N
N

N

HAL

open science

Heritability and genetic correlations of personality, life
history and morphology in the grey mouse lemur (
Microcebus murinus )

Pauline B Zablocki-Thomas, Anthony Herrel, Caitlin J Karanewsky, Fabienne

Aujard, Emmanuelle Pouydebat

» To cite this version:

Pauline B Zablocki-Thomas, Anthony Herrel, Caitlin J Karanewsky, Fabienne Aujard, Emmanuelle
Pouydebat. Heritability and genetic correlations of personality, life history and morphology in the
Royal Society Open Science, 2019, 6 (10), pp.190632.

grey mouse lemur ( Microcebus murinus ).
10.1098 /rs0s.190632 . hal-03031467

HAL Id: hal-03031467
https://hal.science/hal-03031467
Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03031467
https://hal.archives-ouvertes.fr

ROYAL SOCIETY
OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Check for
updates

Research

Cite this article: Zablocki-Thomas PB, Herrel A,
Karanewsky CJ, Aujard F, Pouydebat E. 2019
Heritability and genetic correlations of
personality, life history and morphology in the
grey mouse lemur (Microcebus murinus). R. Soc.
open sdi. 6: 190632.
http://dx.doi.org/10.1098/rs0s.190632

Received: 7 May 2019
Accepted: 4 October 2019

Subject Category:
Genetics and genomics

Subject Areas:
behaviour/evolution/genetics

Keywords:
pace-of-life syndrome, personality, heritability,
genetic correlations, animal model, primate

Author for correspondence:
Pauline B. Zablocki-Thomas
e-mail: pauline.thomas90@gmail.com

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.c.
4700591.

THE ROYAL SOCIETY

PUBLISHING

Heritability and genetic
correlations of personality,
life history and morphology
in the grey mouse lemur
(Microcebus murinus)

Pauline B. Zablocki-Thomas'2, Anthony Herrel'3,
Caitlin J. Karanewsky*, Fabienne Aujard’

and Emmanuelle Pouydebat'

TUMR CNRS/MNHN 7179, Département Adaptations du Vivant, Muséum National dHistoire
Naturelle, Paris, France

2Départment de Biologie, Ecole normale supérieure de Lyon, Lyon France

3Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium

4Department of Biochemistry, Stanford University, Stanford, CA, USA

PBZ-T , 0000-0002-2372-4760; AH, 0000-0003-0991-4434;
EP, 0000-0002-0542-975X

The recent interest in animal personality has sparked a number
of studies on the heritability of personality traits. Yet, how the
sources variance these traits can be decomposed remains
unclear. Moreover, whether genetic correlations with life-
history traits, personality traits and other phenotypic traits
exist as predicted by the pace-of-life syndrome hypothesis
remains poorly understood. Our aim was to compare the
heritability of personality, life-history and morphological
traits and their potential genetic correlations in a small
primate (Microcebus murinus). We performed an animal
model analysis on six traits measured in a large sample of
captive mouse lemurs (N =486). We chose two personality
traits, two life-history traits and two morphological traits to
(i) estimate the genetic and/or environmental contribution to
their variance, and (ii) test for genetic correlations between
these traits. We found modest narrow-sense heritability for
personality traits, morphological traits and life-history traits.
Other factors including maternal effects also influence the
sources of variation in life-history and morphological traits.
We found genetic correlations between emergence latency on
the one hand and radius length and growth rate on the other
hand. Emergence latency was also genetically correlated with
birth weight and was influenced by maternal identity. These
results provide insights into the influence of genes and
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maternal effects on the partitioning of sources of variation in personality, life-history and
morphological traits in a captive primate model and suggest that the pace-of-life syndrome may be
partly explained by genetic trait covariances.

1. Introduction

In his most famous publication, Charles Darwin noted how selection on dogs and pigeons led to the
appearance of correlations between traits [1]: hairless dogs frequently showing tooth problems
and pigeons with feathered legs having skin between their toes. Furthermore, the famous fox farm
experiments showed that selection on behavioural traits may induce correlated evolution on
morphological traits [2], suggesting that genetic trait correlations underlie these trait changes. A
general theoretical framework to understand the relationship between various phenotypic traits and
life-history traits is the pace-of-life syndrome [3], in which behaviour and personality have been
recently included [4,5]. This concept links phenotypic traits based on a slow—fast continuum in the
‘pace-of-life” of the organism. This is defined by life-history traits, as such as life span, age at sexual
maturity or the number of offspring, which are all correlated with one another [3,6-8]. Moreover,
individuals are expected to present a bolder and more active personality and a higher metabolic rate
and growth rate in relation to a fast pace-of-life (e.g. small rodents). Under this theory, behaviour and
life history could be mediated by hormonal determinants [3], yet may also be linked in other ways.

Correlated evolution between different phenotypic traits may arise through genetic correlation [9].
Indeed, traits can evolve together, as, for example, in lizards (Zootoca vivipara), where exploration
behaviour and resting metabolic rate are correlated, as they present an advantage when they vary in
the same direction [10]. Moreover, a recent study showed that by artificially selecting bold and shy
lines of zebra fish (Danio rerio), the morphology and locomotor performance of these individuals also
changed [11]. Another study showed that genetic correlations existed between two personality traits,
sociability and boldness, and morphological traits including body pigmentation and size, leading to
the apparition of adapted phenotypes that combine several traits [12]. The study of trait correlations is
thus an important first step in the understanding of the evolution of traits and trait variation, and
may, in part, underlie the trait correlations observed in the pace-of-life syndrome. Falconer & Mackay
[13] advocated that the relationship between traits may allow us to detect: (i) the effect of pleiotropic
genes, (ii) correlated responses to selection between traits, and (iii) the relationship between the trait
and associated fitness.

Personality is generally defined as a statistically repeatable behaviour across context and over time
between individuals [14]. These consistent behavioural differences between individuals have been
shown to be an important component of individual fitness. A number of studies have focused on
personality over the last decades, showing its correlates with other traits like morphology [15]
or cognition [16,17], and its heritability in several taxa [18-22]. Some personality traits (e.g. high
aggressiveness) have been observed in associations with others (e.g. high boldness) in various taxa
[23]. These relationships between behaviours could be induced by common determinants of
behaviour, such as hormonal levels, yet can also have underlying genetic determinants.

The narrow-sense heritability of a phenotypic trait is dependent on the presence of additive genetic
variation according to its definition [13], which is the ratio of additive genetic variance over the total
phenotypic variance. However, the sources of variation in the different types of phenotypic traits are
not equal: indeed, the research has shown that fitness traits generally have low heritability, whereas
morphological traits have high heritability, and that the heritability of behaviour lies somewhere in
between [24]. For life-history traits, selection is probably high and the variability in the additive gene
effect (V,) is low as compared with the variability in the phenotype (V). For morphological traits,
selection is typically lower and the variability of additive genetic effects is higher than phenotypic
variability [25,26]. Studying and quantifying the heritability of traits and their genetic correlations
helps to understand the sources of individual variation and the relative importance of genes in
driving phenotypic variation [27,28].

The aim of our study was to describe and compare the heritability of behavioural, life-history and
morphological traits and their potential genetic correlations in a small captive primate, Microcebus
murinus from a captive population [29]. Microcebus murinus is a short-lived primate and thus ideal
to explore variation in traits as predicted by the pace-of-life syndrome. The captive population used
in this study is unique by its size (about 500 individuals) and by the information on life-history
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Figure 1. Photograph of captive grey mouse lemurs in the Brunoy colony.

and other traits available for these individuals [30] allowing us to explore trait covariation.
Information about matrilineal lines are also available since individuals are followed for their entire
life. In particular, we aim to explore links between life-history and personality traits under the
scope of the ‘pace-of-life’ hypothesis. Personality traits have been previously quantified for M. murinus
and shown to be repeatable in both wild and captive animals [15,31], making this an excellent study
system. Moreover, phenotypic correlations have been recently described between personality and
morphological and life-history traits [15,32], raising the question on the potential genetic bases of these
phenotypic covariations.

The aim of this study is to (i) estimate key variance components of morphological and personality
traits and compare their heritability to better understand their evolutionary path [33]. We predicted
higher heritability for morphological traits compared with behavioural traits, and a low heritability
for life-history traits [34-36]. We also aim to (ii) explore genetic correlations between traits to better
understand the relationships between life history and behaviour. We expected to find stronger genetic
correlations among life-history traits than among morphological traits, with intermediate correlations
being expected for behavioural traits [36,37], as well as correlations between life history and
personality, as predicted by the pace-of-life syndrome hypothesis.

2. Material and methods

2.1. Subjects and colony management

We collected data for 486 different grey mouse lemurs (M. murinus, figure 1) aged from 1 to 10 years and
present in the captive colony of Brunoy (Muséum National d’Histoire Naturelle), originated from eight
maternal lines. Individuals are housed in large cages in monosexual groups of three or four individuals.
Ambient air temperature is maintained at 25°C and humidity is stable around 30%. All individuals
are fed ad libitum, weighed monthly and maintained under artificial light conditions mimicking
natural seasons.
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2.2. Pedigree construction

In captivity, grey mouse lemurs can live up to 12 years, reach sexual maturity in their first year, and
females can raise one to four offspring each year [30]. Thus, up to seven generations were present in
our pedigree. During the reproductive season, groups of three males and three females from distinct
matrilineal origins are placed together for three weeks to mimic the polyandrous mating system [29];
after mating, mothers are isolated and raised with their offspring. As such, all mothers are known and
the number of fathers is limited.

We collected DNA samples for 256 individuals and extracted DNA from ear or skin tissue
samples (Invitrogen PureLink Genomic DNA mini Kit) and amplified it (Qiagen REPLI-g Mini Kit).
The genetic analysis was conducted to determine the paternity for 111 infants for which we disposed
of DNA samples and their potential father. Thus, each infant has a known mother and three to
four potential fathers, which were assigned thanks to microsatellite analysis (see [38—40] and electronic
supplementary material for further details). In addition, half-sibs were present in our dataset since
several females underwent several reproductive seasons and mated with different males, and because
multipaternity is possible in this species [41].

The pedigree was stored in a three-column Excel file with the following information required for the
statistical analysis in AsRELM-R: individual identity, mother identity, father identity. Squares with
unknown paternities were left empty, as well as maternities and paternities of ‘founder individuals’,
that correspond to the more ancient common parent of tested individuals (see electronic supplementary
material, files).

2.3. Phenotypic traits

We used the two personality traits that were described in Zablocki-Thomas et al. [32]. Both traits present
medium repeatability in this dataset [32]. We conducted all tests during the day in daylight conditions.

2.3.1. Emergence tests

We conducted emergence tests using a small wooden box (18 x 18 x 31 cm). We caught animals directly
in their nest box between 13.00 and 17.00, identified animals and placed a single individual in the
wooden box. Next, we placed the wooden box at the entrance of the home cage of the individual. We
then waited at least two minutes so that the animal could habituate and calm down from the
manipulation. The test consisted of opening the trap door and recording the latency for the animal to
leave the box and to return to its home cage. The test lasted 5 min maximum. Individuals that never
left the box within the allotted 5 min were given a score of 300 s. We conducted this test between 1
and 13 times per individual for a total of 1238 tests. Some individuals were tested only once as they
died before we could test them twice. We waited at least three weeks before repeating the test with
the same individual. Repeatability for this trait reached R=0.33 +0.04 s.e. [32].

2.3.2. Agitation score

We followed the protocol described in Verdolin & Harper [42] and evaluated an agitation score
between one and six times per individual, for a total of 1001 tests. In brief, the test consisted of
catching the animal and recording and scoring its reaction: urinating (1pt), defecating (1pt), vocalizing
(1pt), struggling (2pt) and biting (3pt). According to this protocol, animals were rated from zero to
eight. The rating started directly after extraction of the animal from its nest box and lasted 30s
maximum. We rated agitation during different events of the monitoring protocols including when
animal keepers conducted the monthly weighing or before physical testing. Repeatability for this trait
reached R=0.28 +0.04 s.e. [32].

2.3.3. Morphology

We recorded the length of the lower arm (ulna/radius) and head width with a pair of digital callipers
(+0.01 mm; Mitutoyo, Kanagawa, Japan), as reported in previous studies [32]. We extracted body
weight at the time of each test from the laboratory colony database.
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2.3.4. Life-history traits

We extracted body weight at birth, body weight at three months, litter size and mother identity from the
colony database. We calculated growth rate as the weight gain in grams over the first three months of life,
which is the period during which most of the growth occurs in this species [43].

Complete data were not available for all individuals, which explains why the sample size for
each phenotypic trait varies and is different from the total number of individuals present in the study
(N =486). Indeed, we could not collect all the phenotypic data at the same time, in particular, to avoid
additional stress during the behavioural tests. Some individuals could not be tested for all traits as
some died or were unavailable (when involved in reproduction, for example).

2.4, Statistical analysis

We ran linear mixed models (also called ‘animal models’) with AsSREML-R software (v. 3.0) [44] to obtain
a restricted maximum likelihood estimation of variance and covariance components, with a pedigree
incorporated to quantify the additive genetic variance. We selected models based on log-likelihood
comparisons.

2.4.1. Univariate models

We did not transform our variables except for emergence latency, which was log;o-transformed, as it is
typically done for latency data that do not present classical distributions [45]. We treated variables as
Gaussian in our models. We also added +0.5 to the logarithm as some latencies were equal to 0. To
assess the relative contribution of genes to the phenotype, we first assessed the heritability (4%) of our
phenotypic variables with univariate models. We tested, step-by-step, the fixed effects of age, body
mass and sex in interaction (because of a sexual dimorphism in body size) by running the same
model without the effect and by testing it against a x> distribution with one degree of freedom. To
test for the significance of additive genetic variance, we ran the same model with the pedigree
component removed and tested it against a x* distribution with one degree of freedom and divided
them by two (note: in all our models, body weight was always removed). To estimate maternal
environment, also called ‘maternal effect’, we added mother identity as a random factor. To account
for pseudo-replication due to repeated measurements per individuals, we added individual identity as
random factor in the models [27]. We calculated the total phenotypic variance as the sum of the
variance of all random components [13]. In our models, the phenotypic variance (V) is divided in
three to four parameters, depending on whether there are several measurements or not

Vo =Vat Vit Ve + Vpe +5,

where V, is the additive genetic variance, V,, is the variance explained by the identity of the mother, V.
is the common environmental variance explained by the animal’s housing environment (within shared
environment consistency), V. is the permanent environmental variance explained by the identity of the
individual (within individual consistency) [27,46].

2.4.2. Trait comparisons
We report the amount of genetic variance relative to the trait mean (I,) [25,47,48]:

X

2.4.3. Bivariate models

We scaled all variables using the ‘scale’ function in R. We tested for genetic correlation between
emergence latency and agitation, emergence latency and radius length, emergence latency and birth
weight, emergence latency and growth rate, and genetic correlation between agitation and radius
length, agitation and birth weight, agitation and growth rate (see Results, table 2). We were unable to
run bivariate models with head width due to convergence issues. We then tested for the significance
of two fixed effects, sex and age, by comparing likelihood ratios with and without the effect, with one
degree of freedom, first with sex and then with age. We next tested for the significance of the mother
effect as a random parameter by comparing the general model with a model in which the covariance
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due to the maternal effect (COV,,) is null [46], with a likelihood ratio test with one degree of freedom.
When the mother effect was not significant or caused convergence issues, we removed it from the
model. We tested for the significance of covariance due to the additive effect of genes (COV,) as
previously described by comparing the general model with a model in which COV, is null [46].

3. Results

We found significant additive genetic variances for radius length, emergence latency and our agitation
score (table 1). For personality, we found no significant amount of variance explained by maternal
effects, but we found significant maternal effects for birth weight, growth rate, radius length and head
width. The variance explained by the common environment was significant for the agitation score,
birth weight, growth rate and radius length.

We found a significant and negative additive genetic covariance of emergence latency with both
radius length and growth rate. We also detected a significant and positive covariance of emergence
latency with growth rate when we took maternal effects into account (table 2). This suggests that
mothers that produce babies with higher birth weight will also produce babies with longer emergence
latencies [46]. Finally, when we estimated additive genetic covariance between morphological and
birth parameters, we only detected a significant and positive additive genetic covariance between
radius length and head width, and between radius length and growth rate (electronic supplementary
material). The genetic correlation between head width and radius length was extremely high (0.73)
and is possibly due to the allometric effect of overall body size.

4. Discussion

4.1. Trait variance decomposition

In this study, we decomposed the sources of variation of personality, morphological and life-history traits
in order to compare their narrow-sense heritability. Personality traits showed significant additive genetic
variance, but in contrast, only one morphological trait and none of the life-history traits showed
significant additive genetic variance. As predicted, narrow-sense heritability (4*=V,/V,) was higher
for one morphological trait compared with behavioural traits, but this was not the case for the other
morphological trait. The agitation score during handling has previously been suggested to be
associated with shyness and anxiety [32,42], emergence latency on the other hand has been suggested
to be linked to exploration [32]. In our study, we found that both traits showed significant additive
genetic variance and medium heritability (0.19-0.22). Moreover, these traits showed an amount of
genetic variance relative to the trait mean that was ten times greater (I, x 10°=4.1-7.3) than that of
other traits. Similar to a recent study in squirrels (Tamias striatus) [49], we found that the permanent
environment explained a moderate proportion of the variability, albeit not significantly so in our
study. There was also an effect of age for the agitation score, but the effect of sex was not significant.

Consistent with the literature, heritability estimates for life-history traits (growth rate and birth
weight) were relatively low [35], when compared with the other traits. Birth weight and growth rate
both showed non-significant additive genetic variance and low heritability, as has been documented
for other species [50,51]. Growth rate and birth weight of deer, for example, presented a similar low
heritability (4#*=0.11 for males and 0.25 for females) [52]. The amount of genetic variance relative to
the trait mean was ten times higher (I,x 10°=0.35-0.47) for these traits compared with that for
morphological traits (I, x 10> = 0.013-0.047).

We also detected significant maternal effects for life-history and morphological traits. Maternal effects
have been shown to be important in primates such as macaques (Macaca mulatta) [53], but also in other
taxa like bird species [54]. The impact of the mother can be either genetic or environmental. Indeed,
maternal effects may be related to the maternal investment in reproduction and can, for example, be
caused by egg quality in birds or the milk composition in mammals [27], both of which depend on
the mother’s genotype and her environment.

We also accounted for fixed effects including sex, age and body weight [55,56] in our models as they
were previously described as important determinants of personality in this species [57,58]. Doing so
decreased the additive genetic variance when compared with models without these effects, but overall
this did not affect our conclusions. It is important to note that body weight was never retained as a
fixed term in our models. Indeed, neither the interaction between sex and body weight nor body
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Table 2. Summary of the covariance between personality and other phenotypic traits. COV,, additive genetic covariance; [}
s.e., standard error; p, p-value; R, genetic correlation; COV,, covariance due to the maternal effect; COV,, residual covariance.

Bold values represent significant correlations among variables (p < o = 0.05).

agitation score

emergence latency (log (s) + 0.5)

emergence fixed effect: age — —
latency OV, = s.e: —0.13 = 0.094
p=0.17
R,=—034

radius length

0V, +s.e.: 0.12 £0.082
fixed effect: age
0V, = s.e.: 0.06 £ 0.087

fixed effect: age
(0V, +s.e.. —0.20 + 0.08

*sosi/Jeunof/6106uiysgnd/aposjedos

-
p=050 p =0.008 g
R,=0.14 R, = —0.87 8
OV, + s.e.. —0.041 + 0.074 OV, + s 0.14+0.083 =

R B A B
OV, + se: —0.045+0.10 OV, £ s.e.: 0.014 +0.10 OV, £ s 0.13 % 0.061 =
p=0.65 p=089 p=0.04 Y
R, = —0.11 R, = 0.05 R, =0.78 5

0V, £ s.e.. —0.007 + 0.050

0V, £ s.e.: 0.005 + 0.091

fixed effed: sex S
0V, £ s.e.. —0.20 % 0.082

p=0.008

R,=—0.81

0V, £s.e.: 0.10 + 0.082

 fixed effect: sex + age
(0V, + s.e.: 0.046 = 0.087
p=057
R,=0.13
OV, + s.e.. —0.092 +0.079

growth rate

weight by itself improved the models when sex was kept. This is probably due to the sexual dimorphism
in this species with females being heavier than males.

4.2. Genetic covariance between traits

We detected a genetic correlation between one personality trait, emergence latency and one morphological
trait, radius length. This personality trait was also correlated with the two life-history traits; birth weight
through the covariance with respect to the mother and with growth rate through additive genetic
covariance. Previous studies have detected genetic links between personality traits and other traits, as
for example in zebra fish [12], where sociability and boldness were correlated to each other and to body
pigmentation and body size, with a negative correlation between body mass and risk-taking behaviour.
We found few significant maternal effects except between emergence latency and birth weight.
Including this additional random factor in the models often led to convergence problems. For that
reason, we have presented results without the maternal effects as is done in other studies [46,50].

The genetic correlation between personality and morphology and life history is in accordance with the
phenotypic correlations previously reported for this population of mouse lemurs where individuals with
lower birth weight had a shorter emergence latency [32]. Moreover, adult body size and birth weight were
positively correlated with the latency to start exploration in an open field test [15]. This is also in
accordance with the prediction that personality should be linked to life history [59]. As such, the results
of this study are in accordance with the pace-of-life syndrome hypothesis, which posits that trait
variation in life-history and phenotypic traits are constrained by the environment to different
combination of traits, as a result of physiological (mainly endocrine) influences [3]. In our population, a
combination of low birth weight with short emergence latencies/high birth weight with long emergence
latencies appeared through genetic correlations. In addition, the results of the present study suggest that
there is also an important role of maternal effects in this correlation, with mothers that produced lighter
babies being also the ones that produce offspring that will have lower emergence latencies.



However, we found no significant genetic correlation between the two personality traits in contrast to [ 9 |
the predictions of the behavioural syndrome hypothesis [60]. Our results show a trend only. In other
studies, correlations between exploration and docility in wild chipmunks (Tamias striatus) [61,62],
between activity and aggression in red squirrels (Tamiasciurus hudsonicus) [36], and high aggression
and boldness [60] have been documented. On the other hand, previous phenotypic correlation tests
between these traits in our colony of mouse lemurs were also not significant [32], consistent with the
theory that genetic correlations drive phenotypic correlations [63]. Genetic correlations between
morphological traits in our study were generally positive and close to one as in a previous study [64]
comparing six morphometric traits.

We faced major difficulties with the convergence of the bivariate models. We could have obtained
better estimates of maternal variance by a pedigree with more known paternities. A more resolved
pedigree would also have resulted in an improvement of the precision of our models, but we do not
expect changes to the principal patterns observed. Indeed, the ‘animal model’ approach was
developed to conduct heritability estimations with missing paternities [27], and for some model
species, heritability estimations have been conducted without known paternity [51]. Non-assigned
paternity can cause an underestimated additive genetic variance, however [65].

*sosi/Jeunof/6106uiysgnd/aposjedos

4.3. Effects of captivity

We deliberately chose to study a captive population of primate species of interest to several fields of
research, including personality research. It is important to acknowledge the potential influence of
founder effects when dealing with genetic studies on captive populations. In this species, wild
populations present a relatively high level of homozygosity, which can be interpreted by the presence
of small breeding units, with breeding distances that are shorter than foraging distances [66]. This
population structure is also symptomatic of the forest fragmentation that started in Madagascar since
its colonization by humans 2000 years ago, and that can be traced back through genetic studies to 500
years ago [67,68]. Given the low heterozygosity and small population sizes of wild populations of
M. murinus, our results are probably transposable to wild populations.

However, heritability is subject to variation across time and populations. In addition, heritability
differences could arise between wild and captive populations [69,70]. Indeed, we can assume the
sources of variation, and especially environmental variation, differ significantly in the wild when
compared with the laboratory [71]. Comparing captive populations of grey mouse lemurs with one
another, or comparing these results with data for wild populations would be of interest. This would
allow us to test whether wild animals are more constrained than captive animals and show lower
additive genetic variance or if our captive population presents similar additive genetic effects for
personality and life-history traits than a wild population. However, it is generally assumed that a
captive population could show lower additive genetic variability than wild animals because of
founder effects, but larger phenotypic variability due to reduced selection pressures [72]. It would be
interesting to further explore these trait correlations and determine their potential for fitness with a
long-term study on this short-lived primate in both the wild and in captivity.
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5. Conclusion

This study provides the first evidence of additive genetic variance of two personality traits in the grey
mouse lemur. It also shows how variable the sources of variation are for different types of phenotypic
traits. This study also brings the first evidence of a genetic correlation between a morphological trait
and a personality trait in this small primate, and highlights the importance of maternal effects.
Investigating the genes underlying these correlations and the selection operating on them would be of
interest to better understand the evolution of phenotypic diversity in this primate model.
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