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TIGHT HARDNESS RESULTS FOR CONSENSUS PROBLEMS ON1

CIRCULAR STRINGS AND TIME SERIES∗2

LAURENT BULTEAU† , VINCENT FROESE‡ , AND ROLF NIEDERMEIER‡3

Abstract. Consensus problems for strings and sequences appear in numerous application con-4
texts, ranging among bioinformatics, data mining, and machine learning. Closing some gaps in5
the literature, we show that several fundamental problems in this context are NP- and W[1]-hard,6
and that the known (including some brute-force) algorithms are close to optimality assuming the7
Exponential Time Hypothesis. Among our main contributions is to settle the complexity status of8
computing a mean in dynamic time warping spaces which, as pointed out by Brill et al. [DMKD 2019],9
suffered from many unproven or false assumptions in the literature. We prove this problem to be10
NP-hard and additionally show that a recent dynamic programming algorithm is essentially optimal.11
In this context, we study a broad family of circular string alignment problems. This family also12
serves as a key for our hardness reductions, and it is of independent (practical) interest in molec-13
ular biology. In particular, we show tight hardness and running time lower bounds for Circular14
Consensus String; notably, the corresponding non-circular version is easily linear-time solvable.15

Key words. Circular String Alignment, Time Series Averaging, Dynamic Time Warping, Fine-16
Grained Complexity and Reductions, Lower Bounds, Parameterized Complexity, Exponential Time17
Hypothesis18
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1. Introduction. Consensus problems appear in many contexts of stringology20

and time series analysis, including applications in bioinformatics, data mining, ma-21

chine learning, and speech recognition. Roughly speaking, given a set of input se-22

quences, the goal is to find a consensus sequence that minimizes the “distance” (ac-23

cording to some specified distance measure) to the input sequences. Classic problems24

in this context are the NP-hard Closest String [15, 25, 24, 18] (where the goal is25

to find a “closest string” that minimizes the maximum Hamming distance to a set26

of equal-length strings) or the more general Closest Substring [13, 26]. Notably,27

the variant of Closest String where one minimizes the sum of Hamming distances28

instead of the maximum distance is easily solvable in linear time.29

In this work, we settle the computational complexity of prominent consensus30

problems on circular strings and time series. Despite their great importance in many31

applications, and a correspondingly rich set of heuristic solution strategies used in32

practice, to date, it has been unknown whether these problems are polynomial-time33

solvable or NP-hard. We prove their hardness, including also “tight” parameterized34

and fine-grained complexity results, thus justifying the massive use of heuristic solu-35

tion strategies in real-world applications.36

On the route to determining the complexity of exact mean computation in dy-37

namic time warping spaces, a fundamental consensus problem in the context of time38

series analysis [33]1, we first study a fairly general alignment problem2 for circular39

∗Submitted to the editors DATE.
†Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-77454, Marne-

la-Vallée, France (laurent.bulteau@u-pem.fr).
‡Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Berlin,

Germany (vincent.froese@tu-berlin.de, rolf.niedermeier@tu-berlin.de).
1As of May 2020, according to Google Scholar the work by Petitjean et al. [33], who developed

one of the most prominent heuristics for this problem, has already been cited around 460 times since
2011.

2Particularly from the viewpoint of applications in bioinformatics, consensus string problems can
also be interpreted as alignment problems [23].
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s1 s←0
1

s2 s←2
2

s3 s←1
3

cost: 2
3 0 0 0 2

3

1 0 0 1 1

1 1 0 0 0

0 1 0 0 1

1 0 0 1 1

0 0 0 1 1

1 0 0 1 0

Fig. 1. An instance of σ-MSCS with three binary input strings, and an optimal multiple
circular shift ∆ = (0, 2, 1), using the sum of squared distances from the mean (σ) as a cost function.
Columns of ∆ are indicated with dark (red) or light (green) lines, depending on their cost. For

example, column 1 with values (1, 0, 1) has mean 2
3

and cost
(
1
3

)2
+

(
2
3

)2
+

(
1
3

)2
= 2

3
. The overall

cost is 4
3

.

strings called Multiple String Circular Shift (with Cost f). Based on its40

analysis, we will also derive our results for two further, more specific problems. Given41

a set of input strings over a fixed alphabet Σ and a local cost function f : Σ∗ → Q,42

the goal in Multiple String Circular Shift (with Cost f) (abbreviated by43

f-MSCS) is to find a cyclic shift of each input string such that the shifted strings44

“align well” in terms of the sum of local costs.345

f-MSCS
Input: A list of k strings s1, . . . , sk ∈ Σn of length n and c ∈ Q.
Question: Is there a multiple circular shift ∆ = (δ1, . . . , δk) ∈ Nk with

costf (∆) :=
∑n
i=1 f

(
(s←δ11 [i], . . . , s←δkk [i])

)
≤ c?

46

Here, s←δ denotes a circular shift of s by δ (see Section 2 for details). See Fig-47

ure 1 for an example. We separately study the special case Circular Consensus48

String for a binary alphabet, where the cost function f : {0, 1}∗ → N is defined as49

f((x1, . . . , xk)) := min{
∑k
i=1 xi, k −

∑k
i=1 xi}. This corresponds to minimizing the50

sum of Hamming distances (not the maximum Hamming distance as in Closest51

String). As we will show, allowing circular shifts makes consensus string problems52

much harder to solve.53

Multiple circular string (sequence) alignment problems have been considered in54

different variations in bioinformatics, where circular strings naturally arise in several55

applications (for example, in multiple alignment of genomes, which often have a circu-56

lar molecular structure) [4, 5, 14, 19, 27, 37]. Depending on the application at hand,57

different cost functions are used. For example, non-trivial algorithms for computing58

a consensus string of three and four circular strings with respect to the Hamming59

distance have been developed [23]. However, most of the algorithmic work so far is60

heuristic in nature or only considers specific special cases. A thorough analysis of the61

computational complexity for these problems in general so far has been missing.62

After having dealt with circular string alignment problems in a quite general63

fashion, we then study a fundamental (consensus) problem in time series analysis.64

Dynamic time warping (see Section 2 for details) defines a distance between two65

time series which is used in many applications in time series analysis [21, 28, 33, 36]66

(notably, dynamic time warping has also been considered in the context of circular67

3We cast all problems in this work as decision problems for easier complexity-theoretic treatment.
Our hardness results correspondingly hold for the associated optimization problems.
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x1 x1

x2 x2

x3 x3

z

cost: 3
4 2 0 0 32

3

1 110 100 00 04 4

0 02 210 100 00 0

0 00 00 010 100 0

1
4 1 10 0 4

3

Fig. 2. A DTW-Mean instance with three input sequences and an optimal length-5 mean (z).
Alignments between the mean and input sequences can progress at different speeds. This is formalized
using warping paths (see Section 2) represented by polygons (or lines in degenerate cases) with
alternating shades. Every pair of aligned elements belongs to the same polygon. The cost of each
mean element is the sum of squared differences over all aligned input elements, e.g. the cost of the
first element is (1 − 1

4
)2 + 3 · (0 − 1

4
)2 = 3

4
.

sequences [3, 29]). An important problem here is to compute an average of a given68

sample of time series under the dynamic time warping distance.69

DTW-Mean
Input: A list of k univariate rational time series x1, . . . , xk and c ∈ Q.
Question: Is there a univariate rational time series z such that F(z) =∑k

i=1 (dtw(z, xi))
2 ≤ c?

70

Here, dtw denotes the dynamic time warping distance (see Section 2 for details).71

Intuitively, dynamic time warping allows for non-linear alignments between two series.72

Figure 2 depicts an example. The dtw-distance of two length-n time series can be73

computed via standard dynamic programming in O(n2) time. Some subquadratic74

algorithms are known [17, 22, 16]. For two binary time series, there exists an O(n1.87)-75

time algorithm [1]. In general, however, a strongly subquadratic-time algorithm (that76

is, O(n2−ε) time for some ε > 0) does not exist unless the Strong Exponential Time77

Hypothesis fails [1, 7, 22].78

Regarding the computational complexity of DTW-Mean, although more or less79

implicitly assumed in many publications presenting heuristic solution strategies4, NP-80

hardness still has been open (see Brill et al. [6, Section 3] for a discussion on some81

misconceptions and wrong statements in the literature). It is known to be solvable82

inO(n2k+12kk) time, where n is the maximum length of any input series [6]. Moreover,83

Brill et al. [6] presented a polynomial-time algorithm for the special case of binary84

time series which has been improved recently [34]. In practice, numerous heuristics85

are used [11, 31, 33, 35]. Note that DTW-Mean is often described as closely related86

to multiple sequence alignment problems [2, 30, 32]. However, we are not aware87

of any formal proof regarding this connection. By giving a polynomial-time many-88

one reduction from Multiple String Circular Shift (with Cost f) to DTW-89

Mean, we show that DTW-Mean is actually connected to multiple circular sequence90

alignment problems. To the best of our knowledge, this is the first formally proven91

4For instance, Petitjean et al. [31] write “Computational biologists have long known that averag-
ing under time warping is a very complex problem, because it directly maps onto a multiple sequence
alignment: the “Holy Grail” of computational biology.” Unfortunately, the term “directly maps”
has not been formally defined and only sketchy explanations are given.

This manuscript is for review purposes only.
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result regarding this connection.92

Our Results. Using plausible complexity-theoretic assumptions, we provide a fine-93

grained picture of the exact computational complexity (including parameterized com-94

plexity) of the problems introduced above. We present two main results.95

First, we show that, for a large class of natural cost functions f , f-MSCS on96

binary sequences is NP-hard, W[1]-hard with respect to the number k of inputs, and97

not solvable in ρ(k) ·no(k) time for any computable function ρ (unless the Exponential98

Time Hypothesis fails). Note that f-MSCS is easily solvable in ρ(k) · nO(k) time (for99

computable functions f) since there are at most nk−1 cyclic shifts to try out (without100

loss of generality, the first string is not shifted). Our running time lower bound thus101

implies that the brute-force approach can only be improved up to a constant factor in102

the exponent. Based on this, we can also prove the same hardness for the Circular103

Consensus String problem. In fact, the general ideas of our reduction might also104

be used to develop hardness reductions for other circular string alignment problems.105

As our second main contribution, we obtain the same list of hardness results as106

above for DTW-Mean on binary time series. We achieve this by a polynomial-time107

reduction from a special case of f-MSCS. Our reduction implies that, unless the108

Exponential Time Hypothesis fails, the known O(n2k+12kk)-time algorithm [6] essen-109

tially can be improved only up to constants in the first exponent. Note that recently110

Buchin et al. [8] achieved the same hardness result for the problem of averaging time111

series under generalized (p, q)-DTW. Their reduction, however, does not yield binary112

input time series.113

Organization. In Section 2 we fix notation and introduce basic concepts, also in-114

cluding the formal definition of dynamic time warping and the corresponding concept115

of warping paths. In Section 3, we identify a circular string problem (of independent116

interest in molecular biology) which forms the basis for the results in Section 5. More117

specifically, we prove the hardness results for Multiple String Circular Shift118

(with Cost f). The key ingredient here is a specially geared polynomial-time reduc-119

tion from the Regular Multicolored Clique problem. Moreover, we introduce120

the concept of polynomially bounded grouping functions f (for which our results hold).121

In Section 4, providing a reduction from Multiple String Circular Shift (with122

Cost f), we show analogous hardness results for Circular Consensus String.123

Notably, the cost function corresponding to Circular Consensus String is not a124

polynomially bounded grouping function, making the direct application of the result125

for Multiple String Circular Shift (with Cost f) impossible. In Section 5126

we prove analogous complexity results for DTW-Mean, again devising a polynomial-127

time reduction from Multiple String Circular Shift (with Cost f). In Sec-128

tion 6, we conclude with some open questions and directions for future research.129

2. Preliminaries. We briefly introduce our notation and formal definitions.130

Circular Shifts. For a string s = s[1] . . . s[n] ∈ Σn, we denote its length n by |s|.131

For 0 ≤ δ < n, we define the circular (left) shift by δ as the string132

s←δ :=s[δ + 1] . . . s[n]s[1] . . . s[δ] (note that s←δ[i] = s[(i+ δ − 1 mod n) + 1]),133134

that is, we circularly shift the string δ times to the left. Let s1, . . . , sk be strings135

of length n. A multiple circular (left) shift of s1, . . . , sk is defined by a k-tuple136

∆ = (δ1, . . . , δk) ∈ {0, . . . , n−1}k and yields the strings s←δ11 , . . . , s←δkk . We define col-137

umn i ∈ {1, . . . , n} of a multiple circular shift ∆ as the k-tuple (s←δ11 [i], . . . , s←δkk [i]).138

By row j ∈ {1, . . . , k} of column i we denote the element s
←δj
j [i].139

This manuscript is for review purposes only.



CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 5

Cost Functions. A local cost function is a function f : Σ∗ → Q assigning a cost140

to any tuple of values. Given such a function, the overall cost of a circular shift ∆141

for k length-n strings is defined as142

costf (∆) :=

n∑
i=1

f
(
(s←δ11 [i], . . . , s←δkk [i])

)
,143

that is, we sum up the local costs of all columns of ∆.144

An example for a local cost is the sum of squared distances from the arithmetic145

mean (i.e., k times the variance, here called σ), that is,146

σ((x1, . . . , xk)) =

k∑
i=1

xi − 1

k

k∑
j=1

xj

2

.147

148

Using a well-known formula for the variance, we get the following useful formula for σ:149

σ((x1, . . . , xk)) =

( k∑
j=1

x2j

)
− 1

k

( k∑
j=1

xj

)2

.150

For binary strings (that is, xj ∈ {0, 1} for all 1 ≤ j ≤ k), σ does only depend151

on the number w :=
∑k
j=1 xj of 1’s and the number k − w of 0’s and can be written152

(according to the formula above) as153

(2.1) σ((x1, . . . , xk)) = w − w2

k
=
w(k − w)

k
.154

We will repeatedly use this formula later on for cost calculations in the proof for155

DTW-Mean (Theorem 5.1).156

Dynamic Time Warping. A time series is a sequence x = (x1, . . . , xn) ∈ Qn. The157

dynamic time warping distance between two time series is based on the concept of a158

warping path.159

Definition 2.1. A warping path of order m× n is a sequence p = (p1, . . . , pL),160

L ∈ N, of index pairs p` = (i`, j`) ∈ {1, . . . ,m} × {1, . . . , n}, 1 ≤ ` ≤ L, such that161

(i) p1 = (1, 1),162

(ii) pL = (m,n), and163

(iii) (i`+1 − i`, j`+1 − j`) ∈ {(1, 0), (0, 1), (1, 1)} for each 1 ≤ ` ≤ L− 1.164

See Figure 2 in Section 1 for an example.165

The set of all warping paths of order m × n is denoted by Pm,n. A warping166

path p ∈ Pm,n defines an alignment between two time series x = (x[1], . . . , x[m])167

and y = (y[1], . . . , y[n]) in the following way: Every pair (i, j) ∈ p aligns element xi168

with yj . Note that every element from x can be aligned with multiple elements169

from y, and vice versa. The dtw-distance (with squared cost function) between x170

and y is defined as171

dtw(x, y) := min
p∈Pm,n

( ∑
(i,j)∈p

(x[i]− y[j])2

)1/2

.172

Note that also other cost functions can be considered. In this work, we only consider173

the most common case of squared costs.174

This manuscript is for review purposes only.
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A mean of time series x1, . . . , xk is a time series that minimizes the Fréchet175

function176

F(z) :=

k∑
j=1

(dtw(z, xj))
2

=

k∑
j=1

min
pj∈P|xj |,|z|

∑
(u,v)∈pj

(xj [u]− z[v])2.177

Note that given, for each j ∈ [k], a warping path pj between z and xj , the value of z[i]178

that minimizes179

(2.2)

k∑
j=1

∑
(u,v)∈pj

(xj [u]− z[v])2180

is the arithmetic mean of all values aligned to z[i],181

z[i] =

∑k
j=1

∑
(i,u)∈pj xj [u]∑k

j=1 |{(i, u) ∈ pj}|
.182

That is, the length of a mean together with the optimal alignments to the input time183

series determine the mean. The contribution of z[i] to the sum (2.2) is the sum of184

squared distances between z[i] and all values aligned to z[i],185

k∑
j=1

∑
(u,i)∈pj

(xj [u]− z[i])2.186

Note that this corresponds to the cost function σ above.187

We remark that for DTW-Mean, often a normalized cost F (z) := 1
kF(z) is188

considered. Clearly, this does not affect the computational complexity of the problem,189

so for simplification purposes we only consider the non-normalized cost F(z).190

Parameterized Complexity. We assume familiarity with the basic concepts from191

classic and parameterized complexity theory.192

An instance of a parameterized problem is a pair (I, k) consisting of the classic193

problem instance I and a natural number k (the parameter). A parameterized problem194

is contained in the class XP if there is an algorithm solving an instance (I, k) in195

polynomial time if k is a constant, that is, in time O(|I|f(k)) for some computable196

function f only depending on k (here |I| is the size of I). A parameterized problem197

is fixed-parameter tractable (contained in the class FPT) if it is solvable in time f(k) ·198

|I|O(1) for some computable function f depending solely on k. The class W[1] contains199

all problems which are parameterized reducible to Clique parameterized by the clique200

size. A parameterized reduction from a problem Q to a problem P is an algorithm201

mapping an instance (I, k) of Q in time f(k) · |I|O(1) to an equivalent instance (I ′, k′)202

of P such that k′ ≤ g(k) (for some computable functions f and g). It holds that203

FPT ⊆W[1] ⊆ XP.204

A parameterized problem that is W[1]-hard with respect to a parameter (such as205

Clique with parameter clique size) is widely believed not to be in FPT.206

Exponential Time Hypothesis. Impagliazzo and Paturi [20] formulated the Expo-207

nential Time Hypothesis (ETH) which asserts that there exists a constant c > 0 such208

that 3-SAT cannot be solved in O(2cn) time, where n is the number n of variables in209

the input formula. It is a stronger assumption than common complexity assumptions210

such as P6=NP or FPT6=W[1].211

Several conditional running time lower bounds have since been shown based on212

the ETH, for example, Clique cannot be solved in ρ(k)·no(k) time for any computable213

function ρ unless the ETH fails [10].214

This manuscript is for review purposes only.
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3. Hardness of f-MSCS on Binary Strings. In this section, we focus on215

binary strings from {0, 1}∗. We prove hardness for a family of local cost functions216

that satisfy certain properties. The functions we consider have the common property217

that they only depend on the number of 0’s and 1’s in a column, and that they aim218

at grouping similar values together.219

Definition 3.1. A function f : {0, 1}∗ → Q is called order-independent (or sym-220

metric) if, for each k ∈ N, there exists a function fk : {0, . . . , k} → Q such that221

f((x1, . . . , xk)) = fk
(∑k

j=1 xj
)

holds for all (x1, . . . , xk) ∈ {0, 1}k.222

For an order-independent function f , we define the function f ′k : {1, . . . , k} → Q223

as224

f ′k(x) :=
fk(x)− fk(0)

x
.225

An order-independent function f is grouping if f ′k(k) < min1≤x<k f
′
k(x) and f ′k(2) <226

f ′k(1) holds for every k ∈ N.227

For an order-independent function f , f ′k can be seen as the cost per 1-value (a228

column with x 1’s and k − x 0’s has cost fk(x) = fk(0) + xf ′k(x)). It can also be229

seen as a discrete version of the derivative for fk, so that if fk is concave then f ′k is230

decreasing. The intuition behind a grouping function is that the cost per 1-value is231

minimal in columns containing only 1’s, and that having two 1’s in a column has less232

cost than having two columns with a single 1. In particular, any function f where233

all fk are strictly concave is grouping. Finally, if f is grouping, then the function234

(x1, . . . , xk) 7→ fk

 k∑
j=1

xj

+ a

k∑
j=1

xj + b235

is also grouping for any a, b ∈ Q.236

The following definitions are required to ensure that our subsequent reduction237

(Lemma 3.3) is computable in polynomial time.238

Definition 3.2. Let f be an order-independent function. The gap of fk is239

εk := min{f ′k(x)− f ′k(y) | 1 ≤ x, y ≤ k, f ′k(x) > f ′k(y)}.240

The range of fk is µk := max1≤x≤k |f ′k(x)|.241

An order-independent function f is polynomially bounded if it is polynomial-time242

computable and if, for every k ∈ N, µk and ε−1k are upper-bounded by a polynomial243

in k.244

For binary strings, the function σ (see Section 2) is a polynomially bounded245

grouping function. Indeed, it is order-independent since σ((x1, . . . , xk)) = w(k−w)
k ,246

where w =
∑k
j=1 xj . Thus, σk(w) = w(k−w)

k and we have σk(0) = 0, and σ′k(w) =247

k−w
k , so σ′k is strictly decreasing, which is sufficient for σ to be grouping. Finally, it248

is polynomially bounded, with gap εk = 1
k and range µk = k−1

k ≤ 1.249

We prove our hardness results with a polynomial-time reduction from a special250

version of the Clique problem.251

This manuscript is for review purposes only.



8 L. BULTEAU, V. FROESE, AND R. NIEDERMEIER

Regular Multicolored Clique (RMCC)
Input: A d-regular undirected graph G = (V,E) where the vertices are col-

ored with k colors such that each color class contains the same num-
ber of vertices.

Question: Does G have a size-k complete subgraph (containing
(
k
2

)
edges, called

a k-clique) with exactly one vertex from each color?

252

RMCC is known to be NP-hard, W[1]-hard with respect to k, and not solvable in253

ρ(k) · |V |o(k) time for any computable function ρ unless the ETH fails [12].254

The following lemma states the existence of a polynomial-time reduction from255

RMCC to f-MSCS which implies hardness of f-MSCS for polynomially bounded256

grouping functions.257

Lemma 3.3. Let f be a polynomially bounded grouping function. Then there is a258

polynomial-time reduction that, given an RMCC instance G = (V,E) with k colors,259

outputs binary strings s0, . . . , sk of equal length and c ∈ Q such that the following260

holds:261

• If G contains a properly colored k-clique, then there exists a multiple circular262

shift ∆ of s0, . . . , sk with costf (∆) = c.263

• If G does not contain a properly colored k-clique, then every multiple circular264

shift ∆ of s0, . . . , sk has costf (∆) ≥ c+ εk+1.265

To prove Lemma 3.3, we first describe the reduction and then prove several claims266

about the structure and the costs of multiple circular shifts in the resulting f-MSCS267

instance.268

Reduction. Consider an instance of RMCC, that is, a graph G = (V,E) with a269

partition of V into k subsets V1, . . . , Vk of size n := |V |
k each, such that each vertex270

has degree d. Let Vj = {vj,1, . . . , vj,n}, m = |E|, and E = {e1, . . . , em}. We assume271

that k ≥ 3 since the instance is trivially solvable otherwise.272

We build an f-MSCS instance with k+ 1 binary strings. Hence, the local cost of273

a column of a multiple circular shift is given by the function fk+1. For simplicity, we274

write f ′, gap ε, and range µ for f ′k+1, εk+1, and µk+1.275

For each j ∈ {1, . . . , k}, let pj be the length-k string such that pj [h] = 1 if h = j,276

and pj [h] = 0 otherwise. For each vertex vj,i, let qj,i ∈ {0, 1}m be the string such that277

qj,i[h] :=

{
1, if 1 ≤ h ≤ m and vj,i ∈ eh
0, otherwise

278

and let uj,i := pjqj,i be the concatenation of pj and qj,i. Note that uj,i has length279

m′ := m + k, contains 1 + d ones, and m′ − 1 − d zeros. Let 0 := 0m
′

be the string280

containing m′ zeros and define the numbers281

κ := knd+ kn+ k,282

γ := nk,283

λ := max

{⌈
κ

(
2µ

ε
+ 1

)⌉
, 2n(γ + k + 1)

}
+ 1.284

285

For 1 ≤ j ≤ k, we define the string286

sj := 1uj,1(10 )γ+j1uj,2(10 )γ+j . . . 1uj,n(10 )γ+j(10 )λ−n(γ+j+1).287

Note that |1uj,i| = |10 | = m′ + 1. Thus, each string sj has length288

n(m′ + 1)(1 + γ + j) + (m′ + 1)(λ− n(γ + j + 1)) = λ(m′ + 1) =: `,289

This manuscript is for review purposes only.



CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 9

where ` ≤ poly(nk). We further define the following length-` dummy string290

s0 = 11k0m(10 )λ−1.291

Finally, we define the target cost292

c :=`fk+1(0)293

+ λ(k + 1)f ′(k + 1)294

+ 2

(
k +

(
k

2

))
(f ′(2)− f ′(1))295

+ κf ′(1).296297

Clearly, the strings s0, . . . , sk and the value c can be computed in polynomial time.298

Our construction is illustrated in Figure 3.299

In the strings s0, . . . , sk, any 1-value at a position i with i mod (m′ + 1) = 1 is300

called a separator, other 1-values are coding values. A coding value is either vertex-301

coding if it belongs to some pj (or to the k coding values of s0), or edge-coding302

otherwise (then it belongs to some qi,j). There are λ(k + 1) separator values in total303

and κ coding values.304

Given a multiple circular shift ∆, we define the weight w of a column as the305

number of 1-values it contains, that is, 0 ≤ w ≤ k + 1. The cost for such column is306

fk+1(w) = fk+1(0) + wf ′(w). Each 1-value of this column is attributed a local cost307

of f ′(w), so that the cost of any solution is composed of a base cost of `fk+1(0) and308

of the sum of all local costs of all 1-values. In the following we mainly focus on local309

costs.310

It remains to be shown that there exists a multiple circular shift of s0, . . . , sk with311

cost c if G contains a properly colored k-clique, and that otherwise every multiple312

circular shift has cost at least c+ ε. We proceed by analyzing the structure and costs313

of optimal multiple circular shifts.314

Aligning Separators. Let ∆ = (δ0, . . . , δk) be a multiple circular shift of s0, . . . , sk.315

Without loss of generality, we can assume that δ0 = 0 since setting each δj to (δj −316

δ0) mod ` yields a shift with the same cost. First, we show that if δj mod (m′+1) 6= 0317

holds for some 0 < j ≤ k, then ∆ has large cost.318

Claim 3.4. For any multiple circular shift ∆ = (δ0 = 0, δ1, . . . , δk) with δj mod319

(m′ + 1) 6= 0 for some 1 < j ≤ k, it holds that costf (∆) ≥ c+ ε.320

Proof. Assume that δj mod (m′ + 1) = a ∈ {1, . . . ,m′} for some 0 < j ≤ k.321

We count the number of weight-(k + 1) columns: such a column cannot only contain322

separator values since it cannot contain a separator value in both row 0 and row j.323

Hence, it contains at least one coding value. Since there are κ coding values, there324

are at most κ weight-(k + 1) columns, so at most kκ separator values have local cost325

f ′(k+ 1). All other separator values have local cost f ′(w) for some w < k+ 1, which326

is at least f ′(k+1)+ε. There are at least λ(k+1)−kκ such separator values. Adding327

the base cost of `fk+1(0), the cost of ∆ is thus at least:328

costf (∆) ≥ `fk+1(0) + (λ(k + 1)− kκ)(f ′(k + 1) + ε)329

≥ `fk+1(0) + λ(k + 1)f ′(k + 1) + λkε− kκ(µ+ ε).330331
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v1,1 v1,2 v1,3

v2,1

v2,2

v2,3 v3,1

v3,2

v3,3

V1

V2 V3

s0

s1

s2

s3

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

s′0

s′1

s′2

s′3

u1,1 u1,2 u1,3

u2,3 u2,1 u2,2

u3,1u3,2 u3,3

s0 11

s1 11

s2 11

s3 11

1 1 1 1

1 1 11

1 1 11

1

1

1

1 11 · · · 11

· · · 11

· · · 11

· · · 11

1 1 111

Fig. 3. Illustration of the reduction from an instance of RMCC (top) with k = 3. Middle:
Sequences s0 to s3, and their optimal circular shifts s′0 to s′3. Blue stripes represent the regularly-
spaced separator 1-values. The (light) gray intervals contain both 0’s and 1’s according to strings ui,j ,
and white intervals contain only 0’s. The spacing between consecutive ui,j ’s is defined using γ and
the overall string length depends on λ, both values are chosen so as to restrict the possible alignments
between different ui,j ’s; in this example we use γ = 1 and λ = 19. Bottom: a zoom-in on blocks 1
and 12 in the shifted strings (only non-0 values are indicated, weight-2 columns are highlighted).
Through vertex columns, the dummy string s0 ensures that one vertex occupies block 1 in each row,
and weight-2 edge-columns ensure that

(k
2

)
edges (as highlighted in the graph) are induced by these

vertices.

Recall that332

c = `fk+1(0) + λ(k + 1)f ′(k + 1) + 2

(
k +

(
k

2

))
(f ′(2)− f ′(1)) + κf ′(1)333

≤ `fk+1(0) + λ(k + 1)f ′(k + 1) + κµ334335
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since f ′(2) − f ′(1) < 0. Combining the above bounds for c and costf (∆) using336

λ ≥ κ
(
2µ
ε + 1

)
+ 1 (by definition) yields337

costf (∆)− c ≥ λkε− kκ(µ+ ε)− κµ338

≥ 2κkµ+ κkε+ kε− kκ(µ+ ε)− κµ339

≥ ε.340341

Cost of Circular Shifts. We assume from now on that δj mod (m′+ 1) = 0 for all342

j ∈ {0, . . . , k}. We now provide a precise characterization of the cost of ∆.343

For l ∈ {1, . . . , λ}, we define the l-th block consisting of the m′ consecutive344

columns (l−1)(m′+1)+2, . . . , l(m′+1). The block index of column i is i−1 mod (m′+345

1). For j ∈ {1, . . . , k}, the substring s
←δj
j [(l − 1)(m′ + 1) + 2] . . . s

←δj
j [l(m′ + 1)] cor-346

responding to the l-th block of s
←δj
j either equals some uj,i or 0 . We say that block l347

is occupied by vertex vj,i ∈ Vj , if the corresponding substring of s
←δj
j is uj,i. Note348

that for each j there are n distinct blocks out of λ that are occupied by a vertex349

in Vj . Columns with block-index 1 to k are called vertex-columns and columns with350

block-index k+1 to k+m = m′ are edge-columns (they may only contain edge-coding351

values from some qi,j). Let P denote the set of vertices occupying block 1.352

Observation 3.5. In block l, if the vertex-column with block-index h has weight 2,353

then l = 1, and Vh ∩ P 6= ∅. No vertex-column can have weight 3 or more.354

Proof. Consider the vertex-column with block-index h. By construction, among355

s1, . . . , sk only sh may have a 1 in this column (which is true if some vertex from Vh356

occupies this block). The string s0 has a 1 in this column if it is a column in block 1.357

Thus, assuming that column h has weight 2 implies l = 1 and Vh ∩ P 6= ∅.358

Observation 3.6. In block l, if the edge-column with block-index k + h, 1 ≤359

h ≤ m, has weight 2, then block l is occupied by both vertices of edge eh ∈ E. No360

edge-column can have weight 3 or more.361

Proof. Consider an edge-column with block-index k + h, 1 ≤ h ≤ m. Denote by362

vj0,i0 and vj1,i1 the endpoints of edge eh. For any 1 ≤ j ≤ k, sj has a 1 in this column363

only if block l is occupied by some vertex vj,i, and, moreover, only if uj,i has a 1 in364

column h, i.e., vj,i = vj0,i0 or vj,i = vj1,i1 , hence j = j1 or j = j2. So this column365

may not have weight 3 or more, and if it has weight 2, then block l is occupied by366

both endpoints of eh.367

From Observations 3.5 and 3.6 it follows that no column (beside separators) can368

have weight 3 or more. Since the number of coding values is fixed, the cost is entirely369

determined by the number of weight-2 columns. In the following, we will first give an370

upper bound on the number of weight-2 columns and then analyze how it determines371

the cost.372

Observation 3.5 gives a direct upper bound of at most k weight-2 vertex columns373

(since they all are in block 1). We now focus on weight-2 edge-columns. The following374

claim will help us to show an upper bound on their number.375

Claim 3.7. For any two rows j, j′, there exists at most one block l that is occupied376

by vertices from both Vj and Vj′ .377

Proof. First, note that if two distinct blocks l and l′ are both occupied by a378

vertex from the same row j, then, by construction, there are two possible cases:379

either |l− l′| = a(γ+j+1) or |l− l′| = λ−a(γ+j+1), where 1 ≤ a < n in both cases.380
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12 L. BULTEAU, V. FROESE, AND R. NIEDERMEIER

Indeed, there are n regularly-spaced substrings uj,i (having γ + j blocks in between381

them) in sj (consisting of λ blocks in total).382

Assume towards a contradiction that two distinct blocks l and l′ are each occupied383

by a vertex from Vj and Vj′ . Then, there exists an a ∈ {1, . . . , n − 1} such that384

|l− l′| = a(γ+j+1) or |l− l′| = λ−a(γ+j+1), and there exists an a′ ∈ {1, . . . , n−1}385

such that |l− l′| = a′(γ + j′ + 1) or |l− l′| = λ− a′(γ + j′ + 1). This gives four cases386

to consider (in fact just three by symmetry of j and j′).387

If |l − l′| = a(γ + j + 1) = a′(γ + j′ + 1), then (a − a′)(γ + 1) = a′j′ − aj. We388

have a 6= a′, as otherwise this would imply j = j′. So |a′j′ − aj| ≥ γ + 1, but this389

is impossible since a < n, a′ < n, j ≤ k, j′ ≤ k, that is, |a′j′ − aj| ≤ kn, whereas390

γ + 1 = kn+ 1 (by construction).391

If |l− l′| = a(γ+ j+ 1) = λ−a′(γ+ j′+ 1), then λ = a(γ+ j+ 1) +a′(γ+ j′+ 1).392

However, λ > 2n(γ+k+ 1) by construction, so this case also leads to a contradiction.393

Finally, if |l− l′| = λ−a(γ+j+1) = λ−a′(γ+j′+1), then we have a(γ+j+1) =394

a′(γ + j′ + 1). This case yields, as the first case, a contradiction.395

Claim 3.8. There are at most
(
k
2

)
weight-2 edge-columns.396

Proof. Consider any pair j, j′ such that 1 ≤ j < j′ ≤ k. It suffices to show that397

there exists at most one weight-2 edge-column with a 1 in rows j and j′. Aiming398

at a contradiction, assume that two such columns exist. By Observation 3.6, they399

must each belong to a block which is occupied by vertices both in Vj and Vj′ . From400

Claim 3.7 it follows that both columns belong to the same block. Let v and v′ be the401

vertices of Vj and Vj′ , respectively, occupying this block. By Observation 3.6 again,402

both edges are equal to {v, v′}, which contradicts the fact that they are distinct.403

Having established an upper bound of k+
(
k
2

)
for the number of weight-2 columns,404

the following result describes the corresponding cost.405

Claim 3.9. Let W2 be the number of weight-2 columns. If W2 = k +
(
k
2

)
, then406

costf (∆) = c. If W2 < k +
(
k
2

)
, then costf (∆) ≥ c+ ε.407

Proof. The base cost `fk+1(0) of the solution only depends on the number ` of408

columns. Separator values are in weight-(k + 1) columns. Since there are λ of them,409

it follows that the total local cost of all separator values is λ(k + 1)f ′(k + 1).410

The total number of coding values is κ, each coding value has a local weight411

of f ′(1) if it belongs to a weight-1 column, and f ′(2) otherwise (since there is no412

vertex- or edge-column with weight 3 or more). There are W2 weight-2 columns, so413

exactly 2W2 coding values within weight-2 columns. Summing the base cost with the414

local costs of all separator and coding values, we get:415

costf (∆) = `fk+1(0)416

+ λ(k + 1)f ′(k + 1)417

+ 2W2(f ′(2)− f ′(1))418

+ κf ′(1).419420

Thus, by definition of c, we have costf (∆) = c if W2 = k+
(
k
2

)
. If W2 < k+

(
k
2

)
, then421

using the fact that, by assumption, f ′(2)− f ′(1) ≤ −ε, we obtain422

costf (∆) = c+ 2

(
W2 − k −

(
k

2

))
(f ′(2)− f ′(1)) ≥ c+ ε.

423
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Claim 3.10. If G does not contain a properly colored k-clique, then there are at424

most k +
(
k
2

)
− 1 weight-2 columns.425

Proof. We prove the contrapositive. Assume that there are at least k+
(
k
2

)
weight-426

2 columns. By Claim 3.8, there are at least k weight-2 vertex-columns. By Obser-427

vation 3.5, only the k vertex-columns of block 1 may have weight 2, hence for each428

1 ≤ j ≤ k the column of block 1 with block-index j has weight 2. Thus, for every j,429

P ∩ Vj 6= ∅.430

By Claim 3.7, no other block than block 1 may be occupied by two vertices,431

hence any edge-column with weight 2 must be in block 1, and both endpoints are432

in P . There cannot be more than k weight-2 vertex-columns, hence there are
(
k
2

)
433

weight-2 edge-columns, and for each of these there exists a distinct edge with both434

endpoints in P . Thus, P is a properly colored k-clique.435

Cliques and Circular Shifts with Low Cost. We are now ready to complete the436

proof of Lemma 3.3. First, assume that G contains a properly colored k-clique P =437

{v1,i1 , . . . , vk,ik}. Consider the multiple circular shift ∆ = (δ0, . . . , δk), where δ0 = 0438

and439

δj := (ij − 1)(m′ + 1)(γ + j + 1)440

for j ∈ {1, . . . , k}. Note that |P | = k, and all edge-columns in block 1 corresponding441

to edges induced in P have weight 2. Hence there are
(
k
2

)
weight-2 edge-columns and442

k weight-2 vertex-columns. By Claim 3.9, costf (∆) = c.443

Now, assume that G does not contain a properly colored k-clique. Let ∆ =444

(δ0, . . . , δk) be a multiple circular shift with δ0 = 0 (recall that we can assume this445

without loss of generality). Clearly, if δj mod (m′+1) 6= 0 for some j, then costf (∆) ≥446

c+ ε (by Claim 3.4). Otherwise, by Claim 3.10 there are at most k+
(
k
2

)
− 1 weight-2447

columns. By Claim 3.9 , costf (∆) ≥ c+ ε.448

This completes the proof of Lemma 3.3 which directly leads to our main result of449

this section.450

Theorem 3.11. Let f be a polynomially bounded grouping function. Then, f-451

MSCS on binary strings is452

(i) NP-hard,453

(ii) W[1]-hard with respect to the number k of input strings, and454

(iii) not solvable in ρ(k) · no(k) time for any computable function ρ unless the ETH455

fails.456

Proof. The polynomial-time reduction from Lemma 3.3 yields the NP-hardness.457

Moreover, the number of strings in the f-MSCS instance only depends on the size of458

the multicolored clique. Hence, it is a parameterized reduction from RMCC param-459

eterized by the size of the clique to f-MSCS parameterized by the number of input460

strings and thus yields W[1]-hardness. Lastly, the number k′ = k+ 1 of strings is lin-461

ear in the size k of the clique. Thus, any ρ(k′) ·no(k′)-time algorithm for DTW-Mean462

would imply a ρ′(k) · |V |o(k)-time algorithm for RMCC, contradicting the ETH.463

Note that Theorem 3.11 holds for the function σ since it is a polynomially bounded464

grouping function (as discussed earlier).465

The assumption that f is polynomially bounded is only needed to obtain a466

polynomial-time reduction in Lemma 3.3. Without this assumption, we still obtain a467

parameterized reduction from RMCC parameterized by the clique size to f-MSCS468

parameterized by the number of input strings, which yields the following corollary for469

a larger class of functions.470
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Corollary 3.12. Let f be a computable grouping function. Then, f-MSCS on471

binary strings is W[1]-hard with respect to the number k of input strings and not472

solvable in ρ(k) · no(k) time for any computable function ρ unless the ETH fails.473

4. Circular Consensus String. In this section we briefly study the Circular474

Consensus String problem:475

Circular Consensus String (SCC)
Input: A list of k strings s1, . . . , sk ∈ Σn of length n and c ∈ Q.
Question: Is there a string s∗ ∈ Σn and a multiple circular shift (δ1, . . . , δk)

such that
∑k
j=1 d(s

←δj
j , s∗) ≤ c?

476

Here, d denotes the Hamming distance, that is, the number of mismatches between477

the positions of two strings. Although consensus string problems in general have been478

widely studied from a theoretical point of view [9], somewhat surprisingly this is not479

the case for the circular version(s). For CCS, only an O(n2 log n)-time algorithm480

for k = 3 and an O(n3 log n)-time algorithm for k = 4 is known [23]. However, for481

general k no hardness result is known. Note that without circular shifts the problem482

is solvable in linear time: It is optimal to set s∗[i] to any element that appears a483

maximum number of times among the elements s1[i], . . . , sk[i].484

For binary strings, it can easily be seen that the cost induced by column i is the485

minimum of the number of 0’s and the number of 1’s. Let f CS be the polynomially486

bounded order-independent function with f CS

k (w) = min{w, k − w}. It follows from487

the discussion above that Circular Consensus String is exactly f CS-MSCS. Note,488

however, that f CS is not a grouping function since f CS

k
′(2) = f CS

k
′(1) = 1. That is, we489

do not immediately obtain hardness of CCS from Theorem 3.11. We can still prove490

hardness via a reduction using a properly chosen polynomially bounded grouping491

function.492

Theorem 4.1. Circular Consensus String on binary strings is493

(i) NP-hard,494

(ii) W[1]-hard with respect to the number k of input strings, and495

(iii) not solvable in ρ(k) · no(k) time for any computable function ρ unless the ETH496

fails.497

Proof. As discussed above, CCS is equivalent to f CS-MSCS. To prove hardness,498

we define a local cost function g (similar to f CS) and reduce from g-MSCS to f CS-499

MSCS.500

Let g be the order-independent local cost function such that501

gk(w) := f CS

2k−2(w + (k − 2)) = min{w + k − 2, k − w}.502

Note that the function gk is linearly decreasing on {1, . . . , k} and that g′k(w) = 2−w
w =503

2
w−1. The range of gk is µk = 1 and its gap is εk = 2

k−1−
2
k >

2
k2 . That is, g satisfies all504

conditions of Theorem 3.11 and the corresponding hardness results hold for g-MSCS.505

See Figure 4 for an illustration.506

Given an instance I = (s1, . . . , sk, c) of g-MSCS, we define the strings sj := 1|s1|507

for j = k + 1, . . . , 2k − 2. We show that I is a yes-instance if and only if I ′ :=508

(s1, . . . , s2k−2, c) is a yes-instance for f CS-MSCS.509

For the forward direction, consider a multiple circular shift ∆ = (δ1, . . . , δk)510

of s1, . . . , sk such that costg(∆) ≤ c. We define the multiple circular shift ∆′ :=511

(δ1, . . . , δk, δk+1 = 0, . . . , δ2k−2 = 0) of s1, . . . , s2k−2. Consider column i of ∆′ and512

let w′ be the number of 1’s it contains. Then, w′ = w+ k− 2, where w is the number513
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s1 01101001 s1 01101001
s2 11011100 s2 11011100
s3 10010111 s3 10010111
s4 00110100 s4 00110100

s5 11111111
s6 11111111

g4(w)

w

f CS
6 (w)

w

1 1

2 2

3 3

1 2 3 4 1 2 3 4 5 6

Fig. 4. Reduction from an instance of g-MSCS (left) to an instance of fCS-MSCS, which is
equivalent to the Circular Consensus String problem. Plots of the (polynomially bounded and
order-independent) local cost functions for k = 4 are shown. Note that g4 is obtained from fCS

6 by
cropping the first two values in order to become grouping.

of 1’s in column i of ∆. The cost of column i is f CS

2k−2(w + k − 2) = gk(w). Hence,514

column i has the same cost in both solutions. This implies costg(∆) = costfCS(∆′).515

The converse direction is similar. Any multiple circular shift ∆′ of s1, . . . , s2k−2516

can be restricted to a multiple circular shift ∆ of s1, . . . , sk with the same cost.517

5. Consensus for Time Series: DTW-Mean. In this section we consider the518

DTW-Mean problem.519

DTW-Mean
Input: A list of k univariate rational time series x1, . . . , xk and c ∈ Q.
Question: Is there a univariate rational time series z such that F(z) =∑k

i=1 (dtw(z, xi))
2 ≤ c?

520

We prove the following theorem, settling the complexity status of this prominent521

consensus problem in time series analysis.522

Theorem 5.1. DTW-Mean on binary time series is523

(i) NP-hard,524

(ii) W[1]-hard with respect to the number k of input series, and525

(iii) not solvable in ρ(k) · no(k) time for any computable function ρ unless the ETH526

fails.527

The proof is based on a polynomial-time reduction from a special variant of f-528

MSCS for which hardness holds via Theorem 3.11 in Section 3. At this point we529

make crucial use of the fact that the reduction described in the proof of Lemma 3.3530

actually shows that it is hard to decide whether there is a multiple circular shift of531

cost at most c or whether all multiple circular shifts have cost at least c+ε for some ε532

polynomially bounded in the number of strings. This gap of ε guarantees that a no-533

instance of f-MSCS is reduced to a no-instance of DTW-Mean. Being polynomially534

bounded is required for ε in order to obtain a polynomial-time reduction (otherwise535

our constructed time series are too long).536

Before proving Theorem 5.1, we introduce some definitions. A position i in a time537

series x is an integer 1 ≤ i ≤ |x|, its value is x[i]. The distance between two positions i538

and i′ is |i′−i|. A block in a binary time series is a maximal subseries of consecutive 0’s539

(a 0-block) or 1’s (a 1-block). Blocks are also represented by integers, indicating their540

rank in the series (a series with n blocks has blocks 1, 2, . . . , n). The distance between541

two blocks of rank y and y′ is |y′ − y|. Note that the notion of distance is different542

in the context of positions and blocks (even between size-1 blocks, as larger blocks in543

between increase the position distance).544

Recall from Section 2 that once the length of a mean z and the alignments to545
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the input time series are known, then its values are determined. In the binary case, a546

position i that is aligned to a 0’s and b 1’s contributes a cost of az[i]2 + b(1 − z[i])2547

to F(z). This cost is minimal for z[i] being the arithmetic mean b/(a+ b) of all values548

aligned to position i. Thus, the cost of position i is549

C(i) = min
x∈Q

(ax2 + b(1− x)2) =
ab

a+ b
,550

where the second equality follows from Equation (2.1). The reduction in the following551

proof of Theorem 5.1 is from φ-MSCS for a polynomially bounded grouping function φ552

specifically chosen in relation to the above cost of a mean position.553

Proof. We will reduce from φ-MSCS for a specially chosen cost function φ which554

we explain first. To this end, we briefly sketch the idea of the reduction. Given k bi-555

nary strings for φ-MSCS, we construct k+1 binary time series: k time series encoding556

the original strings and a dummy time series containing a single 1. The construction557

is such that a column of a multiple circular shift with x 1’s and k − x 0’s will corre-558

spond to a position in a time series that is aligned to k + x 0’s and one 1. Now, the559

cost of that column should be equal to the cost (k + x)/(k + x + 1) of that position560

minus k/(k+1) (for technical reasons the cost should be 0 if x = 0). That is, we define561

φ : {0, 1}∗ → [0, 1] with φ((x1, . . . , xk)) = φk(
∑k
j=1 xj), where φk : {0, . . . , k} → [0, 1]562

with563

φk(x) =
k + x

k + x+ 1
− k

k + 1
=

x

(k + x+ 1)(k + 1)
.564

Note that φ is a polynomially bounded grouping function since565

φ′k(x) =
φk(x)− φk(0)

x
=

1

(k + x+ 1)(k + 1)
566

is strictly decreasing (φk is strictly concave) with gap567

εk = φ′k(k − 1)− φ′k(k) =
1

(k + 1)(2k)(2k + 1)
568

and range569

µk = φ′k(1) =
1

(k + 2)(k + 1)
.570

See Figure 5 for an example of the functions φk and φ′k. Hence, by Theorem 3.11571

hardness holds for φ-MSCS. We now give the polynomial-time reduction from φ-572

MSCS, see Figure 6 for an illustration of the reduction.573

Reduction. In the following, we assume to have an instance of φ-MSCS with574

k ≥ 15 length-n binary strings s1, . . . , sk ∈ {A,B}n (where A := 0 and B := 1) and575

a target cost 0 ≤ c ≤ n. We write ε for the gap εk of φk (note that ε−1 ∈ O(k3)).576

The task is to decide whether there exists a multiple circular shift of cost at most c or577

whether all multiple circular shifts have cost at least c+ε (the reduction in Lemma 3.3578

implies the hardness of this decision problem).579

First, we encode characters A and B via certain binary strings. To this end,580

we define the number m := 1600k dc+ εe and the binary strings tA := (10)m and581

tB := 100(10)m−1, each string having m 0-blocks (all of length one, except for the582

first 0-block of tB which has length two). The first 0-block of tA and tB is called a583

coding block (respectively, an A-coding or a B-coding block).584
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Fig. 5. Left: The function φ5(x) = x
6(6+x)

. Right: The function φ′5(x) = 1
6(6+x)

.

Now, for each 1 ≤ j ≤ k, let s′j be the string obtained by concatenating the strings585

tsj [i] for 1 ≤ i ≤ |sj |. The final time series xj is obtained by concatenating r copies586

of s′j , where587

r :=

⌈
1

ε
(3mnk + 2(c+ ε))

⌉
+ 1.588

Note that each xj contains 2mnr blocks and |xj | ≤ poly(nk). We also define the extra589

series xk+1 = (1) and set the target cost to590

c′ := r

(
c+

mnk

k + 1

)
+ 3mnk.591

For the correctness of this reduction we need to prove the following:592

(i) If (s1, . . . , sk, c) is a yes-instance, that is, there exists a multiple circular shift ∆593

with costφ(∆) ≤ c, then there exists a time series z with F(z) ≤ c′.594

(ii) If (s1, . . . , sk, c) is a no-instance, that is, costφ(∆) ≥ c+ε holds for every multiple595

circular shift ∆, then F(z) > c′ holds for every time series z.596

(i) Yes-instance of φ-MSCS. Consider a multiple circular shift ∆ = (δ1, . . . , δk)597

of s1, . . . , sk with costφ(∆) ≤ c. Without loss of generality, we assume that 0 ≤ δj < n598

holds for every 1 ≤ j ≤ k.599

We construct a time series z of length 2mn(r − 1) + 2 (also see Figure 6) such600

that F(z) ≤ c′. To this end, we describe the alignments between z and x1, . . . , xk+1601

(recall that this determines the values and costs of positions in z). For each j =602

1, . . . , k, the first position is aligned with the leftmost 2δjm blocks of each xj (or603

with the first block if δj = 0) and the last position is aligned with the rightmost604

2(n − δj)m blocks of xj . For each 1 < i < 2mn(r − 1) + 2, position i is aligned605

with the (i − 1 + 2δjm)-th block of xj . These positions are called regular positions,606

whereas the first and last position are called extreme. Clearly, all positions of z are607

also aligned with the single 1 in xk+1.608

Given the above alignments, the sum of costs of all positions in z is clearly an609

upper bound for F(z). The following two claims give an upper bound for this sum.610

Claim 5.2. The total cost of regular positions is at most (r − 1)(c+ mnk
k+1 ).611

Proof. Due to the alternation of 1- and 0-blocks in each xj and the fact that612

i+ (2δjm) ≡ i (mod 2), it follows that the i-th regular position (which is z[i+ 1]) is613

mapped only to 1’s if i is odd (odd position) or only to 0’s (and the single 1 in xk+1)614

if i is even (even positions). Thus, odd positions have cost (k+1)·0
k+1 = 0, and even615

positions have a cost depending on the size of the 0-blocks to which they are mapped.616
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(here with r = 3)

Fig. 6. Top left: Illustration of the reduction to DTW-Mean from an instance of φ-MSCS with
k = 3 and n = 5. An optimal circular shift ∆ = (3, 2, 4) is indicated by dotted lines, and the number
of B’s in a shifted column is below each column. The total cost is costφ(∆) = 2φ3(1)+2φ3(3)+φ3(0).
Top right: The intermediate strings s′1, s

′
2, s
′
3 encoding the original strings s1, s2, s3. Bottom: The

resulting instance x1, . . . , x4 of DTW-Mean (only coding blocks are shown) and an alignment to
a time series z mimicking the circular shift ∆. The values of z are shown along with the cost of
each position (positions that are only aligned to non-coding blocks are ignored, and contribute a
background cost of either 0 or 3

4
). Note that the cost function φ is chosen so that the cost of a

position aligned to k coding blocks equals the cost of the corresponding column of the original circular
shift (plus the background cost 3

4
). For example, a position aligned to two A-coding blocks and one

B-coding block has cost 4
5

= 3
4

+ φ3(1), where φ3(1) is the cost of a column with two A’s and one B
in φ-MSCS. The value of m is chosen large enough to yield a large cost for misalignments, such as
two consecutive coding blocks of the same series aligned together. The value of r is chosen such that
only a periodic pattern ensures low cost of z, even though it requires to pay a high (but bounded)
misalignment cost for the first and last positions.

Consider an even position i such that i mod 2m 6= 2. The i-th regular position is617

not aligned with any coding block in any xj . Thus, it is aligned to k 0’s and a single 1,618

and has cost C(i + 1) = k
k+1 . There are (m − 1)n(r − 1) such positions, which thus619

contribute a total cost of620

(r − 1)
(m− 1)nk

k + 1
.621

For an even position i with i mod 2m = 2, the i-th regular position is aligned622

with a coding block in each xj (except for the single 1 in xk+1). Let i = 2mi′ + 2.623

Then, z[i+ 1] is aligned to coding blocks corresponding to column i′ mod n of ∆. If624

this column contains a A’s and k − a B’s, then z[i+ 1] is aligned to a+ 2(k − a) 0’s625

This manuscript is for review purposes only.



CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 19

and a single 1 and has cost626

C(i+ 1) =
a+ 2(k − a)

a+ 2(k − a) + 1
=

2k − a
2k − a+ 1

= φk(k − a) +
k

k + 1
.627

Note that φk(k − a) is the cost of column i′ mod n of ∆. Hence, the overall cost of628

the (r − 1)n regular positions i with i mod 2m = 2 is629

(r − 1) costφ(∆) + (r − 1)
nk

k + 1
≤ (r − 1)

(
c+

nk

k + 1

)
.630

Overall, the regular positions have a total cost of at most631

(r − 1)
(m− 1)nk

k + 1
+ (r − 1)

(
c+

nk

k + 1

)
= (r − 1)

(
c+

mnk

k + 1

)
.

632

Claim 5.3. The total cost of extreme positions is at most 2knm+ 2.633

Proof. Since 0 ≤ δj < n for j ∈ {1, . . . , k}, an extreme position i ∈ {1, |z|} is634

aligned to at most 2nm consecutive blocks in each xj , thus accounting for at most635

nm 1’s in xj . Moreover, position i is aligned with the additional 1 in xk+1. Thus,636

position i is aligned with at most nmk + 1 1’s, which implies C(i) ≤ nmk + 1 (this637

bound is achieved if z[i] = 0).638

Combining Claims 5.2 and 5.3, we obtain639

F(z) ≤
|z|∑
i=1

C(i) ≤ (r − 1)

(
c+

mnk

k + 1

)
+ 2knm+ 2 ≤ c′.640

Hence, (x1, . . . , xk+1, c
′) is a yes-instance of DTW-Mean.641

(ii) No-instance of φ-MSCS. We assume that every multiple circular shift ∆642

has costφ(∆) ≥ c + ε. Consider a fixed mean time series z (minimizing F) together643

with optimal warping paths between z and x1, . . . , xk+1. We show that F(z) > c′.644

We will do this hierarchically, starting with a lower bound on the cost of an individual645

position of z. We then proceed to derive lower bounds for the cost of certain intervals646

of positions until finally obtaining the desired lower bound on F(z). Before doing so,647

we start with some preliminary observations about the structure of a mean.648

Structural Observations. We say that position i of xj is matched to position i′649

of z if (i, i′) is in the warping path between xj and z. Clearly, the single position650

in xk+1 is matched to every position of z. We write #1(i) and #0(i) respectively for651

the number of positions with value 1 (resp. 0) among x1, . . . , xk (ignoring the extra652

sequence xk+1) which are matched to position i of z. Clearly, the cost of i is653

C(i) =
#0(i)(#1(i) + 1)

#0(i) + #1(i) + 1
.654

We will use the following monotonicity property of the cost.655

Lemma 5.4. For any a ≥ a′ ≥ 0 and b ≥ b′ ≥ 1, it holds ab
a+b ≥

a′b′

a′+b′ .656

Proof. It suffices to see that the partial derivatives657

∂

∂a

ab

a+ b
=

b2

(a+ b)2
and

∂

∂b

ab

a+ b
=

a2

(a+ b)2
658

are non-negative for a ≥ 0 and b ≥ 1.659
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We define some further notation for the remaining part of the proof. The range660

of a position i of z in xj is the set of positions of xj that are matched to i. The661

range is a subinterval of {1, 2, ..., |xj |} and by construction of xj , the corresponding662

subseries cannot have three consecutive 0’s or two consecutive 1’s. More precisely, its663

values alternate between 0 and 1, except for the (rare) occasions where it includes664

a B-coding block. The number of blocks of xj intersecting the range of i in xj is665

denoted rj(i). The number of B-coding blocks contained in the range of i in xj is666

denoted rBj (i) and we define rB(i) :=
∑k
j=1 r

B
j (i).667

A position i of z is called 0-simple (resp. 1-simple) if #1(i) = 0 (resp. #0(i) = 0).668

It is simple if it is 0- or 1-simple, and it is bad otherwise. Clearly, the cost of a 1-simple669

position is 0. For a 0-simple position i, we have #1(i) = 0 and k ≤ #0(i) ≤ 2k (more670

precisely, #0(i) = k + rB(i) and rB(i) ≤ k). Thus, k
k+1 ≤ C(i) ≤ 2k

2k+1 . Since we671

assumed k ≥ 15, the cost of a 0-simple position is always contained in [0.9, 1].672

We continue with several structural observations regarding a mean.673

Observation 5.5. There exists a mean without consecutive 1-simple positions or674

consecutive 0-simple positions. Such a mean is called non-redundant.675

Proof. Any two consecutive 1-simple (or 0-simple) positions of a non-redundant676

mean z have consecutive or intersecting ranges in each xj with the same value (1677

or 0). Hence, they can be merged into one single 1-simple (or 0-simple) position.678

Since the warping of the other positions in z remains unchanged, we focus on the679

cost of the merged position. For 1-simple positions, the cost remains unchanged (both680

solutions yield a cost of 0 for the 1-simple positions). For 0-simple positions, the cost681

of the two 0-simple positions in the original solution is at least 0.9 each. However, the682

cost of the merged 0-simple position is at most 1, which is a contradiction to z being683

a mean.684

In the following, we assume z to be a non-redundant mean.685

We say a block b of some input xj is matched (fully matched) to a position i686

in z if some position (all positions) in b is (are) matched to i. That is, a matched687

block intersects the range of i and a fully matched block is included in the range of i.688

Note that the distinction is only relevant for B-coding blocks, as all other blocks have689

size 1. Moreover, the number of B-coding blocks that are fully matched to a position i690

equals rB(i).691

Observation 5.6. For a non-redundant mean z, any B-coding block of some xj692

that is not fully matched to a position in z is matched to at least one bad position693

in z.694

If any block is matched to two consecutive positions in z, then at least one of them695

is bad.696

Proof. Consider a B-coding block b and all positions of z to which it is matched.697

There are at least two of them, which cannot all be 0-simple (since z is non-redundant).698

Also, none of them can be 1-simple (since b is a 0-block). Thus, at least one of them699

is bad.700

We prove the contrapositive of the second statement: If two simple positions have701

a common block matched to them, then they are both a-simple, a ∈ {0, 1}, and cannot702

be consecutive in a non-redundant mean.703

We now introduce an assignment relation between a block b of some input series704

and a position i of z. We say that b is assigned to the position i if i is the leftmost705

simple position to which b is fully matched (if any), or (if no such simple position706
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exists) if i is the leftmost bad position to which b is matched. Note that any size-707

1 block is fully matched to at least one position (simple or bad), and every size-2708

block is either fully matched to a simple position or matched to a bad position (by709

Observation 5.6). Thus, every block is assigned to exactly one position.710

For a position i of z, we introduce the following quantities:711

♦0(i) := number of 0-blocks in x1, . . . , xk matched to i,712

♦1(i) := number of 1-blocks in x1, . . . , xk matched to i,713

q(i) := number of B-coding blocks assigned to i,714

g(i) :=

{
0, if i is simple

max{1, r1(i)− 1, . . . , rk(i)− 1}, if i is bad
.715

716

We quickly observe the following:717

(I) If i is simple, then q(i) = rB(i).718

Proof. By definition, every B-coding block assigned to i is fully matched to i,719

that is, q(i) ≤ rB(i). Furthermore, a B-coding block can be fully matched to720

only one position. Thus, if i is simple, then all B-coding blocks fully matched721

to it are also assigned to it, that is, q(i) ≥ rB(i).722

(II) If i is 0-simple, then ♦0(i) = k, ♦1(i) = 0, and C(i) = k+q(i)
k+q(i)+1 .723

Proof. A 0-simple position has exactly one 0-block in each x1, . . . , xk matched724

to it. The cost follows from (I).725

(III) If i is 1-simple, then ♦0(i) = 0, ♦1(i) = k, and C(i) = 0.726

Proof. A 1-simple position has exactly one 1-block in each x1, . . . , xk matched727

to it.728

(IV) If i is bad, then g(i) ≤ 2 min{♦1(i),♦0(i)}.729

Proof. For a bad position i, we have730

min{♦1(i),♦0(i)} ≥ max

{
1,

1

2
max

j=1,...,k
(rj(i)− 1)

}
.731

(V) If i is bad, then C(i) ≥ 1
2 min{♦1(i) + 1,♦0(i)}.732

Proof. Let η := min{♦1(i) + 1,♦0(i)} ≥ 1. Then i is aligned to at least η 0’s733

and at least η 1’s. Thus, by Lemma 5.4, C(i) ≥ η2

2η = η
2 .734

(VI) For every position i, it holds that |♦0(i)−♦1(i)| ≤ k and ♦0(i) +♦1(i) ≥ k.735

Proof. For each xj , 1 ≤ j ≤ k, the difference between the number of 0-blocks736

matched to i and the number of 1-blocks matched to i is at most one. Clearly,737

there is at least one 0- or 1-block matched to i in each xj .738

Cost of a Single Position. We consider a fixed position i of z. For simplification,739

we write ♦0 := ♦0(i), ♦1 := ♦1(i), q := q(i), g := g(i), and C := C(i). The goal is740

to provide a lower bound for C that can be decomposed into the following elements:741

• a background cost Cback(i) := ♦0

k+1 ,742

• a coding cost Ccode(i) := φk(q) reflecting the extra cost induced by a matched743

coding block,744

• a gap cost of Cgap(i) := 0.01g, which is 0 if i is simple, and which increases745

with the number of blocks matched to i if i is bad.746

Claim 5.7. The cost C of position i is at least LB(♦0, q, g, k), defined as follows:747

LB(♦0, q, g, k) := Cback(i) + Ccode(i) + Cgap(i)748

=
♦0

k + 1
+ φk(q) + 0.01g.749

750
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Proof. In the following, we write LB for LB(♦0, q, g, k). We prove C ≥ LB by751

case distinction.752

For a 0-simple position, by (II), we have ♦0 = k and g = 0. Thus,753

LB =
k

k + 1
+ φk(q) + 0 =

k + q

k + q + 1
= C.754

755

For a 1-simple position, by (III), we have ♦0 = 0, q = 0, and g = 0. Thus,756

LB = 0 + φk(0) + 0 = 0 = C.757758

For a bad position, we have ♦0 ≥ 1 and ♦1 ≥ 1. First, note that759

LB − 0.01g =
♦0

k + 1
+

q

(k + q + 1)
· 1

(k + 1)
≤ ♦0

k
+

1

k + 1
≤ 2
♦0

k
,760

761

that is, LB ≤ 2♦0

k + 0.01g.762

We now use this upper bound for the following three sub-cases. First, if ♦0 ≤ ♦1,763

then we have764

C ≥ 1

2
♦0 (by (V))765

≥ 2

k
♦0 + 0.02♦0 (since k ≥ 15)766

≥ LB (by (IV)).767768

Second, if 6 ≤ ♦1 < ♦0, we have769

C ≥ 1

2
♦1 (by (V))770

≥ 2 +

(
2

k
+ 0.02

)
♦1 (since k ≥ 15 and ♦1 ≥ 6)771

= 2 +
2♦1

k
+ 0.02♦1772

≥ 2♦0

k
+ 0.02♦1 (since ♦0 ≤ ♦1 + k by (VI))773

≥ LB (by (IV)).774775

Finally, if ♦1 ≤ 5 < ♦0 (note that ♦1 < ♦0 ≤ 5 is not possible since, by (VI), we776

have ♦1 +♦0 ≥ k and we assumed k ≥ 15), then k − 5 ≤ ♦0 ≤ k + 5 (by (VI)), and777

g ≤ 10 (by (IV)). We have778

C =
(♦1 + 1)#0(i)

♦1 + 1 + #0(i)
≥ 2(k − 5)

k − 3
≥ 1.66779

780

using Lemma 5.4, with ♦1 ≥ 1, #0(i) ≥ ♦0 ≥ k − 5, and k ≥ 15. On the other side,781

we have782

LB =
♦0

k + 1
+ φk(q) + 0.01g783

≤ 5

k + 1
+

k

k + 1
+ φk(q) + 0.1 (since ♦0 ≤ k + 5 and g ≤ 10)784

≤ 5

k
+ 1.1 (since

k

k + 1
+ φk(q) ≤ 1)785

≤ 1.44 (since k ≥ 15)786

≤ C.787788
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Cost of (Ir)regular Intervals. We aim at computing lower bounds on the cost of789

intervals of positions. Two positions i, i′ of the mean z at distance |i − i′| = ` form790

an irregular pair if for some xj a block b is matched to i and a block b′ is matched791

to i′ such that either |b− b′| ≤ `− m
2k or |b− b′| ≥ `+ m

2k . An interval I of positions792

in z is called regular if it does not contain any irregular pair (otherwise it is called793

irregular). The background, coding, and gap cost of I is the sum of the respective794

costs of its positions. The structure of regular intervals allows us to bound the coding795

cost from below using the minimum cost of the original φ-MSCS instance. Irregular796

intervals contain bad positions, which allow us to derive a lower bound on their gap797

cost.798

We first introduce some notation: a position i of z is j-coding if there is a coding799

block b in xj such that b is assigned to i; it is coding if it is j-coding for some j,800

otherwise it is non-coding. A non-coding position i is free if all positions at distance801

at most m
2k + 2 from i are non-coding (see Figure 7). We first make the following802

technical claim before proving the main bound on the coding cost of regular intervals803

(Claim 5.9).804

Claim 5.8. In a regular interval, if two positions i < i′ are at distance at most805

2αm− m
2k for some α, then, for any j, there are at most α j-coding positions in [i, i′].806

Conversely, if i and i′ are at distance at least 2αm+ m
2k +1, then, for any j, there807

are at least α j-coding positions in [i, i′].808

Proof. Fix j ∈ {1, . . . , k} and consider the first block b in xj matched to i and809

the last block b′ in xj matched to i′ (then b′ ≥ b). Note that all j-coding positions810

in [i, i′] have been assigned a distinct coding block in [b, b′]. Since i and i′ are not an811

irregular pair, it holds that812

b′ − b < i′ − i+
m

2k
≤ 2αm.813

That is, b′ < b+ 2αm, and thus xj contains at most α coding blocks in [b, b′]. These814

coding blocks are assigned to positions in [i, i′]. Hence, [i, i′] contains at most α815

j-coding positions.816

For the other direction, consider again blocks b and b′ as above. In this case817

there is a slight difference: If block b or b′ is coding, then it might be assigned to a818

coding position outside of the interval [i, i′], which then would not count in the lower819

bound. Thus, we consider only blocks strictly between b and b′, among which all820

coding blocks are assigned to a coding position in [i, i′]. Since i′ − i ≥ 2αm+ m
2k + 1,821

we have b′ − b > i′ − i + m
2k ≥ 2αm + 1, so there are at least 2αm blocks strictly822

between b and b′, including at least α coding blocks. These are assigned to at least α823

j-coding positions in [i, i′].824

Claim 5.9. The coding cost of a length-` regular interval I is at least825

Ccode(I) ≥
(
`+ 1

2mn
− 2

)
(c+ ε).826

Proof. Let I be a regular length-` interval. Assume that ` ≥ 3mn (otherwise the827

stated lower bound is negative which is trivial).828

The first part of the proof consists of splitting interval I into consecutive length-829

2m segments, each one containing exactly one j-coding position for each j. To this830

end, a few positions need to be cropped from both ends of I. In other words, we need831

to find a good starting point (a free position) close to the left end of I.832
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x1

x2

x3

I

z
i0 i1 i2 i3 i4

Fig. 7. Decomposition of a regular interval (I) into segments delimited at positions il. Coding
blocks in xj are indicated with colored bullets, as well as their assigned positions in z (dotted arcs).
Position i0 is free (no coding position within the striped area), and each segment [il, il+1] contains
exactly one j-coding position from each xj . These coding positions correspond to columns of a
multiple circular shift of the φ-MSCS input strings. The coding cost of n consecutive segments can
be bounded from below by the minimum cost of the φ-MSCS instance.

Consider the first position i of I and position i′ := i + 2m − m
2k (in I). By833

Claim 5.8, for any j, there is at most one j-coding position in [i, i′] (and so at most k834

such coding positions in total). Accordingly, the coding positions split the interval835

[i, i′] into at most (k + 1) disjoint intervals of non-coding positions, with total size at836

least (i′ − i + 1) − k = 2m − m
2k − k + 1. Hence, there is one interval of non-coding837

positions in [i, i′] with size at least838

2m− m
2k − k + 1

k + 1
≥

2m− m
2k

k + 1
− 1 ≥ m

k
+ 5.839

Note that the second inequality above is equivalent to840

m(2− 1
2k )

k + 1
≥ m

k
+ 6 ⇔ m ≥ 6k(k + 1)

k − 3
2

,841

which is true since m ≥ 1600k and k ≥ 15. Hence, this interval contains a free842

position, denoted i0, with i+ m
2k + 2 ≤ i0 ≤ i+ 2m− m

2k − 2.843

Let λ := b `
2mc − 2 and il := i0 + 2lm for 0 < l ≤ λ. Note that λ ≥ n and that844

every il is in I (following the assumption on `).845

We fix some input series xj , 1 ≤ j ≤ k. Intuitively, positions il are the cutting846

points of our segments within interval I (see Figure 7). We now aim at showing that847

there is exactly one j-coding position in each segment [il−1, il − 1]. First, consider848

positions h = i0 − m
2k − 2 and il − 1. By Claim 5.8, since (il − 1)− h = 2lm+ m

2k + 1,849

interval [h, il − 1] contains at least l j-coding positions. Since i0 is free, these coding850

positions cannot be before i0 (as i0 − h = m
2k + 2), so they are in [i0, il − 1]. Consider851

now positions h′ = i0 + m
2k + 1 and il−1. By Claim 5.8, since (il−1)−h′ = 2lm− m

2k ,852

there are at most l j-coding positions in [h′, il − 1], and therefore at most l j-coding853

positions in [i0, il − 1]. That is, there are exactly l j-coding positions in [i0, il − 1].854

Overall, there is exactly one j-coding position in [il−1, il − 1] for every 0 < l ≤ λ855

and every j. We write Cl,j for the corresponding coding block in xj .856

Let ql be the number of B-coding blocks among Cl,1, . . . , Cl,k. Then,857

il−1∑
h=il−1

q(h) = ql,858
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and thus859

il−1∑
h=il−1

φk(q(h)) =

il−1∑
h=il−1

q(h)

(k + q(h) + 1)(k + 1)
860

≥
il−1∑
h=il−1

q(h)

(k + ql + 1)(k + 1)
= φk(ql).861

862

Let δj be such that C1,j is the δj-th coding block of xj . Then, Cl,j is the (δj+l−1)-863

th coding block of xj , for every 0 < l ≤ λ. Note that the coding blocks Cl,1, . . . , Cl,k864

correspond to the ((l − 2) mod n + 1)-th column in the multiple circular shift ∆ =865

(δ1 mod n, . . . , δk mod n) of s1, . . . , sk. Thus, ql is the number of B’s in this column866

and φk(ql) is the corresponding cost of this column.867

That is, for any integer a with 0 < a ≤ λ−n, the sum
∑a+n−1
l=a φk(ql) corresponds868

to the cost of some multiple circular shift of s1, . . . , sk. Since, by assumption, every869

multiple circular shift of s1, . . . , sk has cost at least c+ ε, we have870

a+n−1∑
l=a

φk(ql) ≥ c+ ε.871

We can now compute the lower bound on the coding cost of interval I. To this end,872

we first extract
⌊
λ
n

⌋
≥ 1 length-2mn subintervals of I, each consisting of n segments873

of the form [il−1, il − 1]. It follows874

Ccode(I) =
∑
h∈I

φk(q(h)) ≥
iλ−1∑
h=i0

φk(q(h))875

≥
b λnc−1∑
a=0

an+n−1∑
l=an

il−1∑
h=il−1

φk(q(h))876

≥
b λnc−1∑
a=0

an+n−1∑
l=an

φk(ql)877

≥
b λnc−1∑
a=0

c+ ε878

=

⌊
λ

n

⌋
(c+ ε)879

≥
(
λ

n
− 1

)
(c+ ε)880

=

(
b `
2mc − 2

n
− 1

)
(c+ ε)881

≥

(
`

2m − 3

n
− 1

)
(c+ ε)882

≥
(
`+ 1

2mn
− 2

)
(c+ ε),883

884

This manuscript is for review purposes only.



26 L. BULTEAU, V. FROESE, AND R. NIEDERMEIER

where we assume n ≥ 4 for the last inequality.885

Next, we prove a lower bound on the gap cost of an interval I. In the follow-886

ing, the total number of matches between blocks of x1, . . . , xk and positions in I is887

denoted W (I) =
∑
i∈I(♦0(i) +♦1(i)).888

Claim 5.10. For any interval I of length `, the gap cost Cgap(I) fulfills889

Cgap(I) ≥ 1

100

(
W (I)

k
− `
)
.890

Moreover, if I is irregular, then891

Cgap(I) ≥ m

400k
.892

Proof. For the first lower bound, it suffices to note that for any position i (simple893

or bad), it holds894

g(i) ≥ max
1≤j≤k

rj(i)− 1 ≥ W (i)

k
− 1,895

where W (i) := ♦0(i) +♦1(i).896

For the second lower bound, consider an irregular pair i < i′ in I and an integer j897

such that a block b in xj is matched to i and a block b′ > b in xj is matched to i′898

where |(b′ − b)− (i′ − i)| > m
2k .899

If b′ − b > i′ − i+ m
2k , then900

i′∑
h=i

g(h) ≥
i′∑
h=i

(rj(h)− 1) =

i′∑
h=i

rj(h)− (i′ − i+ 1) ≥ b′ − b− (i′ − i) > m

2k
>
m

4k
.901

If b′ − b < i′ − i− m
2k , then there are at least m

2k pairs of consecutive positions having902

the same block in xj matched to them, and for every such pair at least one of the two903

positions is bad (by Observation 5.6). Since any bad position may be counted in at904

most two such pairs, the interval has at least m
4k bad positions. Hence, using g(h) ≥ 1905

for bad positions, we obtain
∑i′

h=i g(h) ≥ m
4k .906

Cost of a Mean. To obtain a lower bound for F(z), we now partition the posi-907

tions [1, |z|] into minimal irregular intervals (from left). To this end, let α1 := 1 and908

let β1 be the position such that the interval [α1, β1] is irregular (if such a position909

does not exist, then β1 := |z|) and [α1, β1−1] is regular. If β1 < |z|, then we continue910

analogously and define α2 := β1 + 1 and β2 to be the position such that [α2, β2] is911

irregular and [α2, β2 − 1] is regular. This procedure is repeated until we obtain a912

partition913

[α1 := 1, β1], [α2 := β1 + 1, β2], . . . , [αL := βL−1 + 1, βL := |z|]914

of [1, |z|] into L ≥ 1 intervals of which the first L − 1 are irregular and the last is915

possibly regular. The following lower bounds hold.916

Claim 5.11. For 1 ≤ l < L, it holds that917

Cgap([αl, βl]) + Ccode([αl, βl]) ≥ (c+ ε)
W ([αl, βl])

2knm
.918

For the coding and gap costs of [αL, βL], it holds that919

Cgap([αL, βL]) + Ccode([αL, βL]) ≥ (c+ ε)
W ([αL, βL])

2knm
− 2(c+ ε).920
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Proof. Consider an interval [αl, βl], 1 ≤ l ≤ L, and let ` be its length. Let921

W := W ([αl, βl]). Since [αl, βl − 1] is a regular interval of length `− 1, by Claim 5.9,922

we have the following lower bound on the coding cost:923

(5.1) Ccode([αl, βl]) ≥ Ccode([αl, βl − 1]) ≥
(

`

2mn
− 2

)
(c+ ε).924

For l < L, we combine both bounds on the gap cost of Claim 5.10 (by averaging their925

values):926

Cgap([αl, βl]) ≥
1

200

(
W

k
− `
)

+
m

800k
.927

Using m ≥ 1600k(c+ ε) (by definition) and m ≥ 100 c+εn , we obtain928

(5.2) Cgap([αl, βl]) ≥
c+ ε

2nm

(
W

k
− `
)

+ 2(c+ ε).929

The sum of Inequations 5.1 and 5.2 yields the claimed lower bound.930

For interval [αL, βL], we use the general lower bound from Claim 5.10, which931

yields932

(5.3) Cgap([αL, βL]) ≥ 1

100

(
W

k
− `
)
≥ c+ ε

2mn

(
W

k
− `
)
.933

The sum of Inequations 5.1 and 5.3 yields the claimed lower bound.934

Finally, to finish the proof of Theorem 5.1, we show that the mean z has high935

cost, that is, (x1, . . . , xk+1, c
′) is a no-instance of DTW-Mean.936

Claim 5.12. F(z) > c′.937

Proof. Using Claim 5.7 on each position of I := [1, |z|], we obtain the following938

lower bound939

F(z) =

|z|∑
i=1

C(i) ≥ Ccode(I) + Cgap(I) + Cback(I).940

For the coding and gap cost of I, we use Claim 5.11 together with the fact that941

all 2knmr blocks of x1, . . . , xk are involved in at least one match with a position of z,942

which yields W (I) =
∑L
l=1W ([αl, βl]) ≥ 2knmr. Thus,943

Ccode(I) + Cgap(I) ≥ (c+ ε)r − 2(c+ ε).944

The overall background cost is Cback(I) =
∑|z|
i=1

♦0(i)
k+1 . Since overall there are945

knmr 0-blocks in x1, . . . , xk, and each of those is matched to at least one position946

of z, we have
∑|z|
i=1♦0(i) ≥ knmr and thus947

Cback(I) ≥ nmrk

k + 1
.948

Combining the two bounds above yields949

Ccode(I) + Cgap(I) + Cback(I) ≥ nmrk

k + 1
+ (c+ ε)r − 2(c+ ε).950

Since εr > 3mnk + 2(c+ ε), we get951

F(z) >
nmrk

k + 1
+ rc+ 3mnk = c′.

952
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Since the above reduction is a polynomial-time reduction from φ-MSCS where953

the resulting number of time series is linear in the number of strings in the φ-MSCS954

instance, Theorem 5.1 now follows from Theorem 3.11.955

Closing this section, we remark that Buchin et al. [8, Theorem 7] recently obtained956

the same hardness results as in Theorem 5.1 for the problem of computing an average957

series z that minimizes958

Fqp (z) :=

k∑
j=1

 min
pj∈P|xj |,|z|

∑
(u,v)∈pj

|xj [u]− z[v]|p
q/p

959

960

for all integers p, q ≥ 1. Their reduction, however, builds time series containing three961

different values. Hence, Theorem 5.1 yields a stronger hardness on binary inputs for962

p = q = 2. Note that if also the mean is restricted to be a binary time series, then963

the problem is solvable in polynomial time [6, 34].964

6. Conclusion. Shedding light on the computational complexity of prominent965

consensus problems in stringology and time series analysis, we proved several tight966

computational hardness results for circular string alignment problems and time series967

averaging in dynamic time warping spaces. Notably, we have shown that the compu-968

tational complexity of consensus string problems can drastically change (that is, they969

become hard) when considering circular strings instead of classic strings. Our results970

imply that these problems with a rich set of applications are intractable in the worst971

case (even on binary data). Hence, it is unlikely to find algorithms which significantly972

improve the worst-case running times of the best known algorithms. This now partly973

justifies the use of heuristics as has been done for a long time in many real-world974

applications.975

We conclude with some open questions and directions for future work.976

• We conjecture that the idea of the reduction for f-MSCS can be used to977

prove the same hardness result for most non-linear (polynomially bounded)978

order-independent cost functions (note that f-MSCS is trivially solvable if fk979

is linear since every shift has the same cost). Proving a complexity dichotomy980

with respect to the cost function is a worthwhile goal.981

• From an algorithmic point of view, it would be nice to improve the constant in982

the exponent of the running time for DTW-Mean, that is, to find algorithms983

running in O(nαk) time for small α. In particular, we ask to find an O(nk)-984

time algorithm for DTW-Mean.985

• What about the parameter maximum sequence length n? Are the considered986

problems polynomial-time solvable if n is a constant? Are they even fixed-987

parameter tractable with respect to n?988

• Finally, can the hardness result for averaging time series with respect to (p, q)-989

DTW by Buchin et al. [8, Theorem 7] be strengthened to binary inputs?990
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