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Cytokines are major players regulating immune responses toward inflammatory and

tolerogenic results. In organ and bone marrow transplantation, new reagents are needed

to inhibit tissue destructive mechanisms and eventually induce immune tolerance without

overall immunosuppression. IL-34 is a cytokine with no significant homology with any

other cytokine but that acts preferentially through CSF-1R, as CSF-1 does, and through

PTPζ and CD138. Although IL-34 and CSF-1 share actions, a detailed analysis of

their effects on immune cells needs further research. We previously showed that both

CD4+ and CD8+ FOXP3+ Tregs suppress effector T cells through the production of

IL-34, but not CSF-1, and that this action was mediated through antigen-presenting

cells. We showed here by single-cell RNAseq and cytofluorimetry that different subsets

of human monocytes expressed different levels of CSF-1R, CD138, and PTPζ and

that both CD4+ and CD8+ FOXP3+ Tregs expressed higher levels of CSF-1R than

conventional T cells. The effects of IL-34 differed in the survival of these different

subpopulations of monocytes and RNAseq analysis showed several genes differentially

expressed between IL-34, CSF-1, M0, M1, and also M2 macrophages. Acute graft-

vs.-host disease (aGVHD) in immunodeficient NSG mice injected with human PBMCs

was decreased when treated with IL-34 in combination with an anti-CD45RC mAb that

depleted conventional T cells. When IL-34-differentiatedmonocytes were used to expand

Tregs in vitro, both CD4+ and CD8+ FOXP3+ Tregs were highly enriched and this effect

was superior to the one obtained with CSF-1. Human CD8+ Tregs expanded in vitro

with IL-34-differentiated allogeneic monocytes suppressed human immune responses in

an NSG mouse aGVHD model humanized with hPBMCs. Overall, we showed that IL-34

induced the differentiation of human monocytes with a particular transcriptional profile

and these cells favored the development of potent suppressor FOXP3+ Tregs.
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INTRODUCTION

Organ and bone marrow transplantation is the only treatment
for patients suffering from a number of diseases. In organ
transplantation, the use of immunosuppressors has allowed
remarkable success in the short and medium term graft survival,
but unwanted side effects still lead to high morbidity and
mortality, even when avoiding excessive immunosuppression (1).
In bone marrow transplantation, acute and chronic GVHD are
very frequent complications with high mortality and morbidity
and thus with high unmet clinical needs (2, 3). In the long term,
immunosuppressors can even be deleterious in the establishment
of tolerance (4). Therefore, new treatments are needed that
will be more specific for allogeneic immune responses and/or
induce fewer side effects and that would allow, at the least,
to decrease the use of immunosuppressors. Cytokines and
enzymes controlling metabolic pathways have been described
as powerful tools for controlling immune responses and it
is important to identify new mediators of immune tolerance.
Interleukin-34 (IL-34) is a cytokine, described for the first
time in 2008 (5). Although IL-34 shares no homology with
macrophage colony-stimulating factor (CSF-1 or M-CSF) in its
amino acid sequence, they share a common receptor (CSF-1R
or CD115) and IL-34 also has two distinct receptors, protein-
tyrosine-phosphatase zeta (PTPζ) and CD138 (syndecan-1) (6,
7), suggesting additional roles for IL-34. In addition, the affinity
of IL-34 for CSF-1R is higher than the one of CSF-1 and
the binding mode to CSF-1R, as well as signaling of both
cytokines, are different (8). Until now, studies have demonstrated
that IL-34 is released by some cell types and is involved in
the differentiation and survival of macrophages, monocytes,
and dendritic cells (DCs) in response to inflammation, in the
development of microglia and Langerhans cells (9, 10). More
recent articles have described the immunoregulatory properties
of IL-34 (11, 12). We have demonstrated that IL-34 is secreted by
FOXP3+ CD4+ and CD8+ regulatory T cells (Tregs) in human
and CD8+CD45RClow/− Tregs in rat. We also demonstrated
that blockade of IL-34 in vitro in human and rat co-culture
suppression assays inhibited both CD4+ and CD8+ Tregs
suppressive function. Most importantly, we also showed that IL-
34 treatment in vivo in a rat model of cardiac allograft induced
transplant tolerance through the differentiation of macrophages
toward a regulatory profile and subsequent induction of CD4+

and CD8+ Tregs by these macrophages (12). This role had never
been evidenced before and needed to be explored in humans.
We therefore investigated the tolerogenic effect of IL-34 on
monocytes/macrophages and the mechanisms by which CD4+

and CD8+ Tregs were generated. Since CD4+ and CD8+ Tregs
produce IL-34, our hypothesis was that IL-34 acts in autocrine
and paracrine fashions to reinforce immune tolerance. Thus,
we analyzed the expression of IL-34 receptors (CSF-1R, CD138,
and PTPζ) on human monocytes and T cells and assessed the
effect of IL-34 on human monocytes by single cell and bulk
RNAseq. We also analyzed the effects of IL-34 on human Treg
cell generation and evaluated in immune humanized mice the
suppressive function of CD8+ Tregs differentiated using IL-34-
treated human monocytes in a model of acute GVHD.

In the present manuscript we report that IL-34 can
act on CD14++CSF-1R+PTPζ+ monocytes and CD4+ or
CD8+ FOXP3+CSF-1R+ Tregs in an autocrine manner.
We demonstrate that IL-34 action on monocytes results in
differentiation toward a regulatory macrophage profile different
from M2 macrophages, as shown by transcriptomic profiling.
We demonstrate also that naive and effector precursor T
cell depletion using anti-CD45RC mAbs results in synergistic
enhanced IL-34 tolerogenic action in vivo. In vitro, we show that
IL-34 is more efficient at inducing FOXP3+ Tregs than CSF-1 and
that these FOXP3+ Tregs can efficiently control GVHD in vivo in
a model of immune humanized immunodeficient mice.

Altogether, these data provide new informations on this new
function of IL-34 on regulating Treg activity.

MATERIALS AND METHODS

Healthy Volunteers’ Blood Collection and
PBMC Separation
Blood from healthy individuals was obtained at the Etablissement
Français du Sang (Nantes, France). Written informed consent
was provided according to institutional guidelines. Peripheral
blood mononuclear cells (PBMCs) were separated by Ficoll-
Paque density-gradient centrifugation (Eurobio, Courtaboeuf,
France). Red cells and platelets were eliminated using a hypotonic
solution and centrifugation.

Cell Isolation
CD14++CD16−, CD14++CD16+, and CD14dimCD16++

subsets were FACS Aria sorted from PBMCs based on size
morphology and CD14++/dimCD16++/− expression for
differentiation with IL-34 (Supplementary Figure 1E). Total
CD14+ monocytes were isolated using a negative selection
kit (Miltenyi Biotec., Bergisch Gladbach, Germany) for
phosphorylation analysis, or by magnetic depletion (Dynabeads,
Invitrogen) of CD3+, CD16+, and CD19+, then FACS
Aria sorting of CD14++ cells for both RNA sequencing
analysis and Treg expansion. CD8+ Tregs were obtained by
enrichment of PBMCs in T cells (to 80% T cells) by magnetic
depletion of CD19+, CD14+, and CD16+ and then sorting of
CD3+CD4−CD45RClow/− cells (Supplementary Figure 4A)
using FACS ARIA II (BD Biosciences, Mountain View, CA,
USA). Allogeneic APCs were isolated by magnetic depletion of
CD3+ cells from PBMCs.

Quantification of CSF-1R and PTPζ

Signaling Pathway Activation
Freshly sorted CD14+CD16− monocytes were plated at 1
× 106 cells/ml in fetal bovine serum (FBS)-free RPMI
1640 medium (1% penicillin-streptomycin, 1mM glutamine,
1% NEAA, 10mM Hepes, 1mM sodium pyruvate) in low
attachment round-bottomed 96-well plates (Perkin-Elmer, Inc.,
Waltham, MA, USA), and left untouched for 2 h before
adding IL-34 or CSF-1 at a final concentration of 100 ng/ml.
Analysis of the phosphorylation of AKT and ERK1/2 after
1, 3, 5, 10, and 15min was performed by flow cytometry
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following the BD Biosciences Phosflow protocol, using the
BD Cytofix Fixation buffer and BD Phosflow Perm Buffer
III (BD Biosciences), as well as phospho-AKT (Ser473) and
phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) primary goat
antibodies (Cell Signaling Technology, Leiden, TheNetherlands),
and goat anti-rabbit IgG(H+L)-AF647 (Life Technologies,
ThermoFisher Scientific) secondary antibody.

Differentiation of Monocytes and
Expansion of Tregs
Monocytes were seeded at 1 × 106 cells/mL in complete
RPMI 1640 medium supplemented with 10% FBS and IL-34
(2 nM, eBiosciences, ThermoFisher Scientific, Waltham, MA,
USA) or CSF-1 (2 nM, R&D Systems, Bio-techne, Minneapolis,
MN, USA) and macrophages were harvested at day 6. M1
macrophages were obtained by supplementing the medium
with granulocyte-macrophage colony-stimulating factor (GM-
CSF, 10 ng/mL, Cellgenix, Freiburg, Germany) over 5 days and
by addition of interferon-gamma (IFNγ, 1000 U/mL, Miltenyi
Biotec) from day 5 until day 7 of culture. M2 macrophages were
obtained by supplementing the medium with CSF-1 (25 ng/mL,
R&D Systems Biotechne) for 5 days and by addition of IL-
4 (20 ng/mL, Cellgenix) and IL-10 (20 ng/mL, R&D Systems
Biotechne) from day 5 until day 7 of culture. Lipopolysaccharide
(LPS, 100 ng/mL, Sigma Aldrich, Saint-Louis, MO, USA) was
added in the culture for the last 24 h for cytokine dosage.
Macrophages were harvested using Trypsin (TryPLE, Gibco,
ThermoFisher Scientific) at day 7.

Allogeneic PBMCs were seeded at 1 × 106 in 24-
well plate in Iscove’s modified Dulbecco’s medium (IMDM),
supplemented with 2mM glutamine, 100 U/ml penicillin,
0.1 mg/ml streptomycin, and 5% human AB serum with
IL-34- or CSF-1- differentiated macrophages at a ratio of
PBMCs:macrophages 5:1 and cultured for 14 days.

CD8+CD45RClow/− Tregs were seeded at 5 × 105

cells/cm²/500 µl in flat-bottom plates coated with anti-
CD3 mAb (1µg/mL, OKT3, hybridoma from the European
Collection of Cell Culture), in complete RPMI 1640 medium
supplemented with 10% FBS, IL-2 (1,000 U/mL, Proleukin,
Novartis), IL-15 (10 ng/mL, Miltenyi Biotec) and soluble
anti-CD28 mAb (1µg/mL, CD28.2, hybridoma from the
European Collection of Cell Culture) in the presence of IL-
34-differentiated macrophages or allogeneic APCs irradiated
(35Gy) at 1:4 Treg:IL-34-macrophage or APC ratio. CD8+ Tregs
were stimulated again using anti-CD3 and anti-CD28 mAbs at
day 7 of culture and IL-2 and IL-15 were freshly added at days 0,
2, 4, 7, 10 and 12.

Monoclonal Antibodies and Flow
Cytometry
Antibodies used are listed in Table 1 and
Supplementary Table 1. For analysis of intracellular cytokines,
Tregs were incubated with PMA, ionomycin, and brefeldine A
(10µg/ml) for 4 h before staining. Fc receptors were blocked (BD
Biosciences) before staining and cells were permeabilized with a
Fix/Perm kit (Ebiosciences).

TABLE 1 | List of antibodies used.

Marker Clone Provider

CD14 M5E2 BD Biosciences

CD16 3G8 BD Biosciences

CD115 9-4D2-1E4 BD Biosciences

PTPζ Polyclonal Bioss

CD138 MI15 BD Biosciences

CD3 SK7 BD Biosciences

CD4 RPA-T4 BD Biosciences

CD8 RPA-T8 BD Biosciences

CD25 M-A251 BD Biosciences

CD45RC MT2 IQProduct

CD19 HIB19 BD Biosciences

CD56 B159 BD Biosciences

CD335 9E2/Nkp46 Biolegend

CD86 2331 BD Biosciences

CD80 L307.4 BD Biosciences

CD40 5C3 BD Biosciences

CD206 19.2 BD Biosciences

CD169 7-239 BD Biosciences

CD163 GHI/61 BD Biosciences

CD209a DCN46 BD Biosciences

CD36 HIT2 BD Biosciences

CD1a HI149 BD Biosciences

IL-34 578416 R&D System

TGFβ1 TW4-9E7 BD Biosciences

FOXP3 259D/C7 BD Biosciences

IFNγ B27 BD Biosciences

Tbet O4-46 BD Biosciences

GITR REA841 Miltenyi Biotec

PD-1 EH12.1 BD Biosciences

CD127 hIL-7R-M21 BD Biosciences

CD28 CD28.2 BD Biosciences

CD27 M-T271 BD Biosciences

CD45RA HI100 BD Biosciences

HLA-DR L243 BD Biosciences

CD154 TRAP1 BD Biosciences

TRAIL RIK-2 BD Biosciences

CD103 Ber-ACT8 BD Biosciences

hCD45 HI30 BD Biosciences

mCD45 30-F11 BD Biosciences

Phospho-Akt (Ser473) D9E Cell Signaling Technology

Phospho-p44/42 MAPK (Erk1/2)

(Thr202/Tyr204)

D13.14.4E Cell Signaling Technology

Fluorescence was measured with LSR II or Canto II
cytometers (BD Biosciences) and analyzed with FLOWJO
software (Tree Star, Inc., Ashland, OR, USA).

ELISA
IL-10 and IL-12p40 were quantified in the supernatant of
monocytes cultured for 6 days as well as control M1
macrophages, and both were stimulated for the last 24 h with LPS
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at 100 ng/ml usingHuman IL-10 ELISA Set andHuman IL-12p40
ELISA Set performed according to manufacturer’s instructions
(BD Biosciences).

DGE-RNA Sequencing
CD14++CD16− monocytes were sorted by FACS Aria and lysed
in RLT Buffer (Qiagen). RNeasy-Mini Kits (Qiagen) were used to
isolate total RNA that was then processed for RNA sequencing. A
protocol of 3′ Digital Gene Expression (DGE) RNA-sequencing
was performed as previously described (13). Library was run on
an Illumina NextSeq 550 high-output (2 × 75 pb) (Genom’IC
platform, Cochin Institute, Paris). Reads 1 encode for well-
specific barcodes and unique molecular identifiers (UMIs)
whereas Reads 2 encode for 3’ mRNA sequences and were aligned
to human genome reference (hg19). Count matrix was generated
by counting sample-specific UMI associated with genes for
each sample. Differentially expressed genes between conditions
were calculated using R package Deseq2 (Bioconductor) by first
applying a regularized log transformation (rlog). Genes with
adjusted p-value inferior to 0.05 were considered as differentially
expressed. Heatmaps were generated by scaling and center genes
expression. Finally, a volcano plot was designed by plotting -
Log10 of adjusted p-value in function of log2 Fold Change;
highlighted genes correspond to differentially expressed genes.
The accession number for DGE-RNA sequencing raw data and
processed data is GEO:GSE151194.

Single Cell RNAseq Analysis
An online public dataset of 10X genomics (https://support.
10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/
5k_pbmc_v3_nextgem) was used to analyze gene expression of
SDC1 (CD138), PTPRZ1 (PTPz) and CSF-1R in human PBMCs.
Data were processed with “Seurat” package (version 3.1.3) in R
software (RStudio, Inc., Boston). To eliminate unwanted cells
(debris and doublets), cells with fewer than 200 genes or more
than 4,000 genes were excluded. Then, cells with more than 10%
of mitochondrial genes were excluded from the downstream
analysis. Single cell transcriptomes were first normalized (log
normalization) and then scaled. The most variable genes were
found according to the variance stabilizing transformation
(vst) method and were used to perform Principal Component
Analysis (PCA). Clustering was performed on the first nine
principal components, and hPBMC subsets were characterized
according to expression of common membrane markers. Finally,
a supervised analysis was performed to classify CD14++CD16−,
CD14++CD16+, and CD14dimCD16++ monocytes.

Immune Humanized Mouse aGVHD Model
This study was carried out according to permit numbers APAFIS
3168 from the Ministry of Research. Eight to twelve-week-
old NOD/SCID/Il2rγ−/− (NSG) mice were bred in our own
animal facilities in SPF conditions (accreditation number C44-
278). 1.5 × 107 human PBMCs were intravenously injected
in 1.5 Gy-irradiated NSG mice the day before, as previously
described (14, 15). Human PBMCs were monitored in blood
and GVHD development was evaluated by body weight loss
(14, 15). Human recombinant IL-34 (0.4 or 0.8 mg/kg/2.5 d for

20 days; from eBiosciences) and/or anti-human CD45RC mAbs
(0.8 mg/kg/2.5 d for 20 days, MT2 or ABIS-45RC clones) were
injected intraperitoneally. PBMCs were i.v. injected alone or with
Tregs in a range of PBMC:Treg ratio from 1:0.5 to 1:2.

Statistical Analysis
Two-way repeated measure ANOVA was used to analyze mouse
weight loss over time and Log Rank (Mantel Cox) test was used
to analyze mouse survival. Friedman test with Dunn’s multiple
comparison test were used to compare monocyte frequency in
PBMCs. Two-way ANOVA and Bonferroni post-test were used to
analyze the survival of monocytes during the culture, phenotype
of monocyte subsets and expanded Tregs. Mann Whitney U-test
was used to compare the IL-10/IL-12p40 ratio in the supernatants
of cultured macrophages.

RESULTS

CSF-1R and PTPζ Are Both Expressed on
CD14++ Monocytes and CSF-1R Is Also
Expressed on FOXP3+ CD4+ and CD8+

Tregs
We previously showed that IL-34 produced by FOXP3+ Tregs
acted at least on human monocytes in vitro (12). To get
a better overview of IL-34 action on the immune system,
we analyzed the expression of its reported receptors CSF-1R
(also called CD115), CD138 (also called SDC1), and PTPζ

(also called PTPRZ1) on whole PBMCs using a public single
cell RNAseq dataset (https://support.10xgenomics.com/single-
cell-gene-expression/datasets/3.0.2/5k_pbmc_v3_nextgem). We
observed that CSF-1R single cell mRNA expression was restricted
to monocytes and not significantly expressed by resting T,
B and NK cells (Figure 1A). Analysis of markers of non-
classical (CD14dimCD16++), intermediate (CD14++CD16+),
or classical (CD14++CD16−) monocytes/macrophages (16, 17)
showed that CSF-1R was expressed in all three populations
of monocytes (Figure 1B) with a higher expression in non-
classical and intermediate monocytes. In contrast, CD138
and PTPzeta mRNA expression was not detectable in resting
PBMCs (Supplementary Figures 1A,B). However, we were able
to detect PTPζ protein expression in all monocyte subsets
and we also confirmed that CSF-1R was expressed by all
monocytes, and both with a higher expression level in non-
classical monocytes (Figures 1C,D). Nevertheless, since CSF-
1R+ and PTPζ+ classical monocyte frequency in PBMCs is much
higher than CSF-1R+ and PTPζ+ intermediate and non-classical
monocytes (Figure 1E), it suggests that IL-34 will mostly act on
CD14++CD16− monocytes.

To better comprehend whether IL-34 could act directly on
Tregs, we further analyzed CSF-1R and PTPζ expression in
total CD4+ or CD8+ T cells compared to FOXP3+ CD4+

or CD8+ Tregs (Figure 1F and Supplementary Figures 1C,D).
We observed a significant expression of CSF-1R in non-
stimulated FOXP3+ CD4+ and CD8+ Tregs compared to
total CD4+ and CD8+ T cells, respectively (Figure 1F and
Supplementary Figure 1C). The expression was even higher
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FIGURE 1 | CSF-1R and PTPζ expression is restricted to monocytes and FOXP3+ Tregs. PBMCs were analyzed for CSF-1R expression at single cell transcriptional

(A,B) and proteomic levels (C–F). (A) Top: UMAP visualization of a public dataset of resting Human PBMC single cell RNA-seq from one healthy volunteer for which

subsets of monocytes, T cells, B cells, and NK cells were identified by antibody staining. Bottom: CSF-1R expression in total PBMCs. One point represents one cell.

Relative expression level is scaled from gray to dark blue. (B) Monocyte subsets were further subdivided based on RNA (RNAseq, bottom left) and protein expressions

(CITEseq, bottom right) of CD14 (left) and FCGR3A (CD16) (right) summarized in the UMAP visualization (upper left), and subsets were analyzed for CSF-1R RNA

expression (upper middle and right). One point represents one cell. Relative expression level is scaled from gray to dark blue (RNA expression) or from gray to dark

(Continued)
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FIGURE 1 | green (protein expression). Upper Right: Violin plot representing the expression level of mRNA for CSF-1R in CD14++CD16− monocytes (red), in

CD16++CD14dim monocytes (pink), and in CD14++CD16+ monocytes (purple). (C) Representative gating strategy for FACS analysis of CSF-1R, PTPζ, and CD138

expression in living (DAPI−) non-NK cells (CD56−NKp46−) CD14++/dimCD16++/+/− cell subsets from PBMCs. Representative from three individuals. (D) Frequency

(left) of CSF-1R, PTPζ, and CD138 expressing cells and expression level (MFI) of CSF-1R and PTPζ (right) in CD14++/dimCD16++/+/− cell subsets. n = 3 individuals.

(E) Frequency of CSF-1R+, PTPζ+, and CD138+ monocytes in total PBMCs. n = 3 individuals. (F) Frequency of CSF-1R expressing cells in stimulated (black) or not

(white) FOXP3+/− CD4+ or CD8+ T cells. n = 5 individuals. Mann Whitney tests, *p < 0.05, **p < 0.01.

following stimulation, although it remains lower than on
monocytes. We did not observe expression of PTPζ on Treg cells
(Supplementary Figure 1D).

Altogether, these results suggest that IL-34 can act on CD14++

monocytes, likely through CSF-1R and PTPζ and on FOXP3+

Tregs through CSF-1R in PBMCs.

IL-34 Preferentially Acts Through
CD14++CSF-1R+PTPζ+ Monocytes to
Induce Immunoregulation
We and others have shown that IL-34 induces differentiation of
human CD14++ monocytes into macrophages with regulatory
properties (12, 18). However, we observed that CSF-1R and
PTPζ expressions was higher on non-classical and intermediate
than classical monocytes, thus we investigated in each of
the three subpopulations the survival and maturation upon
IL-34 treatment compared to M1- and M2-macrophages
differentiated with GM-CSF+IFNγ or CSF-1+IL-4+IL-10,
respectively, as controls (18, 19) (Figure 2A and cell sorting
in Supplementary Figure 1E). Classical monocytes were
largely predominant over intermediate and non-classical
monocytes among PBMCs (about 18.8 vs. 4.7 vs. 1.8%,
respectively, Figure 2B), and together with intermediate
monocytes had a lower survival rate after 6-days culture
than non-classical monocytes (10.6 vs. 24.7 vs. 21.2% for
CD14++CD16−, CD14dimCD16++, and CD14++CD16+,
respectively, Figure 2C). Comparing the phenotype, classical
monocytes differentiated with IL-34 expressed higher levels
than non-classical monocytes of M2-type markers CD163,
CD36, CD169, CD206, CD14, and TRAIL (Figure 2D and
Supplementary Figure 1F), displayed an anti-inflammatory
cytokine secretion profile (Figure 2E), were isolated (vs. in
clumps for non-classical differentiated monocytes) and displayed
fewer dendrites under macroscopic observation (vs. intermediate
and non-classical monocytes) (Supplementary Figure 1G).
Intermediate monocytes had an intermediate phenotype, closer
to classical than non-classical monocytes (Figures 2D–E).
Interestingly, non-classical monocytes expressed high levels of
the M2-associated marker CD209a after culture in the presence
of IL-34 (Figure 2D). Finally, CD11b was more expressed
in classical and intermediate monocytes, in accordance with
previous observations (12, 20).

These results show that IL-34 is more efficient at inducing
M2-like macrophages from classical and intermediate monocytes
than non-classical monocytes and suggest that CD14++CSF-
1R+PTPζ+ monocytes are the cells through which IL-34
induces immunoregulation.

IL-34 Efficiently Induces Regulatory
Macrophages From Classical Monocytes
Expressing Different Genes Than
CSF-1-Treated Macrophages
We further investigated the signal induced in CD14++CD16−

classical monocytes by IL-34 after binding the CSF-1R and PTPζ

receptors in comparison to the signal induced by CSF-1 binding
CSF-1R only. We observed a significant increase in the levels
of phosphorylated AKT (Figure 3A) and ERK1/2 (Figure 3B)
at 3 and 5min following the addition of both IL-34 and CSF-1,
compared to medium alone. CSF-1 induced non-significant
slighter and higher levels of AKT and ERK1/2 phosphorylation
compared to IL-34. After 6 days of culture, we observed
morphological differences in the presence of IL-34 compared to
CSF-1, with fewer dendrites and a more rounded morphology
for IL-34-differentiated macrophages (Figure 3C), suggesting a
difference in the phenotype of the differentiated macrophages.
To further understand the similarities and differences of
the IL-34 vs. CSF-1 induced macrophages, we performed a
3’ digital gene expression RNA-sequencing (DGEseq) and
compared freshly isolated CD14++ monocytes (M0), 6-days
differentiated macrophages in the presence of GM-CSF+IFNγ

(M1), CSF-1+IL-4+IL-10 (M2), IL-34 alone, or CSF-1 alone
(Figures 3D–F). Transcriptomic clustering (Figure 3D),
principal component (Supplementary Figure 2A), and Pearson
correlation (Supplementary Figure 2B) analyses highlighted the
transcriptional changes following differentiation and indicated
clear divergence between CD14++ monocytes (M0) and M1-
macrophages vs. all other groups and a clear convergence
between M2-macrophages, IL-34-macrophages, and CSF-1-
macrophages (Figure 3D and Supplementary Figures 2A,B).
Further analysis of significant genes differentially expressed
between IL-34 and CSF-1-macrophages revealed differential
expression of 61 genes, with an upregulation of the expression
of some interesting genes. Among those genes, we identified
PDK4, a metabolic checkpoint for macrophage differentiation,
CHI3L1, a carbohydrate-binding lectin that may play a
role in tissue remodeling and cell capacity to respond to
the environment involved in regulating Th2 cell responses
and M2 macrophages differentiation, FCER1A, a receptor
expressed by DCs that can play pro- or anti-inflammatory
roles, and CD300A, a cell membrane receptor that contains
classical ITIM motifs and negatively regulates Toll-like receptor
(TLR) signaling mediated by MYD88 through the activation
of PTPN6 and of macrophages in animal models (21). In
contrast, we observed a down-regulation of MARCO, a marker
of pro-inflammatory macrophages in IL-34-differentiated
macrophages compared to CSF-1-differentiated macrophages
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FIGURE 2 | CD14++ monocytes are the main mediators of IL-34-induced immunoregulation. (A) Schematic depicting conditions and timing of supplementation in

cytokines in monocyte cultures. LPS was added for the last 24 h for cytokine release analysis only. (B) Frequency of monocyte subsets in PBMCs of healthy

(Continued)
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FIGURE 2 | individuals. n = 8 individuals. Mann Whitney tests, *p < 0.05, **p < 0.01, ***p < 0.001. (C) Living cell count over 6-days culture normalized to day 0

(=100%). n = 3–14 individuals. M1 (dark gray dotted line) and M2 (light gray dashed line) macrophages mean survival of three individuals after 7-days culture is

shown. Two-way ANOVA and Bonferroni post-test. *p < 0.05, **p < 0.01, ***p < 0.001. (D) Monocyte subsets were cultured for 7 days in the presence of IL-34 and

analyzed for surface marker expression. Top: Geometric mean of fluorescence +/– SEM out of three experiments is represented over time. M1 (dark gray dotted line)

and M2 (light gray dashed line) macrophages mean of fluorescence of three individuals after 7-days culture is shown. Mann Whitney U-test, *p < 0.05, **p < 0.01,

and ***p < 0.001. Bottom: Representative histograms of FACS staining. CD14++CD16− (blue line), CD14dimCD16++ (red line), and CD14++CD16+ (green line).

Isotypic control is shown in filled gray. (E) IL-10/IL-12p40 ratios secreted by LPS-activated macrophages were quantified in supernatants at day 6. n = 3–5

individuals. Mann Whitney U-test, *p < 0.05.

(Figure 3E and Supplementary Figure 2C). Interestingly,
further analysis of typical markers of macrophages (22) showed
a preferential expression of some genes, such as arginase-1
(ARG1) in IL-34 macrophages, compared to CSF-1, M1, and
M2-differenciated macrophages, or IDO1 that was found
expressed only in M1 macrophages (Figure 3F). Other genes,
like IL-10, in contrast were expressed by M2, IL-34, and
CSF-1 macrophages.

Thus, IL-34 induced a high activation of monocytes
through CSF-1R, subsequently inducing macrophages
with a specific signature conferring regulatory/
anti-inflammatory functions.

IL-34 Prolongs Survival in a Model of
Humanized Acute GVHD Through Treg
Expansion Rather Than Generation of
Induced Treg From Naive T Cells
We highlighted previously that IL-34 treatment in a model
of cardiac allo-transplantation resulted in the induction of
highly suppressive Tregs through M2-like macrophages in
vivo in rat and ex vivo in human (12). However, whether
IL-34-induced Tregs resulted from the expansion of natural
pre-existing Tregs or from newly converted Tregs from
naive/effector T cells was not clear. Thus, we used an anti-
CD45RC antibody (mAb) that specifically eliminates naive
and precursor effector T cells (Teff) (13) and depleted in
vivo CD45RChigh Teff cells using a short-term course of anti-
CD45RC mAb (as we previously described) in immunodeficient
NOD/SCID/IL2rγnull (NSG) mice injected with human
PBMCs with or without IL-34 administration (Figure 4A
and Supplementary Figures 3A,B). We observed that low-
dose anti-CD45RC mAb treatment significantly delayed
GVHD occurrence from 13.25 ± 0.9 days (mean survival)
to 22.67 ± 2.7 days (Figures 4B,C). Although, low dose IL-
34 treatment every 2.5 days at 0.8 mg/kg over 20 days was
not sufficient to delay GVHD; IL-34 recombinant protein in
combination with anti-CD45RC mAb therapy synergized and
inhibited GVHD mortality in 66% of mice (Figures 4B,C).
Analysis of mouse blood showed an efficient depletion of
CD45RChigh cells during the anti-CD45RC mAb treatment
with no impact on the engraftment of other human PBMC
subsets (Supplementary Figure 3).

These results suggest that Teff cell depletion in combination
with IL-34 administration can more efficiently control
immune responses.

IL-34 Induces, More Efficiently Than
CSF-1, FOXP3+ Tregs Which Delay
Xenogeneic GVHD
We have previously shown that long-term tolerance in an
allogeneic transplant model in rats treated with IL-34 was due
to CD4+ and CD8+ Tregs that can control transplant rejection
upon adoptive cell transfer (12). We also showed that human
Tregs expanded from total PBMCs in the presence of IL-
34-differentiated allogeneic macrophages suppressed immune
response in vitro more potently than Tregs generated with
monocytes in the absence of IL-34 (12). However, we did
not assess whether this effect was comparable between IL-34
and CSF-1 or how these Tregs generated with IL-34 in vitro
behaved in vivo. To do so, CD14++ monocytes from healthy
volunteers were cell-sorted and differentiated in the presence
of IL-34 or CSF-1 for 6 days and then added to allogeneic
PBMCs for 14 days in the presence of IL-2 and IL-15 and a
polyclonal stimulation. We thus observed that in both CD4+

and CD8+ T cells, IL-34 increased more efficiently the frequency
of CD25+FOXP3+ Tregs than CSF-1 (Figures 5A,B), and this
increase was even more significant for FOXP3+CD8+ Tregs for
which CSF-1 had little effect (Figure 5B). In addition, analysis
of the number of CD4+ and CD8+ Tregs following a 14-day
expansion in the presence of IL-34-differentiated macrophages
demonstrated a higher number of total Tregs (both CD4+

and CD8+) compared to expansion in the presence of CSF-1-
differentiated macrophages (Figure 5C).

We previously reported that polyclonal or chimeric antigen
receptor (CAR)-modified CD8+ Tregs can be efficiently
expanded in vitro and control xenogeneic GVHD in vivo
(14, 15). Given the efficacy of IL-34 to preferentially expand
FOXP3+ Tregs, we then assessed the therapeutic benefit of
using IL-34 in the CD8+ Treg expansion process for cell
therapy. For this, we cultured naive CD8+CD45RClow/− Tregs
from PBMCs for 14 days in the presence of macrophages
differentiated from CD14++ monocytes by IL-34 compared to
freshly isolated APCs, IL-2, and IL-15 cytokines, and a low
polyclonal anti-CD3/anti-CD28 mAbs stimulation (Figure 5D
and Supplementary Figure 4A). We obtained more than an 100-
fold expansion of CD8+ Tregs with either IL-34-differentiated
macrophages (named IL-34-Tregs) or untreated macrophages
(named Tregs) (Figure 5E). After expansion, IL-34-Tregs were
highly enriched in FOXP3+ cells, expressed higher levels
of surface markers commonly related to CD4+ and CD8+

Tregs, such as GITR and PD-1, and cytokines such as
TGFβ, IFNγ, and IL-34 that we have demonstrated as being
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FIGURE 3 | IL-34-induced macrophages display a transcriptome close, but not identical, to M2-type and CSF-1-induced macrophages. (A,B) CD14++ monocytes

were cultured with IL-34 or CSF-1 for 1, 3, 5, 10, and 15min and analyzed for phosphorylation of AKT (A) and ERK1/2 (B) by flow cytometry. Results are represented

as a percentage of baseline levels (T0). n = 4 individuals. Two-way ANOVA and Bonferroni post-test compared to medium alone. *p < 0.05, **p < 0.01, ***p < 0.001.

(C) Photos of CD14++ monocytes after 6 days of culture in the presence of IL-34 or CSF-1. X20 magnification. (D–F) CD14++ monocytes were cultured for 6 days

with IL-34 or CSF-1 and analyzed by DGE-RNAseq for gene expression. (D) Expression levels of differentially expressed genes between each condition are presented

as a heatmap. Each column represents one sample. Blue color represents low expressed genes and red color represents highly expressed genes. The color bar

shows experimental conditions. M0 are freshly sorted monocytes. (E) Volcano plot highlighting overexpressed genes (on the right, red dots) and under-expressed

genes (on the left, blue dots) in IL-34-differentiated macrophages as compared with CSF-1-differentiated macrophages. The p-value adjusted cut-off is 0.05. (F)

Heatmap representing expression of M1 and M2 macrophage genes in samples. Gene expression was normalized with regularized log transformations (rlog) algorithm

(Deseq2), center and scaled. Blue color represents low expressed genes and red color represents highly expressed genes. Supervised clustering was performed to

order samples. The color bar corresponds to experimental conditions.
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FIGURE 4 | IL-34 in combination with depletion of naive cells prolongs survival in an acute GVHD humanized model. (A) Schematic depicting the GVHD model in

humanized mice. NSG mice were injected with human PBMCs, treated or not with IL-34 protein and/or anti-CD45RC mAbs for 20 days, and followed for body weight

loss. (B) Evolution of mouse body weight over time, normalized to the weight before the injection of PBMCs (D0), after no treatment (black line), IL-34 treatment (blue

line), anti-CD45RC mAb treatment (green line), isotype Ig control treatment (gray line), and dual IL-34 + anti-CD45RC mAb treatment (red line). n = 3–16. Mean ±

SEM is represented. Two Way repeated measure ANOVA, *p < 0.05, ***p < 0.001. (C) Percentage of mouse survival over time. n = 3–16. Log Rank (Mantel-Cox)

test, *p < 0.05, **p < 0.01, ***p < 0.001.

mediators of CD8+ Treg-suppressive activity (23, 24) (Figure 5F
and Supplementary Figure 4B).

Finally, we assessed the suppressive function of IL-34-Tregs
in vivo in a xenogeneic model of acute GVHD (Figures 6A–C).
NSG mice were first injected with human PBMCs to induce a
xenogeneic acute GVHD and were either treated or not with
IL-34-Tregs in a range of PBMC:Treg ratios (Figures 6A–C and
Supplementary Figures 4C,D). We observed that IL-34-Tregs
significantly delayed body weight loss (Figure 6B) and mouse
survival (Figure 6C) in a dose-dependent manner compared to
the control group.

Altogether, these results demonstrate that IL-34 is beneficial
for FOXP3+ Treg expansion ex vivo and that CD8+ Tregs
expanded with IL-34 can control graft rejection in a dose-
dependent manner.

DISCUSSION

Altogether, we have demonstrated that IL-34-treated
CD14++CSF-1R+PTPζ+ monocytes were differentiated
into pro-tolerogenic macrophages with a specific signature able
to efficiently expand and potentiate FOXP3+ Tregs in vitro and
in vivo to control anti-donor immune responses (Figure 7).

We found the expression of CSF-1R and PTPζ mostly on
CD14++ classical and intermediate monocytes, although we
found a more significant expression of both receptors on non-
classical CD16++ monocytes (16, 25, 26). As for CSF-1, IL-
34 could polarize all three subtypes of monocytes into type 2
(M2) macrophages depending on the environment (27). Non-
classical macrophages in particular play an important role in
the control of immune responses and have also been associated
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FIGURE 5 | IL-34 potentiates differentiation of CD4+ and CD8+ FOXP3+ in vitro more effectively than CSF-1. (A) Representative FACS staining of CD25 and FOXP3

expression in CD4+ (left) and CD8+ (right) T cells after 14-day culture of PBMCs with either IL-34-differentiated macrophages (middle) or CSF-1-differentiated (bottom)

macrophages compared to fresh cells (upper). (B) Frequency of FOXP3 positive cells in CD4+ (dotted lines) and CD8+ (solid line) T cells before and after expansion

with IL-34- (red lines) or CSF-1- (blue lines) differentiated macrophages. Two-way ANOVA, *p < 0.05, ***p < 0.001. (C) CD4+ and CD8+ Tregs count harvested after

14 days of culture with IL-34- (red bars) or CSF-1- (blue bars) differentiated macrophages in fold expansion. Two-way ANOVA, *p < 0.05. (D) Schematic depicting cell

culture. CD14++ monocytes were sorted from a healthy volunteer (HV#1), cultured for 6 days in the presence of IL-34, then added to CD8+CD45RClow/− Tregs

harvested from another healthy volunteer (HV#2) and 14-day cultured in the presence of a polyclonal stimulation once per week and IL-2 + IL-15 supplementation

three times per week. (E) Treg cell count harvested after 14 days of culture with IL-34-differentiated macrophages or freshly isolated APCs normalized to Treg cell

count seeded at day 0. (F) IL-34-Tregs (red bars) were analyzed by flow cytometry for Treg-associated marker expression as compared to before expansion (fresh

cells, black bars). n = 3 individuals. Two-way ANOVA and Bonferroni post-test, *p < 0.05, ***p < 0.001.

with wound-healing and resolution of inflammation in damaged
tissues (28). PTPζ expression was mostly reported in the brain
and, more recently, in the kidney (11, 29), while its expression on
monocytes has only been suggested bywestern blotting (30); thus,

our study confirms that both CSF-1R and PTPζ are expressed
at the protein level by monocytes, suggesting that IL-34 action
on monocytes through both PTPζ and CSF-1R could explain the
differential effect compared to CSF-1. The intracellular signaling
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FIGURE 6 | Cell therapy with IL-34-expanded CD8+ Tregs delays aGVHD. (A)

Schematic depicting treatment of mice in the model of xenogeneic GVHD.

PBMCs injected are syngeneic to the expanded Tregs co-injected. (B) Mouse

body weight follow-up and (C) mouse survival after PBMC injection (D0) with

or without Tregs expanded in the presence of IL-34-differentiated

macrophages in a range of PBMC:Tregs ratio. n = 3–8. (B) Two-way RM

ANOVA, **p < 0.01. (C) Log Rank (Mantel Cox) test. *p < 0.05.

through PTPζ in monocytes still needs to be analyzed. The
differential effects of IL-34 and CSF-1 can also be explained by
the different binding characteristics and signaling through the
CSF-1R that are discussed below.

We did not observe CSF-1R and PTPζ expression on resting
total T cells, including Tregs, in single cell RNAseq data analysis

of total PBMCs, probably because of the low frequency of
Tregs and the low frequency of CSF-1R in Tregs compared
to monocytes. However, using antibody staining, we were able
to find a low expression of the protein CSF-1R on resting
CD4+ and CD8+ FOXP3+ Tregs and upon stimulation this
expression was significantly increased on activated CD4+ and
CD8+ FOXP3+ Tregs. Thus it is possible that IL-34 acts directly
on Treg polarization as TGFβ and IL-2, or on Treg function, in
addition to acting through monocytes (31), and this will need to
be further investigated.

Surprisingly, we did not observe any expression of CSF-
1R in expanded FOXP3+ Tregs (data not shown), suggesting
a transient expression of CSF-1R in Tregs upon activation
and a narrow window for IL-34 to act directly on those
cells. This further suggests a synergistic effect of IL-34 on
monocytes and recently activated Tregs that supports the
therapeutic strategy based on a short course treatment with IL-
34 to induce tolerogenic monocytes and Tregs right after an
immune challenge.

Although IL-34 and CSF-1 bind to the same receptor,
CSF-1R, on the same cells, IL-34 can also act through PTPζ

binding on monocytes, resulting in a different potential to
induce FOXP3+ Tregs in vitro. They are several hypotheses to
explain this important difference in their respective capacity
to induce FOXP3+ Tregs (both CD4+ and CD8+). IL-34 and
CSF-1 have very different sequences and structures, as well
as a different affinity for CSF-1R (IL-34 has an affinity 34-
fold superior to the one of CSF-1 for CSF-1R) (11, 32), and
although they establish structurally similar binding to CSF-1R,
it is possible that the subsequent signaling and the signaling
and transcriptional pathways involved in the differentiation
of the monocytes to macrophages and the phenotype of
the differentiated macrophages are different (33, 34). The
higher affinity of IL-34 to CSF-1R would suggest a more
important signal transduction for IL-34 compared to CSF-1.
In addition, the expression of PTPζ probably impacts on CSF-
1R-signaling in monocytes. Whether PTPζ reinforces, weakens,
fastens, or slows down the signal induced through CSF-1R
needs further investigation. We observed that IL-34 and CSF-
1 induced in a similar manner the phosphorylation of AKT
and ERK1/2, two molecules involved in the signaling of both
CSF-1R and PTPζ molecules. In addition, although we did
not observe striking differences in the global transcriptomic
profile of 6-days differentiated macrophages with either IL-
34 or CSF-1, we did observe several functionally important
genes differentially regulated. Arginase-1 mRNA was highly
and specifically increased in IL-34-differentiated macrophages.
Arginase-1 degrades arginine, deprives NO synthase of its
substrate, down-regulates nitric oxide production, and is one of
the key factors by which regulatory macrophages or myeloid-
derived suppressor cells suppress T cell responses (35, 36).
Arginase-1+ macrophages also promote wound-healing and
decrease T cell activation and induce it when tolerance is
sought or when targeting Arginase-1 in cancer is the focus of
current efforts (37, 38).We also observed significant upregulation
of other genes, such as PDK4, a metabolic checkpoint for
macrophage differentiation (39), CHI3L1, a marker of M2
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FIGURE 7 | Integrated scheme of the regulatory actions of IL-34-differentiated macrophages and their ability to potentiate FOXP3+ Tregs. (1) IL-34 exogenously

administered or from endogenous sources, such as from Treg, acts through CSF-1R to preferentially differentiate classical and intermediate monocytes into regulatory

macrophages (2). (3) IL-34-differentiated macrophages expand and enhance the suppressive phenotype of both CD4+CD25+CD127low and CD8+CD45RClow/−

Tregs. IL-34 secretion by Tregs maintains and increases the regulatory loop and can act in an autocrine fashion on Tregs. (4) In GVHD in NSG mouse, expanded CD8+

Tregs efficiently delay GVHD incidence. Dashed arrow, induction; solid arrow, binding.

macrophages (40), FCER1A, a receptor expressed by DCs and
a few monocytes that can play pro- or anti-inflammatory roles
(41, 42), or CD300A, a negative regulator of TLR signaling in IL-
34-differentiated macrophages compared to CSF-1-differentiated
macrophages, emphasizing the differences between IL-34 vs.
CSF-1. Interestingly, we found several genes involved in
macrophage phagocytosis downregulated [i.e.,MARCO (43–45),
A2M (46, 47), VSIG4 (48), or COLEC12 (49, 50)] or inhibitors
of phagocytosis upregulated such as CD300A (51) in IL-34-
differentiated macrophages compared to CSF-1-differentiated
macrophages, suggesting a decreased capacity to phagocytes
compared to CSF-1 (34), but this will need further investigation.
Althoughwe found a low number of genes differentially regulated
between CSF-1- and IL-34-differentiated macrophages, these
markers emphasized the difference of activity on CSF-1R and/or
the impact of the exclusive binding of IL-34 on PTPζ. The role of

these different genes on the observed promoting effect of IL-34
on Treg induction will also need further investigation.

The capacity of IL-34 to induce both CD4+ and CD8+ Tregs
is interesting as it would suggest that both CD4+ and CD8+

FOXP3+ cells could be expanded together without cell sorting
from total PBMCs and then the final product, enriched in both
Treg subsets, could be administered subsequently in vivo. Maybe
elimination of Teff and naive cells using anti-CD45RC mAbs,
for example, as we showed in vivo that it was beneficial for
IL-34-therapeutic potential, would also be beneficial in vitro in
the expansion protocol (i.e., depletion of CD45RC+ cells by cell
sorting). These results obtained with the anti-CD45RC mAb
suggest that naive/effector T cells were not involved in IL-34
establishment of a control of immune responses and that Tregs
were rather expanded cells than newly-generated cells. Although
we cannot conclude on a direct effect of IL-34 on Tregs in this
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experiment, since human IL-34 does not cross-react on murine
cells and can only act on human cells and since in this model
of humanized mice, GVHD is mediated mostly by T cells, this
suggests a direct effect of IL-34 on Tregs and will need to
be the subject of further investigations. The synergy between
IL-34 and anti-CD45RC mAb also suggests that in vivo IL-34
efficacy may be limited by Teff cells. Although the synergistic
capacity of CD4+ and CD8+ Tregs is not yet clear, both subsets
could show complementary effects and it could be beneficial
to administer them together to patients (24). IL-34 could also
be used in vivo together with Treg cell therapy to promote the
persistence and the function of the induced Tregs, as is done
with low-dose IL-2 or rapamycin (52, 53), by enrichment of
the environment with tolerogenic macrophages and by direct
action on Tregs. We have tested in vivo the FOXP3+CD8+

Tregs induced in the 14-day ex vivo expansion in a model of
xenogeneic GVHD in immune-humanized mice, and we have
observed a similar protective potential of the Tregs compared
to what we have previously demonstrated using polyclonally
expanded CD8+ Tregs (14). Thus, it suggests that efficient Tregs
were expanded, even from total PBMCs as a starting material,
which shows similar protection compared to Tregs expanded
without IL-34. Thus, an important advantage of using IL-34
would be the co-expansion of CD4+ and CD8+ FOXP3+ Tregs
from total PBMCs. Also, this suggests that upon improvement of
this protocol, with for example selective effector T cell depletion
before expansion, it could result in improved protection.

Altogether, our results highlight the potential of IL-34 to favor
the development of FOXP3+ Tregs and suggest that this cytokine
should be further considered for in vitro use or in vivo therapy.
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