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SEIS seismometer (Lognonné et al., 2020) demonstrated that themain noise sources are indeed coming from

Mars' atmosphere activity. Similar to a seismometer situated on the ocean floor (Crawford et al., 1991), an

important source of signal on the seismometer is due to elastic ground deformations induced by variations

of the atmospheric pressure. This signal can be removed by using pressure measurements (Beauduin et al.,

1996; Crawford, 2000; Zürn et al., 2007; Zürn & Widmer, 1995). In addition, the relations between seismic

and pressure records allow the subsurface mechanical properties to be estimated (Tanimoto &Wang, 2019)

and constraints to be placed on atmosphere or ocean dynamics.

In the following, we first describe the instrument noise and data characteristics of the pressure and seismic

sensors, including the coherence between the pressure and seismic records. Then we present two differ-

ent methods to remove the ground displacement signal generated by atmospheric pressure variations from

seismic records. The results of these two methods are compared, and the improvement of seismic records

is quantified. As a side product of these two methods, estimates of frequency-dependent compliance val-

ues (ratio of ground velocity to pressure) are presented. Finally, we consider the use of seismological data

to constrain the atmospheric dynamics. We suggest that this is a valuable complement to measurements

by InSight's weather station (Banfield et al., 2019), in particular for large amplitude signals recorded by the

pressure sensor and putatively attributed to atmospheric gravity waves. We conclude on the interest of these

methods for seismic signal detection and analysis.

2. Pressure and Seismic Data Sets
2.1. Pressure and Broad-Band Seismic Sensors and Instrument Noise

The SEIS (Seismic Experiment for Internal Structure of Mars) instrument is the core instrument of InSight

mission (Lognonné et al., 2019). It is composed of six seismic sensors: three Short Period (SP) sensors and

three Very Broad Band (VBB) sensors, all of them presenting an instrument noise level below their require-

ments. Only the VBB sensors are considered in this study as their noise levels are lower than the SP sensors'

noise levels for frequencies <≈5Hz. Each of the VBB sensors produces two different channels: a velocity

channel (VEL)with best performances at frequencies higher than 0.02Hz and a position channel (POS)with

best performances at frequencies lower than 0.1Hz. SEIS VBB velocity data at 2 samples per seconds (sps)

and SEIS VBB position data at 0.5 sps have been used in this study (Insight Mars SEIS Data Service, 2019).

Corresponding channel names are indicated by SEED (Standard for the Exchange of Earthquake Data)

“location.name” codes “02.MH” and “00.VM,” respectively, for the SEIS velocity and position channels. The

following data pre-processing steps have been applied to the VBB data:

• removal of the 1 s period tick noise induced by contamination from SEIS temperature measurements.

This noise has a small amplitude (below 40 counts peak to peak amplitude) and can be easily removed

due to its very regular shape repeating every second.

• removal of glitch patterns, induced by various instantaneous mechanical relaxations at the sensor or

instrument level, that have the shape of the instrument response to a step in acceleration. The principle

of the glitch removal method is described in Lognonné et al. (2020).

• removal of the seismic sensors' transfer functions according to the metadata documented in the dataless

SEED volume.

• rotation into the vertical (Z), North-South (N or NS), and East-West (E or EW) geographical reference

frame of the ground velocity records.

The Auxiliary Payload Sensor Suite (APSS) is a set of three instruments implemented on the InSightmission

tomonitor theMartianweather andmagnetic environments in order to correct for the ground displacements

induced by the atmosphere dynamics and any instrument noise generated by the residual magnetic sensi-

tivity of VBB sensors (Banfield et al., 2019). It is composed of a three-axis fluxgate magnetometer (MAG), a

wind sensor (TWINS) providing horizontal wind speed and incoming direction, and a pressure sensor. The

pressure sensor considered in this study has a sampling rate (up to 20 sps) and a noise level of unprecedented

quality on the surface of Mars. Calibrated pressure data at 2 sps in Pascal unit are used in this study. These

channels have the SEED “location.name” code “13.MDO.” These data are calibrated by theAPSS instrument

team by using output voltage and sensor temperature channel (Banfield et al., 2019).

The pressure and wind sensors are located on the lander deck at a height of approximately 1.2m. The SEIS

instrument is located on the ground, at approximately 1.6m from the edge of the lander deck, and at an
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Figure 1. Amplitude spectral densities of Pressure records (a, b), and SEIS VBB-POS (on the left) and VBB-VEL (on the
right) records of vertical (c, d), NS (e, f), and EW (g, h) components averaged over 2 hr local time windows. Signals are
provided in the 1–250mHz range on the left and in the 0.01–1Hz range on the right. The center of the local time
window in hours is indicated in the legend. Continuous data from 1 April 2019 to 25 April 2019 (sols 123 to 146) have
been used to compute these curves. The reduction of power below 0.002Hz on the left panels and below 0.015Hz on
the right panels is due to filtering. It is not present in the raw data.

azimuth of about 190◦ from the lander center of figure. SEIS is protected against any direct effects of wind

and sun illumination by its wind and thermal shield.

2.2. Daily Variability of Pressure and Seismic Records

The daily variability of pressure and seismic records is illustrated in Figure 1 by computing Amplitude Spec-

tral Densities (ASD) averaged over 2 hr periods at various local times. The amplitude of the signals recorded

on these two instruments clearly varies with local time with the highest energy at midday and the lowest
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after sunset to 2 a.m. Local Mean Solar Time (LMST). This trend is due to atmospheric activity which is pre-

dicted to be much more energetic during day than during night, owing to turbulent convection in the day

time (Spiga et al., 2018). Note, however, that morning hours before sunrise (2–6 a.m. LMST) present energy

levels in between the two extreme values, due to high winds in this time period which generate shear-driven

turbulence.

The pressure signals are shown inFigures 1a and 1b for twodifferent frequency ranges.More energy is visible

during the day at frequencies above 0.01Hz. However, an increase of pressure energy is clearly observed

below 0.04Hz, in particular during the night time, which is attributed to gravitywave activity (Banfield et al.,

2019; Spiga et al., 2018). Above 0.01Hz, during the periods of lowest signal (6 p.m. to 2 a.m. LMST), the ASD

curves gather on a single line slightly above the theoretical noise level. This observation suggests that during

these times of the Martian sol the pressure sensor is measuring signals close to its instrumental noise.

The SEIS-VBB channels present a pattern with two slopes crossing in the 0.1–0.5Hz range. This background

signal and its variation during a Martian sol is in good agreement with the noise model of the instrument

established before the launch of the mission (Mimoun et al., 2017). The low frequency signals on the hori-

zontal components are mainly due to ground tilts projecting the Martian gravity in the horizontal sensing

direction of SEIS. These ground rotations are generated by both the lander vibrations induced by the wind

drag force (Murdoch et al., 2017) and the surface pressure variations induced by atmospheric dynamics

(Kenda et al., 2017; Lorenz et al., 2015;Murdoch et al., 2017). On the SEIS vertical channel, the low frequency

background signal is generated by a combination of residual temperature sensitivity (Mimoun et al., 2017),

pressure variations (Kenda et al., 2017; Murdoch et al., 2017), and wind shear stress effects acting directly

on the ground. The proportion of these various contributions is not currently quantified at the time of this

study. However, both the thermal noise and pressure noise are predicted to be below 10−9 m∕s∕s∕
√
Hz for

frequencies above 0.01Hz for the vertical component. On the other hand, a high noise level is observed

on the vertical component in the 0.01–0.1Hz frequency range during the 2 a.m. to 6 a.m. period. As this

time period is dominated by a constant laminar wind with a stable vertical gradient in a cold and dense

atmosphere, this observation suggests that wind shear stress applied to the ground surface is a significant

contributor to the noise. However, we cannot discriminate between wind variations induced by a thin layer

of viscous interactions close to the surface or by turbulence in a thicker layer Petrosyan et al. (2011). At high

frequencies, the background signals are interpreted as the effect of ground deformations due to lander vibra-

tions induced by the wind drag force. The amplitude of the noise below and above 0.1Hz is proportional to

the wind amplitude and wind amplitude squared, respectively, while the noise floor at 0.1Hz is close to the

sensor Brownian noise. As predicted by Murdoch et al. (2017), the wind-driven lander noise above 0.1Hz

is larger on the vertical than on the horizontal components. In summary, as expected from the SEIS noise

model and demonstrated below, the wind noise dominates the background SEIS signals (see first supple-

mentarymaterial of Lognonné et al., 2020). The pressure noise dominates only when pressure variations are

large in amplitude (>≈0.2 Pa, see section 4). In addition, the assumptions underlying the compliance theory

(see section 2.4), and more detailed computations performed for the pressure drops created by dust devils

(Murdoch et al., 2017), indicate that ground deformations will be significant only for pressure variations

that are coherent over large horizontal scales (>≈20m).

2.3. Coherence Between Pressure and Seismic Records

The coherence between SEIS-VBB channels and the pressure sensor is investigated here by using two dif-

ferent representations. The first one presented in Figure 2 is showing average values of coherence between

pressure and SEIS components, computed, respectively, in 60 and 15min windows for POS and VEL chan-

nels, at various local times. These data suggest that SEIS vertical and horizontal components present

coherences with pressure in the 10 a.m. to 4 p.m. local time range and in different frequency bands, which

suggest that during that time, the pressure is a significant source of noise. The frequency range has an upper

limit of 1Hz because no correlation between the pressure and SEIS components was detected above 1Hz.

The vertical component is mainly coherent with pressure in the 0.03–0.5Hz frequency range because this

coherence is limited for lower and higher frequencies by the SEIS noise sources described above. The NS

component presents lower coherence with pressure than the EW component. A combination of effects can

explain this feature. First, the noise is higher on this component due to residual glitch noise and to other

noise sources in this direction pointing toward the lander. The tilt signals are also smaller due to the wind

direction being mainly West-East during this period and possibly also due to a lower compliance value in
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Figure 2. Coherence between Pressure and SEIS VBB-POS (on the left) and VBB-VEL (on the right) for vertical (a, b), NS (c, d), and EW (e, f) components,
computed over 60 and 15min windows, respectively, for POS and VEL channels, and averaged over 2 hr local time windows. The center of the local time
window in hours is indicated in the legend. Continuous data at 2 sps from 1 April 2019 to 25 April 2019 (sols 123 to 146) have been used to compute these
curves.

this direction (see section 4.3). The coherence with the horizontal components also decreases strongly above

0.5Hz due to the wind-induced noise on SEIS sensors. However, during the day time period considered

here, the coherence with the EW component extends to frequencies lower than 0.01Hz due to compliance

effects generated by tilts, as described below. During the night time the overall coherence between the pres-

sure and SEIS components is weak because of weak pressure variations. However, a noticeable exception is

a significant average coherence increase for EW components in the 1–7mHz range during evening hours

(6 p.m. to midnight LMST) due to ground movements generated by atmospheric gravity waves (Spiga et al.,

2018, section 5.2.3). The presence of this signal only on the EW component indicates a relation with either

the background wind or the gravity wave propagation direction.
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Figure 3. On top (a): Pressure variations (in Pa) of sols 82 and 83, band pass filtered between 1 and 600 s periods. On the bottom (b): coherograms (coherence as
function of time and frequency) between pressure and SEIS vertical (top panel), NS (middle panel), and EW (bottom panel) components. Frequency, along the y
axis in log scale, ranges from 0.01 to 1Hz. Time, along the x axis, is expressed in LMST hours. Coherence is provided as a color scale.

The analyses of average coherence made above hide the fact that the coherence between SEIS and the pres-

sure sensor is varying on time scales smaller than the 60 and 15minwindows used for averaging. To illustrate

this, Figure 3 presents coherograms (coherence as a function of time and frequency) during two sols. The

pressure variations present large pressure drops due to convective vortices that are generating large coher-

ent signals on the SEIS sensors during day time (Kenda et al., 2017; Spiga et al., 2018, sections 2.3 and 5.2.2).

Some coherence between the pressure and EW component is also visible at the end of sol 82 at low frequen-

cies, possibly related to gravitywave activity. Outside of these events, the pressure variations are smaller, thus

inducing signals on SEIS sensors that fall below the amplitude of thewind-generated noise. The coherogram

pattern is significantly different between the NS and EW components because the ground tilt directions

depend on the direction of atmospheric wind that changes over the sol. During this time period, the wind

is along the North/South direction only during early morning hours.

2.4. Compliance Theory and Noise Limitations

The ground deformations generated by atmospheric pressure variations induce various effects on the

components of the SEIS instrument:

GARCIA ET AL. 6 of 17



Journal of Geophysical Research: Planets 10.1029/2019JE006278

Figure 4. Theoretical prediction by Sorrells' theory of the ground Velocity over Pressure ratio (V/P in m/s/Pa) as a
function of frequency (in Hz) for the vertical and horizontal components of ground velocity and for the three types of
effects described in this section. Pressure perturbations are assumed to move horizontally with a wind speed of 5m/s,
and VBB sensor positions relative to SEIS center of mass given by Fayon et al. (2018) are taken into account.

• Inertial effects. An harmonic pressure wave propagating horizontally over the ground will lead to vertical

and horizontal surface displacements due to the continuity of stress and vertical displacement at the sur-

face (Sorrells, 1971). These are sensed by SEIS as inertial effects that can be computed with a quasi-static

approximation (Sorrells, 1971). For a given frequency these accelerations are proportional to the hori-

zontal speed at which the pressure perturbation is moving. Hence, the ratio V/P (ground Velocity V over

Pressure P) does not depend on frequency for an homogeneous subsurface and generally increases with

frequency for subsurface models that have increasing rigidity with depth.

• Tilt effects. An harmonic pressure wave propagating over the ground will also lead to a local tilting of the

free surface on which SEIS is installed. Because of this tilt the Martian gravity vector is projected onto the

horizontal components leading to a static acceleration signal proportional to the tilt. For an homogeneous

subsurface, this tilt is independent of the horizontal speed at which the pressure perturbation is moving,

and it is proportional to an acceleration. Therefore, the ratio V/P decreases with increasing frequency.

• Rotation effects. Like short period seismic waves Fayon et al. (2018), a short wavelength pressure-induced

tilt of the ground leads also to a rotation of SEIS around the geometrical center of its feet. This effect

depends on the position of the individual VBB sensors relative to the geometrical center of SEIS feet, and,

for an homogeneous subsurface, it is independent of the horizontal speed at which the pressure pertur-

bation is moving. However, the effect is proportional to displacement, and thus, the ratio V/P increases

with increasing frequency.

• Free air anomaly. At longer periods and below the seismic bandwidth, the vertical inertial acceleration

is smaller than the free air gravity correction for angular frequencies smaller than 2 g∕r, where g and r

are the Martian gravity and radius (Lognonné & Clévédé, 2002). Given that this effect is significant only

below about 0.24mHz, it is neglected here.

We consider these effects as static and local elastic ground deformations and neglect both the inertia and

their propagation. They are theoretically described either by assuming that the pressure perturbations are

plane waves moving in the wind direction (Kenda et al., 2017; Sorrells, 1971) or by estimating the negative

load of a given convective vortex and assuming that it follows a simple straight line trajectory (close to the

background wind direction) (Banerdt et al., 2020; Lorenz et al., 2015). A summary of Sorrells' theory for an

homogeneous subsurface model is provided in Figure 4. Assuming an arbitrary homogeneous subsurface

model described by a Young modulus of 210MPa and a Poisson's ratio of 0.25, the ratios between vertical
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and horizontal ground velocities (measured by SEIS) and the pressure variations are predicted. Under the

homogeneous subsurface assumption, and assuming the pressure perturbations are planewaves, the various

compliance effects have the following forms for the vertical (Vz) and horizontal along wave vector (VH)

ground velocities under a pressure perturbation (P):

• Inertial effects:
VZ
P

= −
ic(�+2�)

2�(�+�)
and

VH
P

= −
c

2�(�+�)

• Tilt effects:
VH
P

=
g(�+2�)

2��(�+�)

• Rotation effects:
VZ
P

= i�Ds cos(�)(−
i

2�(�+�)
) and

VH
P

= i�Ds sin(�)(−
i

2�(�+�)
)

In these formulas, � and � are the Lamé parameters, g is Martian gravity, c and � are, respectively, the hori-

zontal speed and the pulsation of the plane wave pressure perturbation, i is the imaginary complex number,

Ds is the distance between geometrical center of the SEIS feet and the corresponding seismic sensor, and � is

the angle between the geometrical center of the feet, the vertical axis, and the sensor position. Tilt effects on

the vertical component are neglected. Due to tilt effects, a large compliance is predicted at low frequencies

for the SEIS horizontal component along the wind direction. Only frequency-independent inertial effects

are expected for the SEIS vertical component below 1Hz. Rotation effects are predicted to be dominant

only for frequencies above 1Hz and will be neglected in this study. These predictions explain the features

observed in Figure 2: (1) The coherence with the pressure signals extends to lower frequencies for the hor-

izontal components than for the vertical component, (2) the EW component (dominant wind direction)

presents a larger coherence than the NS component, and (3) the coherence with the vertical component

is limited to a frequency range in which the SEIS-VBB noise is the lowest. For the slightly more complex

non-homogeneous case see Kenda et al. (2017). The subsurface model can be extracted via the inversion of

the subsurface structure from compliance measurements (Kenda et al., 2020; Lognonné et al., 2020).

3. Methods for Pressure Noise Removal on Seismic Records

Two different methods of pressure noise removal are presented. They both rely on the compliance theory

under the assumption of plane pressure waves moving with, that is, advected by, the wind. This theoretical

description provides a relation between the pressure and the vertical and horizontal along wind seismic

signals. The transfer function relating these two variables (the compliance) is estimated from the records.

Then, using the compliance, SEIS signals predicted from pressure records are subtracted from the SEIS

records in order to generate decorrelated records. The two methods described below differ in physical a

prioris, ways of estimating the transfer function, the corrected that are components, and the continuity of

correction.

3.1. Method 1: Pressure Noise Removal by Adaptive LMS Filtering

Previous pressure noise decorrelation techniques applied to Earth data have used a linear transfer function

between the ground velocity and pressure, usually estimated in the frequency domain (Beauduin et al.,

1996). The pressure noise decorrelation method presented here relies on the assumption that the pressure

(P) and the ground velocity (Vi) of SEIS component i are related by the following linear relation:

Vi(n) =

N∕2∑

k=−N∕2

Ci(k)P(n − k), (1)

where Ci is the compliance acausal FIR filter and N is the number of filter coefficients. The acausality is

introduced to account for the fact that the indentation of the ground due to a moving pressure front will

precede the pressure front in the forward looking direction because the ground elastic deformation will be

sensed by the seismometer before the arrival of the pressure forcing on the pressure sensor. Thus, for an

observer at a fixed location, the ground deforms before the pressure front moves overhead and the local

air pressure changes. The filter coefficients are estimated with the adaptive LMS method, which provides

continuous evolution of the FIR filter coefficients in order to improve the fit to the data, in a way similar to

the least squares fitting used by Murdoch et al. (2017). The following improvements to the usual adaptive

LMS method are implemented:

• The FIR filter evolution step size is defined to be proportional to the average coherence between the

pressure and corresponding SEIS channel.

• A step size reduction criterion is used to stabilize the LMS filter (Haykin, 1996).
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Figure 5. Example application of the convective vortices decorrelation method. (a) Detrended pressure time series. (b) Wind speed; the mean value is
calculated after removing the values in correspondence of the vortex encounter. (c) Vertical seismic acceleration as measured by the VBBs (band pass filtered
0.02–1Hz). (d) Coherence between pressure and seismic signal (black) and residual coherence after removing the best-fitting single-coefficient vortex model
(blue, see text). (e) Seismic signal in the frequency band where coherence is lowered by the procedure: the black trace is the original signal, the red trace the
modeled signal, and the blue trace the residual signal (shifted). (f) Amplitude spectral density of the original and the residual signal (black and blue curves,
respectively); the green lines limit the frequency range where both coherence and amplitude spectral density of the residual are lower; at the central frequency
of 0.3Hz, about 75% of the energy is removed.

• The data are processed in overlapping continuouswindows preservingmemory of the previous LMS filter

estimates.

• The data filtered in various frequency bands are processed, and the signals are recombined after

decorrelation.

The filter length is chosen according to the data sampling rate in order to cover a time range of ±100 s.

For example, for 2 sps data the filter size is defined as N = 400 − 1. This method does not rely on a priori

information coming from the physics of the coupled solid/atmosphere system; however, it has the capability

to let the transfer function evolve according to wind direction variations without requiring this information.

3.2. Method 2: Pressure Noise Removal byModeling of Convective Vortices

A second method is based on the classical Sorrells theory (Sorrells, 1971) stating that the vertical ground

velocityVz is related to the pressure forcingP (measured at the same location) by the relation in the frequency

domain:

Vz( � ) = ic · Cz( � ) · P(� ). (2)

In equation (2), i is the imaginary unit, c is the mean wind speed (advecting the pressure fluctuation), and

Cz is the frequency-dependent compliance. A similar equation holds true for the horizontal component in

the direction of the backgroundwind. Prior to the InSight landing onMars, Murdoch et al. (2017) developed

and tested on synthetic data a decorrelation method based on the empirical determination of the compli-

ance function Cz. However, the method proves efficient only when the coherence between the seismic and

pressure signals is high. As discussed in section 2.3, the InSight data set exhibits low coherence apart from
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Figure 6. Efficiency of the LMS decorrelation method tested on data from sols 169 to 174 on VBB-POS (a, c) and VBB-VEL (b, d) channels. (a, b) Amplitude
spectral density of SEIS records before (plain lines) and after (dashed lines) the decorrelation, over the whole time period, for vertical (in red), EW (in blue), and
NS (in black) SEIS components. (c, d) ASD improvement (symbols, in %) and number of selected windows (bars) as a function of frequency, for time windows
with average coherency larger than 0.5. Color coding is identical to the top panels for the three SEIS components: vertical in red, EW in blue, and NS in black.

during events (i.e., convective vortices), which are of short duration and relatively narrow frequency band.

Therefore, equation (2) has been applied to individual events, and, due to their narrow frequency range,

with a compliance value not depending on frequency. Thus, a simple proportionality relation is assumed

between the pressure and seismic time series for each event, and the apparent compliance Cz is computed

by minimizing the misfit between the observed and modeled vertical signals. The latter is then removed

from the measured ground velocity, and the algorithm ensures that both the coherence and the Amplitude

Spectral Density (ASD) are reduced in the relevant frequency band by the decorrelation process (Figure 5).

Note that only the vertical component is considered; indeed, especially in the case of convective vortices, the

horizontal tilt effect is more sensitive to the pressure field farther away from the seismometer and is thus

not well modeled by this simple approach (Kenda et al., 2017).

4. Results of Pressure DecorrelationMethods
4.1. Efficiency of Pressure Noise Removal Process

The performance of the adaptive LMS decorrelation method is estimated in various ways by comparing

decorrelated records to original ones. Before performing the decorrelation process, SEIS VEL channels are

downsampled to 2 sps.

The overall improvement in the spectral domain over the whole time period is shown in Figures 6a and

6b. As expected, the improvement is restricted to frequency ranges and components for which the coher-

ence with the pressure signal is high. For these average values, the improvement remains below a factor of

2 above 5mHz, suggesting that the pressure noise is not the dominating noise source. However, POS chan-

nels present improvements up to a factor of 4 around 2mHz, suggesting that in the 1–4mHz frequency
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range the pressure noise dominates. Figures 6c and 6d show the average improvement of background sig-

nal amplitude spectral density (in %) only for windows presenting an average coherence larger than 0.5. We

retrieve the features already observed in Figure 2, the average coherency being proportional to the num-

ber of selected windows in a given frequency range. The average ASD improvements are between 40% and

80% in the frequency ranges where the coherence is significant. The low coherence and pressure decorrela-

tion efficiency in the 4–10mHz range suggest that the wind noise dominates over the pressure noise in this

frequency range.

Figure 7 presents the timedomain comparison over the sol range 169–174 (Figures 7a and 7c, respectively, for

the POS andVEL channels) and zooms on two consecutive hours during the day time active period of sol 173

(Figures 7b and 7d for VEL channels). As shown on these plots, most of the largest pressure signals during

the active day time periods generate large SEIS signals. The focus on 1 hr periods demonstrates that the LMS

decorrelationmethod efficiently removes the large convective vortex signals at long period on the horizontal

SEIS components. The efficiency is slightly lower for the vertical SEIS component, but still significant. A

variability of the apparent compliance resulting from a change of wind direction, different trajectories of the

convective vortices, and different wind flows in the vortices is expected. This is observed, for example, in

Figures 7b and 7d in which large amplitude convective vortices are generating different ground responses.

The efficiency of decorrelation demonstrates that the adaptive LMSmethod is able to take into account these

variations by continuously changing the filter coefficients. In the 1–4mHz frequency range (Figure 7c) the

pressure decorrelation method allows the pressure noise to be efficiently removed during the day but also

during the night time gravity wave activity period. This result is encouraging for the detection of long period

seismic signals such the normal modes of Mars' vibration.

Figure 8 provides a comparison of the two decorrelationmethods in the time domain for two pressure drops

(convective vortex events) occurring on 20 April 2019 during the Mars day time active period. The method

relying on convective vortex modeling provides better performances at high frequencies than the adaptive

LMSmethod, probably because the LMS filter is impacted by the strongwind-generated noise on the vertical

component above 0.3Hz. Similar results are obtained for the two methods at lower frequencies.

4.2. Expected Improvement of Seismic Signal Detection and Analysis

With the current performances of the pressure noise decorrelationmethods presented here, wewill improve

at best the SEIS signal-to-noise ratio by a factor of 2 during the day time period. We do not expect this

improved signal-to-noise ratio to significantly increase the detection capabilities of seismic events during

the day time. However, one can imagine that the seismic event waveforms could be improved by partly

removing the pressure noise, if this noise is contaminating the seismic signal. This application is, however,

limited in the framework of seismic events detected up to now, because they occur mainly during periods of

low pressure variations, and they have very low amplitudes (Giardini et al., 2020). Their amplitudes are so

low that the pressure variations able to induce such signals on the SEIS sensors have an amplitude below the

noise level of the APSS pressure sensor. For example, the suspected seismic event recorded on sol 133 has a

peak spectral amplitude in velocity smaller than 2×10−10 m∕s∕
√
Hz around 0.5Hz (Giardini et al., 2020). By

using the ground compliance estimates provided in the next section (≈ 4 × 10−8m/s/Pa for all components

at 0.5Hz), this would imply that a pressure signal of peak spectral amplitude 5 × 10−3Pa∕
√
Hz would be

able to generate such a SEIS signal. However, such a pressure signal level is at the noise level of pressure

sensor (Figure 1b). Thus, for such small SEIS amplitudes, the pressure noise cannot be decorrelated, and

the pressure sensor cannot help to determine if the SEIS signals could be generated by pressure variations.

4.3. Ground Compliance Estimates

As a side product of the pressure noise removal methods, the compliance appears naturally as the response

of the adaptive LMS filter and from the coefficients used to remove the convective vortex from the vertical

component. Figure 9 presents the compliance estimates obtained by the two methods. The estimates from

the adaptive LMS method have been obtained by selecting only the time windows with an average correla-

tion with pressure signal larger than 0.5, in order to ensure a proper estimate of the filter relating ground

velocities and pressure. The compliance estimates are provided only in frequency ranges for which a signifi-

cant coherence is observed between the SEIS components and the pressure. The compliance estimates from

the convective vortex events are also presented in Figure 9 in the form of a probability density.
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Figure 7. Plots of ground velocity records (in m/s) before and after the decorrelation of the VEL (a, b, d) and POS (c) channels. For each panel, original (blue)
and decorrelated records (red), from top to bottom, vertical, EW, and NS components of SEIS VBB (in m/s) and pressure (in Pa). Ground velocity and pressure
records are high pass filtered above 0.01Hz for VEL channels and above 0.001Hz for POS channels. Time is expressed in hours LMST, starting at the beginning
of sol 169.

The overall values and frequency dependence provided by the two methods are in agreement with simple

theoretical predictions for anhomogeneousmodel shown inFigure 9. For the adaptive LMSmethod, the hor-

izontal compliance values obtained along the EW component are larger than along the NS component. This

feature may be explained by the local subsurface variations induced by the hollow crater in which INSIGHT

landed (about 3m distance to the Western rim of a 27m diameter crater, Golombek et al., 2020; Warner

et al., 2019). The material inside the crater being softer than outside it, compliance values are expected to

be larger in the Eastern direction than along North-South direction. This interpretation is also suggested by

analysis of ground response to convective vortices. Due to lower noise and higher sensitivity along the EW

component than along theNS component, the EW component providesmore reliable compliance estimates.

A slope break at 0.1Hz for the horizontal compliance, and an increase of the compliance with frequency

for the vertical compliance, suggests that the subsurface model is heterogeneous. For the method relying on

modeling of convective vortices, the slope of the vertical compliance estimates as a function of frequency is

larger than for the adaptive LMS method. This suggests a stronger stratification of mechanical properties

below SEIS and possible contamination of LMS estimates by other noise sources.

In addition to the compliance estimates flowing down from the decorrelation methods, an automated

detection of compliance events has been implemented. To do so, we use band-pass filtered records (in the[
�1, �2

]
Hz range) of pressure (P), vertical velocity (Vz), and horizontal velocity along thewind direction (Vh)

to implement a compliance marker defined by

IG(t) =
STA(P2)

LTA(P2)
CCT(P,Hil(Vz))CCT(P,Vh)CCT(Hil(Vz),Vh), (3)
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Figure 8. Comparison of the results of the two decorrelation methods for two convective vortex events occurring on 20 April 2019, respectively, at 13:12 UTC
(on the left) and 13:50 UTC (on the right). From top to bottom decorrelation results for convective vortex modeling (top) and for LMS decorrelation (middle),
and the pressure signal (bottom). SEIS vertical component accelerations (in m/s/s) before (blue) and after (red) decorrelation are presented after filtering in the
0.17–0.75Hz range (resp. 0.05–0.25Hz) for the first (resp. second) event.

where Hil(Vz) is the Hilbert transform of vertical velocity record, the STA() and LTA() functions stand,

respectively, for Short TermAverage performed on the time interval
[
t − T∕2, t + T∕2

]
and Long TermAver-

age performed on
[
t − 20T∕2, t + 20T∕2

]
, and the CCT(X,Y) function stands for Correlation Coefficient

between X and Y for the time range
[
t − T∕2, t + T∕2

]
. T is defined by T =

3

�1
. The last three terms of the

equation should be equal to one if in the time range
[
t − T∕2, t + T∕2

]
P, Hil(Vz) and Vh are perfectly corre-

lated, as expected from compliance relation. The first term is an amplitude ratio ensuring that the pressure

variations are above the background noise. Then a threshold value is set (typically 0.4) abovewhich the event

is considered and the vertical and horizontal compliances are estimated. Finally, in order to ensure that the

signal is also above noise on SEIS components, only events with
STA(|VZ |)
LTA(|VZ |)

> 2 are selected. Figure 10 provides

the compliance estimated by this method in the same sol range (169–174) used by the LMS method.

A detailed analysis of these compliance estimates is presented in Kenda et al. (2020).

4.4. Limitations

The efficiency of pressure-induced noise removal is currently limited to time periods and SEIS components

for which a significant coherence with pressure variations is observed. As shown in Figure 3, despite the

fact that large pressure effects are generating the largest signals observed on SEIS, the background noise

outside pressure events is dominated by wind noise (Lognonné et al., 2020). This is limiting the efficiency of

the pressure decorrelation. Even for signals generated by convective vortices, in order to be able to correct

all SEIS components, the characteristics of the vortex and their trajectories must be estimated. In addition,

the wind direction information must be taken into account in all methods in order to properly remove the

pressure effects on the horizontal components. Finally, as shown by Lognonné et al. (2020), some correla-

tions are observed between pressure and wind in different frequency ranges depending on the local time.

These correlations may impact compliance estimates because these estimates may contain wind effects in

addition to the ground elastic response.
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Figure 9. Estimates of V-Z/P vertical compliance (a) and V-H/P horizontal compliance (b) from the spectral shape of LMS FIR filter and of V-Z/P vertical
compliance (c) from convective vortex events using VBB-VEL channels. In panels (a) and (b), the logarithmic average of filter gain is presented for vertical, EW,
and NS components, respectively, by red, black, and blue curves. Theoretical predictions with an homogeneous subsurface model are presented assuming only
inertial effect on the vertical component (thick dashed blue line) and only tilt effects on the horizontal components (thick dashed red line). On the right panel
(c), the color bar indicates the number of convective vortex events providing a given value of vertical compliance.

A general observation is that the wind noise dominates the overall signal recorded by SEIS outside of pres-

sure events. If future studies allow this noise source to be removed using TWINS sensors measurements,

this will significantly improve the pressure noise removal process.

5. Constraints on Atmospheric GravityWaves From Seismological Data

As shown in Figure 2, coherent signals are observed at long periods (400–800 s) between the pressure sensor

and the VBB EW component. An example of such an observation is shown in Figure 11 for a pressure per-

turbation event on 12 April 2019 at 20:00 UTC. These signals are due to atmospheric gravity waves observed

mainly during evening hours and sometimes in the early morning (Banfield et al., 2019). These gravity

waves generate pressure waves and ground rotations (compliance tilt effect) that are observed on the hor-

izontal components of SEIS. This signal complements the usual atmospheric sensors because it provides

new information about these waves: their apparent arrival azimuth.

Figure 10. The logarithm of compliance values estimated using the automated compliance event detection method for POS (a and b) and VEL (c and d)
channels as a function of the logarithm of frequency. Each subplot presents V-Z/P vertical compliance (a and c) and V-WD/P wind direction horizontal
compliance (b and d). Color bars indicate the number of events for a given compliance range and frequency range. The black line provides the compliance
estimates from the LMS adaptive method for the same sol range (169–174) also presented in Figure 9. Note that the vertical and horizontal scales are different
for estimates using VBB-POS (a and b) and VBB-VEL (c and d) channels.
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Figure 11. Example of pressure and SEIS signals observed during the passage of a gravity wave. On top (a), from the top to bottom panels: raw pressure record
(in counts), raw records of SEIS-POS components (Z=blue, N=yellow, E=purple), and pressure band pass filtered between 1.1 and 5mHz. Vertical yellow
lines indicate the time period used for polarization analysis in panels (b) and (c). Time (in hours) is starting at 2019-04-12T18:35:57 UTC. On the bottom (b):
particle motion of ground velocity in the horizontal North-East (b) and vertical Up-East (c) planes. The best fit to the linear polarization (red curve) provides an
azimuth of 111◦ and a dip of 5◦.

The wave arrival azimuth is constrained from the polarization of the ground horizontal motions which are

expected to be aligned along the wave vector. In the example provided, a fit to a linear polarization of the

first two periods of the wave is providing an azimuth of 111◦ modulo 180◦ (Figure 11b). In order to solve the

180◦ ambiguity, we use the fact that arrival of first positive pressure signal tilts the ground downward in that

direction thus generating a negative SEIS signal in that direction. In our case (Figure 11a), a positive signal

along the EW component is observed and is associated to the minimum pressure signal arriving slightly

after. This means that a positive pressure signal would have generated a negative EW component. Thus, the

wave is coming fromWest, and 111◦ is the azimuth of the wave vector. This is confirmed by the fact that the

azimuth of the wind incoming direction observed by TWINS sensors is at 270◦ azimuth, thus a wind vector

pointing at 90◦ azimuth. The gravity wave apparent velocity being the sum of the wind and the intrinsic

gravity wave velocity, this observation suggests that the wave is propagating southward relative to the wind.

Thus, SEIS data indicate that this gravity wave is coming from a source located North-West of the InSight

lander. However, due to different sensitivities of the EW and NS components to pressure tilt effects, the

apparent azimuth must be corrected from these different sensitivities to obtain the arrival azimuth of the

atmospheric wave. These corrections require further data analysis and are beyond the scope of this paper.

6. Conclusion

The coherency between the pressure and seismometer channels demonstrates the impact of pressure pertur-

bations on the ground displacements at the InSight location. The largest pressure perturbations, associated

to day time convective vortices andnight time gravitywaves, generate SEIS signals above other noise sources.

The phase and amplitude of the SEIS signals can be explained by compliance theory. Decorrelation meth-

ods capable of removing these pressure effects have been implemented with an overall reduction of pressure
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noise up to a factor of 2 for VEL channels in the 10–400mHz frequency range and up to a factor of 4 for POS

channels in the 1–4mHz frequency range. The high efficiency of decorrelation at long periods is encourag-

ing for the detection of seismic normal modes of Mars. The amplitude of the compliance relation between

the SEIS components and pressure signals is estimated as a by-product of the decorrelation methods. These

estimates allow the inversion of subsurface mechanical properties (Kenda et al., 2020). Finally, we demon-

strate that the SEIS data allow the apparent arrival azimuths of atmospheric gravity waves to be estimated,

thus bringing new information to study these atmospheric phenomena. Further detailed investigations are

required to investigate potential correlations between atmospheric parameters that have different influ-

ences on SEIS instrument and to quantify the effect of the local subsurface heterogeneities on the horizontal

compliance values.

Future implementations of pressure noise decorrelation methods should improve the signal-to-noise ratio

of recorded seismic events by focusing on low wind and low pressure variations conditions. A systematic

analysis of SEIS records during the periods of atmospheric gravity wave activity will be implemented to

understand the night time atmospheric dynamics.
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