are now commonly137

found in today’s smartphones and other MEMS devices, many recent studies use a combination of these138

sensors to improve classification accuracy [12,13], although a 3-axis accelerometer alone can extract139

good quality data resulting in excellent classification results [14]. Wearable devices may also contain140

environmental sensors that measure for instance temperature, light, atmospheric pressure and sound141

to assist in context detection, and/or physiological sensors such as heart rate for medical research [7]142

and personal fitness purposes. In transport mode recognition, GPS is the most widely used sensor [15],143

followed by telecommunication data [16,17], WiFi access points [18,19], and travel surveys [20]. In144

general, location-based sensors operate based on a combination of inertial sensors to build robust145

recognition systems that can distinguish between different travel modes, including walking and being146

idle [21]. Fusion of environmental sensor data with inertial and location-based sensed data provides147

sufficient information to detect what is commonly known as ‘Activities of Daily Living’ (ADL). In this148

context, barometric pressure sensors have traditionally been considered as environmental sensors used149

to measure ambient pressure. However, they are also capable of sensing movement/activity in ways150

similar to inertial sensors, especially when considering vertical movements.151

2.2. Placement and orientation of the sensor152

Placement and orientation of the sensor might influence the characteristics of the captured signal153

thereby affecting the recognition accuracy: indeed, the training data might then fail to account for all154

the possible variations, resulting often in a sparse feature space. Numerous studies have focused on155

ways to alleviate this particular effect, and provided solutions that range from collecting diverse data156

to independent features not affected by such parameters [22–24]. Chen et al. [25] proposed the use157

of coordinates transformation along with principal component analysis (PCA) to reduce this issue158

associated with orientation changes. Several groups have also studied the question of optimal sensor159

placement [26,27]. Interestingly, while this issue affects many sensors, this is not the case for barometric160

pressure sensors whose readings are widely independent of their on-body position and orientation [28],161

even if they are dependent on a range of environmental conditions.162

2.3. Sampling frequency163

The temporal resolution of the data is directly related to the sampling frequency of the sensor164

used. For the vast majority of sensors used to carry out human activity recognition, the sampling165

frequency typically ranges from 10 Hz to 100 Hz, with the rate going as high as 512 Hz. It is commonly166

reported that the characteristic frequencies of most human activities are below 10 Hz, and therefore167

the optimal sampling rate— based on the Shannon–Nyquist theorem—is 20 Hz [29]. Khan et al. [30]168

reviewed 5 public datasets and showed that the sampling rate considered could be reduced between169

48% and 86%, with a minimal sampling rate of approximately 12 Hz [30]. Yan et al. [31] also studied170

the effect of sampling rate on energy consumption and they concluded that a higher sampling rate171

increases energy load without providing additional meaningful information, in agreement with the172

results reported in [30]. From the energy perspective, Yan et al. [31] concluded that a shorter dataset173

with a higher sampling rate is preferable to a longer dataset at a lower sampling rate. It is worth174

adding that the optimal sampling rate also depends on the type of human activity to be recognized [30]175
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and on the type of sensor used. For instance, when studying human mobility, sampling GPS data176

or other location signals at rates comparable to those of accelerometers is unnecessary. Hence, the177

GPS signals are typically sampled at around 1 Hz [32,33]. For pressure signals, barometers have been178

sampled at rates as low as 1 Hz [34].179

2.4. Activity classes180

Lara & Labrador [7] thoroughly reviewed a comprehensive list of human activities recognized and181

categorized in the literature, including ambulation, transportation, gestures, exercises and daily living182

activities. The activity classes may of course occur concomitantly and may therefore be composite [35],183

interleaved, concurrent or overlapping [36]. For data with low sampling frequency, i.e. lower than184

1 Hz, more than one activity could be performed during the same time interval. In particular, the class185

of vertical displacement activities (VDA) has generally been recognized in the literature as part of the186

larger class of ambulation activities. Similar to accelerometers, barometers are very well suited for187

the recognition of VDA. In addition, barometers can accurately determine altitude changes for VDA188

occurring at a sampling rate lower than 1 Hz.189

2.5. Nature of data190

Several groups have collected their own datasets to fit the specific needs and requirements of191

their studies [37,38]. Many benchmark datasets are also publicly available, and are commonly used to192

validate new methods [39–42]. The recent review article [43] reported details of several key benchmark193

public datasets and provided a rich analysis on the content and application-context studies. The194

datasets collected and made available publicly either were collected in laboratory conditions [44], or are195

real-world ones—where participants had instructions to perform specific activities given implicitly [45],196

explicitly [24], or instead were allowed to move freely while being unobtrusively observed [13]. These197

datasets have been claimed to be semi-naturalistic or realistic even when the subjects were given198

scripted instructions [46,47]. Lara & Labrador [48] reported on subjects performing interleaving199

activities as they naturally occur, in sequence rather than segmented to reach realistic conditions.200

Truly realistic data correspond to data collected while people go about their Activities of Daily Living201

(ADL) [14]. As highlighted in [49], the use of purely realistic data would however require a long data202

collection period. Hence, segmented data obtained by a set of experiments corresponding to various203

activity classes are typically collected for training. Some studies such as [50] and [51] have managed204

to deal with this issue by considering segmented data for training and activities of daily living or205

sequence data for validation.206

2.6. Class imbalance207

The problem of class imbalance in datasets—the fact that some activities are more prevalent than208

others and are therefore over-represented— is a recurrent condition found in both public and private209

datasets and known to affect recognition accuracy [47,52,53]. For instance, data corresponding to210

physically tiring activities, or difficult to obtain for other reasons, naturally forms an under-represented211

portion of the data, thereby leading to inherent data imbalance [38]. This issue can be offset by212

oversampling the minority class or under-sampling the majority class. Chen & Shen [38] used the213

so-called Synthetic Minority Over-sampling Technique (SMOTE) for oversampling the minority class214

while Trung [54] used a modified version of it. Guan et al. [52] also proposed to use an ensemble215

of deep learning models to offset such data imbalance. Other studies have tackled the problem by216

simply using F1-score to report classification accuracy that takes into factor the different sizes of each217

class [52,55]. This issue can occur in applications using barometers, as the number of altitude changes218

in human mobility for any given continuous experiment is usually very limited, and these changes219

have moreover typically a rather high inter-event time in ADL.220
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2.7. Diversity in physical characteristics221

Data collection methods can contribute to the generalization in recognition models by allowing222

diverse characteristics or parameters to be incorporated into the training dataset. These characteristics223

should be representative of the final dataset to which the model is applied. One of the important224

parameters is the user herself, whose diverse physical characteristics can be challenging to integrate225

or model [37]. Studies generally report the user’s age, height, weight, body mass index (BMI) and226

physical ailments, etc. for context and applicability of the study [55–58]. In the case of barometers, the227

height of the user/carrier has only a limited effect on the use of a barometer, and the resolution of228

most wearable sensors are within the range of placement difference. It is thus safe to assume that the229

barometer sensor works independently of the physical characteristics of the carrier.230

2.8. Annotation techniques231

Stikic et al. [59] note that the accuracy of annotation is subject to a trade-off between length of the232

data collection and the time and effort required for labelling the dataset. Indeed, if direct observation233

is required for accuracy, this results in a prohibitively expensive requirement. De la hoz Franco et234

al. [43] carried out a meta review of 374 papers on Human Activity Recognition (HAR) and found235

that 60% of the used data were annotated. However, most studies record ground truth by resorting to236

experiments in a laboratory setup with the help of researchers and supporting infrastructure [27,57,58].237

Some studies have also relied on subject self-reporting [37,60,61], which are known to be error-prone238

due to the obvious difficulty in marking precise times while carrying out the activities of daily living.239

Chung et al. [13] recorded ground truth by unobtrusively following the subjects one at a time. Video240

capturing [34,47,55,62], audio recording [63] and GPS localization have been highlighted as methods of241

direct observation without requiring to monitor the subjects under constrained controlled conditions.242

Recording ground-truth data for long term studies of ADL has been repeatedly acknowledged to be243

impractical and/or prohibitively manpower intensive [49,64]. For instance, Willetts et al. [14] used244

automatic cameras to record ground truth every 20 seconds for 143 participants over 24 hours. This245

shows the interest of automated methods such as the active learning methods developed by Bota et246

al. [50] that require the manual annotation of a small subset of the data, while the rest is automatically247

labeled.248

A practical, privacy-sensitive and unobtrusive annotation method for studies using barometers249

to track humans over long durations is manual labeling of the data. Unlike the signal sensed by250

accelerometers or other inertial sensors, barometric pressure can indeed be less complex to interpret.251

However, this process comes with several challenges, one of which being the lack of complete252

understanding of all the factors that influence barometric pressure. This important issue is addressed253

in detail in Section 4.254

3. On the use of barometer in human activity and mobility recognition255

For the sake of studying human activity and mobility recognition, the barometer has been256

primarily used to measure changes in altitude (or elevation). The scale of the altitude changes varies257

from a fall to vertical displacements like moving uphill, climbing a deck of stairs, riding an elevator,258

etc. In recent applications, the patterns of the time series of barometric signals are shown to be a good259

indicator of the underlying activities such as walking, idle and transportation. The rate of pressure260

change can help to identify the mode of vertical transport and determine the vertical velocity of261

air vehicles. Barometers are widely embedded in wearable devices and used for vertical transport262

detection [28,65–70], indoor positioning and navigation [68,71–73], building monitoring [74], health263

monitoring [75,76], vehicle tracking [77,78], transport mode detection [79], and GPS localization264

improvement [68].265

One of the earliest works on using barometer to classify vertical movement is due to Sagawa266

et al. [80] and dates back to 1998. In [80], Sagawa et al. collected 83 minutes of data using both267
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accelerometer and barometer at a 100 Hz sampling frequency from 6 males between 20 and 40 years of268

age. Their classification model was trained offline using cut-off values selected heuristically. Since269

then, recognition and identification procedures have greatly improved thanks to a number of factors270

including: new sensor types, larger range of sampling rates, user and device characteristics, modes271

of carriage, power consumption, real-time demand, classification models, and finally ground truth272

availability.273

3.1. Barometric pressure sensor274

MEMS Barometers are miniature sensors (< 0.1 mm) manufactured by prominent companies275

such as Bosch [77,81,82], ST Microelectronics [77,81,83], and Measurement Specialities [84]. As276

mentioned previously, they are commonly found in wearable devices and smartphones. They have277

high precision but relatively lower absolute accuracy than table-top barometers. Specifically, the278

accuracy in measuring absolute pressure is low in these sensors but their relative pressure accuracy is279

shown to be as low as ±1.2 Pa [84,85], with average mobile devices having resolution of ±12 Pa [28].280

It is worth adding that the measured absolute pressure varies from one device to another due to281

manufacturing differences and other technical factors [81].282

3.2. Processing barometric sensor data283

Barometers are constrained by their resolution and sampling frequency, which limit precision284

and accuracy, and the use of their data is further constrained by the presence of noise. Some studies285

have used filtering and signal modeling to overcome the latter problem. For instance, moving average286

filters over a given time window is widely used for that purpose [71,84,86], followed by other Finite287

Impulse Response (FIR) filters [87] and Infinite Impulse Response (IIR) filters [76,87–89] such as double288

exponential smoothing [28,69]. Signal modeling like sinusoidal fitting model [90] and sigmoidal289

nonlinear fitting are commonly used to increase the contrast of elevation changes [91].290

The time series data of barometric pressure is generally converted to statistical [70,92], spectral [70,291

92], temporal [70,92] or wavelet-based features [75,93], before being fed into a classifier. These features292

are designed to enhance the detection of the specific activity of interest. Most used features are based293

on the rate of change of pressure [69,70,79,84,94] (also known as vertical velocity or simply the slope)294

and the standard deviation of differential pressure (dp) [74,79], that differentiates altitude changes295

from other environmental factors that influence ambient pressure.296

3.3. Classifiers for sensed barometric pressure297

The choice of the classifier depends on the application at hand. It also depends on the range of298

pressure variations and durations under consideration. Some studies have only considered indoor299

pressure profiles of individuals [28,68], while few have considered the full Activities of Daily Living300

(ADL) that include both indoor and outdoor events like transportation [77,79]. A person carrying a301

barometer is indeed affected by factors present outside their specific environment, which seriously302

limits the scope of many studies of HAR using barometer data.303

Barometric pressure is more straightforward than inertial sensors in conveying sensed information304

due to its fairly direct reading, which greatly simplifies the use of classifiers. The most widely used305

classifiers are decision trees [28,65,68,82,83,87], Support Vector Machines (SVM) [75,77,95,96] and306

threshold based models [76,91,97,98]. Clustering models such as hierarchical clustering [73,99] and307

k-Means clustering [71], Bayesian-based classifiers [72,100,101], LSTM models [28,102] and fuzzy308

inference models [90] have also been used. Hidden Markov Models take advantage of logical activity309

sequences that can be associated with some activity sequences (such as riding an elevator before310

and after walking) [103], while fuzzy inference models take advantage of context and behavioral311

constraints [90].312

Liu et al. [69] compared classifiers such as Random Forest, J48 decision trees, Artificial Neural313

Networks (ANN), SVM and Naïve Bayes to classify horizontal displacement activity from vertical314
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displacement activity; the Random Forest classifier was found to have the highest accuracy. Vanini et315

al. [28] compared the performance of Bayesian networks, Decision trees and Recurrent Neural Network316

(RNN) models to recognize VDA. It has been found that RNN have a 99% accuracy while Decision317

trees provide the optimal trade-off in terms of computational cost, energy efficiency and accuracy.318

Some applications do not require any classifiers. For instance, state estimation like altitude and319

vertical velocity can be determined using a Kálmán filter or one of its many variants [86,96,104–106].320

As another example, Bollmeyer et al. [84] solely used the differential pressure to estimate altitude. Ho321

et al. [78] used the so-called Dynamic Time Warping (DTW) technique to establish the correlations322

between the pressure time series data and known geographical elevations to track vehicles. Similarly,323

Hyuga et al. [107] found ways to use the variance of differential pressure to account for the variations324

in barometric pressure associated with air velocity and the built environment; they used similarity325

measures between pressure and known altitude to locate a train/user in a rail network.326

3.4. Applications327

Barometer-only studies: Very few studies dedicated to tracking human activity and/or mobility328

are solely relying on the use of a barometer, despite the fact that their potential for applications is329

promising. For instance, barometers have been used to measure altitude as a stand-alone measuring330

instrument for a very long time. Taking this concept one step further, Bolanakis [81] used a dual-device331

system to estimate the altitude of an airplane above a landing area and find the orientation angle of332

wings.333

The surface of the land on which we move and travel, including transportation routes, is uneven.334

This topographical feature can be estimated using barometric pressure, and the subtle changes in335

elevation along the travel routes can be exploited for localization of vehicles. As stated before, this336

is however challenging due to two major factors that affect barometric pressure—built environment337

like tunnels, bridges, etc., and the air velocity during motion. However, Hyuga et al. [107] used the338

pauses of trains in stations between successive train rides to locate a user/train in a subway route by339

computing the successive altitude changes and comparing them with known relative elevations of340

train stations.341

Similarly to accelerometer data, the signal pattern encoded in a barometer output carries sufficient342

information to recognize a range of human activities. Ghimire et al. [87] observed the change in air343

pressure when a person walks with hands swinging and used this gait pattern to count steps. The344

pressure fluctuations due to vehicle motion was used by Sankaran et al. [79] to differentiate between345

the distinct patterns produced by vehicles as opposed to walking and standing idle.346

In climate controlled buildings, changes in barometric pressure can be detected during347

indoor-to-outdoor transition. Wu et al. [74] moreover showed the possibility to detect the opening348

or closing of a building’s entrance doors, even with a barometer located far from the doors, and349

even analyzed the patterns to determine the type of door (automatic or manual). They highlighted350

implications to building monitoring and security.351

Applications that use only barometer data are more common in the studies concerned with352

floor localization and recognition of VDA. In the absence of location sensors, the challenge with353

floor localization is to have a reference pressure and associate it with the data measured by the354

considered wearable devices at the moment they enter a given building. To obtain such a reference355

pressure, Li [108] recommends receiving it from a location that is similar to the environment in356

which it is deployed; this setup is important as the reference pressure obtained from reference357

stations can potentially experience different environmental effects. Xia et al. [66] showed that the358

barometric pressure pattern can change from floor to floor in idle settings, and hence, installed359

a calibrated barometer in each floor to collect multiple reference pressures. Ye et al. [99] applied360

an infrastructure-independent approach by constructing an encounter network—determined by361

comparing simultaneous pressure changes—and use a root node to calibrate all the mobile sensors.362
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This method is of course prone to errors and the lack of calibration has been shown to result in an363

accuracy of only 70%.364

The challenge for recognizing VDA using only barometer data is that the sensor data should ideally365

be free from all factors other than altitude that affect barometric pressure. This can be guaranteed if366

the sensor data is collected from a controlled environment where no other factors that can be mistaken367

for VDA occur. As shown by Bollemeyer et al. [84], Ghimire et al. [87], and Muralidharan et al. [68],368

this can be achieved by limiting the studies to indoors where only weather, sensor accuracy and built369

environment effects are impacting the barometric readings. Liu et al. [104] collected experimental370

data from outdoors like mountain climbing while avoiding activities that cause adverse pressure371

gradients like transportation. Vanini et al. [28] have demonstrated their VDA recognition capability372

while considering ambulation and transportation, with however a limited set of activities, including in373

particular only cable-cars as outdoors transportation mode.374

In summary, in a specific environment and considering selected modes of activity, recognition375

performance of VDA using barometer can be very high. More generally, in any given environment,376

barometers are shown to perform far better or similarly to other sensors when detecting VDA, and377

represent the only viable way to extract the magnitude of vertical displacement. Vanini et al. [28]378

report that with barometer data, one achieves similar performance in classifying VDA compared to379

accelerometer and GPS, but a superior one in energy efficiency and independence in terms of sensor380

location and orientation. Muralidharan et al. [68] similarly showed that barometer-only classification381

is significantly more accurate (99%) in recognizing modes of VDA compared to accelerometer-based382

classification (85%). However, the accuracy for accelerometer-based classification drops below 30%383

when the mobile phone is used for taking calls or playing games.384

Multi-sensor studies: As just mentioned, few studies have employed barometer as the sole385

sensor in their application. It is usually integrated with other sensors like inertial sensors [69,82],386

environmental sensors (light, temperature, sound, etc.) [109,110], location-based sensors (GPS) [71,96],387

and communication infrastructure (WiFi, Bluetooth, RFID, etc.) [72,73,100,110]. Several studies are388

dedicated to improving the sensor fusion of inertial sensors with barometer, which constitutes a critical389

step in the optimization of activity recognition [86,110,111].390

In most classical HAR analyses, the classification accuracy in detecting VDA based on sensory391

data without pressure is usually low [89]; this is not seen as a critical issue since VDA is not the focus or392

priority. Increasingly, barometer has been recognized as an important sensor in HAR, where accurate393

recognition of VDA is critical to many applications [106]. Hence, a majority of applications that aim394

to measure altitude or track altitude changes employ a barometer as part of their sensory suite. For395

instance, in health monitoring applications, the inclusion of barometer has been shown to improve396

VDA recognition [44,75,95], fall detection [76,83,93], estimation of energy expenditure and physical397

activity [44,91,97,112].398

Accelerometers are still the predominantly used sensors in HAR, and have been widely used as399

stand-alone sensors in recognizing many activities of daily living. They complement barometer-based400

recognition algorithm in detecting ambulatory movements such as walking, and their use helps also401

distinguish stairs climbing from other modes of vertical transportation like elevator and escalator [69,402

101]—and even elevator from escalator [67]. Sankaran et al. [79], however, point to the high cost403

associated with the use of accelerometers: demands in data acquisition (position and orientation404

dependent), high sampling rate, complex processing and classification training.405

For indoor localization and navigation applications, obtaining reference pressure to calibrate406

all mobile sensors is critical for the system to work. This is more easily obtained in multi-sensor407

applications. Pipelidis et al. [71] used light sensors to detect the transition between indoor and outdoor408

so as to derive a reference pressure at ground level, which subsequently serves the detection of409

floor levels. Communication infrastructures like WiFi, Bluetooth and RFID are also used to provide410

additional location information to help assist indoor localization or transmit location specific data such411

as reference pressures in a floor to assist barometers for calibration purposes. Tachikawa et al. [110]412
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even combined WiFi signal with microphone and other inertial sensory data to detect the type of413

indoor location—restroom, desk, elevator, etc.414

Barometers are known to speed up the GPS localization through their altitude estimation [68].415

Conversely, the altitude information can be accessed from GPS localization [104]. Furthermore, GPS416

or any location information can help distinguish the transportation modes from ambulation, where417

the changes in barometric pressure can easily be misunderstood for altitude changes. Even though418

the elevation changes are present in our transportation paths, the altitude estimation from barometric419

pressure due to air velocity during motion can be predominant. Some studies have used the barometric420

pressure instead of GPS to track a vehicle [44,77], but this can be very misleading as the significant421

changes in pressure due to vehicle motion and the built environment like tunnels and bridges have422

not been fully taken into account or even properly understood.423

To summarize and categorize the vast breadth of applications of barometers for HAR, we have424

gathered all this information into Table 1.425

Table 1. Categorized literature related to the application or use of barometers for human activity
recognition

Reference Sensors Use of barometer Factors
considered
influencing
barometric

pressure

Contributions and
applications

Activity
class

Location Time
period

[111] Barometer,
Accelerometer
and
Gyroscope

Estimate altitude
and correct
accelerometer
errors

Altitude Improved IMU-Barometer
Sensor fusion

– Indoor Short
term

[82] Barometer,
Accelerometer
and
Gyroscope

Estimate altitude
changes

Altitude Identify ambulation
activities including VDA

Ambulation Indoor Short
term

[71] Barometer,
Light and
GPS

Estimate altitude
and floor level

Altitude Vertical indoor mapping Ambulation Indoor
and
outdoor

Short
term

[101] Barometer
and
Accelerometer

Calculate vertical
displacement and
estimate floor
level

Altitude, climate
and weather, and
built environment

Floor localization Ambulation Indoor Short
term

[86] Barometer,
Accelerometer
and
Gyroscope

Estimate altitude
changes

Altitude and
Climate &
Weather

Improved sensor fusion to
track vertical motions

Ambulation Indoor Short
term

[72] WiFi and
Barometer

Estimate altitude
and altitude
changes

Altitude, climate
& weather and
sensor accuracy

Improved barometer
measurement error model
and sensor fusion for floor
localization

Ambulation Indoor Short
and long
term

[93] Barometer
and
Accelerometer

Estimate altitude
changes

Altitude Improved accuracy by
including barometer for fall
detection

Ambulation Indoor Short
term

[89] Barometer,
Accelerometer
and
Gyroscope

Estimate altitude
changes

Altitude Improved accuracy in
recognizing ambulation
activities including VDA

Ambulation Indoor Short
term

[112] Barometer
and
Accelerometer

Estimate altitude
changes

Altitude, climate
& weather and
sensor accuracy

Detection of VDA
improved the estimation of
energy consumption and
physical activity

Ambulation Indoor
and
outdoor

Short
and long
term

[73] WiFi and
Barometer

Estimate altitude Altitude and
sensor accuracy

Improved floor localization
from crowd sourcing using
few devices equipped with
barometer

– Indoor Short
term

[85] Barometer Estimate altitude Altitude, climate
& weather and
sensor accuracy

Barometer measurement
error modeling and
correction to track air
vehicle

– Outdoor Short
term

[68] Barometer Estimate altitude
changes and
mode of vertical
transportation

Altitude, climate
& weather, built
environment, and
sensor accuracy

Identify VDA and mode of
vertical transport

Ambulation Indoor Short
and long
term
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[76] Barometer
and
Accelerometer

Estimate altitude
changes

Altitude Improved fall detection
using barometer

Ambulation
and
transportation

Indoor Short
term

[104] Barometer Estimate altitude Altitude, climate
& weather, and
sensor accuracy

Estimation of altitude for
indoor and outdoor

Ambulation Indoor
and
outdoor

Short
term

[92] Barometer
and
Accelerometer

Estimate altitude
changes

Altitude Reduced position and
orientation dependency
using barometer

Ambulation – Short
term

[95] Barometer
and
Accelerometer

Estimate altitude
and altitude
changes

Altitude Child activity recognition
including VDA to prevent
injuries

Ambulation Indoor Short
term

[105] Barometer
and
Accelerometer

Estimate altitude
changes

Altitude, climate
& weather and
sensor accuracy

Earliest known activity
classification including
VDA using barometer

Ambulation Indoor Short
term

[97] Barometer
and
Accelerometer

Estimate altitude
changes

Altitude and
sensor accuracy

Detection of VDA
improved the estimation
of physical activity and
energy expenditure

Ambulation
including
cycling

Indoor
and
outdoor

Short
term

[75] Barometer,
Accelerometer,
Magnetometer
and
Gyroscope

Altitude, built
environment and
sensor accuracy

Activity recognition
including VDA for health
monitoring of stroke
patients

Ambulation Indoor
and
outdoor

Short
term

[65] Barometer,
Accelerometer
and
Magnetometer

Estimate altitude
changes

Altitude, built
environment and
sensor accuracy

Identify mode of vertical
transportation for indoor
navigation

Ambulation Indoor Short
term

[69] Barometer,
Accelerometer,
Magnetometer
and
Gyroscope

Estimate altitude
changes

Altitude, climate
& weather, built
environment and
sensor accuracy

Improved recognition of
VDA using barometer

Ambulation Indoor Short
term

[67] Barometer,
Accelerometer,
and
Gyroscope

Estimate altitude
changes

Altitude Improved identification of
VDA for indoor localization

Ambulation Indoor Short
term

[44] Barometer
and
Accelerometer

Estimate altitude
changes

Altitude Using barometer improved
overall activity recognition
including VDA and
better estimate of energy
expenditure

Ambulation Indoor Short
term

[107] Barometer Estimate altitude
and altitude
changes

Altitude, air
velocity during
motion, and built
environment

Estimate the location of
traveler in a subway using
only barometer

TransportationOutdoor Short
term

[81] Barometer Estimate altitude
and altitude
changes

Altitude, climate
& weather, and
sensor accuracy

Evaluate sensors to
estimate the altitude of
airplane above ground and
the orientation angle of
wings using dual device
systems

– Indoor Short
term

[78] Barometer Estimate altitude
and altitude
changes

Altitude, climate
& weather, built
environment,
air velocity due
to motion, and
sensor accuracy

Compared barometric
pressure data with
topographical elevation
data to localize and track
vehicles

TransportationOutdoor Short
and long
term

[100] Barometer
and WiFi

Estimate altitude
and altitude
changes

Altitude, climate
& weather, and
sensor accuracy

Floor level identification
by hybrid approach
between barometer
only and WiFi only
method. Barometer-only
approach uses crowd
sensed barometer data
for self-calibration and
builds elevation map
independently in each
device

Ambulation Indoor Short
term

[90] Barometer,
Accelerometer,
and
Gyroscope

Estimate altitude
changes

Altitude and
climate & weather

Improved activity
recognition including
VDA using barometer by
considering behavioral
rules and applying context
in a two-step process

Ambulation Indoor Short
term
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[113] Barometer,
WiFi and
Bluetooth

Estimate altitude
and altitude
changes

Altitude, climate
& weather, and
sensor accuracy

Used WiFi/ Bluetooth
beacon to localize the user
and recorded the respective
pressure as reference
pressure for that floor. Any
change in elevation is then
used to identify the floor
level

Ambulation Indoor Short
term

[91] Barometer,
Accelerometer,
Gyroscope,
Magnetometer,
and Foot
pressure

Estimate altitude
change

Altitude Activity recognition
including VDA for better
estimation of elderly
physical activity

Ambulation Indoor Short
term

[83] Barometer
and
Accelerometer

Estimate altitude
changes

Altitude Low-power fall detection
for long-term monitoring

Ambulation Indoor
and
outdoor

Short
and long
term

[74] Barometer Detect door
open/close in
building and
estimate altitude
changes

Altitude, climate
& weather, and
built environment

Detect door open/close to
monitor building activities
and recognize VDA

Ambulation Indoor
and
Outdoor

Short
and long
term

[114] Barometer,
Accelerometer,
Gyroscope,
Magnetometer,
and WiFi

Estimate altitude
and altitude
changes

Altitude 3D indoor localization Ambulation Indoor Short
term

[87] Barometer Detect gait
patterns and
estimate altitude
changes

Altitude Step detection and activity
recognition including VDA
using barometer

Ambulation Indoor Short
term

[84] Barometer Estimate altitude
and altitude
changes

Altitude, built
environment, and
sensor accuracy

Studied the different factors
that affect barometric
pressure in the built
environment. Estimate
indoor altitude.

Ambulation Indoor Short
term

[110] Barometer,
Accelerometer,
Gyroscope,
Magnetometer,
WiFi and
microphone

Estimate altitude
changes

Altitude Determine location
semantics such as restroom,
desk, elevator, etc. using
sensor fusion

Ambulation Indoor
and
outdoor

Short
term

[77] Barometer
and GPS

Detect vehicle
patterns

Altitude, climate
& weather, built
environment, and
air velocity during
motion

Use the effect of elevation
changes in roads and air
velocity due to motion to
detect the motion state of
a vehicle and help identify
traffic congestion

TransportationOutdoor Long
term

[99] Barometer Estimate altitude
and altitude
changes

Altitude, climate
& weather, and
sensor accuracy

Calibration of wearable
barometers using
crowd-sourcing to enable
floor localization. No
knowledge of building or
additional infrastructure is
required

Ambulation Indoor Long
term

[108] Barometer Estimate altitude
and altitude
changes

Altitude, climate
& weather, built
environment, air
velocity during
motion, and
measurement
accuracy

Recommendations to build
indoor localization from
reference pressure

Ambulation Indoor Long
term

[28] Barometer Estimate altitude
changes

Altitude, climate
& weather, built
environment, and
sensor accuracy

Activity recognition
including VDA using only
barometer and comparison
with accelerometer-only
and GPS-only approaches

Ambulation
and
transportation

Indoor
and
outdoor

Short
term

[79] Barometer Detect vehicle
patterns and
altitude changes

Altitude, climate
& weather, air
velocity during
motion, and
sensor accuracy

Identify transportation
modes and ambulation
activities using barometer

Ambulation
and
transportation

Indoor
and
Outdoor

Short
term
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[66] Barometer Estimate altitude
and altitude
changes

Altitude, climate
& weather, built
environment, and
sensor accuracy

Floor localization using
reference pressure from
multiple barometers in
each floor

Ambulation Indoor Short
term

[70] Barometer,
Accelerometer,
Gyroscope,
and
Magnetometer

Estimate altitude
changes

Altitude Identify the mode of
vertical transport

Ambulation Indoor Short
term

426

4. Factors affecting barometric pressure427

Atmospheric pressure is the force applied per unit area by a column of air above a specified428

area [115]. It is caused by the gravitational pull of air molecules to the earth’s surface. Atmospheric429

pressure as measured by a barometer is also called the barometric pressure.430

Local atmospheric pressure is affected by several factors. From a fundamental point of view,431

these factors include the atmosphere’s fluid properties such as density, moisture content, temperature,432

and motion. Speaking more generally, we can attribute the change in local barometric pressure to433

more abstract factors such as climate and weather [116–118], air velocity during motion, altitude, and434

built environment, with intricate interplays between all these factors. The magnitudes of the resultant435

effects vary and the corresponding ranges can be quantified for specific circumstances. Several studies436

have attempted to quantify these effects and provide a rich understanding of the factors that influence437

barometric pressure.438

Table 2. Literature related to factors affecting barometric pressure.

Factors References

Climate and Weather [28,68,69,78,79,85,99,100,104,108,116–118]
Built environment [66,68,74,84,101,119–121]

Air velocity during motion [77–79,107,122–124]
Sensor accuracy [66,69,72,76,78,85,90,99,100,108,113]
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Figure 1. Orders of magnitude of changes in pressure and of the corresponding timescales for several
factors influencing barometric pressure.

4.1. Climate and weather439

The atmospheric pressure distribution on the planet is caused by the differential heating of the440

sun at different latitudes, which varies from the tropics to the polar regions [116]. Earth’s tilt also441

contributes to the heating difference, as well as the nature of the surface being heated, i.e. ocean or442

land [116]. Moisture content in the air greatly affects the pressure distribution as the dry and moist air443

are heated differently. The differential heating hence produces high- and low-pressure regions on the444

planet. Due to seasonal differences in heating, the corresponding pressure distribution also changes445

seasonally [116].446

The pressure distribution creates isobaric contours—i.e. the point along which atmospheric447

pressure is constant [116]. By a combination of the pressure differences in these isobaric regions and448

the Coriolis force generated by the earth’s rotation, the air is moved from one place to another, creating449

wind. The resulting forces impact various scales, creating both the long-term climatic system of the450

planet and the short-term weather patterns observed locally.451

It is very important to note that all weather patterns observed are caused by very small changes452

in pressure—i.e the maximum change in the sea-level atmospheric pressure never exceeds 5% of the453

absolute atmospheric pressure [116]. A gentle breeze (15 km/hr) creates a pressure difference of 10 Pa454

and a strong breeze (45 km/hr) creates 100 Pa difference [125]. Although the magnitude of wind factor455

is significant, their time scales are often slower than the scale of the human activity to be predicted.456

During the estimation of floor height, Liu et al. [104] showed that a windy day produces error in their457

estimation of floor height, while Sankaran et al. [79] found that a windy day produced no significant458

change in their prediction of mobility. Sanakaran et al. [79] further noted that neither wind nor rain had459

any significant impact in HAR. Similarly, Vanini et al. [28], while performing their VDA classification,460

found that neither cloudy nor rainy weather had any impact whatosever. Bao et al. [85] estimated461

the error caused by the wind and developed a model that takes into account the dynamic pressure462

change to remove this effect based on the wind speed. Figure 2 a shows an example of the effect of463

wind on barometer data: the pressure fluctuations when the sensor is exposed to wind are slightly but464

not significantly more erratic than the noise due to the sensor resolution.465



Version November 30, 2020 submitted to Sensors 15 of 28

Similar to surface heating, the upper part of the atmosphere is heated differently over the period of466

a day. The resulting diurnal temperature variations give rise to a diurnal pressure cycle (Fig 2 b) [117].467

This behavior has been well documented since the 1830’s [118], with a semi-diurnal cycle with two468

peaks around 9am–12pm and 9pm–12am, depending on the latitude [108]. In the tropics, the first late469

morning/afternoon cycle has the highest amplitude due to maximum heating during the day, while470

the second night cycle has a lesser amplitude given the reduced solar heating [117]. In the mid-latitude471

regions, these peaks are shown to have similar amplitudes for both cycles [117]. The highest pressure472

variations are reported closer to the equator with 320 Pa between maxima and minima, while the473

mid-latitude difference does not exceed 80 Pa [117]. Besides the periodical pressure variation, the474

absolute pressure also changes from day-to-day [108]. These changes are, however, prominent in475

mid-latitude regions (∼ 600 Pa on average) while it is smaller in the tropic (∼ 70 Pa on average).476

Ho et al. analyzed pressure data from 2, 309 U.S. cities and observed that these variations are477

less than 100 Pa per hour during 99% of the time [78], while Liu et al. [69] observed that they could478

exceed 100-Pa for intervals larger than one hour and remained stable over short intervals of less than479

one minute. The time scale of the diurnal pressure cycle is hence much larger than many human480

activity time scales, and these slow variations are not concerning for applications related to study and481

classification of human behavior [28,100]. Ho et al. [78] used reference pressure from nearby weather482

stations to alleviate this effect when identifying the correct elevation of a vehicle path. Bao et al. [85]483

modeled the first-order difference of this pressure cycle as a white Gaussian stochastic process. Other484

studies have focused on using relative pressure changes called differential pressure instead of the485

absolute pressure [68,99,100].486

and weather.png

Figure 2. Climate and Weather (a) Diurnal pressure cycle in Singapore (b) Effect of wind. Recorded by
custom-made device (barometer model - BMP280) with ∼ 1 Hz sampling rate.

4.2. Built environment487

Ambient pressure can be controlled in an enclosed space using mechanical systems like Heating,488

Ventilation, and Air-conditioning (HVAC) systems [119]. Absolute and relative barometric pressure489

can thus be affected by these control systems. Buildings are positively pressurized compared to the490

exterior so as to have an outflow of air [120]. The magnitude of pressure differences is recommended491

by architects and regulatory authorities based on the function of the space. A minimum of 2.5 Pa492

is required for general living spaces, while a clean or aseptic isolation room is kept in a pressure493

difference of 12 ∼ 50 Pa to avoid contamination from outside.494

Lstiburek et al. [121] list the four types of pressure field experienced by a building: 1. exterior495

field—outside a building, 2. interior field—inside a building room, corridors, stairwells, etc., 3.496

interstitial field—building cavities, and 4. air conveyance system field—air supply, heating, exhaust497

systems, etc. The temperature, moisture, and pressure inside a building hence fluctuate over the day498

by the interaction of these pressure fields caused by the building structure, climate & weather, and499

the mechanical systems inside the structure [121]. Bollmeyer et al. [84] observed that temperature and500
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humidity changes in a room have very little impact on barometric pressure. For instance, a temperature501

change of 10 degrees Celsius causes a ±1 Pa change, while a humidity change from 10% to 90% creates502

a pressure difference of less than 0.12 Pa.503

Muralidharan et al. [68] observed that the type of building space (tall, short, narrow and/or504

wide) and building pressurization also have little effects on barometric pressure measurement. They505

recorded pressure differences of less than 20 Pa even across multiple days. Xia et al. [66] similarly506

found no significant effects due to air-conditioning in their prediction of floor location.507

Even if HVAC systems and the built environment have little effects on HAR, the transition508

between indoor and outdoor has been shown to produce noticeable pressure changes. Wu et al. [74]509

found that a constant pressure difference of 25 Pa between the interior and exterior of a building510

creates a pressure difference of 20 ∼ 40 Pa measured by barometer integrated to smartphones when511

carried during a door opening. Similarly, Bollmeyer et al. [84] found a 30 Pa jump when a door is512

opened and a 20 Pa jump when a window is opened. Lstiburek et al. [121] showed in 2002 that indoor513

air-conditioning can lead to pressure changes of approximately 2 Pa. More recently, Xu et al. [101]514

measured pressure differences between a room and the exterior of approximately 40 Pa.515

4.3. Air velocity during motion516

Vehicles like cars and buses are in quasi-equilibrium with their environment due to the vents and517

ducts allowing the airflow in. This means that the barometric pressure inside a vehicle is very close to518

the exterior pressure. Note that the term ‘exterior’ denotes the air pressure in the immediate vicinity519

of the vehicle and not the ambient pressure far from it, which could be drastically different. This is520

due to the fact that ambient pressure is increased by the vehicle’s motion near its surface where the521

dynamic pressure increases and the static pressure falls. The stagnation pressure on the surface caused522

by stopping the airflow near the surface produces a pressure distribution across the vehicle. This, in523

turn, creates pressure fluctuations inside the vehicle whenever its motion changes. However, this effect524

is transient and a quasi-equilibrium is reached quickly between interior and exterior. Figures 3a and525

3b illustrate this behavior when a barometer is carried by a human subject during a bus and car ride526

respectively, where limited pressure fluctuations (∼ 50 Pa) are observed.527

On the other hand, the transition between stationary and moving vehicle can be quite noticeable.528

Ho et al. [78] found that the opening of a door/window during driving creates pressure changes of529

up to 30 Pa. During a car ride, they showed that switching the air-conditioning on and off created a530

pressure difference of 50 Pa [78]. It is very challenging to attribute it to climate-control system alone531

as the air-conditioning also brings in ventilated fresh air from the outside. However, Dimri et al. [77]532

observed that although there is a range of pressure jumps between different driving conditions (window533

open/closed, door open/closed, and AC on/off), this did not affect the prediction of whether a vehicle534

was stationary or in motion. This shows that during vehicle motion, air velocity can substantially535

determinate the pressure jumps more than the vehicle environment itself. More importantly, the536

pressure fluctuations experienced by the vehicle during its motion are predominant. This is shown in537

Fig. 3 c, where successive accelerations and decelerations of the train create significant pressure drops538

and rises respectively when it leaves and approaches a stop.539

This effect can be severely amplified by the built environment such as tunnels for instance.540

Vehicles passing through a tunnel experience a “piston effect", where air is pulled inside the tunnel as541

the air is pushed back by the vehicle in motion [122,126]. This is shown in Figure 3b, where the car542

entering a tunnel leads to a drastic change of more than 200 Pa in the pressure measured inside the543

car. This effect has been shown to create a train of compression waves throughout the tunnel similar544

to sonic booms [123]. Sankaran et al. [79] showed that the pressure fluctuations during underground545

subway rides can exceed 200 Pa compared to a bus ride that shows fluctuations of ∼ 50 Pa. Barnes et546

al. [124] analyzed road vehicle passage through tunnels in the Boston metropolitan area and found547

that the smaller the clearance between vehicle top and the tunnel roof, the higher the negative pressure548

drop on the sensor fixed to the tunnel roof, measuring a drop of 100 to 250 Pa for a clearance of 1.4 m549
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to 0.4 m. During subway rides, we can clearly distinguish between a train stop and motion [79] (see550

also Figure 3c). By combining this behavior with relative elevation data of train stations, Hyuga et551

al. [107] used the pressure jumps to estimate the location of a user during a subway ride.552

velocity during motion.png

Figure 3. Illustration of the effect of air velocity during motion (a) Bus ride (b) Car ride and the
effect of built environment (Tunnel) (c) Subway train ride. Each panel shows the effect of air velocity
during motion on the barometric pressure, with different modes of transport showing different types
of changes. Subway train rides yield the highest changes in magnitude ( ∼ 200 Pa), while bus and car
rides show relatively smaller amplitude changes ( ∼ 50 Pa), except when a car is entering a tunnel.
The panels also show the effect of elevation changes during travel. In panel (a), there is a fall and rise in
pressure around 18 : 35, corresponding to a climb and descent on the road path. Similarly, a drop and
rise in pressure is observed in panel (b), where the car climbed and descended on an elevated bridge
just before entering a tunnel. In panel (c), the acceleration of the train as it leaves the stop creates a
sudden pressure drop, and a rise in pressure is subsequently observed as it approaches a stop, followed
by a small dip in pressure as the train comes to equilibrium with the station environment, thus creating
a repeating pressure pattern. Data was recorded by carrying a custom-made device (barometer model -
BMP280) in different transport modes with a sampling rate ∼ 0.06 Hz.

4.4. Altitude553

Atmospheric pressure falls as we travel vertically upward above the earth’s surface. This is due554

to the earth’s gravitational pull of air molecules to the surface, which gives rise to a pressure gradient555

equals to −ρg, where ρ is the air density and g is the local acceleration of gravity. As a consequence,556

the rate of change of altitude with pressure is almost linear near the earth’s surface while it is almost557

exponential at higher altitudes when taking into account the variations of the air density with pressure558

and temperature [115]. This is again due to gravity which is stronger near the earth’s surface combined559

with the fact that air molecules in lower atmosphere are compressed by the air molecules above560
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them [127]. For all purposes involving human activity under 10 km altitude above sea-level, it is safe561

to assume a linear relationship with altitude that typically shows a pressure decrease of 115 Pa per 10562

meters climb [115]. As an illustration of the magnitude of the effect in the context of human activities,563

Figure 4 shows the barometric pressure change due to change in elevation through different vertical564

mobility modes such as elevator, escalator, and stairs.565

Pressure-altitude relation: The pressure-altitude relationship can be derived from the fundamental
equation for fluids at rest [128]. Assuming an incompressible fluid in isothermal conditions, the change
in elevation is given by

z2 − z1 = − p2 − p1

γ
, (1)

where γ = ρg is the specific weight of air with density ρ = 1.225 kg/m3 and acceleration due to gravity566

g = 9.81 m/s2 at standard sea-level conditions. This pressure-altitude elevation holds with negligible567

errors as long as the elevation under study is less than 10 km from sea-level [128], which is the case in568

most studies.569

Figure 4. Effect of variations of altitude during human activity and motion. (a) Elevator (b) Escalator
(c) Stairs. Data was collected by carrying a mobile device with a sampling rate ∼ 1 Hz on different
modes of vertical mobility. For panel (a), the elevator was intentionally stopped at each floor in the first
part of the data collection, to show the ability to distinguish single floor changes. In the second part,
only one stop was made between the first and last floor. Finally, the last part of the data correspond to
an uninterrupted elevator ride between the first and last floor. The data in panel (b) was collected by
continuously climbing and descending on the same escalator, and the data in panel (c) was collected
while using stairs. The escalator climb and descend in panel (c) corresponds to an average pressure
difference of 80.7 Pa with a standard deviation of 3 Pa, showing the accuracy in recording relative
pressure changes. Moreover, the relative pressure of 80 Pa corresponds to a height of 6.6 meters
according to Eq. (1), close to the measured height of 7.3 meters and within the sensor resolution of
±1 meter.



Version November 30, 2020 submitted to Sensors 19 of 28

4.5. Sensor accuracy570

The quality of measurement of barometric pressure is limited by the sensor’s accuracy. Both571

absolute and relative barometric pressure can change between devices due to differences in sensors572

and their characteristics. Here, the ensuing measurement errors are defined as caused by such inherent573

limitations of the sensor and not due to other factors, such as the environmental ones discussed574

previously [72,85].575

Device dependency: The device dependency is introduced to account for differences between576

devices and software platforms [66,99,100,108,113], manufacturing inconsistencies, and inappropriate577

calibration by the manufacturer [100]. Figure 5-a illustrates how the time series of barometric pressure578

readings from two devices can differ. Absolute barometric pressure need thus to be calibrated between579

several devices for comparison [66]. This can be done before deployment or performed actively by580

using a reference pressure from nearby weather stations [85,108], building or floor level [66]. For581

instance, Ye et al. [99] used active peer-to-peer calibration when users detect each other and use the582

encounter network to calibrate all the devices. It is thus difficult or impossible to use barometers to583

measure absolute atmospheric pressure accurately without careful calibration, several studies have584

shown that it is possible to produce consistent relative pressure measurements [69,99,100,113]. The585

relative pressure however is also affected by the sensor’s resolution, drift and noise.586

Sensor resolution: The accuracy of the barometer is dependent on the built-in resolution of the587

sensor. Barometers embedded in mobile devices have generally a relative accuracy of ±10 Pa [66,99,588

104], while commercially available high-resolution sensors can reach an accuracy of ±1 Pa [72,76,85,90].589

Sensor resolution is also affected by the measurement errors caused by noise. Haque et al. [72] used590

Allan Deviation (ADEV), a time domain analysis, to estimate the non-stationary errors of four different591

barometer models and listed the random noise processes that are dominant for a given observation592

period.593

Sensor drift: Some sensors exhibit a drift in time due to faulty manufacturing or old age. Ho et594

al. [78] found this to be a temporary drift with a non-Gaussian distribution, and were able to remove it595

by modeling the noise as an Ohnstein–Uhlenbeck diffusion process—a process that pushes the drift596

towards its mean or center.597

Sampling frequency: the recording frequency determines the completeness of the data. Weather598

stations generally send out data every hour, while mobile barometers embedded in mobile devices599

can be designed to output at a rate of 1 ∼ 20 Hz [76,79,82,83,92,94,104,114] or higher [67,89,105].600

Depending on the activity to be recognized, this sampling frequency should be set appropriately to601

capture the actual time scale of the activity. As an illustration, Figure 5-b shows the time series of602

barometric pressure recorded by two devices with different sampling rates - 1 Hz and 0.06 Hz. It603

shows that altitude might not be accurately estimated during certain periods if the sampling rate is not604

high enough.605
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accuracy.png

Figure 5. Sensor accuracy (a) Device dependency: Two mobile phones were simultaneously carried
by a human subject on an escalator to record the barometric pressure at ∼ 1 Hz sampling rate. The
absolute pressure measured by each device is significantly different, while the relative pressure is
practically constant. (b) Effect of sampling frequency: A mobile phone and a custom-built device were
simultaneously carried by a human subject on stairs. They were both embedded with the same MEMS
barometer model BMP280 but with different sampling rates, ∼ 1 Hz and ∼ 0.062 Hz respectively. This
panel shows how the sampling rate affects the detection of altitude changes.

5. Future research606

Today, barometers are found in almost (if not all) wearable devices and smartphones. The vast607

breadth of applications listed in this review underscores the tremendous potential use in extracting608

barometric pressure data on a massive scale. Some attempts with limited scope are reported in Table 1.609

However, the systematic use of barometer data could be envisioned at large scale and on long time610

scales as a tool to study some aspects of the behavior of large populations of humans (or other living611

creatures) in their free-living environment, similarly to what has been done with mobile phone call612

detail records for studies of communications and mobility.613

Tracking human activities inevitably leads to privacy issues. Anonymity of individuals614

cannot be guaranteed even with coarse spatial and temporal resolutions of the collected data [129].615

Re-identification of individuals from seemingly anonymous data has been shown to be effectively616

performed due to unique signatures of human mobility [129,130]. This issue arises as well with the617

use of barometers, where re-identification of human subjects could be possible using the tracking of618

altitude changes during the start and end of each day. In effect, barometer can be used to perform619

the so-called last-mile tracking that increases the spatial resolution from a block to a floor. This is620

a particularly pronounced problem in highly vertical cities, and a proper framework to protect the621

privacy should take into account the potential use of barometer data when tracking human activity.622

Furthermore, barometers are increasingly used as a practical complement to other sensors for623

tracking human activities. Methods that enable sensor data fusion of barometric signals to other624

sensory data need to evolve to fully realize the barometers’ full potential.625
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The application of barometers to study gait patterns, step count, environmental monitoring,626

building monitoring, vehicle tracking, and health monitoring should be more widely explored. For627

instance, when aiming at the detection of VDA, barometric signal data need to be considered not only628

to recognize altitude changes but also to determine the mode of vertical transport (stairs climbing,629

slope, escalator or elevator ride). In studying epidemic disease propagation for example, it makes a630

significant difference to recognize whether the subject is in an elevator (closed space) or on an escalator631

(open space).632

Table 1 also shows that for many applications, not all the factors that can influence pressure are633

always considered, even after taking into consideration the limited scope of these studies. These634

factors are not always fully understood and their magnitude is not universally agreed upon due to635

the wide range of conditions under which these experiments are performed (see Fig. 1). It is thus636

crucial to understand and quantify all the factors affecting the barometric pressure when working637

on a particular problem or application related to human activity tracking and recognition. Some of638

these effects may be irrelevant, while others might impair our ability to properly identify patterns of639

activity from the sensed data. Section 4 of the present review endeavors to move in this direction by640

reviewing the fundamental properties of atmospheric pressure and inspecting their interaction with641

several environmental conditions that arise when a barometer is carried by a human. It also brings642

together a range of studies from different fields of science and engineering that have contributed to643

improve the understanding of the factors influencing atmospheric and barometric pressure and to644

quantify their respective magnitude (see Fig. 1).645
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The following abbreviations are used in this manuscript:654

MEMS Micro-ElectroMechanical System
GPS Global Positioning System
ADL Activities of Daily Living
UAV Unmanned Aerial Vehicle
IoT Internet of Things
IMU Inertial Measurement Unit
Pa Pascal (unit)
Hz Hertz (unit)
PCA Principal Component Analysis
VDA Vertical Displacement Activities
SMOTE Synthetic Minority Over-sampling Technique
BMI Body Mass Index
ML Machine Learning
RFID Radio Frequency IDentification
FIR Finite Impulse Response filters
IIR Infinite Impulse Response filters
DP Differential Pressure
HAR Human Activity Recognition
SVM Support Vector Machine
LSTM Long Short Term Memory networks
HMM Hidden Markow Model
ANN Artificial Neural Network
RNN Recurrent Neural Network
DTW Dynamic Time Warping
HVAC Heating, Ventilation, and Air-conditioning system
AC Air-conditioning system
ADEV Allen Deviation
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