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THE RFD AND KAC QUOTIENTS OF THE HOPF∗-ALGEBRAS OF

UNIVERSAL ORTHOGONAL QUANTUM GROUPS

BISWARUP DAS, UWE FRANZ, AND ADAM SKALSKI

Abstract. We determine the Kac quotient and the RFD (residually finite dimensional)
quotient for the Hopf∗-algebras associated to universal orthogonal quantum groups.

1. Introduction

Compact quantum groups of Woronowicz [Wor87] are often studied via their associated
Hopf∗-algebras, the so-called CQG algebras [DK94]. The CQG algebra carries all the group-
theoretic information about the associated quantum group, such as its representation theory,
the lattice of quantum subgroups (described via the lattice of the CQG quotients of the
original algebra), or Kac property, but also for example encodes approximation properties of
the natural operator algebraic completions.

When studying a particular property describing a ‘simpler’ class of objects, it is natural
to ask whether a general object admits a largest subobject with the given property. And
thus So ltan, motivated by the considerations concerning quantum group compactifications,
showed in [So05] (see also [Tom07]) that every compact quantum group admits a unique
maximal subgroup of Kac type; in other words, every CQG algebra admits a maximal Kac
type quotient. He also computed such Kac quotients in some explicit examples, including the
universal unitary quantum groups U+

Q of Wang and Van Daele. The same paper also saw
the first seeds of the study of residually finite dimensional CQG algebras, fully developed ten
years later by Chirvasitu [Chi15]. The latter article shows that every CQG algebra admits the
RFD quotient, which roughly speaking is the largest quotient which has ‘sufficiently many’
finite dimensional representations, discusses various stability results for the RFD property
and most importantly proves that the CQG algebras of free unitary and orthogonal quantum
groups, U+

n and O+
n are RFD for all n 6= 3. The case of n = 3 was established later in [Chi20].

One should note that already combining [So05], [Chi15] and [Chi20] leads to the description
of the RFD quotient of the CQG algebras of all U+

Q . We also refer to these papers and their
introduction for further motivation behind studying these concepts.

In this short note we compute the Kac and RFD quotients for the Hopf∗-algebras associated
to universal orthogonal quantum groups O+

F of Wang and Van Daele, exploiting earlier results

of Chirvasitu, the classification of O+
F up to isomorphism essentially due to Banica and Wang

(formulated explicitly in [Rij07]), and the direct computations using the defining commutation
relations. The main results are Theorems 3.3 and 3.4.

2. Preliminaries

We begin by recalling the basic objects and notions studied in this paper.
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2.1. Universal compact quantum groups. We will study compact quantum groups in
the sense of [Wor87] via the associated CQG (compact quantum group) algebras. These
are involutive Hopf algebras which are spanned by the coefficients of their finite-dimensional
unitary corepresentations, see, e.g., [KS97, Section 11.3]; each of them admits a unique bi-
invariant state, called the Haar state. Note that Hopf∗-quotients of CQG algebras are again
CQG algebras, and the category of CQG algebras admits a natural free product construction
(see for example [Wan95]).

The universal compact quantum groups U+
Q and O+

F were introduced by Van Daele and

Wang [WD96]. Let N ∈ N, let F ∈ MN (C) be invertible, and put Q = F ∗F . The universal
unitary CQG algebra Pol(U+

Q ), also denoted Au(Q), is generated by the N2 coefficients of

its fundamental corepresentation U = (ujk)1≤j,k≤N , subject to the conditions that U and

FUF−1 are unitaries in MN

(
Pol(U+

Q )
)
. This means that for all 1 ≤ j, k ≤ N we have

N∑

ℓ=1

ujℓu
∗
kℓ = δjk1 =

N∑

ℓ=1

u∗ℓjuℓk,(U1)

N∑

ℓ,r,s=1

uℓj(F
∗F )ℓru

∗
rs(F

∗F )−1
sk = δjk1 =

N∑

ℓ,r,s=1

(F ∗F )jru
∗
rs(F

∗F )−1
rℓ ukℓ.(U2)

Thus the CQG algebra Pol(U+
F ∗F ) depends only on the positive invertible matrix Q, which,

up to isomorphism, we can assume to be diagonal, Q = (δjkqj)1≤j,k≤N , with 0 < q1 ≤ q2 ≤
· · · ≤ qN .

If F satisfies furthermore FF ∈ RIN , then we define the universal orthogonal CQG algebra
Pol(O+

F ), also denoted by Bu(F ) or Ao(F ), as the quotient of Pol(U+
Q ) by the additional

relation

(H) U = FUF−1.

Up to isomorphism of CQG algebras, it is sufficient to consider the following two families, see
[Wan02] and [Rij07, Remark 1.5.2].

Case I: FF = IN , and F can be written as

(2.1) F =




0 D 0
D−1 0 0

0 0 IN−2k




with

D =




q1
. . .

qk




a diagonal matrix with coefficients 0 < q1 ≤ q2 ≤ · · · ≤ qk < 1.
Case II: FF = −IN , N is even, and F can be written as

(2.2) F =

(
0 D

−D−1 0

)
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with

D =




q1
. . .

qN/2




a diagonal matrix with coefficients 0 < q1 ≤ q2 ≤ · · · ≤ qN/2 ≤ 1.

Note that the eigenvalues of Q = F ∗F are given by

case I: 0 < q21 ≤ · · · ≤ q2k < 1 < q−2
k ≤ · · · ≤ q−2

1 ,

case II: 0 < q21 ≤ · · · ≤ q2N/2 ≤ 1 ≤ q−2
N/2 ≤ · · · ≤ q−2

1 ,

where in case I, 1 is an eigenvalue only if 2k < N .

2.2. Kac quotient and RFD quotient. If A = Pol(G) is the CQG algebra of some compact
quantum group, then the Kac ideal of A is defined as the intersection of the (left) null spaces
of all tracial states on A:

JKAC = {a ∈ A; τ(a∗a) = 0 for all tracial states τ on A},

and the Kac quotient is AKAC = A/JKAC. One can show that AKAC is again a CQG algebra,
which corresponds to the largest quantum subgroup of G which is of Kac type; the last
statement means that the associated Haar state is a trace.

So ltan [So05, Appendix A] [So06, Section 5] worked with the Kac quotient for C∗-algebras
associated with compact quantum groups, but here we prefer to use a version for CQG
algebras, which is also the setting in [Chi15]. See Subsection 2.4 below for a brief discussion
of the relation between CQG-algebraic and C∗-algebraic Kac or RFD quotients.

Motivated by a question about Bohr compactifications of discrete quantum groups, Chir-
vasitu introduced in [Chi15] the RFD property (where RFD stands for ‘residually finite di-
mensional’) for CQG algebras and showed that Pol(U+

N ) = Au(IN ) and Pol(O+
N ) = Bu(IN ) =

Ao(IN ) have this property, implying that the discrete quantum groups Û+
N and Ô+

N are max-
imal almost periodic in the sense of [So05, So06]. See also the related more recent paper
[BBCW17].

The RFD quotient is defined as the biggest quotient of a CQG algebra that has the RFD
property. We recall the relevant definitions from [Chi15].

Definition 2.1. [Chi15, Definition 2.6] A *-algebra A has property RFD, if for any a ∈ A,
a 6= 0, there exists a finite-dimensional representation (i.e. a unital ∗-homomorphism) π :
A → Mn(C) with π(a) 6= 0.

The RFD quotient ARFD of a *-algebra A is the quotient of A by the intersection of the
kernels of all representations π : A → Mn(C), with n ∈ N.

In other words, ARFD = A/JRFD with

JRFD = {a ∈ A;∀π : A → Mn(C) a representation, π(a) = 0}.

One can show that the RFD quotient of a CQG algebra is again a CQG algebra.
Note that RFD is a weaker property than inner linearity (defined in [BB10], see also

[BFS12]); in general the relationship between various possible notions of residual finiteness
for quantum groups remains not fully clarified – see for example the comments in [BBCW17].

Chirvasitu proved the following three results.
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Proposition 2.2. [Chi15, Last sentence of Section 2.4] If a CQG algebra has property RFD,
then it is of Kac type.

Proposition 2.3. [Chi15, Proposition 2.10] If two *-algebras A and B have property RFD,
then their free product A ⋆ B also has property RFD.

Theorem 2.4. [Chi15, Theorem 3.1], [Chi20, Theorem 2.4] The CQG algebras Pol(U+
N ) and

Pol(O+
N ) have property RFD for N ≥ 2.

Remark 2.5. For N = 1 we have Pol(U+
1 ) = CZ and Pol(O+

1 ) = CZ2, so property RFD also
holds for N = 1, cf. [Chi15, Remark 3.2]. (More generally any commutative *-algebra that
embeds into some C∗-algebra has RFD, cf. [Chi15, Remark 2.7]).

The proofs in [Chi15] do not include N = 3; this case is dealt with in [Chi20].

The quotient CQG-algebras ARFD and AKAC yield quantum subgroups GRFD and GKAC

of G. Since JKAC ⊆ JRFD, we have GRFD ⊆ GKAC, i.e. ARFD is a quotient of AKAC.

2.3. RFD quotient of universal unitary quantum groups. The Kac quotients and the
RFD quotients for the universal unitary quantum groups are already known, although the
latter result has not been explicitly stated in the literature.

Theorem 2.6. [So05, Chi15, Chi20] Let Q ∈ Md(C) be an invertible positive matrix with r
distinct eigenvalues q1, . . . , qr, which have multiplicities M1, . . . ,Mr.

Then the Kac quotient and the RFD quotient of the CQG algebra Pol(U+
Q ) are equal to the

free product ⋆r
ν=1Pol(U+

Mν
).

Remark 2.7. So ltan showed that this is the Kac quotient, cf [So05, Theorem 4.9] and [So06,
Section 7]. Chirvasitu’s results, i.e., Proposition 2.3 and Theorem 2.4, show that this free
product is RFD, and therefore it is also the RFD quotient.

2.4. CQG-algebraic quotients vs. C∗-algebraic quotients. Let G = (A,∆) be a com-
pact quantum group with C∗-algebra A and CQG algebra A. The C∗-algebraic Kac ideal and
RFD ideal are

JKAC = {a ∈ A; τ(a∗a) = 0 for all tracial states τ on A},

with JKAC = A if A has no tracial states, and

JRFD = {a ∈ A;π(a) = 0 for all fin.-dim. repr. π of A},

with JRFD = A if A has no finite-dimensional representations.
Again we can define AKAC and ARFD as respective quotients of A by JKAC and JRFD, and

again the RFD quotient is a quotient of the Kac quotient.
Since we can restrict tracial states or finite-dimensional representations of A to A, we have

JKAC ⊆ JKAC ∩ A and JRFD ⊆ JRFD ∩ A.

In general this inclusion can be proper. If A = Cu(G) is the universal C∗-algebra of G, then
we have equality, since every state and representation on A extends to Cu(G).

Example 2.8. [CS19, Proposition 2.4] showed that a compact quantum group is coamenable
if and only its reduced C∗-algebra admits a finite-dimensional representation. Therefore,
using the results of Banica from [Ban96], [Ban97] and [Ban99] we have Cr(U

+
Q )RFD = {0} for

N ≥ 2, and Cr(O
+
F )RFD = {0} for N ≥ 3.
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Banica [Ban97, Theorem 3] showed also that the reduced C∗ algebra of U+
Q admits a unique

trace if Q ∈ RIN , and no trace if this is not the case. Thus we get Cr(U
+
N )KAC = Cr(U

+
N )

and Cr(U
+
Q )KAC = {0} if Q 6∈ RI for N ≥ 2. Similarly, if N ≥ 3 and ‖F‖8 ≤ 3

4
TrFF ∗, then

Cr(O
+
F ) has a unique trace if F ∗F = I, and no trace if F ∗F 6∈ RIN , see [VV07, Theorem 7.2].

Therefore we get in this case Cr(O
+
N )KAC = Cr(O

+
N ) and Cr(O

+
F )KAC = {0} if F ∗F 6∈ RIN .

3. RFD quotient of the universal orthogonal quantum groups

Let us now describe the RFD quotients of the free orthogonal quantum groups O+
F intro-

duced in the beginning of the last section.

3.1. Two special cases. Let us start with some special cases which will be useful in the
next section when we treat the general situation.

Proposition 3.1. Let M ≥ 1 and let JM be the standard symplectic matrix

JM =

(
0 IM

−IM 0

)

Then the CQG algebra Pol(O+
JM

) has property RFD.

Proof. For M = 1, we have O+
J1

= SU(2) and the result is true (as the algebra in question is

commutative, see Remark 2.5).
For the general case we can use the same proof as in [Chi15, Section 3].

Step 1: The natural analog of [Chi15, Proposition 3.3] holds. Denote by A′ the unital *-
subalgebra of A = Pol(U+

2M ) generated by u∗jkuℓm, 1 ≤ j, k, ℓ,m ≤ 2M and by B′ the unital

*-subalgebra of B = Pol(O+
JM

) generated by u∗jkuℓm, 1 ≤ j, k, ℓ,m ≤ 2M . Then there exists

a unique CQG algebra isomorphism A′ ∼= B′ such that A′ ∋ u∗jkuℓm 7→ u∗jkuℓm ∈ B′.

This isomorphism is simply the restriction to A′ of the embedding of Pol(U+
2M ) into

CZ⋆Pol(O+
JM

) defined in [Ban97, Théorème 1 (iv)] by

ujk 7→ zujk, j, k = 1, . . . , 2M,

where z denotes the generator of Z viewed as an element of CZ.
Step 2: The center of Pol(O+

JM
) is given by the morphism of CQG algebra γ : Pol(O+

JM
) →

CZ2 with γ(ujk) = δjkt (where t denotes the generator of Z2). The cocenter (i.e. the Hopf
kernel of γ, see [Chi14, Definition 2.10]) is exactly B′. Indeed, γ is central, i.e., it satisfies

(γ ⊗ id)∆ = (γ ⊗ id) ◦ Σ ◦ ∆ : Pol(O+
JM

) → CZ2 ⊗ Pol(O+
JM

)

where Σ denotes the flip, and any other central map can be factored through γ. Furthermore,
we have

B′ = Hker(γ) = {b ∈ Pol(O+
JM

) : (γ ⊗ id)∆(b) = 1 ⊗ b}.

Step 3: We can therefore apply [Chi15, Theorem 3.6] to prove an analogue of [Chi15, Propo-
sition 3.8]: Pol(O+

JM
) is RFD if and only if Pol(U+

2M ) is, and deduce from Theorem 2.6 above

that Pol(O+
JM

) indeed has property RFD. �

Let us consider next the case where F ∗F has only two eigenvalues: q2 < 1 < q−2.
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Proposition 3.2. Let M ∈ N, q ∈ (0, 1), ǫ ∈ {−1, 1} and set

F =

(
0 qIM

ǫq−1IM 0

)

Then the RFD quotient and the Kac quotient of the CQG algebra Pol(O+
F ) are both equal to

the CQG algebra Pol(U+
M ).

Proof. This proof is similar to those of Theorems 3.3 and 3.4 in the next subsection, therefore
we will give a rather detailed argument here, and later sketch only the main steps. We
decompose the fundamental corepresentation U as

U =

(
A B
C D

)
,

with

A = (ujk)1≤j,k≤M , B = (ujk) 1≤j≤M
M+1≤k≤2M

, C = (ujk)M+1≤j≤2M
1≤k≤M

,

D = (ujk)M+1≤j,k≤2M ∈ MM

(
Pol

(
O+

F )
)
.

The defining relation (H) of Pol(O+
F ) means that

U = FUF−1 =

(
D ǫq2C

ǫq−2B A

)
.

So we can write U as

U =

(
A ǫq2C
C A

)
,

and therefore

U∗ =

(
A∗ C∗

ǫq2Ct At

)
.

The unitarity condition for U now reads
(

AA∗ + q4CCt AC∗ + ǫq2CAt

CA∗ + ǫq2ACt CC∗ + AAt

)
=

(
IM 0
0 IM

)
=(3.1)

=

(
A∗A + C∗C ǫq2A∗C + C∗A

ǫq2CtA + AtC q4CtC + AtA

)
.

The equalities of upper left corners of (3.1) mean that for all j, k = 1, . . . ,M

M∑

ℓ=1

(ujℓu
∗
kℓ + q4u∗j+M,ℓuk+M,ℓ) = δjk1 =

M∑

ℓ=1

(u∗ℓjuℓk + u∗ℓ+M,juℓ+M,k).

Setting j = k and taking the sum, we get

M∑

j,ℓ=1

(ujℓu
∗
jℓ − u∗jℓujℓ) =

M∑

j,ℓ=1

(1 − q4)u∗j+M,ℓuj+M,ℓ.

Let τ be a tracial state on Pol(O+
F ). The equality above implies that

τ(u∗j+M,ℓuj+M,ℓ) = 0

for all j, ℓ ∈ {1, . . . ,M}. So the generators ujk with M + 1 ≤ j ≤ 2M and 1 ≤ k ≤ M , which
form the matrix C, belong to the Kac ideal JKAC.
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If we divide by the *-ideal generated by the coefficients of C, then we see from Equation
(3.1) that the remaining generators ujk with 1 ≤ j, k ≤ M , which form the matrix A — or
rather their images in the quotient *-algebra — have to satisfy exactly the defining relations
of Pol(U+

M ), i.e.,

AA∗ = IM = A∗A and AAt = IM = AtA.

The result now follows, since Chirvasitu proved that Pol(U+
M ) is RFD, cf. Theorem 2.4. �

3.2. Case I: FF = IN . We now look at the case FF = IN , where we can assume that F has
the form given in Equation (2.1). But we will permute the rows and columns of F to organize
F in blocks corresponding to the eigenvalues of F ∗F .

Theorem 3.3. Let F be of the form

F =




0 q1IM1

q−1
1 IM1

0
. . .

0 qrIMr

q−1
r IMr 0

IN−2K




with 0 < q1 < · · · < qr < 1 and K = M1 + · · · + Mr.
Then the RFD quotient and the Kac quotient of the CQG algebra Pol(O+

F ) are both equal
to the free product

(
⋆

r
ν=1Pol(U+

Mν
)
)
⋆Pol(O+

N−2K).

Proof. The proof is similar to that of Proposition 3.2.
Writing U as a block matrix and using the relation between the blocks that follow from

(H), we can express U as

(3.2) U =




A11 q21C11 A12 q1q2C12 . . . R1

C11 A11 C12 q1q
−1
2 A12 . . . q−1

1 R1

A21 q2q1C21 A22 q22C22 . . . R2

C21 q2q
−1
1 A21 C22 A22 . . . q−1

2 R2

...
...

...
...

. . .
...

X1 q1X1 X2 q2X2 . . . Z




,

where furthermore the coefficients of Z are hermitian, i.e., Z = Z.
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If we look at the diagonal blocks of the unitarity condition U∗U = IN = UU∗, we get for
every µ = 1, . . . , r

r∑

ρ=1

(
A∗

ρµAρµ + C∗
ρµCρµ

)
+ X∗

µXµ = IMµ

=

r∑

ρ=1

(
AµρA

∗
µρ + q2µq

2
ρCµρC

t
µρ

)
+ RµR

∗
µ,(3.3)

r∑

ρ=1

(
q2µq

2
ρC

t
ρµCρµ + q2ρq

−2
µ At

ρµAρµ

)
+ q2µX

t
µXµ = IMµ

=

r∑

ρ=1

(
CµρC

∗
µρ + q2µq

−2
ρ AµρA

t
µρ

)
+ q−2

µ RµR
t
µ,(3.4)

ZtZ +
r∑

ρ=1

(
R∗

µRµ + q−2
µ Rt

ρRρ

)
= IN−2K = ZZt +

r∑

ρ=1

(
XρX

∗
ρ + q2ρXρX

t
ρ

)
.(3.5)

Note that if

A = (ajk) 1≤j≤J
1≤k≤K

∈ MJ×K(A)

is a matrix with coefficients in some *-algebra A and τ is a tracial state on A, then we have

τ ◦ Tr(A∗A) =

J∑

j=1

K∑

k=1

τ(a∗jkajk) = τ ◦ Tr(AA∗) = τ ◦ Tr(AAt) = τ ◦ Tr(AtA).

So if τ is a tracial state on Pol(O+
F ) and we apply τ ◦ Tr to Equation (3.5), then we get

(3.6)

r∑

ρ=1

(1 + q2ρ)τ
(
Tr(X∗

ρXρ)
)

=

r∑

ρ=1

(1 + q−2
ρ )τ

(
Tr(R∗

ρRρ)
)
.

If we now take the sum over µ of the difference between the left-hand-side and the right-
hand-side in Equations (3.3) and (3.4), and apply τ ◦ Tr, then we get

r∑

ρ,µ=1

(1 − q2µq
2
ρ)τ

(
Tr(C∗

ρµCρµ)
)

+

r∑

µ=1

τ
(
Tr(X∗

µXµ)
)
−

r∑

µ=1

τ
(
Tr(R∗

µRµ))
)

= 0,

r∑

ρ,µ=1

(1 − q2µq
2
ρ)τ

(
Tr(C∗

ρµCρµ)
)

+
r∑

µ=1

q2µτ
(
Tr(X∗

µXµ)
)
−

r∑

µ=1

q−2
µ τ

(
Tr(R∗

µRµ)
)

= 0.

Adding these two relations and taking Equation (3.6) into account, we get τ
(
Tr(C∗

ρµCρµ)
)

= 0
for all ρ, µ ∈ {1, . . . , r}; by positivity this means that all the generators that appear in the
C-blocks are contained in the Kac ideal JKAC.

By (3.3), we then also have τ
(
Tr(X∗

µ)Xµ

)
= τ

(
Tr(R∗

µRµ)
)
, so, plugging this into (3.6),

r∑

ρ=1

(q−2
ρ − q2ρ)τ

(
Tr(X∗

ρXρ)
)

= 0,
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and we get τ
(
Tr(X∗

µXµ)
)

= 0 = τ
(
Tr(R∗

µRµ)
)

for µ = 1, . . . , r, since all terms in the above
sum are non-negative. Once again using the fact that τ is positive we deduce that all the
generators that appear in the X- and R-blocks are contained in the Kac ideal JKAC.

Denote by

A = (Aρµ)1≤ρ,µ≤r ∈ MK

(
Pol(O+

F )
)

the matrix obtained from U by deleting the generators in the even rows and columns in the
block decomposition in Equation (3.2), as well as the last row and column.

If we divide the *-algebra Pol(O+
F ) by the *-ideal generated by all Cρµ, Xµ and Rµ, then

unitarity relation U∗U = IN = UU∗ reduces to

A∗A = IK = AA∗ and DAD−1At = IK = AtDAD−1,

Z = Z and ZZt = IN−2K = ZtZ,

where

D =




q21IM1

. . .

q2rIMr


 .

This means that the quotient Pol(OF )/〈Cρµ,Xµ, Rµ : ρ, µ = 1, . . . , r〉 is equal to the free
product of a copy of Pol(U+

D ), generated by the coefficients of the Aρµ, ρ, µ = 1, . . . , r, and a

copy of Pol(O+
N−2K), generated by the coefficients of Z.

Now we can conclude with Theorem 2.6. �

3.3. Case II: FF = −IN . Let us now consider the case FF = −IN and F a matrix of the
form given in Equation (2.2).

Theorem 3.4. Let N be an even positive integer and let F ∈ MN be of the form

F =




0 q1IM1

−q−1
1 IM1

0
. . .

0 qrIMr

−q−1
r IMr 0




,

with 0 < q1 < · · · qr−1 < qr = 1, M1, . . . ,Mr−1 ≥ 1, Mr ≥ 0, M1 + · · · + Mr = N/2. Note
that Mr = 0 if 1 is not an eigenvalue of F ∗F .

The RFD quotient and the Kac quotient of the CQG algebra Pol(O+
F ) are both equal to the

free product
(
⋆

r−1
ν=1Pol(U+

Mν
)
)
⋆Pol(O+

J ),

with

J =

(
0 IMr

−IMr 0

)
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Proof. Like in the proofs of Proposition 3.2 and Theorem 3.3, we write U as a block matrix.
Since U = FUF , we can write

U =




A11 −q21A11 A12 −q1q2C12 . . . A1r −q1qrC1r

C11 A11 C12 q−1
1 q2A12 . . . C1r q−1

1 qrA1r

A21 −q2q1C21 A22 −q22C22 . . . A2r −q2qrC2r

C21 q−1
2 q1A21 C22 A22 . . . C2r q−1

2 qrA2r
...

...
...

...
. . .

...
...

Ar1 qrq1Cr1 Ar2 −q2q2Cr2 . . . Arr −q2rCrr

Cr1 q−1
r q1Ar1 Cr2 q−1

r q2Ar2 . . . Crr Arr




.

The unitarity conditions on the diagonal blocks read (ν = 1, . . . , r)

r∑

µ=1

(
A∗

µνAµν + C∗
µνCµν

)
= IMν =

r∑

µ=1

(
AνµA

∗
νµ + q2µq

2
νCµνC

t
µν

)
,(3.7)

r∑

µ=1

(
q2µq

2
νC

t
µνCµν + q−2

µ q2νA
t
µνAµν

)
= IMν =

r∑

µ=1

(
CνµC

∗
νµ + q−2

ν q2µAνµA
t
νµ

)
.(3.8)

Letting τ be a tracial state on Pol(O+
F ) and applying τ ◦ Tr to the difference of the left-

hand-side and the right-hand-side in Equation (3.7), we get

r∑

ν,µ=1

(1 − q2µq
2
ν)τ

(
Tr(C∗

µνCµν)
)

= 0,

which implies that the coefficients appearing in all the C-blocks, except possibly Crr, belong
to the Kac ideal JKAC.

Taking now the differences of the left-hand-sides, or, respectively, right-hand-sides, in Equa-
tions (3.7) and (3.8), we get

r−1∑

µ=1

(q−2
µ q2ν − 1)τ

(
Tr(A∗

µνAµν)
)

= 0,

r−1∑

µ=1

(1 − q2µq
−2
ν )τ

(
Tr(AνµAνµ)∗

)
= 0,

for ν ∈ {1, . . . , r−1}. From these two relations we can prove by induction that τ
(
Tr(A∗

µνAµν)
)

=
0 for all µ, ν = 1, . . . , r − 1 with µ 6= ν.

Denote by J the *-ideal generated by the ujk that have been regrouped in the blocks
Cµν with (µ, ν) 6= (r, r), and in the blocks Aµν with µ 6= ν. It is not difficult to show

that Pol(O+
F )/J ∼=

(
⋆r

ν=1Pol(U+
Mν

)
)
⋆Pol(O+

F0
). As the latter CQG algebra is RFD by

Chirvasitu’s results, it follows that this is indeed the RFD quotient and also the Kac quotient
of Pol(O+

F ). �
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