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TIGHT HARDNESS RESULTS FOR CONSENSUS PROBLEMS ON
CIRCULAR STRINGS AND TIME SERIES*

LAURENT BULTEAU', VINCENT FROESE!, AND ROLF NIEDERMEIER}

Abstract. Consensus problems for strings and sequences appear in numerous application con-
texts, ranging among bioinformatics, data mining, and machine learning. Closing some gaps in
the literature, we show that several fundamental problems in this context are NP- and W/[1]-hard,
and that the known (including some brute-force) algorithms are close to optimality assuming the
Exponential Time Hypothesis. Among our main contributions is to settle the complexity status of
computing a mean in dynamic time warping spaces which, as pointed out by Brill et al. [ DMKD 2019],
suffered from many unproven or false assumptions in the literature. We prove this problem to be
NP-hard and additionally show that a recent dynamic programming algorithm is essentially optimal.
In this context, we study a broad family of circular string alignment problems. This family also
serves as a key for our hardness reductions, and it is of independent (practical) interest in molec-
ular biology. In particular, we show tight hardness and running time lower bounds for CIRCULAR
CONSENSUS STRING; notably, the corresponding non-circular version is easily linear-time solvable.

Key words. Circular String Alignment, Time Series Averaging, Dynamic Time Warping, Fine-
Grained Complexity and Reductions, Lower Bounds, Parameterized Complexity, Exponential Time
Hypothesis

AMS subject classifications. 68Q17, 68T10, 92D20

1. Introduction. Consensus problems appear in many contexts of stringology
and time series analysis, including applications in bioinformatics, data mining, ma-
chine learning, and speech recognition. Roughly speaking, given a set of input se-
quences, the goal is to find a consensus sequence that minimizes the “distance” (ac-
cording to some specified distance measure) to the input sequences. Classic problems
in this context are the NP-hard CLOSEST STRING [15, 25, 24, 18] (where the goal is
to find a “closest string” that minimizes the maximum Hamming distance to a set
of equal-length strings) or the more general CLOSEST SUBSTRING [13, 26]. Notably,
the variant of CLOSEST STRING where one minimizes the sum of Hamming distances
instead of the maximum distance is easily solvable in linear time.

In this work, we settle the computational complexity of prominent consensus
problems on circular strings and time series. Despite their great importance in many
applications, and a correspondingly rich set of heuristic solution strategies used in
practice, to date, it has been unknown whether these problems are polynomial-time
solvable or NP-hard. We prove their hardness, including also “tight” parameterized
and fine-grained complexity results, thus justifying the massive use of heuristic solu-
tion strategies in real-world applications.

On the route to determining the complexity of exact mean computation in dy-
namic time warping spaces, a fundamental consensus problem in the context of time
series analysis [33]', we first study a fairly general alignment problem? for circular
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Fic. 1. An instance of o-MSCS with three binary input strings, and an optimal multiple
circular shift A = (0,2,1), using the sum of squared distances from the mean (o) as a cost function.

Columns of A are indicated with dark (red) or light (green) lines, depending on their cost. For
example, column 1 with values (1,0,1) has mean % and cost (%)2 + (%)2 + (é)2 = % The overall

is 4
cost 18 3

strings called MULTIPLE STRING CIRCULAR SHIFT (WITH COST f). Based on its
analysis, we will also derive our results for two further, more specific problems. Given
a set of input strings over a fixed alphabet ¥ and a local cost function f: X* — Q,
the goal in MULTIPLE STRING CIRCULAR SHIFT (WITH COST f) (abbreviated by
f-MSCS) is to find a cyclic shift of each input string such that the shifted strings
“align well” in terms of the sum of local costs.?

f-MSCS
Input: A list of k strings s1,...,sr € X" of length n and ¢ € Q.
Question: Is there a multiple circular shift A = (d§1,...,0;) € NF with

costp(A) == S0 F((s74dl, ..., s5 0% i) < ¢?

Here, s° denotes a circular shift of s by & (see Section 2 for details). See Fig-
ure 1 for an example. We separately study the special case CIRCULAR CONSENSUS
STRING for a binary alphabet, where the cost function f: {0,1}* — N is defined as
fl(z1, ... zp)) = min{Zf=1 ik — Zle 2;}. This corresponds to minimizing the
sum of Hamming distances (not the maximum Hamming distance as in CLOSEST
STRING). As we will show, allowing circular shifts makes consensus string problems
much harder to solve.

Multiple circular string (sequence) alignment problems have been considered in
different variations in bioinformatics, where circular strings naturally arise in several
applications (for example, in multiple alignment of genomes, which often have a circu-
lar molecular structure) [4, 5, 14, 19, 27, 37]. Depending on the application at hand,
different cost functions are used. For example, non-trivial algorithms for computing
a consensus string of three and four circular strings with respect to the Hamming
distance have been developed [23]. However, most of the algorithmic work so far is
heuristic in nature or only considers specific special cases. A thorough analysis of the
computational complexity for these problems in general so far has been missing.

After having dealt with circular string alignment problems in a quite general
fashion, we then study a fundamental (consensus) problem in time series analysis.
Dynamic time warping (see Section 2 for details) defines a distance between two
time series which is used in many applications in time series analysis [21, 28, 33, 36]
(notably, dynamic time warping has also been considered in the context of circular

3We cast all problems in this work as decision problems for easier complexity-theoretic treatment.
Our hardness results correspondingly hold for the associated optimization problems.
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CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 3
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Fic. 2. A DTW-MEAN instance with three input sequences and an optimal length-5 mean (z).
Alignments between the mean and input sequences can progress at different speeds. This is formalized
using warping paths (see Section 2) represented by polygons (or lines in degenerate cases) with
alternating shades. Every pair of aligned elements belongs to the same polygon. The cost of each
mean element is the sum of squared differences over all aligned input elements, e.g. the cost of the
first element is (1 — i)g +3-(0— i)g = %

sequences [3, 29]). An important problem here is to compute an average of a given
sample of time series under the dynamic time warping distance.

DTW-MEAN
Input: A list of k£ univariate rational time series z1,..., 2, and ¢ € Q.

Question: Is there a univariate rational time series z such that F(z) =
S (dtw(z,2))? < ¢?

Here, dtw denotes the dynamic time warping distance (see Section 2 for details).
Intuitively, dynamic time warping allows for non-linear alignments between two series.
Figure 2 depicts an example. The dtw-distance of two length-n time series can be
computed via standard dynamic programming in O(n?) time. Some subquadratic
algorithms are known [17, 22, 16]. For two binary time series, there exists an O(n!-87)-
time algorithm [1]. In general, however, a strongly subquadratic-time algorithm (that
is, O(n?7¢) time for some ¢ > 0) does not exist unless the Strong Exponential Time
Hypothesis fails [1, 7, 22].

Regarding the computational complexity of DTW-MEAN, although more or less
implicitly assumed in many publications presenting heuristic solution strategies*, NP-
hardness still has been open (see Brill et al. [6, Section 3] for a discussion on some
misconceptions and wrong statements in the literature). It is known to be solvable
in O(n?**+12%k) time, where n is the maximum length of any input series [6]. Moreover,
Brill et al. [6] presented a polynomial-time algorithm for the special case of binary
time series which has been improved recently [34]. In practice, numerous heuristics
are used [11, 31, 33, 35]. Note that DTW-MEAN is often described as closely related
to multiple sequence alignment problems [2, 30, 32]. However, we are not aware
of any formal proof regarding this connection. By giving a polynomial-time many-
one reduction from MULTIPLE STRING CIRCULAR SHIFT (WITH COST f) to DTW-
MEAN, we show that DTW-MEAN is actually connected to multiple circular sequence
alignment problems. To the best of our knowledge, this is the first formally proven

4For instance, Petitjean et al. [31] write “Computational biologists have long known that averag-
ing under time warping is a very complex problem, because it directly maps onto a multiple sequence
alignment: the “Holy Grail” of computational biology.” Unfortunately, the term “directly maps”
has not been formally defined and only sketchy explanations are given.

This manuscript is for review purposes only.
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4 L. BULTEAU, V. FROESE, AND R. NIEDERMEIER

result regarding this connection.

Our Results. Using plausible complexity-theoretic assumptions, we provide a fine-
grained picture of the exact computational complexity (including parameterized com-
plexity) of the problems introduced above. We present two main results.

First, we show that, for a large class of natural cost functions f, f-MSCS on
binary sequences is NP-hard, W[1]-hard with respect to the number k of inputs, and
not solvable in p(k)-n°®*) time for any computable function p (unless the Exponential
Time Hypothesis fails). Note that f-MSCS is easily solvable in p(k) - n®®*) time (for
computable functions f) since there are at most n*~! cyclic shifts to try out (without
loss of generality, the first string is not shifted). Our running time lower bound thus
implies that the brute-force approach can only be improved up to a constant factor in
the exponent. Based on this, we can also prove the same hardness for the CIRCULAR
CONSENSUS STRING problem. In fact, the general ideas of our reduction might also
be used to develop hardness reductions for other circular string alignment problems.

As our second main contribution, we obtain the same list of hardness results as
above for DTW-MEAN on binary time series. We achieve this by a polynomial-time
reduction from a special case of f-MSCS. Our reduction implies that, unless the
Exponential Time Hypothesis fails, the known O(n?*+12kk)-time algorithm [6] essen-
tially can be improved only up to constants in the first exponent. Note that recently
Buchin et al. [8] achieved the same hardness result for the problem of averaging time
series under generalized (p, ¢)-DTW. Their reduction, however, does not yield binary
input time series.

Organization. In Section 2 we fix notation and introduce basic concepts, also in-
cluding the formal definition of dynamic time warping and the corresponding concept
of warping paths. In Section 3, we identify a circular string problem (of independent
interest in molecular biology) which forms the basis for the results in Section 5. More
specifically, we prove the hardness results for MULTIPLE STRING CIRCULAR SHIFT
(wiTH COST f). The key ingredient here is a specially geared polynomial-time reduc-
tion from the REGULAR MULTICOLORED CLIQUE problem. Moreover, we introduce
the concept of polynomially bounded grouping functions f (for which our results hold).
In Section 4, providing a reduction from MULTIPLE STRING CIRCULAR SHIFT (WITH
CosT f), we show analogous hardness results for CIRCULAR CONSENSUS STRING.
Notably, the cost function corresponding to CIRCULAR CONSENSUS STRING is not a
polynomially bounded grouping function, making the direct application of the result
for MULTIPLE STRING CIRCULAR SHIFT (WITH COST f) impossible. In Section 5
we prove analogous complexity results for DTW-MEAN, again devising a polynomial-
time reduction from MULTIPLE STRING CIRCULAR SHIFT (WITH COST f). In Sec-
tion 6, we conclude with some open questions and directions for future research.

2. Preliminaries. We briefly introduce our notation and formal definitions.
Circular Shifts. For a string s = s[1]...s[n] € £, we denote its length n by |s|.
For 0 < 6 < n, we define the circular (left) shift by 0 as the string

570 :=s[6+1]...s[n]s[1]...s[6] (note that s*°[i] = s[(i + — 1 mod n) + 1]),

that is, we circularly shift the string § times to the left. Let s1,...,s; be strings
of length n. A multiple circular (left) shift of s1,...,s, is defined by a k-tuple
A= (8,...,0:) € {0,...,n—1}* and yields the strings s{™°, ..., s;:‘s’“. We define col-
umn i € {1,...,n} of a multiple circular shift A as the k-tuple (s [4],.. ., st °*[i]).

By row j € {1,...,k} of column i we denote the element 5;-_5j [7].

This manuscript is for review purposes only.
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CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 5

Cost Functions. A local cost function is a function f: ¥* — Q assigning a cost
to any tuple of values. Given such a function, the overall cost of a circular shift A
for k length-n strings is defined as

n

costf(A) == Z f((sfél [i],... 850 [1])),

i=1

that is, we sum up the local costs of all columns of A.
An example for a local cost is the sum of squared distances from the arithmetic
mean (i.e., k times the variance, here called o), that is,

2
k
>
j=1

Using a well-known formula for the variance, we get the following useful formula for o:

o((z1,...,xx)) = <Xk:zf) - ;(i%y

j=1 j=1

k

o((@r,.. . an) = |2 -

=1

el

For binary strings (that is, z; € {0,1} for all 1 < j < k), o does only depend
on the number w := 2?21 x; of 1’s and the number £ — w of 0’s and can be written
(according to the formula above) as

w?  wk —w)

(2.1) o((x1,...,25)) =w = ’

We will repeatedly use this formula later on for cost calculations in the proof for
DTW-MEAN (Theorem 5.1).

Dynamic Time Warping. A time series is a sequence © = (x1,...,x,) € Q™. The
dynamic time warping distance between two time series is based on the concept of a
warping path.

DEFINITION 2.1. A warping path of order m x n is a sequence p = (p1,...,pL),

L € N, of index pairs pe = (ig,j¢) € {1,...,m} x {1,...,n}, 1 <€ < L, such that
(i) pr = (1,1),
(i) pr = (m,n), and

(143) (g1 —ie,Jer1 — Je) € {(1,0),(0,1),(1,1)} for each 1 << L —1.

See Figure 2 in Section 1 for an example.

The set of all warping paths of order m x n is denoted by Py, ,. A warping
path p € Py, defines an alignment between two time series x = (z[1],...,z[m])
and y = (y[1],...,y[n]) in the following way: Every pair (i,7) € p aligns element x;
with y;. Note that every element from z can be aligned with multiple elements
from y, and vice versa. The dtw-distance (with squared cost function) between z
and y is defined as

1/2
dtw(z,y) = min ( ) <x[i]—y[j]>2> .

PEPm.n -
(i,5)€p

Note that also other cost functions can be considered. In this work, we only consider
the most common case of squared costs.

This manuscript is for review purposes only.
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6 L. BULTEAU, V. FROESE, AND R. NIEDERMEIER

A mean of time series x1,...,x) is a time series that minimizes the Fréchet
function
k k
2 .
F(z):= Z (dtw(z,z;))" = Z min Z (zj[u] — 2[v])>.
= G=1 PP e,

Note that given, for each j € [k], a warping path p; between z and z;, the value of z[i]
that minimizes

k
(2.2) Yoo (el =[]
J=1 (u,v)€p;
is the arithmetic mean of all values aligned to z[i],
2521 2 (i,uyep; ¥ilU]
o HGw) €pi}
That is, the length of a mean together with the optimal alignments to the input time

series determine the mean. The contribution of z[i] to the sum (2.2) is the sum of
squared distances between z[i] and all values aligned to z[i],

k
> > (o] —z[)%

Jj=1 (u,i)Epj

zli] =

Note that this corresponds to the cost function o above.

We remark that for DTW-MEAN, often a normalized cost F(z) := £F(z) is
considered. Clearly, this does not affect the computational complexity of the problem,
so for simplification purposes we only consider the non-normalized cost F(z).

Parameterized Complexity. We assume familiarity with the basic concepts from
classic and parameterized complexity theory.

An instance of a parameterized problem is a pair (I, k) consisting of the classic
problem instance I and a natural number & (the parameter). A parameterized problem
is contained in the class XP if there is an algorithm solving an instance (I,k) in
polynomial time if k is a constant, that is, in time O(|I|/*®)) for some computable
function f only depending on k (here |I] is the size of I). A parameterized problem
is fized-parameter tractable (contained in the class FPT) if it is solvable in time f(k) -
|7 |O(1) for some computable function f depending solely on k. The class W[1] contains
all problems which are parameterized reducible to CLIQUE parameterized by the clique
size. A parameterized reduction from a problem ) to a problem P is an algorithm
mapping an instance (I, k) of Q in time f(k)-|I|°™") to an equivalent instance (I’, k)
of P such that k' < g(k) (for some computable functions f and g). It holds that
FPT C W[1] C XP.

A parameterized problem that is W[1]-hard with respect to a parameter (such as
CLIQUE with parameter clique size) is widely believed not to be in FPT.

Ezponential Time Hypothesis. Impagliazzo and Paturi [20] formulated the Ezpo-
nential Time Hypothesis (ETH) which asserts that there exists a constant ¢ > 0 such
that 3-SAT cannot be solved in O(2°") time, where n is the number n of variables in
the input formula. It is a stronger assumption than common complexity assumptions
such as P#NP or FPT#W(1].

Several conditional running time lower bounds have since been shown based on
the ETH, for example, CLIQUE cannot be solved in p(k)-n°*) time for any computable
function p unless the ETH fails [10].

This manuscript is for review purposes only.



215
216
217
218
219

226
227

228
229
230
231
232
233
234

236
237
238

239

240

241
242
243
244
245
246
247
248
249
250
251

CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 7

3. Hardness of f-MSCS on Binary Strings. In this section, we focus on
binary strings from {0,1}*. We prove hardness for a family of local cost functions
that satisfy certain properties. The functions we consider have the common property
that they only depend on the number of 0’s and 1’s in a column, and that they aim
at grouping similar values together.

DEFINITION 3.1. A function f: {0,1}* — Q is called order-independent (or sym-
metric) if, for each k € N, there exists a function fr: {0,...,k} — Q such that
fl(z1,.. . xg)) = fk(Z§:1 ;) holds for all (z1,...,xx) € {0,1}".

For an order-independent function f, we define the function f, : {1,...,k} - Q
as

Je(x) — fi(0
fila) = SO,

xT

An order-independent function f is grouping if fi.(k) < mini<g,<k fr.(z) and f.(2) <
fi.(1) holds for every k € N.

For an order-independent function f, f; can be seen as the cost per 1-value (a
column with x 1’s and k — 2 0’s has cost fy(z) = fr(0) + zf,(x)). It can also be
seen as a discrete version of the derivative for fy, so that if fj is concave then fj, is
decreasing. The intuition behind a grouping function is that the cost per 1-value is
minimal in columns containing only 1’s, and that having two 1’s in a column has less
cost than having two columns with a single 1. In particular, any function f where
all fi are strictly concave is grouping. Finally, if f is grouping, then the function

k k
(@1, o yzk) = [ Z.Tj —l—aij—f—b
j=1 j=1

is also grouping for any a,b € Q.
The following definitions are required to ensure that our subsequent reduction
(Lemma 3.3) is computable in polynomial time.

DEFINITION 3.2. Let f be an order-independent function. The gap of fi is
e »=min{fi(z) — fr(y) | 1 <@,y <k, fi(x) > fi(y)}-

The range of fi is pup := maxi<z<t | f7,(x)].

An order-independent function f is polynomially bounded if it is polynomial-time
computable and if, for every k € N, ur and 5,;1 are upper-bounded by a polynomial
n k.

For binary strings, the function o (see Section 2) is a polynomially bounded

grouping function. Indeed, it is order-independent since o((x1,...,z)) = w,
where w = Z?Zl xj. Thus, o(w) = w and we have 0;(0) = 0, and o}, (w) =

ka’“, so o}, is strictly decreasing, which is sufficient for o to be grouping. Finally, it

is polynomially bounded, with gap ¢, = % and range pi = % <1.
We prove our hardness results with a polynomial-time reduction from a special

version of the CLIQUE problem.

This manuscript is for review purposes only.
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REGULAR MULTICOLORED CLIQUE (RMCC)

Input: A d-regular undirected graph G = (V| E) where the vertices are col-
ored with k colors such that each color class contains the same num-
ber of vertices.

Question: Does G have a size-k complete subgraph (containing (g) edges, called
a k-clique) with exactly one vertex from each color?

RMCC is known to be NP-hard, W[l]-hard with respect to k, and not solvable in
p(k) - |V[°*®) time for any computable function p unless the ETH fails [12].

The following lemma states the existence of a polynomial-time reduction from
RMCC to f-MSCS which implies hardness of f-MSCS for polynomially bounded
grouping functions.

LEMMA 3.3. Let f be a polynomially bounded grouping function. Then there is a
polynomial-time reduction that, given an RMCC instance G = (V, E) with k colors,
outputs binary strings so,...,Sr of equal length and ¢ € Q such that the following
holds:

e If G contains a properly colored k-clique, then there exists a multiple circular
shift A of sg, ..., sy with cost(A) = c.

o If G does not contain a properly colored k-clique, then every multiple circular
shift A of sg,. .., sk has costy(A) > ¢+ 1.

To prove Lemma 3.3, we first describe the reduction and then prove several claims
about the structure and the costs of multiple circular shifts in the resulting f-MSCS
instance.

Reduction. Consider an instance of RMCC, that is, a graph G = (V, E) with a
partition of V into k subsets Vi,..., Vi of size n := ‘Lkl each, such that each vertex
has degree d. Let V; = {vj1,...,v;n}, m = |E|, and E = {e1,...,en}. We assume
that £ > 3 since the instance is trivially solvable otherwise.

We build an f-MSCS instance with &+ 1 binary strings. Hence, the local cost of
a column of a multiple circular shift is given by the function fj1. For simplicity, we
write f’, gap €, and range p for fi_ |, exy1, and ppyq.

For each j € {1,...,k}, let p; be the length-k string such that p;[h] =1 if h = j,
and p;[h] = 0 otherwise. For each vertex v, ;, let ¢;; € {0,1}™ be the string such that

1,ifl<h<mandwv;; €e
qj7z[h] — { 75t h

0, otherwise

and let u;; := p;q;; be the concatenation of p; and ¢;;. Note that u;; has length

m’ == m + k, contains 1+ d ones, and m’ — 1 — d zeros. Let 0 := 0™ be the string

containing m’ zeros and define the numbers

Kk :=knd+ kn + k,
v :=nk,

/\:—max{[fz(?+1)—‘ ,2n(’y+k+1)}+1.

For 1 < j < k, we define the string
55 = 1uj1(10) 7 1uj5(10)7 .. 1uj, (10)7FH (10)A—nO+I+1),
Note that |1u; ;| = |[10] = m’ + 1. Thus, each string s; has length
nm +1)1+y+5)+m +DAXA—n(y+j+1)=Am' +1) =1,

This manuscript is for review purposes only.
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CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 9

where ¢ < poly(nk). We further define the following length-¢ dummy string
so = 11%0™(10)* !

Finally, we define the target cost

c iszk+1( )
+Ak+1)f'(k+1)
k
(k + (2)) - 7(1)
+rf(1
Clearly, the strings sq, ..., st and the value ¢ can be computed in polynomial time.
Our construction is illustrated in Figure 3.
In the strings sg, ..., sk, any 1-value at a position ¢ with ¢ mod (m’ + 1) = 1 is

called a separator, other 1-values are coding values. A coding value is either vertez-
coding if it belongs to some p; (or to the k coding values of sg), or edge-coding
otherwise (then it belongs to some g¢; ;). There are A(k + 1) separator values in total
and k coding values.

Given a multiple circular shift A, we define the weight w of a column as the
number of 1-values it contains, that is, 0 < w < k + 1. The cost for such column is
frer1(w) = fr41(0) + wf’(w). Each 1-value of this column is attributed a local cost
of f/(w), so that the cost of any solution is composed of a base cost of £f;+1(0) and
of the sum of all local costs of all 1-values. In the following we mainly focus on local
costs.

It remains to be shown that there exists a multiple circular shift of s, ..., sy with
cost ¢ if G contains a properly colored k-clique, and that otherwise every multiple
circular shift has cost at least ¢4+ ¢. We proceed by analyzing the structure and costs
of optimal multiple circular shifts.

Aligning Separators. Let A = (do, . .., 0) be a multiple circular shift of sg, ..., s.
Without loss of generality, we can assume that §y = 0 since setting each §; to (6; —
do) mod ¢ yields a shift with the same cost. First, we show that if 6; mod (m’+1) # 0
holds for some 0 < j < k, then A has large cost.

CLAIM 3.4. For any multiple circular shift A = (8o = 0,01, ...,0;) with §; mod
(m' 4+ 1) #0 for some 1 < j <k, it holds that costy(A) > c+e.

Proof. Assume that J; mod (m' +1) = a € {1,...,m'} for some 0 < j < k.
We count the number of weight-(k + 1) columns: such a column cannot only contain
separator values since it cannot contain a separator value in both row 0 and row j.
Hence, it contains at least one coding value. Since there are k coding values, there
are at most xk weight-(k + 1) columns, so at most kk separator values have local cost
f'(k—+1). All other separator values have local cost f/(w) for some w < k + 1, which
is at least f/(k+1)+e. There are at least A(k+ 1) — kx such separator values. Adding
the base cost of £f11(0), the cost of A is thus at least:

cost(A) > Lfiy1(0) + (A(k+ 1) = kr)(f (k +1) +¢)
> Ufr1(0) + Ak + 1) f'(k+ 1) + ke — kr(p + €).

This manuscript is for review purposes only.
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Fi1c. 3. Illustration of the reduction from an instance of RMCC (top) with k = 3. Middle:
Sequences so to s3, and their optimal circular shifts s{, to s5. Blue stripes represent the regularly-
spaced separator 1-values. The (light) gray intervals contain both 0’s and 1’s according to strings u; j,
and white intervals contain only 0’s. The spacing between consecutive u; ;s is defined using v and
the overall string length depends on X\, both values are chosen so as to restrict the possible alignments
between different w; j’s; in this ezample we use v =1 and A = 19. Bottom: a zoom-in on blocks 1
and 12 in the shifted strings (only non-0 values are indicated, weight-2 columns are highlighted).
Through vertex columns, the dummy string so ensures that one vertex occupies block 1 in each row,
and weight-2 edge-columns ensure that (’;) edges (as highlighted in the graph) are induced by these
vertices.

Recall that

k

c=Lfr4100)+Ak+1)f'(k+1)+2 <k+ (2

<Lfr1(0) + A+ 1) (k+1) + kp

)) @ - ra) e
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CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 11

since f'(2) — f/(1) < 0. Combining the above bounds for ¢ and cost;(A) using
A> K (2?” +1) 4 1 (by definition) yields

costf(A) —c > Mke —kk(pu+¢e) — kp
> 2kkp + kke + ke —kx(u+¢) — kpu
> e. 0
Cost of Circular Shifts. We assume from now on that ¢; mod (m’ +1) = 0 for all
j €40,...,k}. We now provide a precise characterization of the cost of A.

For I € {1,...,A}, we define the [-th block consisting of the m' consecutive
columns (I—1)(m'4+1)+2,...,l(m'+1). The block index of column i is i—1 mod (m’+
1). For j € {1,...,k}, the substring stsj [(I—=D(m +1)+2]... stsj [I(m' 4 1)] cor-
responding to the [-th block of stsj either equals some u; ; or 0. We say that block !
is occupied by vertex v;; € Vj, if the corresponding substring of 5?6" is u;;. Note
that for each j there are n distinct blocks out of A that are occupied by a vertex
in V;. Columns with block-index 1 to k are called wertez-columns and columns with
block-index k+1 to k+m = m’ are edge-columns (they may only contain edge-coding
values from some ¢; ;). Let P denote the set of vertices occupying block 1.

OBSERVATION 3.5. In block 1, if the vertex-column with block-index h has weight 2,
then l =1, and Vi, N P # 0. No vertex-column can have weight 3 or more.

Proof. Consider the vertex-column with block-index h. By construction, among
S1,...,8 only s, may have a 1 in this column (which is true if some vertex from V},
occupies this block). The string sg has a 1 in this column if it is a column in block 1.
Thus, assuming that column h has weight 2 implies [ = 1 and V}, N P # (). ]

OBSERVATION 3.6. In block [, if the edge-column with block-index k + h, 1 <
h < m, has weight 2, then block | is occupied by both vertices of edge e, € E. No
edge-column can have weight 3 or more.

Proof. Consider an edge-column with block-index k + h, 1 < h < m. Denote by
Vjo.io a0d v, 4, the endpoints of edge e,. For any 1 < j <k, s; has a 1 in this column
only if block ! is occupied by some vertex v;;, and, moreover, only if u;; has a 1 in
column h, i.e., vj; = vj, 4, O Vj; = Vj, i;, hence j = j; or j = ja. So this column
may not have weight 3 or more, and if it has weight 2, then block [ is occupied by
both endpoints of ey,. 0

From Observations 3.5 and 3.6 it follows that no column (beside separators) can
have weight 3 or more. Since the number of coding values is fixed, the cost is entirely
determined by the number of weight-2 columns. In the following, we will first give an
upper bound on the number of weight-2 columns and then analyze how it determines
the cost.

Observation 3.5 gives a direct upper bound of at most k weight-2 vertex columns
(since they all are in block 1). We now focus on weight-2 edge-columns. The following
claim will help us to show an upper bound on their number.

CrLAIM 3.7. For any two rows j, j', there exists at most one block | that is occupied
by vertices from both V; and Vj .

Proof. First, note that if two distinct blocks | and I’ are both occupied by a
vertex from the same row j, then, by construction, there are two possible cases:
either |l =l'| = a(y+j+1)or |l =U'| = A—a(y+j+1), where 1 < a < n in both cases.

This manuscript is for review purposes only.
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Indeed, there are n regularly-spaced substrings u;, (having v+ j blocks in between
them) in s; (consisting of A blocks in total).

Assume towards a contradiction that two distinct blocks [ and I’ are each occupied
by a vertex from V; and Vj,. Then, there exists an a € {1,...,n — 1} such that
I=U|=a(y+j+1)or [I-I'| = A—a(y+j+1), and there exists an a’ € {1,...,n—1}
such that [ - V| =a (y+ 35 +1) or |l =1I'| =X —a'(yv+j' +1). This gives four cases
to consider (in fact just three by symmetry of j and j').

Il-Ul=aly+jij+1)=d(y+3j +1), then (a —a')(y+1) =d'j —aj. We
have a # a’, as otherwise this would imply j = j'. So |a'j’ — aj| > v + 1, but this
is impossible since a < n, a’ < n, j < k, j/ < k, that is, |a'j’ — aj| < kn, whereas
v+ 1=kn+1 (by construction).

fll-U|=a(y+j+1)=A=d(y+j +1), then A\=a(y+j+1)+a(y+j +1).
However, A > 2n(y+k+1) by construction, so this case also leads to a contradiction.

Finally, if |I|—=U'| = A—a(y+j+1) = A—d'(y+j'+1), then we have a(y+j+1) =
a'(y+ 7+ 1). This case yields, as the first case, a contradiction. 0

CraM 3.8. There are at most (g) weight-2 edge-columns.

Proof. Consider any pair j,j’ such that 1 < j < 5/ < k. It suffices to show that
there exists at most one weight-2 edge-column with a 1 in rows j and j'. Aiming
at a contradiction, assume that two such columns exist. By Observation 3.6, they
must each belong to a block which is occupied by vertices both in V; and Vj/. From
Claim 3.7 it follows that both columns belong to the same block. Let v and v’ be the
vertices of V; and V}s, respectively, occupying this block. By Observation 3.6 again,
both edges are equal to {v,v’'}, which contradicts the fact that they are distinct. 0O

Having established an upper bound of k+ (12“) for the number of weight-2 columns,
the following result describes the corresponding cost.

Cram 3.9. Let Wy be the number of weight-2 columns. If Wo = k + (’;), then
costf(A) =c. If Wo <k+ (g), then costy(A) > c+e.

Proof. The base cost £f;1+1(0) of the solution only depends on the number ¢ of
columns. Separator values are in weight-(k + 1) columns. Since there are A of them,
it follows that the total local cost of all separator values is A(k + 1) f'(k + 1).

The total number of coding values is k, each coding value has a local weight
of f/(1) if it belongs to a weight-1 column, and f/(2) otherwise (since there is no
vertex- or edge-column with weight 3 or more). There are W5 weight-2 columns, so
exactly 2W5 coding values within weight-2 columns. Summing the base cost with the
local costs of all separator and coding values, we get:

cost (8) = £fi1(0)
A+ 1) (k+1)
AW, (f(2) — (1)
+rf(1).

Thus, by definition of ¢, we have costf(A) = ¢ if Wo = k+ (5). If Wa < k+ (’2“), then
using the fact that, by assumption, f/'(2) — f'(1) < —e, we obtain

k

costf(A) =c+2 (Wg —k— <2

)) ey zete
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CONSENSUS PROBLEMS ON CIRCULAR STRINGS AND TIME SERIES 13

Cram 3.10. If G does not contain a properly colored k-clique, then there are at
most k + (g) — 1 weight-2 columns.

Proof. We prove the contrapositive. Assume that there are at least k+ (g) weight-
2 columns. By Claim 3.8, there are at least k weight-2 vertex-columns. By Obser-
vation 3.5, only the k vertex-columns of block 1 may have weight 2, hence for each
1 < j < k the column of block 1 with block-index j has weight 2. Thus, for every j,
PNV #9.

By Claim 3.7, no other block than block 1 may be occupied by two vertices,
hence any edge-column with weight 2 must be in block 1, and both endpoints are
in P. There cannot be more than k weight-2 vertex-columns, hence there are (g)
weight-2 edge-columns, and for each of these there exists a distinct edge with both
endpoints in P. Thus, P is a properly colored k-clique. O

Cliques and Clircular Shifts with Low Cost. We are now ready to complete the
proof of Lemma 3.3. First, assume that G contains a properly colored k-clique P =
{v1,i1s--, Uk, }.- Consider the multiple circular shift A = (dy, ..., d), where o = 0
and

gj = (i = D(m' + Dy +j+1)

for j € {1,...,k}. Note that |P| = k, and all edge-columns in block 1 corresponding
to edges induced in P have weight 2. Hence there are (};) weight-2 edge-columns and
k weight-2 vertex-columns. By Claim 3.9, costf(A) = c.

Now, assume that G does not contain a properly colored k-clique. Let A =
(0o, - ..,0k) be a multiple circular shift with 6o = 0 (recall that we can assume this
without loss of generality). Clearly, if 6; mod (m’+1) # 0 for some j, then cost(A) >
¢+ ¢ (by Claim 3.4). Otherwise, by Claim 3.10 there are at most k + (’;) — 1 weight-2
columns. By Claim 3.9 , costf(A) > c+e.

This completes the proof of Lemma 3.3 which directly leads to our main result of
this section.

THEOREM 3.11. Let f be a polynomially bounded grouping function. Then, f-
MSCS on binary strings is
(i) NP-hard,
(i) W/[1]-hard with respect to the number k of input strings, and
(iii) not solvable in p(k) - n°*) time for any computable function p unless the ETH
fails.

Proof. The polynomial-time reduction from Lemma 3.3 yields the NP-hardness.
Moreover, the number of strings in the f-MSCS instance only depends on the size of
the multicolored clique. Hence, it is a parameterized reduction from RMCC param-
eterized by the size of the clique to f~-MSCS parameterized by the number of input
strings and thus yields W[1]-hardness. Lastly, the number k' = k + 1 of strings is lin-
ear in the size k of the clique. Thus, any p(k')-n°*")-time algorithm for DTW-MEAN
would imply a p/(k) - |[V|°®)-time algorithm for RMCC, contradicting the ETH. O

Note that Theorem 3.11 holds for the function o since it is a polynomially bounded
grouping function (as discussed earlier).

The assumption that f is polynomially bounded is only needed to obtain a
polynomial-time reduction in Lemma 3.3. Without this assumption, we still obtain a
parameterized reduction from RMCC parameterized by the clique size to f-MSCS
parameterized by the number of input strings, which yields the following corollary for
a larger class of functions.

This manuscript is for review purposes only.



A71
472
473

476

14 L. BULTEAU, V. FROESE, AND R. NIEDERMEIER

COROLLARY 3.12. Let f be a computable grouping function. Then, f-MSCS on
binary strings is W/[1]-hard with respect to the number k of input strings and not
solvable in p(k) - n°*) time for any computable function p unless the ETH fails.

4. Circular Consensus String. In this section we briefly study the CIRCULAR
CONSENSUS STRING problem:

CIRCULAR CONSENSUS STRING (SCCQC)
Input: A list of k strings s1,...,sr € X" of length n and ¢ € Q.
Question: Is there a string s* € X" and a multiple circular shift (d1,...,0x)

such that Z§=1 d(s;._éj,s*) <c?

Here, d denotes the Hamming distance, that is, the number of mismatches between
the positions of two strings. Although consensus string problems in general have been
widely studied from a theoretical point of view [9], somewhat surprisingly this is not
the case for the circular version(s). For CCS, only an O(n?logn)-time algorithm
for k = 3 and an O(n?logn)-time algorithm for k = 4 is known [23]. However, for
general k no hardness result is known. Note that without circular shifts the problem
is solvable in linear time: It is optimal to set s*[i] to any element that appears a
maximum number of times among the elements s1[i], ..., sg[i].

For binary strings, it can easily be seen that the cost induced by column ¢ is the
minimum of the number of 0’s and the number of 1’s. Let f< be the polynomially
bounded order-independent function with fi*(w) = min{w,k — w}. It follows from
the discussion above that CIRCULAR CONSENSUS STRING is exactly f<-MSCS. Note,
however, that f is not a grouping function since f£'(2) = f¢'(1) = 1. That is, we
do not immediately obtain hardness of CCS from Theorem 3.11. We can still prove
hardness via a reduction using a properly chosen polynomially bounded grouping
function.

THEOREM 4.1. CIRCULAR CONSENSUS STRING on binary strings is
(i) NP-hard,
(i) W/[1]-hard with respect to the number k of input strings, and
(ii) not solvable in p(k) - n°®) time for any computable function p unless the ETH
fails.

Proof. As discussed above, CCS is equivalent to f<-MSCS. To prove hardness,
we define a local cost function g (similar to f<) and reduce from g-MSCS to f<-
MSCS.

Let g be the order-independent local cost function such that

ge(w) = fSi_o(w+ (k—2)) = min{w + k — 2,k — w}.
Note that the function gy is linearly decreasing on {1,...,k} and that g} (w) = 2% =
%—1. The range of gy is jix = 1 and its gap is e = =

] —% > 1%2 That is, g satisfies all
conditions of Theorem 3.11 and the corresponding hardness results hold for g-MSCS.
See Figure 4 for an illustration.

Given an instance Z = (sq,. .., i, ¢) of g-MSCS, we define the strings s; := 1151
for j = k+1,...,2k — 2. We show that Z is a yes-instance if and only if Z' :=

(s1,-..,82k—2,¢) is a yes-instance for f<-MSCS.

For the forward direction, consider a multiple circular shift A = (dy,...,0x)
of s1,...,s, such that costy,(A) < c¢. We define the multiple circular shift A’ :=
(01530, 0pr1 = 0,...,00_2 = 0) of s1,...,826—2. Consider column i of A’ and

let w’ be the number of 1’s it contains. Then, w’ = w + k — 2, where w is the number

This manuscript is for review purposes only.
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s1 01101001  g4(w

~

sp 01101001 f$5(w)

s 11011100 31 e s 11011100 3
s3 10010111 2 . s3 10010111 2
54 00110100 1 . 54 00110100 1
s5 11111111
1234W s¢ 11111111 123456Y

F1G. 4. Reduction from an instance of g-MSCS (left) to an instance of f-MSCS, which is
equivalent to the CIRCULAR CONSENSUS STRING problem. Plots of the (polynomially bounded and
order-independent) local cost functions for k = 4 are shown. Note that g4 is obtained from f§° by
cropping the first two values in order to become grouping.

of 1’s in column ¢ of A. The cost of column i is f§; o(w + k —2) = gi(w). Hence,

column i has the same cost in both solutions. This implies costy(A) = cost scs(A).
The converse direction is similar. Any multiple circular shift A’ of sq,...,s9,_2

can be restricted to a multiple circular shift A of sq,...,s; with the same cost. 0

5. Consensus for Time Series: DTW-Mean. In this section we consider the
DTW-MEAN problem.

DTW-MEAN
Input: A list of k£ univariate rational time series z1,...,x; and ¢ € Q.

Question: Is there a univariate rational time series z such that F(z) =
S (dtw(z,2))? < ¢?

We prove the following theorem, settling the complexity status of this prominent
consensus problem in time series analysis.

THEOREM 5.1. DTW-MEAN on binary time series is
(i) NP-hard,
(i) W[1]-hard with respect to the number k of input series, and
(i) not solvable in p(k) - n°®) time for any computable function p unless the ETH
fails.

The proof is based on a polynomial-time reduction from a special variant of f-
MSCS for which hardness holds via Theorem 3.11 in Section 3. At this point we
make crucial use of the fact that the reduction described in the proof of Lemma 3.3
actually shows that it is hard to decide whether there is a multiple circular shift of
cost at most ¢ or whether all multiple circular shifts have cost at least ¢+ ¢ for some &
polynomially bounded in the number of strings. This gap of € guarantees that a no-
instance of f-MSCS is reduced to a no-instance of DTW-MEAN. Being polynomially
bounded is required for € in order to obtain a polynomial-time reduction (otherwise
our constructed time series are too long).

Before proving Theorem 5.1, we introduce some definitions. A position i in a time
series x is an integer 1 < i < ||, its value is x[i]. The distance between two positions i
and ¢’ is [i’ —i|. A block in a binary time series is a maximal subseries of consecutive 0’s
(a 0-block) or 1’s (a 1-block). Blocks are also represented by integers, indicating their
rank in the series (a series with n blocks has blocks 1,2, ...,n). The distance between
two blocks of rank y and y’ is |y’ — y|. Note that the notion of distance is different
in the context of positions and blocks (even between size-1 blocks, as larger blocks in
between increase the position distance).

Recall from Section 2 that once the length of a mean z and the alignments to
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16 L. BULTEAU, V. FROESE, AND R. NIEDERMEIER

the input time series are known, then its values are determined. In the binary case, a
position i that is aligned to a 0’s and b 1’s contributes a cost of az[i]? + b(1 — 2[i])?
to F(z). This cost is minimal for z[i] being the arithmetic mean b/(a+b) of all values
aligned to position i. Thus, the cost of position i is

ab
C(i) = mi 2401 —2)?) = —,
(i) = minaa® + (1 - )?) = -2
where the second equality follows from Equation (2.1). The reduction in the following
proof of Theorem 5.1 is from ¢-MSCS for a polynomially bounded grouping function ¢
specifically chosen in relation to the above cost of a mean position.

Proof. We will reduce from ¢-MSCS for a specially chosen cost function ¢ which
we explain first. To this end, we briefly sketch the idea of the reduction. Given k bi-
nary strings for -MSCS, we construct k+1 binary time series: k time series encoding
the original strings and a dummy time series containing a single 1. The construction
is such that a column of a multiple circular shift with  1’s and k — = 0’s will corre-
spond to a position in a time series that is aligned to k + x 0’s and one 1. Now, the
cost of that column should be equal to the cost (k + x)/(k + z + 1) of that position
minus k/(k+1) (for technical reasons the cost should be 0 if z = 0). That is, we define
¢:{0,1}* — [0,1] with ¢((x1,...,2x)) = ¢k(2§:1 x;), where ¢5: {0,...,k} — [0,1]
with
_ k+tx ko T
S kt+a+1 k+1 (k+ta+1)(k+1)

Note that ¢ is a polynomially bounded grouping function since

by Ok(x) — dr(0) 1
dr(e) = z R RS RS

ok ()

is strictly decreasing (¢ is strictly concave) with gap

1
(k + 1)(2k)(2k + 1)

ek =k —1) — ¢ (k) =

and range
1

(k+2)(k+1)

See Figure 5 for an example of the functions ¢ and ¢},. Hence, by Theorem 3.11
hardness holds for ¢-MSCS. We now give the polynomial-time reduction from ¢-
MSCS, see Figure 6 for an illustration of the reduction.

Reduction. In the following, we assume to have an instance of ¢-MSCS with
k > 15 length-n binary strings si,...,s, € {4, B}™ (where A := 0 and B := 1) and
a target cost 0 < ¢ < n. We write ¢ for the gap &j of ¢ (note that e=1 € O(k?)).
The task is to decide whether there exists a multiple circular shift of cost at most ¢ or
whether all multiple circular shifts have cost at least ¢+e¢ (the reduction in Lemma 3.3
implies the hardness of this decision problem).

First, we encode characters A and B via certain binary strings. To this end,
we define the number m := 1600k [c + £] and the binary strings t4 = (10)™ and
tp = 100(10)™~1, each string having m 0-blocks (all of length one, except for the
first 0-block of ¢t which has length two). The first O-block of t4 and tp is called a
coding block (respectively, an A-coding or a B-coding block).

e = ¢p(1) =

This manuscript is for review purposes only.
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®s &5

F1G. 5. Left: The function ¢s5(z) = Right: The function ¢f(x) =

T 1
6(6+x) " 6(6+x) "

Now, foreach 1 < j <k, let s; be the string obtained by concatenating the strings
to;) for 1 <i < |s;|. The final time series z; is obtained by concatenating r copies
of s, where

ri= E(smnk +2(c+ 6))—‘ +1.

Note that each z; contains 2mnr blocks and |z ;| < poly(nk). We also define the extra
series z4+1 = (1) and set the target cost to

k
d=r c+ﬂ + 3mnk.
kE+1

For the correctness of this reduction we need to prove the following;:

(i) If (s1,..., sk, c) is a yes-instance, that is, there exists a multiple circular shift A
with costy(A) < ¢, then there exists a time series z with F(z) < ¢
(ii) If (s1,. .., sk, c) is a no-instance, that is, cost,(A) > c+4¢ holds for every multiple

circular shift A, then F(z) > ¢’ holds for every time series z.

(i) Yes-instance of ¢-MSCS. Consider a multiple circular shift A = (01, ..., dx)
of s1,..., s with costy(A) < c. Without loss of generality, we assume that 0 < §; <n
holds for every 1 < j < k.

We construct a time series z of length 2mn(r — 1) + 2 (also see Figure 6) such
that F(z) < ¢’. To this end, we describe the alignments between z and 1, ..., T 1
(recall that this determines the values and costs of positions in z). For each j =
1,...,k, the first position is aligned with the leftmost 20;m blocks of each z; (or
with the first block if §; = 0) and the last position is aligned with the rightmost
2(n — d;)m blocks of z;. For each 1 < i < 2mn(r — 1) + 2, position ¢ is aligned
with the (i — 1 + 26;m)-th block of z;. These positions are called regular positions,
whereas the first and last position are called extreme. Clearly, all positions of z are
also aligned with the single 1 in x4 ;.

Given the above alignments, the sum of costs of all positions in z is clearly an
upper bound for F(z). The following two claims give an upper bound for this sum.

CLAIM 5.2. The total cost of regular positions is at most (r — 1)(c + Z’T"f)

Proof. Due to the alternation of 1- and 0-blocks in each x; and the fact that
i+ (20;m) =i (mod 2), it follows that the i-th regular position (which is z[i + 1]) is
mapped only to 1’s if ¢ is odd (odd position) or only to 0’s (and the single 1 in zj11)
if 7 is even (even positions). Thus, odd positions have cost (k,:r Jrli‘o = 0, and even
positions have a cost depending on the size of the 0-blocks to which they are mapped.
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tA tB tB tA tB

<4 £10(10)" 100(10)™100(10)" 10(10)" " 100(10)"*
tp tp ta ta ta

s2: [B] B) (A] (A] (A] s :100(10)™~'100(10)™ " 10(10)™~" 10(10)™~" 10(10)™ "
ta tp tp tp ta

53 5 110(10)™1 100(10)™1100(10)™~1100(10)™~* 10(10)™*
1 @) (3) (3) (0)
repeat r times

translate using t4, tp (here with r = 3)

3 4 4 6 6 3 4 4 6 6
cost:  O(kmn) F T SRR S ZRR S SRR SR SR O(kmn)
o ~ 1 Jr.oor o1 o1 o111 1 1 1 ~ 1
: =3 15 5 7 U A|la s s T T =3

T4

Fi1c. 6. Top left: Illustration of the reduction to DTW-MEAN from an instance of ¢-MSCS with
k=3 andn =5. An optimal circular shift A = (3,2,4) is indicated by dotted lines, and the number
of B’s in a shifted column is below each column. The total cost is costg(A) = 2¢3(1)+243(3)+¢3(0).
Top right: The intermediate strings sy, sh, s encoding the original strings s1,s2,s3. Bottom: The
resulting instance x1,...,x4 of DTW-MEAN (only coding blocks are shown) and an alignment to
a time series z mimicking the circular shift A. The values of z are shown along with the cost of
each position (positions that are only aligned to non-coding blocks are ignored, and contribute a
background cost of either 0 or %) Note that the cost function ¢ is chosen so that the cost of a
position aligned to k coding blocks equals the cost of the corresponding column of the original circular
shift (plus the background cost %) For example, a position aligned to two A-coding blocks and one
B-coding block has cost % = g + ¢3(1), where ¢3(1) is the cost of a column with two A’s and one B
in ¢-MSCS. The value of m is chosen large enough to yield a large cost for misalignments, such as
two consecutive coding blocks of the same series aligned together. The value of r is chosen such that
only a periodic pattern ensures low cost of z, even though it requires to pay a high (but bounded)
misalignment cost for the first and last positions.

Consider an even position i such that i mod 2m # 2. The i-th regular position is
not aligned with any coding block in any x;. Thus, it is aligned to k 0’s and a single 1,
and has cost C(i + 1) = kiﬂ There are (m — 1)n(r — 1) such positions, which thus
contribute a total cost of

(r—1) (m — )nk
E+1

For an even position ¢ with ¢ mod 2m = 2, the i-th regular position is aligned
with a coding block in each z; (except for the single 1 in zy41). Let ¢ = 2mid’ + 2.
Then, z[i + 1] is aligned to coding blocks corresponding to column i’ mod n of A. If
this column contains @ A’s and k — a B’s, then z[i + 1] is aligned to a 4+ 2(k — a) 0’s
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and a single 1 and has cost

) a+2(k—a) 2k —a k
1: = = k— —_—
Cl+l)= k-1 Zhoagi k-0 +

Note that ¢r(k — a) is the cost of column i’ mod n of A. Hence, the overall cost of
the (r — 1)n regular positions ¢ with ¢ mod 2m = 2 is

(r — 1) costy(A) + (r — 1>I:f1 <(r—1) <C+ kﬁfl) '

Overall, the regular positions have a total cost of at most

(r—l)%-&-@“—l) (”le) =(r—1) (c+ ,Tfﬁ)

CLAM 5.3. The total cost of extreme positions is at most 2knm + 2.

Proof. Since 0 < ¢; < n for j € {1,...,k}, an extreme position ¢ € {1, |z} is
aligned to at most 2nm consecutive blocks in each x;, thus accounting for at most
nm 1’s in ;. Moreover, position 7 is aligned with the additional 1 in x;4;. Thus,
position i is aligned with at most nmk + 1 1’s, which implies C'(¢) < nmk + 1 (this
bound is achieved if z[i] = 0). d

Combining Claims 5.2 and 5.3, we obtain

2|

F(z) SZC(i) <(r—1) <c+ m) +2knm+2 <.
i=1

Hence, (21,...,2x+1,¢") is a yes-instance of DTW-MEAN.

(i) No-instance of $-MSCS. We assume that every multiple circular shift A
has costy(A) > ¢+ ¢. Consider a fixed mean time series z (minimizing F) together
with optimal warping paths between z and z1,...,z511. We show that F(z) > .
We will do this hierarchically, starting with a lower bound on the cost of an individual
position of z. We then proceed to derive lower bounds for the cost of certain intervals
of positions until finally obtaining the desired lower bound on F(z). Before doing so,
we start with some preliminary observations about the structure of a mean.

Structural Observations. We say that position ¢ of z; is matched to position i’
of z if (¢,4) is in the warping path between z; and z. Clearly, the single position
in @11 is matched to every position of z. We write #1 () and #q(¢) respectively for

the number of positions with value 1 (resp. 0) among x1, ...,z (ignoring the extra
sequence x+1) which are matched to position 4 of z. Clearly, the cost of  is
. N1
Clpy - Fol# ) +1)
#o(i) +#1(1) +1

We will use the following monotonicity property of the cost.

- b 'y
LEMMA 5.4. For anya>a’ >0 and b>b > 1, it holds P A

Proof. 1t suffices to see that the partial derivatives

9 ab b? and 0 ab a®
daa+b (a+b)? Oba+b  (a+b)2

are non-negative for a > 0 and b > 1. O
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We define some further notation for the remaining part of the proof. The range
of a position ¢ of z in x; is the set of positions of x; that are matched to i. The
range is a subinterval of {1,2,...,|z;|} and by construction of z;, the corresponding
subseries cannot have three consecutive 0’s or two consecutive 1’s. More precisely, its
values alternate between 0 and 1, except for the (rare) occasions where it includes
a B-coding block. The number of blocks of x; intersecting the range of i in x; is
denoted 7;(¢). The number of B-coding blocks contained in the range of ¢ in z; is

denoted rf (i) and we define r2 (i) :== 2?21 rf’ (7).
A position i of z is called 0-simple (resp. I-simple) if #1(i) = 0 (resp. #o(i) = 0).
It is simple if it is 0- or 1-simple, and it is bad otherwise. Clearly, the cost of a 1-simple
position is 0. For a 0-simple position i, we have #;(i) = 0 and k < #,(i) < 2k (more
precisely, #0(i) = k + rB(i) and r2(i) < k). Thus, kL_H <C@) < %ﬁl Since we
assumed k > 15, the cost of a O-simple position is always contained in [0.9, 1].

We continue with several structural observations regarding a mean.

OBSERVATION 5.5. There exists a mean without consecutive 1-simple positions or
consecutive 0-simple positions. Such a mean is called non-redundant.

Proof. Any two consecutive 1-simple (or 0-simple) positions of a non-redundant
mean z have consecutive or intersecting ranges in each x; with the same value (1
or 0). Hence, they can be merged into one single 1-simple (or 0-simple) position.

Since the warping of the other positions in z remains unchanged, we focus on the
cost of the merged position. For 1-simple positions, the cost remains unchanged (both
solutions yield a cost of 0 for the 1-simple positions). For 0-simple positions, the cost
of the two 0-simple positions in the original solution is at least 0.9 each. However, the
cost of the merged 0-simple position is at most 1, which is a contradiction to z being
a mean. ]

In the following, we assume z to be a non-redundant mean.

We say a block b of some input x; is matched (fully matched) to a position ¢
in z if some position (all positions) in b is (are) matched to i. That is, a matched
block intersects the range of ¢ and a fully matched block is included in the range of .
Note that the distinction is only relevant for B-coding blocks, as all other blocks have
size 1. Moreover, the number of B-coding blocks that are fully matched to a position 4
equals 75 (i).

OBSERVATION 5.6. For a non-redundant mean z, any B-coding block of some x;
that is not fully matched to a position in z is matched to at least one bad position
m z.

If any block is matched to two consecutive positions in z, then at least one of them
is bad.

Proof. Consider a B-coding block b and all positions of z to which it is matched.
There are at least two of them, which cannot all be 0-simple (since z is non-redundant).
Also, none of them can be 1-simple (since b is a 0-block). Thus, at least one of them
is bad.

We prove the contrapositive of the second statement: If two simple positions have
a common block matched to them, then they are both a-simple, a € {0,1}, and cannot
be consecutive in a non-redundant mean. O

We now introduce an assignment relation between a block b of some input series
and a position ¢ of z. We say that b is assigned to the position ¢ if ¢ is the leftmost
simple position to which b is fully matched (if any), or (if no such simple position
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707 exists) if ¢ is the leftmost bad position to which b is matched. Note that any size-
708 1 block is fully matched to at least one position (simple or bad), and every size-2
709 block is either fully matched to a simple position or matched to a bad position (by
710 Observation 5.6). Thus, every block is assigned to exactly one position.

711 For a position ¢ of z, we introduce the following quantities:
712 $o(i) == number of 0-blocks in x4, ...,z matched to i,
713 {1(i) = number of 1-blocks in z1,...,z; matched to i,
714 q(i) :== number of B-coding blocks assigned to i,
) 0, if 7 is simple
715 g(i) = . , o
6 max{1l,r1(i) — 1,...,7,(3) — 1}, if ¢ is bad
717 We quickly observe the following:
718 (I) If i is simple, then ¢(i) = rB(i).
719 Proof. By definition, every B-coding block assigned to ¢ is fully matched to 4,
720 that is, ¢(i) < r2(i). Furthermore, a B-coding block can be fully matched to
721 only one position. Thus, if ¢ is simple, then all B-coding blocks fully matched
722 to it are also assigned to it, that is, q(i) > rZ(i).
723 (II) If i is O-simple, then $o(i) = k, {1(i) = 0, and C(i) = kﬂ@(ﬁy
724 Proof. A 0-simple position has exactly one 0-block in each z1, ...,z matched
725 to it. The cost follows from (I).
726 (IIT) If ¢ is 1-simple, then {q(i) =0, $1(4) = &, and C(i) = 0.
727 Proof. A 1-simple position has exactly one 1-block in each z1, ...,z matched
728 to it.
729 (IV) If i is bad, then g(7) < 2min{<{1(4), $o(d)}-
730 Proof. For a bad position i, we have
1
731 min{<$1(7), $o(4)} > max {1, B .Irllaxk(rj(i) - 1)} .
J=1,.
732 (V) Ifiis bad, then C(i) > 1 min{{q(d) + 1, Qo (i)}
733 Proof. Let n:= min{<{1(i) +1,$0(4)} > 1. Then ¢ is aligned to at least n 0’s
734 and at least n 1’s. Thus, by Lemma 5.4, C(i) > % = 7.
735 (VI) For every position ¢, it holds that |$g (i) — G1(4)| < k and $o() + $1(i) > k.
736 Proof. For each x;, 1 < j < k, the difference between the number of 0-blocks
737 matched to 7 and the number of 1-blocks matched to 7 is at most one. Clearly,
738 there is at least one 0- or 1-block matched to 7 in each x;.
739 Cost of a Single Position. We consider a fixed position ¢ of z. For simplification,
740 we write $g 1= $o(4), O1 1= O1(4), ¢ := q(i), g := g(i), and C := C(i). The goal is
741 to provide a lower bound for C' that can be decomposed into the following elements:
742 e a background cost Chack(i) := k<>+01,
743 e a coding cost Ceodo(i) := ¢ (q) reflecting the extra cost induced by a matched
744 coding block,
745 e a gap cost of Cgap(i) := 0.01g, which is 0 if ¢ is simple, and which increases
746 with the number of blocks matched to ¢ if ¢ is bad.
747 CLAIM 5.7. The cost C of position i is at least LB({o,q, 9, k), defined as follows:
748 LB(<>07 q,9, k) = Cback(i) + Ccode(i) + Cgap ('L)
Qo
749 = + + 0.01g.
e Pl or(q) g
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Proof. In the following, we write LB for LB({q,q,g,k). We prove C > LB by
case distinction.
For a 0-simple position, by (II), we have {g = k and g = 0. Thus,
k k+q
Fr1 T 0=
For a 1-simple position, by (III), we have {9 =0, ¢ =0, and g = 0. Thus,
LB=0+¢,(0)+0=0=C.
For a bad position, we have {¢ > 1 and <, > 1. First, note that
o q 1 o 1 o
LB —0.01g = . <4 —— <2
g k—|—1+(k+q—|—1) (k+1) — k+k+1* k

that is, LB < 242 + 0.01g.
We now use this upper bound for the following three sub-cases. First, if $o < <,
then we have

€2 500 (by (V)

2
> %00 +0.02$¢ (since k > 15)
> LB (by (IV).
Second, if 6 < {1 < $g, we have

C> 200 (by (V)

2
> 924 (k + 0.02> &1 (since k > 15 and 1 > 6)

2
=2+ % + 0.02$

> % +0.02$1  (since G < $1 + k by (VI))

> LB (by (IV)).

Finally, if {1 <5 < g (note that {1 < $¢ < 5 is not possible since, by (VI), we
have {1 + $¢ > k and we assumed k > 15), then kK —5 < $p < k+ 5 (by (VI)), and
g <10 (by (IV)). We have

o o1t Dty _ 20k 5)
Gr+1+#0() — k-3
using Lemma 5.4, with {1 > 1, #¢(i) > $o > k — 5, and k > 15. On the other side,

we have

> 1.66

Qo
k+1

5 k
< — _ Nl i < <1
_k+1+k+1+¢k(q)+0 (since $g < k+5 and g < 10)

% + 1.1 (since

LB =

+ ¢1(q) + 0.01g

IN

k
<1
) +ér(g) < 1)
<1.44 (since k > 15)
<C. 0
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Cost of (Ir)regular Intervals. We aim at computing lower bounds on the cost of
intervals of positions. Two positions 4,4’ of the mean z at distance |i — i'| = ¢ form
an irreqular pair if for some z; a block b is matched to ¢ and a block b is matched
to ¢’ such that either [b — 0’| < £ — Z& or |[b—b'| > £+ F. An interval I of positions
in z is called regular if it does not contain any irregular pair (otherwise it is called
irregular). The background, coding, and gap cost of I is the sum of the respective
costs of its positions. The structure of regular intervals allows us to bound the coding
cost from below using the minimum cost of the original $-MSCS instance. Irregular
intervals contain bad positions, which allow us to derive a lower bound on their gap
cost.

We first introduce some notation: a position ¢ of z is j-coding if there is a coding
block b in z; such that b is assigned to i; it is coding if it is j-coding for some j,
otherwise it is non-coding. A non-coding position i is free if all positions at distance
at most gz + 2 from 4 are non-coding (see Figure 7). We first make the following
technical claim before proving the main bound on the coding cost of regular intervals

(Claim 5.9).

CLAIM 5.8. In a regular interval, if two positions i < i’ are at distance at most
2am — g for some «, then, for any j, there are at most o j-coding positions in [i,4].

Conversely, if i and i are at distance at least 2am+ 35 +1, then, for any j, there
are at least a j-coding positions in [i,1'].

Proof. Fix j € {1,...,k} and consider the first block b in x; matched to ¢ and
the last block 0’ in x; matched to " (then b’ > b). Note that all j-coding positions
in [i,4'] have been assigned a distinct coding block in [b, b]. Since ¢ and i’ are not an
irregular pair, it holds that

b’7b<i’7i+% < 2am.
That is, b’ < b+ 2am, and thus z; contains at most a coding blocks in [b, b']. These
coding blocks are assigned to positions in [¢,4']. Hence, [i,4'] contains at most «
j-coding positions.

For the other direction, consider again blocks b and b’ as above. In this case
there is a slight difference: If block b or b is coding, then it might be assigned to a
coding position outside of the interval [¢,4'], which then would not count in the lower
bound. Thus, we consider only blocks strictly between b and b, among which all
coding blocks are assigned to a coding position in [7,4']. Since i’ —i > 2am + g +1,
we have ' —b > i’ —i+ & > 2am + 1, so there are at least 2am blocks strictly
between b and ¥, including at least a coding blocks. These are assigned to at least o
j-coding positions in [¢,4']. 0

CLAIM 5.9. The coding cost of a length-£ reqular interval I is at least

Ceode(I) > (Hl — 2) (c+e).

2mn

Proof. Let I be a regular length-¢ interval. Assume that ¢ > 3mn (otherwise the
stated lower bound is negative which is trivial).

The first part of the proof consists of splitting interval I into consecutive length-
2m segments, each one containing exactly one j-coding position for each j. To this
end, a few positions need to be cropped from both ends of I. In other words, we need
to find a good starting point (a free position) close to the left end of I.
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T ° 0 S ° ° °

x2 bt L L d ° )

x3 o ° ;e °. ° G
I

z e o[ ¢ é6[ 00 o 0o o o6 e/ N
10 11 19 13 14

Fic. 7. Decomposition of a regular interval (I) into segments delimited at positions i;. Coding
blocks in x; are indicated with colored bullets, as well as their assigned positions in z (dotted arcs).
Position ig is free (no coding position within the striped area), and each segment [i;,4;41] contains
exactly one j-coding position from each x;. These coding positions correspond to columns of a
multiple circular shift of the ¢-MSCS input strings. The coding cost of n consecutive segments can
be bounded from below by the minimum cost of the ¢-MSCS instance.

Consider the first position i of I and position 3" := i + 2m — & (in I). By
Claim 5.8, for any j, there is at most one j-coding position in [¢,¢'] (and so at most k
such coding positions in total). Accordingly, the coding positions split the interval
[i,4'] into at most (k + 1) disjoint intervals of non-coding positions, with total size at
least (' —i+1) —k = 2m — gz — k + 1. Hence, there is one interval of non-coding

positions in [z, '] with size at least

2m — 2 —k+1 2m — 2

2k — > 2k 1> " 45,
E+1 - k+1 ~ k *
Note that the second inequality above is equivalent to
m2—5) _m 6k(k + 1)
— = > — 16 & > —
Frl Sk e

which is true since m > 1600k and k& > 15. Hence, this interval contains a free
position, denoted ig, with i + % +2<ip<i+2m— % — 2.

Let \ = Lﬁj — 2 and 4; ;= ig + 2lm for 0 < [ < X. Note that A\ > n and that
every 7; is in I (following the assumption on ¢).

We fix some input series x;, 1 < j < k. Intuitively, positions 4; are the cutting
points of our segments within interval I (see Figure 7). We now aim at showing that
there is exactly one j-coding position in each segment [i;_1,%; — 1]. First, consider
positions h = ig — gz — 2 and 7; — 1. By Claim 5.8, since (ii—1)—h=2lm+ a5+ 1,
interval [h,i; — 1] contains at least | j-coding positions. Since i is free, these coding
positions cannot be before ig (as ig — h = g +2), so they are in [ig,4; — 1]. Consider
now positions b’ = ig + g¢ +1 and i; — 1. By Claim 5.8, since (i, — 1) —h' = 2lm — 37,
there are at most [ j-coding positions in [/, i; — 1], and therefore at most [ j-coding
positions in [ig,4; — 1]. That is, there are exactly ! j-coding positions in [ig, 4 — 1].

Overall, there is exactly one j-coding position in [i;_1,4; — 1] for every 0 <1 < A
and every j. We write Cj ; for the corresponding coding block in z;.

Let g; be the number of B-coding blocks among Cj 1,...,Cj . Then,

ii—1

Z q(h) =4,

h=i;_1
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and thus
i—1 K= .
h;l_l or(q(h)) = h;_l k+qh) + D(k+ 1)
i1 o) )
- h:zi;,l (k+q+1)(k+1) or(q)-

Let ¢; be such that C4 ; is the §;-th coding block of ;. Then, C) ; is the (§;+1—1)-
th coding block of z;, for every 0 < I < A. Note that the coding blocks Cj1,...,Cpk
correspond to the ((I —2) mod n + 1)-th column in the multiple circular shift A =
(61 mod n, ..., 0, mod n) of s1,...,sk. Thus, ¢ is the number of B’s in this column
and ¢ (q;) is the corresponding cost of this column.

That is, for any integer a with 0 < a < A—mn, the sum ZaJrn ! ¢r(qi) corresponds

to the cost of some multiple circular shift of sq,...,s,. Since, by assumption, every
multiple circular shift of sq,..., s has cost at least c+ e, we have
a+n—1
> dulq) >c+e.
l=a

We can now compute the lower bound on the coding cost of interval I. To this end,
we first extract L%J > 1 length-2mn subintervals of I, each consisting of n segments
of the form [i;_1,4; — 1]. Tt follows

in—1
Code Z ¢k Z Z ¢k (q(h))
hel h=ig

|_n an+n 1 4—1

> > > > ulah)

a=0 l=an h=i_;

|. J Lan+n—1

Z > dela)
l=an

L%J*

>Zc+5

This manuscript is for review purposes only.



885
886
887
888

889

890

891

892

893
894

895

896
897
898
899
900

901

26 L. BULTEAU, V. FROESE, AND R. NIEDERMEIER

where we assume n > 4 for the last inequality. 0

Next, we prove a lower bound on the gap cost of an interval I. In the follow-
ing, the total number of matches between blocks of z1,...,z; and positions in [ is

denoted W(I) =3,/ (Qo(i) + $1(i)).
CLAIM 5.10. For any interval I of length £, the gap cost Cgap(I) fulfills

CaaplD) > 13 <W1§I) e) .

Moreover, if I is irreqular, then

m
Ceap(1)

> —.
— 400k

Proof. For the first lower bound, it suffices to note that for any position ¢ (simple
or bad), it holds

> (i) — 1> —2L _
g(i) = max (i) =12 —= —1,

where W (3) == {o(3) + $1(4)-

For the second lower bound, consider an irregular pair ¢ < ¢’ in I and an integer j
such that a block b in z; is matched to 7 and a block b > b in x; is matched to i’
where [(b' —b) — (i — )| > .

Ifb' —b>i —i+ 3, then

-/
K2

;g(h)zg(’]ﬂj(h)1)_er(h)(ili+1)2b/b(ili)>;7€>4k.

h=i

If o' — b < i’ —i— Fp, then there are at least 3 pairs of consecutive positions having
the same block in z; matched to them, and for every such pair at least one of the two
positions is bad (by Observation 5.6). Since any bad position may be counted in at

most two such pairs, the interval has at least 73 bad positions. Hence, using g(h) > 1

for bad positions, we obtain ZZ:Z g(h) > J¢. |

Cost of a Mean. To obtain a lower bound for F(z), we now partition the posi-
tions [1,]z|] into minimal irregular intervals (from left). To this end, let oy := 1 and
let 81 be the position such that the interval [ag, 1] is irregular (if such a position
does not exist, then 1 = |z|) and [aq, 51 — 1] is regular. If 51 < |z]|, then we continue
analogously and define ay = 81 + 1 and S35 to be the position such that [as, 8] is
irregular and [ag, 82 — 1] is regular. This procedure is repeated until we obtain a
partition

a1 :=1,B1], [ == B1 + 1, B2), ..., [ap == Br—1 + 1, B == |2]]
of [1,|z|] into L > 1 intervals of which the first L — 1 are irregular and the last is
possibly regular. The following lower bounds hold.
CLAIM 5.11. For 1 <1 < L, it holds that

Ceap (a1, B1]) + Ceode (a1, Bi]) = (c + 5)%.

For the coding and gap costs of [ar, B1], it holds that

W(lar,BL])

Cgap([aLvﬁL]) + Ceode(lar, BL]) = (c+¢) oerim

—2(c+e).
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Proof. Consider an interval [y, 3], 1 < | < L, and let ¢ be its length. Let
W = W([au, Bi]). Since [y, 5; — 1] is a regular interval of length ¢ — 1, by Claim 5.9,
we have the following lower bound on the coding cost:

2mn

(5.1) Coeode([0u, B1]) = Ceode([ar, B — 1]) > (6 - 2) (c+¢).

For | < L, we combine both bounds on the gap cost of Claim 5.10 (by averaging their
values):

1 W m
> - (- i
Cron(lon, A1) 2 355 < k g) " 300k
Using m > 1600k(c + ¢) (by definition) and m > 100<£=, we obtain

(5:2) Comp(lans ) 2 502 (B ) 420+ ).

- 2nm

The sum of Inequations 5.1 and 5.2 yields the claimed lower bound.
For interval [ar,BL], we use the general lower bound from Claim 5.10, which
yields

(5.3) Canplloz, Br]) > 5 (VkV - e) S (VkV e) |
The sum of Inequations 5.1 and 5.3 yields the claimed lower bound. 0
Finally, to finish the proof of Theorem 5.1, we show that the mean z has high
cost, that is, (x1,..., 241, ) is a no-instance of DTW-MEAN.
CramM 5.12. F(z) > ¢.
Proof. Using Claim 5.7 on each position of I := [1,|z|], we obtain the following

lower bound "
F(2) = > C(i) = Ceote(I) + Caap(I) + Chacic (D).
i=1

For the coding and gap cost of I, we use Claim 5.11 together with the fact that
all 2knmr blocks of x1, ...,z are involved in at least one match with a position of z,
which yields W(I) = Zle W ([eu, B1]) = 2knmr. Thus,

Coote(I) + Caap(I) > (c+ &)1 — 2(c + ).

The overall background cost is Chpack(I) = Ellill iOT(ll) Since overall there are
knmr 0-blocks in x4, ...,xx, and each of those is matched to at least one position

of z, we have Z‘f:ll Oo(i) > knmr and thus

nmrk
k+1°

Cvback (I) 2

Combining the two bounds above yields

nmrk
k+1

Ceode(I) + Cgap(I) + Crack(l) > +(c+e)r—2(c+e).

Since er > 3mnk + 2(c + €), we get

k
nmr +rc+ 3mnk =c.

]:(Z)>k:+1 0
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Since the above reduction is a polynomial-time reduction from ¢-MSCS where
the resulting number of time series is linear in the number of strings in the ¢-MSCS
instance, Theorem 5.1 now follows from Theorem 3.11. ]

Closing this section, we remark that Buchin et al. [8, Theorem 7] recently obtained
the same hardness results as in Theorem 5.1 for the problem of computing an average
series z that minimizes

q/p

Fpe) =32 min 30 fwlu] = 2ol

Pi€P|z 1,2
J=1 J (u,v)€Ep;

for all integers p,q > 1. Their reduction, however, builds time series containing three
different values. Hence, Theorem 5.1 yields a stronger hardness on binary inputs for
p = q = 2. Note that if also the mean is restricted to be a binary time series, then
the problem is solvable in polynomial time [6, 34].

6. Conclusion. Shedding light on the computational complexity of prominent
consensus problems in stringology and time series analysis, we proved several tight
computational hardness results for circular string alignment problems and time series
averaging in dynamic time warping spaces. Notably, we have shown that the compu-
tational complexity of consensus string problems can drastically change (that is, they
become hard) when considering circular strings instead of classic strings. Our results
imply that these problems with a rich set of applications are intractable in the worst
case (even on binary data). Hence, it is unlikely to find algorithms which significantly
improve the worst-case running times of the best known algorithms. This now partly
justifies the use of heuristics as has been done for a long time in many real-world
applications.

We conclude with some open questions and directions for future work.

e We conjecture that the idea of the reduction for f-MSCS can be used to
prove the same hardness result for most non-linear (polynomially bounded)
order-independent cost functions (note that f-MSCS is trivially solvable if fj
is linear since every shift has the same cost). Proving a complexity dichotomy
with respect to the cost function is a worthwhile goal.

e From an algorithmic point of view, it would be nice to improve the constant in
the exponent of the running time for DTW-MEAN, that is, to find algorithms
running in O(n®*) time for small . In particular, we ask to find an O(n*)-
time algorithm for DTW-MEAN.

e What about the parameter maximum sequence length n? Are the considered
problems polynomial-time solvable if n is a constant? Are they even fixed-
parameter tractable with respect to n?

e Finally, can the hardness result for averaging time series with respect to (p, q)-
DTW by Buchin et al. [8, Theorem 7] be strengthened to binary inputs?
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