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Abstract. Structural restoration is commonly used to as-
sess the deformation of geological structures and to recon-
struct past basin geometries. For this, geomechanical restora-
tion considers faults as frictionless contact surfaces. To bring
more physical behavior and better handle large deformations,
we build on a reverse-time Stokes-based method, previously
applied to restore salt structures with negative time step ad-
vection. We test the applicability of the method to structures
including sediments of variable viscosity, faults and non-
flat topography. We present a simulation code that uses a
combination of arbitrary Lagrangian–Eulerian methods and
particle-in-cell methods, and is coupled with adaptive mesh
refinement. It is used to apply the reverse-time Stokes-based
method on simple two-dimensional geological cross-sections
and shows that reasonable restored geometries can be ob-
tained.

1 Introduction

The Earth’s subsurface is the result of millions of years
of deformation. Determining the deformation history from
present-day structures has been a concern for geoscientists
who try to understand and quantify basin evolution. Restora-
tion is an ensemble of methods which allow such quantifica-
tion, by reversing processes that led to the current geometry
of a geological region (e.g., Chamberlin, 1910; Dahlstrom,
1969). It covers a number of different processes and method-
ologies. The classical techniques are unfolding and unfault-
ing using length/area preservation in order to remove the
effects of tectonic forces. In addition to this, several meth-
ods have been developed to take into account the effects of

other important parameters, like erosion and deposition of
sediments (e.g., Dimakis et al., 1998), isostasy compensa-
tion (e.g., Allen and Allen, 2013), thermal subsidence due to
mantle thermal effect (Royden and Keen, 1980; Allen and
Allen, 2013), rock decompaction due to a change of load
(e.g., Athy, 1930; Durand-Riard et al., 2011; Allen and Allen,
2013), or, at a smaller scale, the reverse migration of chan-
nelized systems (e.g., Parquer et al., 2017). These methods
allow us to evaluate the consistency of a model and test the
hypotheses which lead to its construction, in order to gen-
erate paleo-basin geometries consistent with present-day ob-
servations for use in more elaborate hydromechanical for-
ward models (e.g., Bouziat et al., 2019). In this article, we
focus on the structural restoration based on unfolding and
unfaulting.

Since the beginning of the last century, unfolding and
unfaulting have been mostly done with geometric and
kinematic rules (e.g., Chamberlin, 1910; Dahlstrom, 1969;
Gratier, 1988; Rouby, 1994; Groshong, 2006; Lovely et al.,
2018; Fossen, 2016). The first implementations in two di-
mensions (2-D) used balanced restoration, which relies on
the conservation of layer bed area and thickness (e.g.,
Chamberlin, 1910; Dahlstrom, 1969; Groshong, 2006). Map
restoration was then developed to study deformations which
are mainly horizontal; it can be qualified as a 2.5-D method
(e.g., Cobbold and Percevault, 1983; Rouby, 1994; Ramón
et al., 2016). Later, three-dimensional (3-D) geometrical
methods have been proposed (Massot, 2002; Muron, 2005;
Lovely et al., 2018), allowing the tracking of internal volu-
metric deformation. Such methods are all based on the min-
imization of horizon deformation and on volume conserva-
tion, and therefore considerably simplify rock deformation
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mechanisms, ignore mechanical layering effects and are lim-
ited when considering salt basins. In this light, numerous au-
thors have stressed out the necessity of incorporating more
physical principles into the restoration of geological mod-
els (Fletcher and Pollard, 1999; Ismail-Zadeh et al., 2001;
Muron, 2005; Maerten and Maerten, 2006; Moretti, 2008;
Guzofski et al., 2009; Al-Fahmi et al., 2016).

Several solutions have emerged for volumetric mechanics-
based restoration, that differ in terms of computational tech-
niques and scale of the area of interest. These solutions can
be divided in two main approaches, that have been devel-
oped to address two different problematics of restoration.
They differ both in the mechanical laws used to compute the
motion of rock layers and in how these mechanical laws are
applied to restore geological models.

The first approach considers the restoration of sediment
layers assumed to deform elastically between frictionless
fault surfaces. It has been developed since the 2000s as
a geomechanical simulation with specific boundary values
(Maerten and Maerten, 2001; De Santi et al., 2002; Muron,
2005; Moretti et al., 2006; Maerten and Maerten, 2006; Gu-
zofski et al., 2009; Durand-Riard et al., 2010; Durand-Riard
et al., 2013a, b; Tang et al., 2016; Chauvin et al., 2018). In
this approach, internal deformation is not known a priori, and
the strain is computed from the mechanical behavior of rocks
and the applied boundary conditions. The model is parame-
terized with elastic properties to mimic the response of rocks
to mechanical stresses and the restoration displacement is
computed by solving the equation of motion, in which the
Cauchy stress tensor is defined by Hooke’s law. The restora-
tion itself is performed by applying specific boundary con-
ditions to constrain the model. These conditions, usually im-
posed on the displacement, rely on the following assump-
tions: the uppermost horizon was flat and horizontal at depo-
sition time, and it was not faulted. Other conditions can be
introduced as complementary geological knowledge, such as
direction and scale of deformation, or amount of lateral dis-
placement (Chauvin et al., 2018). Although these methods
offer significant advances in the structural restoration of geo-
logical models, they still present many limitations. First, the
boundary conditions set to unfold and unfault the medium
are unphysical as the imposed depth of the free surface is the
main driver of the deformation (Lovely et al., 2012; Chau-
vin et al., 2018). These conditions are convenient hypothe-
ses which do not necessarily reflect the paleo-stress state;
hence, they can be questioned (Durand-Riard et al., 2010;
Lovely et al., 2012; Durand-Riard et al., 2013a). Secondly,
geomechanical restoration so far only considers elastic rock
properties, neglecting other possible behaviors, such as vis-
cous, visco-elastic or plastic deformation (Gerbault et al.,
1998). Transverse isotropic behavior also affects strain local-
ization during restoration (Durand-Riard et al., 2013a), but
such behavior is rarely applied in practice. These physical
issues raise the question of the capability of this restoration
approach to properly recover paleo-deformation. As a con-

sequence, there are no clear guidelines on which method to
choose between geometric and kinematic restoration and ge-
omechanical restoration, despite the more physical approach
of the second one (Maerten and Maerten, 2006; Guzofski
et al., 2009). Moreover, in spite of its name, geomechanical
restoration is extensively controlled by geometric considera-
tions: flattening of the top layer and a geometric unfaulting
based on frictionless contact conditions to stitch the horizon
cutoff lines across each fault. Another practical issue is the
need for a valid volumetric mesh of the structural model,
including a boundary representation of the geological do-
main with the horizons and faults as boundaries (e.g., Muron,
2005), even if the use of implicit horizons relaxes this con-
straint (Durand-Riard et al., 2010). Such a mesh is difficult
to generate, as shown, for example, by Pellerin et al. (2014),
Zehner et al. (2016) and Anquez et al. (2019). Since restora-
tion deals with large deformations, the model evolves and
may need to be remeshed. The remeshing algorithms, how-
ever, are limited because key structural elements like faults
and horizons must be preserved for geomechanical restora-
tion to be used as an interpretation validation tool. To sum up,
this restoration approach has overcome some limitations of
the “classical” geometric restoration process, by taking some
of the internal movement of the layers into account, for ex-
ample, but it still needs to be improved to better account for
different rheologies, larger deformations, faults, salt tecton-
ics and boundary conditions.

The second approach was introduced in 1999 as a way to
improve the restoration of salt structures (Kaus and Podlad-
chikov, 2001; Ismail-Zadeh et al., 2001, 2004; Ismail-Zadeh
and Tackley, 2010). It relies on considering the rocks as vis-
cous fluids to compute the motion and applying negative
time steps. It is motivated both by the fact that rock salt and
some sediment overburdens behave as viscous fluids over
timescales of millions of years, and by the reversibility of
the Stokes equations which allows the backward time step-
ping. The first implementations used a linear viscous (New-
tonian) rheology and proved to be able to restore 2-D seismic
cross-sections of salt diapirs (Ismail-Zadeh et al., 2001) and
3-D Rayleigh–Taylor instabilities (Kaus and Podladchikov,
2001; Ismail-Zadeh et al., 2004). Since then, the method has
been used for 3-D unfolding in the absence of gravity (e.g.,
Schmalholz, 2008), extended to non-linear (power-law) vis-
cous behavior (e.g., Lechmann et al., 2010; Fernandez Ter-
rones), or used to study the reverse modeling of flanking
structures (e.g., Kocher and Mancktelow, 2005). Overall, this
approach has proven to allow the unfolding of sediment lay-
ers and the restoration of salt structures, both in 2-D and in
3-D. In the various previous applications, however, faults are
either not present or not taken into account in the restoration
process. Also, the top surface in contact with air stays flat
during the restoration process as the sedimentation and ero-
sion processes are mostly considered fast enough to flatten
the arising topography.
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In this paper, we investigate a way of addressing some of
the challenges raised by the first approach. We show that it
is possible to push the second approach further and apply it
to models with faults and a non-flat free surface. For sim-
plicity, we neglect the influence of temperature and consider
the rocks as having a (linear) Newtonian rheology. While this
considerably simplifies any non-Newtonian or visco-elasto-
plastic behavior in rocks, we show in the paper that this con-
sideration is sufficient in simple setups. In the case of more
complex overburdens, the method proved in the literature to
be able to restore various structures with power-law viscosi-
ties (e.g., Lechmann et al., 2010; Fernandez Terrones). We
introduce a numerical scheme combining features of the arbi-
trary Lagrangian–Eulerian (ALE) and particle-in-cell (PIC)
approaches, and using adaptive grid refinement. This specific
implementation is motivated by the need for a moving topog-
raphy, as well as the high accuracy needed for the computa-
tion of motion around the faults. We show that this scheme
is accurate enough to consistently restore various geological
setups, including faults.

The outline of this paper is as follows: we first present
the concepts of Stokes-flow-based restoration and its physi-
cal underpinnings. In a second part, we introduce the numer-
ical code we developed for this application. Finally, we show
the results that were obtained on an upscaled version of the
model presented by van Keken et al. (1997), on a model with
no prior knowledge on the material properties and boundary
conditions to apply and on a model with faults and a non-flat
free top surface.

2 Using creeping flow equations for geomechanical
restoration

2.1 Creeping flow equations

The standard equations for creeping flows are the Stokes
equations, consisting of the momentum conservation equa-
tion,

∇ · σ +f = 0, (1)

and the mass conservation equation for incompressible fluids
(continuity equation),

∇ · v = 0, (2)

where ∇ is the del operator, σ is the stress tensor, f is the
specific body force (usually the volumetric weight ρg), and
v is the velocity. The stress consists of a deviatoric part τ and
an isotropic pressure p:

σ = τ −pI, (3)

where I is the identity tensor. In the viscous flow assumption,
the deviatoric part of the stress is

τ = 2ηD, (4)

with η the dynamic viscosity and D the infinitesimal strain
rate tensor defined by

D=
1
2

[
∇v+ (∇v)T

]
. (5)

Assembling Eqs. (1), (3), (4) and (5), the momentum conser-
vation equation can be written

∇ ·

[
η(∇v+ (∇v)T )

]
−∇p =−ρg. (6)

Here, we deal with materials that are highly viscous (with
a viscosity η over 1017 Pa s), over timescales of thousands
to millions of years, so these equations neglect the inertial
part of the Navier–Stokes equations (Massimi et al., 2006).
As such, they describe a steady-state flow and their resolu-
tion provides the velocity of a fluid at a specific position and
time. When different fluids are present, the conditions that
are applied at their boundaries, as well as their differences in
density, can create instabilities such as Rayleigh–Taylor in-
stabilities. These instabilities make the flow non-stationary,
as they advect the viscosity and density fields in time.

2.2 Restoration idea

In forward simulation schemes, the Stokes equations (Eqs. 6
and 2) are solved for pressure and velocity, and the material
representation of the geological model is advected from the
velocity at each time step. The simplest way to do it is by
using an Euler scheme, the position x(t +1t) of each point
of the material model after one time step being computed as

x(t +1t)= x(t)+ v(t) ·1t, (7)

with x(t) and v(t) the position and the computed velocity
of the point at time t and 1t the time step. While higher-
order methods exist (e.g., Ismail-Zadeh and Tackley, 2010),
particularly to stabilize the advection scheme in the case of
large time steps, we choose to present the restoration idea
with this one for simplicity. This finite-difference approxi-
mation relies on the idea that if the chosen time step 1t is
small enough, we can approximate the velocity of a parti-
cle as a constant over this time step (1t is usually calculated
using a Courant–Friedrichs–Lewy (CFL) condition (Courant
et al., 1928) to ensure it). Since the Stokes equations are lin-
ear and do not depend on previous time steps for the com-
putation of the velocity, we can extend this approximation
to backwards simulations. This is the basis of backward time
stepping restoration schemes: instead of applying Eq. (7), we
apply

x(t −1t)= x(t)− v(t) ·1t (8)

for the advection of the points of the material model, at each
time step, like in Fig. 1.

In this light, using viscous fluid properties instead of elas-
tic properties to represent the mechanical behavior of geo-
logical materials holds several advantages, such as the use
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Figure 1. Example of the restoration scheme for a simple setup
(a): as the arrows in panel (b) represent the velocity computed at
a specific time step for a forward scheme, the advection of the ma-
terial model in a restoration scheme is done with the opposite of the
computed velocity, shown in panel (c).

of boundary conditions that are closer to reality, like a free
surface on top, or the account of other rheologies, like a salt
layer.

3 Implementation in a specific code

3.1 Presentation

The restoration scheme presented in Sect. 2 has been imple-
mented in the FAIStokes (Finite element Arbitrary Eulerian-
Lagrangian Implementation of Stokes) code. It relies almost
entirely on the deal.II library (Bangerth et al., 2007; Arndt
et al., 2019, 2020) for all finite-element-related algorithms.
The material tracking is based on the PIC method (e.g., As-
gari and Moresi, 2012; Thielmann et al., 2014; Gassmöller
et al., 2018, 2019; Trim et al., 2019). The general workflow
of the code is shown in Fig. 2 and details of implementation
are discussed in the following subsections. Five benchmarks
have been carried out to test the computation parts of the code
and are presented in Appendix Sects. A, B, C, D and E.

3.2 Finite element discretization

The finite element method (FEM) was introduced in the late
1950s (Hughes, 2012). Since then, it has emerged as one
of the most powerful methods for solving partial differen-
tial equations (PDEs) numerically. In FAIStokes, the FEM
algorithms are based on the deal.II library. The domain is dis-
cretized on a set of quadrilateral elements, on which finite el-
ement (FE) basis functions are defined. The aim of this paper

Figure 2. Schematic workflow of the FAIStokes code structure. The
pre-refinement step occurs at the beginning of the simulation (or
during a re-initialization of the grid) to ensure that the velocity used
for the advection step is computed using the adaptively refined grid.

is not to do a thorough review of the FEM, so only the spec-
ifications of the FAIStokes code will be presented here. For
solving the Stokes equations, we use quadrilateral Taylor–
Hood Q2×Q1 elements that satisfy the Ladyzhenskaya–
Babuška–Brezzi (LBB) condition for stability (Donea et al.,
2004). Contrarily to many creeping flow codes that are used
to study the subsurface, we do not solve the heat transport
equation, both for simplicity and because it is likely to have
only a small effect on the strain at the scale at which struc-
tural restoration is generally applied (i.e., basin scale, close
to the surface). Moreover, there may be important temper-
ature diffusion at geological timescales, particularly in salt
layers, and it is not reversible. We use Dirichlet and Neumann
boundary conditions that we adapt (e.g., rigidity, free slip,
free surface, specific traction or velocity) for each boundary
to the different problems at hand. Appendices A, B, D and E
showcase results of the FE benchmarking.

3.3 Material discretization

The geomechanical simulation of a specific domain requires
to choose an appropriate kinematic description to follow the
displacement inside the geological layers. Continuum me-
chanics first distinguished two main frames: the Eulerian
frame of reference, also known as the spatial description,
and the Lagrangian frame of reference, also known as the
material description (Cornet, 2015). Both methods have their
advantages and disadvantages, but neither of them is specif-
ically adapted in the case of large displacements over time,
such as those studied here. In order to overcome the limita-
tions of the two approaches, the ALE formulation (Fullsack,

Solid Earth, 11, 1909–1930, 2020 https://doi.org/10.5194/se-11-1909-2020



M. Schuh-Senlis et al.: Creeping flow for geomechanical restoration 1913

1995; Donea et al., 2004), which inherits features from both
methodologies, was developed. It has various formulations
and implementations, both in 2-D (e.g., Willett et al., 1993;
Poliakov et al., 1996; Massimi et al., 2006, 2007; Fillon et al.,
2013; Rose et al., 2017) and, more recently, in 3-D (e.g.,
Braun, 2003; Thieulot, 2011; Thieulot et al., 2014). Most of
these methods rely on keeping track of the material proper-
ties in a Lagrangian way, while computing the displacement
on a grid that can only deform vertically to account for a pos-
sible free surface. It is particularly useful in geomechanics,
where the vertical deformation is generally small compared
to the horizontal deformation, and in the case of highly vis-
cous fluids in the mantle, for which the density and viscosity
depend mostly on the temperature and depth. In FAIStokes,
the grid has an ALE part, as it can adapt to follow the move-
ment of the free surface.

3.4 The PIC method

During mechanical simulations, the material properties in-
side the model are tracked using particles; each of these par-
ticles discretizes the small part of the model around them and
its properties. At each time step, the material properties of
the particles are projected onto the grid. They are then used
to solve the Stokes equations on the grid. Following this, the
particles are advected using the solution on the grid.

At the beginning of the simulations, FAIStokes either cre-
ates a model from a function giving the distribution of the
material parameters or loads a particle swarm from a file.
In the first case, a regularly distributed particle swarm is
generated, with a density of particles depending on the size
of the smallest element of the computation grid. The given
function is then used to associate the material properties to
the particles depending on their position. Since the particle
swarm does not directly track the interfaces, it has to be
dense enough to recover accurately the material properties
of the model; depending on the simulation, some parts of
the model can therefore be densified to keep the appropri-
ate accuracy. At each time step, the material properties are
interpolated from the particle swarm to the grid in order to
build the FE matrix and its preconditioner. For each element,
the density is interpolated on the quadrature points using an
arithmetic mean of the densities of the particles around the
quadrature points (closer than a distance depending on the
smallest element of the domain). The viscosity is recovered
for each element using a harmonic mean of the viscosities
of the particles inside the element. This reduces the effect of
very high viscosity differences (possibly of several orders of
magnitude) on the solver and is more computationally effi-
cient despite the higher grid refinement needed (Deubelbeiss
and Kaus, 2008; Thielmann et al., 2014; Heister et al., 2017).
In the simulations we present hereafter, we were able to ver-
ify that this averaging verifies the conservation of the volume
and mass in the model. Appendices A, B, D and E test the in-

terpolation of the material properties from the particle swarm
to the finite element grid to reasonable accuracy.

3.5 Grid and solvers

The grid and solvers come from the deal.II code, and their
use is highly inspired from the deal.II tutorials step-31 1 and
step-32 2. The grid is created first as a quadrilateral from
the coordinates of the bottom left and top right corners of
the domain. This quadrilateral is then split in order to get
cells closest to a square (depending on the model bound-
ing box size) and refined and coarsened adaptively several
times to construct the initial grid. The FE matrix, its precon-
ditioner and the right-hand-side force vector are constructed
using the material properties interpolated from the particle
swarm as described in the previous subsection. In the term
on the right-hand side, the norm of the gravity vector g of
Eq. (6) is always 9.81 m s−2 in our simulations, and its direc-
tion is always downwards. The matrix system is solved using
an iterative Flexible Generalized Minimal Residual (FGM-
RES) solver preconditioned by a block matrix involving the
Schur complement (Kronbichler et al., 2012). This solution
is then used to refine and coarsen the grid adaptively using
deal.II’s features, based on a gradient estimator in order to
minimize the local error. Depending on the input level of re-
finement, the cycle of building the matrix system, solving it
and adaptively refining and coarsening the grid is repeated
several times, as shown in Fig. 2. Appendices A, B, D and E
show the results of benchmarks that tested the computation
of the velocity on different setups.

3.6 Velocity interpolation

Once the grid refinement has been completed, the particle
swarm is advected by the obtained solution. In FAIStokes,
the interpolation of the velocity is done separately in each
grid cell with a Q2 interpolation scheme. Depending on
whether the simulation is forward or backward, the displace-
ment of each particle for a time step 1t is computed using
Eqs. (7) or (8). The value of 1t is computed from the CFL
condition. The default value for the CFL number is 0.085,
but it can be reduced depending on the simulation (for exam-
ple, the results shown in the next section use a CFL number
of 0.0085, while the benchmarks in the Appendix use a CFL
number of 0.042). The advection is done with a second-order
Runge–Kutta scheme in space: at each time step, the particles
are first advected by half the computed displacement; the ve-
locity is then interpolated on their new position to update the
displacement, and particles are advected again by half of this
new displacement. This scheme reduces the error in the ad-
vection process without need for simulation time step refine-

1https://dealii.org/9.0.0/doxygen/deal.II/step_31.html, last ac-
cess: 1 October 2020

2https://dealii.org/9.0.0/doxygen/deal.II/step_32.html, last ac-
cess: 1 October 2020
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Figure 3. Process for the update of the free surface (the motion is
exaggerated for the sake of the explanation and is less extreme in
reality). (a) Initial state where the velocity is computed on the grid.
(b) The point swarm tracking the free surface is advected accord-
ing to the computed velocity. (c) The grid nodes at the top of the
free surface are moved vertically to match the point swarm. (d) The
deformation of the grid is diffused to the rest of the nodes.

ments. It is computationally efficient because the computa-
tion of the displacement on the particle swarm is inexpensive
as compared to solving the FE matrix system. Appendices C,
D and E show the results of benchmarks that tested the inter-
polation of the velocity in time-dependant problems.

3.7 Free surface implementation

In the case of a free surface on the top of the model, the
top surface is tracked by a separate point swarm. This point
swarm is denser than the material particle swarm and is one
dimension lower (i.e., a line in our 2-D cases). It is advected
at each time step the same way as the particle swarm that rep-
resents the geological model. After its displacement or dur-
ing the setup of the grid, the free surface point swarm is used
as a reference to move vertically the nodes of the grid at the
top of the model, so that they match the free surface. This
vertical displacement is then propagated to the rest of the
grid so that the grid cells stay as close to squares as possible,
while not affecting the other boundaries. Figure 3 illustrates
the whole process.

Since our models are isothermal, no special processing is
required to correct the temperature field during this process.
Appendix D shows the results of a benchmark that tests the
free surface implementation along with other computational
parts of the code. The free surface stabilization algorithm
(referred to as FSSA in the rest of the paper) developed by
Kaus et al. (2010) and showcased in Quinquis et al. (2011)

Figure 4. Setup of the model scaled up from van Keken et al.
(1997).

has been implemented in FAIStokes; we benchmark it in Ap-
pendix E.

4 Results

In addition to the benchmarks presented in the Appendix,
which mainly check the algorithms of the code, we tested
our restoration scheme on three simple models. In those ex-
periments, the boundary conditions are simplified and quite
unrealistic, but the goal here is to check the behavior of the
reverse-time modeling in simple settings. In particular, we
choose to neglect basal and lateral displacements in the first
two models, which are known to play a role in salt tectonics
(Koyi, 1996; Ismail-Zadeh et al., 2004) but would require a
calibration and would increase the degrees of freedom of the
problem.

4.1 Diapiric growth model

The first model is scaled up from van Keken et al. (1997).
The setup consists of a simple two-layered system driven by
gravity, as shown in Fig. 4.

The upper layer represents sediments that are denser
than the lower layer which contains salt (ρo = 2600 kg m−3

for the sediment layer and ρs = 2150 kg m−3 for the salt
layer). A sinusoidal instability initiates the movement at
the beginning of the simulation. The model is limited to a
10 km× 9.142 km domain (the width value is given by van
Keken et al. (1997) to yield the largest growth rate for the
diapir) with free-slip boundary conditions on the sides and
no-slip boundary conditions on the top and bottom sides.
The grid has 322 initial elements and two levels of additional
adaptive refinement. The particle swarm has a heterogeneous
particle density: it is first sampled regularly in the model and
then densified to 5 times more particles around the interface
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Figure 5. Particle swarms for the two synthetic diapiric growth ex-
periments. The darker grey and brown parts on the swarms are due
to the higher density of particles around the interfaces. The parti-
cles have the same initial position (a) in the two experiments, with
different material properties. The result of the forward simulation
after 6× 106 years for the first experiment is shown in panel (b).
Panel (c) shows the result of the forward simulation for the sec-
ond experiment after 1.5×106 years. The results for the restoration
simulations are shown in panels (d) and (e) for the first and second
experiments, respectively.

between the two layers to facilitate the tracking of mate-
rial properties. The average distance between two particles
near the interface is 14.3 m. The total number of particles
is 64 000. Two experiments were performed in this model:
the first one as a test with isoviscous materials (ηo = ηs =

1019 Pa s), and the second one with material properties closer
to reality with a lower viscosity for salt (ηo = 2.8×1019 Pa s
for the sediment layer and ηs = 1.4× 1017 Pa s for the salt
layer).

For each experiment, we first did a forward simulation,
and then we applied the restoration scheme to the results ob-
tained at the end of the simulation. The state obtained after
6×106 years for the first test and 1.5×106 years for the sec-
ond test, as well as the restored models, are shown in Fig. 5.

We can see that while the isoviscous experiment has a
rather smooth forward result, the second experiment with a
less viscous salt leads to the creation of a salt weld (surface
where the salt layer thickness has reached or almost reached
zero, the salt having creeped away) at the bottom and on the
left-hand side of the model.

Figure 6. Error logarithmic distribution for the first experiment (iso-
viscosity) on the diapiric growth model.

To check the quality of the restoration in the two exper-
iments, we compute for each particle the distance between
its original position before the forward simulation and its po-
sition at the end of the restoration process. The mean value
for this distance is 14 m (0.1 % error) for the isoviscous case
and 201 m (2 % error) for the variable viscosity case, and
the maximum value is 143 m (1.5 % error) for the isoviscous
case and 4947 m (49 % error) for the variable viscosity case.
While these results are quite good for the isoviscous case, we
could think that the variable viscosity case restoration is too
inaccurate. Histograms for the errors in the two experiments
are given in Figs. 6 and 7 and help explain this phenomenon.

The high error values in the variable viscosity case are due
to the creation of a basal weld, which mixes the particles at
the bottom of the model. Some of these particles are not well
restored and stay at the bottom of the model, creating very
large errors (hence the error bars of 1 to 20 particles with
an error higher than 500 m in Fig. 7). The basal weld in itself
creates large distortions which explain the overall large errors
at the interface. However, if we look at the model at the end
of the experiments in a global way, not taking into account
small irregularities, and study only the boundary between the
two layers, the maximum distance between the initial model
and the restored model is only 50 m (0.5 % error) for the first
experiment and 125 m (1.25 % error) for the second, which is
acceptable considering the large amount of total deformation.

4.2 Stochastically generated salt diapir model

This model was generated with the method proposed by
Clausolles et al. (2019). It consists of a salt diapir that mim-
ics passive diapirism structures created by syn-deformation
differential sediment loading. The input for the salt diapir is
a seismic image interpreted to segment it in three regions:
salt, sediment and uncertain. The salt–sediment interface is
then generated in the uncertain zone, from available data, ge-
ological knowledge and a random scalar field that takes into
account the uncertainties. The setup is quite simple but in-
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Figure 7. Error logarithmic distribution for the second experiment
(variable viscosity) on the diapiric growth model.

teresting for two reasons. First, this model was not created
by a forward viscous simulation, and the rheology of the salt
and sediments is not known. Second, this model has a high
uncertainty and it is uncertain whether the boundary condi-
tions we apply can restore it or not. Therefore, this test case
can be assimilated to the simplification of a real case appli-
cation. The initial particle swarm contains 102 510 particles
regularly sampling the model, and we apply free-slip bound-
ary conditions on the top and side model boundaries, and a
no-slip boundary condition on the bottom. Figure 8 shows
the initial state of the model. The grid has 48× 80 initial el-
ements and three levels of additional adaptive refinement; its
state at the beginning of the simulation is shown in Fig. 9. In
order to assess the influence of the value of the parameters on
the results of the restoration, we tested different possibilities.
For the density, the value for salt rock is ρsalt = 2160 kg m−3,
while the value for sediments can vary depending on the type
and origin of deposition mechanisms; we considered here a
value ρo ∈ [2600;3300] kg m−3. For simplicity, we set the
viscosity of the salt layer at ηsalt = 1017 Pa s and only vary
the viscosity of the sediments ηo ∈

[
1019
;1021]Pa s in order

to test the effect of the contrast.
We did five experiments with different values of ρo and ηo:

– Exp. 1: ρo = 2600 kg m−3, ηo = 1019 Pa s

– Exp. 2: ρo = 3300 kg m−3, ηo = 1019 Pa s

– Exp. 3: ρo = 2950 kg m−3, ηo = 1020 Pa s

– Exp. 4: ρo = 2600 kg m−3, ηo = 1021 Pa s

– Exp. 5: ρo = 3300 kg m−3, ηo = 1021 Pa s

As this is a simplification of a real case application, and there
is no information on the type of sediments, in each experi-
ment the density and viscosity are homogeneous in the sedi-
ment and salt layers.

The results for the five experiment simulations are given
in Fig 10. Depending on the experiment, we choose to stop

Figure 8. Setup of the simulation for the model generated with the
method proposed by Clausolles et al. (2019). The initial model is
sampled on a regularly spaced particle swarm.

Figure 9. Adaptively refined grid for the first time step of the simu-
lation. We can see that the grid is refined to a high level at the inter-
face between the salt and the sediment overburden, where the high-
est velocity gradients appear. On the contrary, it is coarsened where
the velocity has small gradients, particularly in the upper right and
upper left corners.

the restoration process after different durations tend. Indeed,
as the viscosity and density vary from one experiment to the
other, so does the model relaxation time.

Overall, the restoration process removes the diapir and
leaves a salt scar, while the sediment layers remain glob-
ally flat. Since this setup is generated by a method for syn-
deformation diapirs, a full restoration of the model should
have taken into account the deposition of the sediments at
the same time as the formation of the diapir, by removing
the sediment layers one by one. For simplification purposes
and in order to test the process with simple boundary condi-
tions, such sedimentation processes were not implemented.
In this case, the stress state inside the model being incorrect,
the sediment and salt layers could not be restored to a com-
pletely flat state. For example, the shallow sediments should
have been removed early in the restoration process and as
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Figure 10. Results of the five restoration experiments done on the
salt model setup of Fig. 8, after different time spans tend.

such were deformed beyond their sedimentation point. While
the results are still quite convincing despite the high level of
simplification, this shows that the salt diapir is a result of
upbuilding and not downbuilding. The analysis of the five
experiments shows that in this setup, the viscosity contrast
between salt and sediment and the density of the sediments
do not have a big impact on the shape of the model after the
restoration process. Only the shape of the sediments at the
base of the diapir is slightly different from one experiment
to the other. Experiments 4 and 5 have serrated shapes that
are not geologically probable, probably because of the 4 or-
ders of magnitude of viscosity contrast between the salt and
sediments. The main difference between the experiments is
the relaxation time for each restoration process. If the dura-
tion of the formation of the diapir was known, it could then
be used to reduce the uncertainty on which density and vis-
cosity to use. It also seems that the curvature of restored lay-
ers changes. This could provide another criterion to further
evaluate the results (but would call for variable sediment vis-
cosity testing). However, this is a difficult path forward, be-
cause sediment deposition clearly plays a major role during
salt displacement (e.g., Giles and Lawton, 1999; Hudec and
Jackson, 2007; Rowan et al., 2012). Moreover, recovering
the full deformation path during sediment deposition would

also call for further studies, possibly on laboratory analogue
models (Weijermars et al., 1993; Dooley et al., 2005).

4.3 Simplified graben model

The last model is a simplification of the creation of a graben
in sediments submitted to lateral flow in an extensive context,
as shown in Fig. 11.

It consists of a layered overburden underlain by salt and
cut by two 60◦ faults. As the intent of the paper is to focus on
the restoration of structural models, we do not consider the
formation of the faults with plasticity but rather start with two
faults already present. The domain size is 6 km horizontally
and 2 km vertically, and the right boundary is subjected to lat-
eral flow. This is modeled by a Dirichlet condition applying
a specific value for the velocity in the horizontal direction
(the vertical value for the velocity is still free, as free-slip
boundary conditions). The left and bottom boundaries are set
to free slip, and the top boundary is considered a free surface.
For the model to evolve without interference with the lateral
flow on the right boundary, the faults are positioned at one-
third of the model width from the left. In order to capture the
geometry of the faults, which is essential in this setup, the
adaptive refinement of the grid is an important feature of the
proposed implementation. As such, the grid is refined specif-
ically near the faults, with 60× 20 initial elements and four
levels of adaptive refinement (up to 6.25 m× 6.25 m cells
near the faults), as shown in Fig. 12 for the first time step.

The faults are considered as shear bands with a lower vis-
cosity and density than the rest of the overburden. The over-
burden is layered with two types of rocks with slightly dif-
ferent density and viscosity. Material properties inside the
model are as follows:

– Overburden type 1 layer: ηo1 = 1.5× 1019 Pa s, ρo1 =

2550 kg m−3.

– Overburden type 2 layer: ηo2 = 5.0× 1019 Pa s, ρo2 =

2600 kg m−3.

– Salt layer: ηs = 1.0× 1017 Pa s, ρs = 2160 kg m−3.

– Faults: ηf = 1.0× 1016 Pa s, ρf = 2200 kg m−3.

Like in the diapiric growth model, we first do a forward sim-
ulation and then apply the restoration scheme on the model
obtained. The lateral flow is set to 10 mm yr−1 outwards and
the model is observed for 35 000 years, both in forward and
backward simulations, to have sufficient deformation. The
particle swarm has a heterogeneous particle density, with a
regular sampling in most of the model and 8 times more par-
ticles near the faults and around the interface between the
salt and the overburden. The average distance between two
particles in the densified zone is 2.5 m. The total number of
particles at the first step of the simulation is about 330 000.
This number decreases during the forward simulation, as the
particles are removed once they flow outside of the model.
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Figure 11. Setup of the simulation for the simplified graben model. The initial particle swarm is densified near the faults and at the interface
between salt and sediment.

Figure 12. Adaptively refined grid for the first time step of the sim-
ulation. We can see that the grid is refined to a high level near the
faults, where the velocity gradient is high. On the contrary, it is
coarsened where the velocity has small gradients, particularly in the
lower right and left corners.

Figure 13. Results of the simulations for the simplified graben
model at (a) the end of the forward simulation and (b) the end of
the restoration simulation.

During the restoration simulation, new particles are added
near the right boundary when the particle swarm flows in-
ward due to the negative time stepping. Their material prop-
erties are determined from the particles moving inwards and

Table 1. Mean and maximum errors for the restoration of each in-
terface.

Mean error (m) Max error (m)

Interface 0 1.5 16.5
Interface 1 1.7 7.2
Interface 2 1.9 10.9
Interface 3 2.1 9.8
Interface 4 2.3 9.1
Interface 5 2.4 8.6
Interface 6 2.6 8.5
Interface 7 2.7 7.1
Top surface 2.9 31.4

their motion. The model at the end of the forward and back-
ward simulations is shown in Fig. 13.

Figure 14 shows the difference between the position of the
interfaces before the forward simulation and at the end of
the backward simulation. The numbering of the interfaces
follows their position in the model, with the interface 0 being
the lowest salt–sediment interface.

The mean and maximum errors for each interface are given
in Table 1.

Overall, the results for the restoration simulation are quite
good, with mean errors around 1 % of the forward deforma-
tion for the layer interfaces. Figure 14 shows that the graben
part of the model (between the two faults) is approximatively
7 m lower than it should be at the end of the restoration. This
is due to the model topography being slightly tilted from the
right-hand side of the model towards the faults at the end
of the restoration. The largest errors are located on the two
faults. In particular, the free surface behaves well during the
simulation, except for some small instabilities occurring on
the top of the faults, where high viscosity contrasts occur.
The error resulting from these instabilities, however, is quite
small compared to the amount of deformation in the model
(around 200 m of slip on the faults).
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Figure 14. Error on the restoration of the interfaces in the model. The lower the number of the interface, the lower the interface it corresponds
to. For example, interface 0 is the interface between the salt and the lowest sediment layer.

5 Discussion

While the results of the three test models in the previous sec-
tion are promising, their purpose is not to correctly compute
the deformation of the subsurface in a forward mechanical
simulation but rather to assess the validity of the proposed
restoration scheme and the underlying concepts in various
geological cases.

In this paper, we have made some links between two dif-
ferent types of structural restoration approaches. On one side,
geomechanical restoration methods have been relying on
considering rocks as elastic material and flattening the top
surface of the horizons (e.g., Guzofski et al., 2009; Lovely
et al., 2012; Chauvin et al., 2018) and may lead to unphysi-
cal strains. On the other side, dynamic restoration methods
have considered viscous fluid rheologies for the rock lay-
ers, the deformation being driven by density contrasts and
boundary conditions, and applied with a backward advection
scheme (e.g., Kaus and Podladchikov, 2001; Ismail-Zadeh
et al., 2001; Lechmann et al., 2010). As such, restoration us-
ing Stokes equations is expected to provide more physical
strains, given that the boundary conditions and the rheology
inside the model are close enough to reality. This method is
not new (e.g., Kaus and Podladchikov, 2001; Ismail-Zadeh
et al., 2001) but has been restricted to the restoration of salt
structures and small-scale folds, in environments where the
topography remains flat. Here, we are interested in apply-
ing it to environments with faults and large displacements
of the topography. In this scope, we introduce a numerical
scheme combining features of the ALE and PIC approaches
and using adaptive grid refinement. We show that it is accu-
rate enough to produce consistent results on the restoration
of models with a viscous backward advection approach.

When applying a reverse-time Stokes restoration scheme,
two important questions appear: what are the material prop-
erties of the geological objects inside the model, and what
type and intensity of boundary conditions should be applied
to these geological objects? Regarding the material proper-
ties, the diapir test model of Sect. 4.2 gave a first idea of
how to choose them, and previous articles have considered
the question on specific setups (e.g., Lechmann et al., 2010).
The density of the subsurface depends on the type of rocks
that are present, and its estimation is relatively easy. The
viscosity, however, is not trivial, as laboratory observation
timescales are too short to reflect the slow movement oc-
curring at geological timescales. The values we took are in-
spired from numerical simulations, but they have a large un-
certainty (at least 1 order of magnitude) (e.g., Massimi et al.,
2006; Kronbichler et al., 2012), as they are calibrated us-
ing postglacial rebound data, for example. Working on ana-
logue sandbox experiments and further experiments on mod-
els with more geological knowledge should prove to be use-
ful in estimating a proper viscosity for the restoration of dif-
ferent rock rheologies. In particular, the duration over which
the geologic phenomena occur could guide the choice of vis-
cosity values in subsurface models.

Most geomechanical restoration schemes consider basin
rocks to have an elastic behavior, whereas the rheology used
herein does not display Poisson effects. Incorporating elas-
ticity in viscous flow has been done by using an effective
viscosity to account for the elastic part of the material while
minimizing the modifications to the viscous flow code (e.g.,
Moresi et al., 2003), for example. The problem is that these
schemes, like every implementation of elasticity, use values
of the stress and strain at previous time steps. The elastic
behavior then depends completely on the stress state at the
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beginning of the simulation, which is not available in restora-
tion schemes. However, specific material properties could
still be taken into account in other ways in Stokes-based
restoration. For example, the incompressibility constraint,
which implies a Poisson ratio of 0.5, can be relaxed, which
could be used to account for lesser values of the Poisson ra-
tio. Regarding the rheology of faults, we cannot directly use
their usual forward modeling implementation considering the
rock as having a plastic behavior. Indeed, the previous stress
history is needed to simulate such behavior, and it is not
available in restoration, which studies backward movement.
Here, we used a specific viscosity for the implementation of
faults in restoration, which holds two advantages. First, since
all the faults are already identified at the beginning of the
restoration process, we do not need to allow the creation of
faults in backward simulations. Second, using an effective
viscosity for the faults allows for a more realistic simulation
of shear band and damage zone behavior, compared to previ-
ous geomechanical restoration schemes that consider faults
as free-slip surfaces.

A significant issue with the boundary conditions in geome-
chanical simulations is the difficulty to estimate the paleo-
forces at play several kilometers underground. We therefore
need to choose Dirichlet and Neumann boundary conditions
that best fit the tectonic knowledge about the region of study.
For example, deformation is generally strongly influenced
by the horizontal stress state, implying compressive or ex-
tensive structures and the need for corresponding conditions
on the side boundaries (Chauvin et al., 2018). Another ex-
ample is the top surface of the models, which can be con-
sidered as being on ground level and is therefore in contact
with air. This interface is complicated to handle due to the
several orders of magnitude in the material property contrast
(very high density and viscosity for rocks versus almost null
density and viscosity for the air). In geomechanical simu-
lations, several approaches exist to model its behavior. The
simplest topographic surface solution is to set a free-slip con-
dition which removes the normal component of the velocity
at the boundary. This simplification is mostly used in cases
where the movement of the top surface is negligible com-
pared to the rest of the model. In order to do more realistic
simulations, two main approaches are available: the imple-
mentation of a free surface, or the “sticky air” method (e.g.,
Crameri et al., 2012, for a benchmark and a comparison of
the two methods). The sticky air method considers a layer
of material with a low viscosity and zero density, the diffi-
culty being that this viscosity needs to be sufficiently low
to be negligible compared to the rest of the model but high
enough for the solvers to converge. The free surface method
considers that no force is applied on the surface of the com-
putational mesh. While this is theoretically simple, it is nu-
merically complicated to implement, as it also means that the
computational mesh needs to honor the movement of the free
surface. In FAIStokes, the free surface method is applied by
tracking the movement of the top surface and allowing the

grid nodes to move vertically (Sect. 3.7). In order to stabi-
lize its movement and avoid some of the instabilities that can
appear, the free surface stabilization algorithm presented in
Kaus et al. (2010) has been implemented. The free surface
implementation has been benchmarked and performs well
in forward simulations (Appendices D and E). In restoration
simulations, the results are more mitigated. Indeed, in models
where the only drive is a density contrast (such as the models
shown in Sect. 4.1 and 4.2), the free surface shows insta-
bilities. This appears particularly when working with mod-
els that have a near-horizontal or initially horizontal top sur-
face. In those setups, any small computational error in the
computation of the vertical part of the velocity can lead to
instabilities that increase exponentially in reverse time. Sev-
eral approaches involving specific tractions on the top surface
have been tested to remove or correct this instability, but we
have not yet devised any efficient means to prevent it in such
setups. In particular, the FSSA delays this phenomenon but
does not suppress it altogether. In models where other drives
for the deformation occur, such as lateral flow, the results
are more promising, as shown in Sect. 4.3. Indeed, in such
setups, the boundary conditions introduce larger strains that
dampen the instabilities. For test and comparison purposes,
the sticky air method has also been implemented and cou-
pled with the FSSA. It uses the moving grid feature of the
free surface so that the cells containing air and rock layers
are distinct, and it performs similarly to the free surface on
the benchmarks presented in Appendices D and E. In restora-
tion simulations, it can delay the instabilities that appear in
models driven exclusively by gravity but does not remove
them.

6 Conclusions

We have presented a scheme that exploits the reversibility
of Stokes equations to perform structural restoration on dif-
ferent geological setups. While the principle of the method
is not new, we have shown that it may be applied on mod-
els with faults and a non-flat topography. As such, it may
improve some of the issues with the current geomechani-
cal restoration implementations that are used for such envi-
ronments. The FAIStokes code was developed to apply this
restoration scheme and allowed various tests on its imple-
mentation. Among those tests, we presented three simple
models and the results we obtained with them. Those results
are encouraging, although the numerical method has diffi-
culties dealing with the restoration of salt in the presence of
welds. The free surface is well managed in our experiment
including lateral flow but also leads to instabilities in the
restoration process when the flow inside the models is driven
exclusively by density. Overall, we still show that combining
adaptive grid refinement with the PIC and ALE approaches
gives enough accuracy to produce consistent restoration re-
sults on different model setups.
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We intend to follow this work by applying the method to
more complex models, starting with the restoration of sand-
box experiments (e.g., Colletta et al., 1991). This will allow
us to do more precise tests on the value to choose for the
viscosity and density of geological layers and to upgrade the
specific implementation of faults.
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Appendix A: Taking into account small scales inside a
model: the Rayleigh–Taylor instability benchmark

This benchmark is based on the analytical solution of a
Rayleigh–Taylor instability by Ramberg (1968) and was
carried out in various numerical studies (Deubelbeiss and
Kaus, 2008; Thieulot, 2011). It consists of a two-layer sys-
tem driven by gravity, the density of the bottom layer be-
ing smaller. The bottom and top boundaries have a no-slip
boundary condition, while the sides have a free-slip bound-
ary condition.

The first layer, made of fluid 1 with properties (ρ1,η1),
overlays the second layer, made of fluid 2 (ρ2,η2). An ini-
tial sinusoidal disturbance of the interface between the two
layers is introduced, characterized by an amplitude 1 and a
wavelength λ, as shown in Fig. A1.

Figure A1. Rayleigh–Taylor instability benchmark initial setup.

Under these conditions, the velocity of the diapiric growth
v is given by Ramberg (1968):

v

1
=−K

ρ1− ρ2

2η2
h2g, (A1)

with K , the dimensionless growth factor, given by
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−d12

c11j22− d12i21
, (A2)

which involves the following factors:
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Figure A2. Initial setup of the Rayleigh–Taylor instability bench-
mark with three different wavelengths: (a) λ= Lx/2, (b) λ= Lx/4
and (c) λ= Lx/8.

Figure A3. Comparison between numerical and analytical results
for the Rayleigh–Taylor instability benchmark. The numerical re-
sults are computed for a 80×80 element grid and for the same grid
with three levels of adaptive refinement.
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(A3)

We set ρ1 = 3300 kg m−3, ρ2 = 3000 kg m−3,
η1 = 1021 Pa s, Lx = h1+h2 = 512 km, and 1= 3 km.
We make η2 vary between 1.25× 1020 and 2.5× 1023 Pa s,
while λ takes three values: Lx/2,Lx/4 and Lx/8 (Fig. A2).

A first run is done, where the FEM grid is fixed to 80×80
elements, each containing 102 regularly spaced particles. In
order to test the influence of adaptive refinement, we conduct
a second run with a grid starting at 80× 80 elements and
three levels of adaptive refinement. We also refine the parti-
cle swarm adaptively: each initial cell is first filled with 52

regularly spaced particles, and then the swarm is densified to
64 times more particles around the interface between the two
fluids. The results are shown along with the analytical ones
in Fig. A3.

Overall, results show good agreement between the com-
puted solution and the reference, especially in the case of
adaptive refinement, where the relative error falls beneath
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2.5% for all the curves. Since φ1 is inversely proportional
to the wavelength λ, it means that the code can account well
for small disturbances, especially with the use of adaptive re-
finement on the parts with higher velocity and high contrasts
in viscosity.

This benchmark ensures the validity of the code in the
presence of large viscosity contrasts, even if those contrasts
are located on deformations that are small compared to the
size of the model. It also validates the averaging of the den-
sity and viscosity from the particles to the finite element grid.

Appendix B: Taking into account viscosity changes: the
falling block benchmark

This benchmark appears in Gerya (2019) and is presented in
Thieulot (2011). It consists in modeling the fall of a block
of fluid of properties (ρ1,η1) inside another fluid of prop-
erties (ρ2,η2), with ρ1 > ρ2. The domain is a square of
size Lx = Ly = 500 km, and the block (a square in 2-D) of
size 100× 100 km is initially centered at point (x = 250 km,
y = 400 km), as shown in Fig. B1.

Figure B1. Falling block benchmark initial setup.

The simulation is carried out on a 50× 50 element grid
that is adaptively refined three times. Like in the previous
benchmark, the particle swarm is created by first introducing
52 particles in each initial element and then densifying it up
to 64 times more particles around the zone of interest (i.e., the
falling block). Free-slip boundary conditions are imposed on
all sides of the domain. We carry out five experiments:

Figure B2. Velocity measurements as a function of the viscosity
contrast between surrounding medium and block for the experi-
ments of the falling block benchmark.

– Exp. 1: η2 = 1020 Pa s, ρ1 = 3220 kg m−3;

– Exp. 2: η2 = 1021 Pa s, ρ1 = 3300 kg m−3;

– Exp. 3: η2 = 1022 Pa s, ρ1 = 6600 kg m−3;

– Exp. 4: η2 = 1023 Pa s, ρ1 = 3300 kg m−3;

– Exp. 5: η2 = 1024 Pa s, ρ1 = 9900 kg m−3.

In all the experiments, the density of the surrounding fluid
is ρ2 = 3200 kg m−3 and the viscosity of the block is varied
between 1019 and 5× 1027 Pa s. The velocity of the falling
block is measured at its center at t = 0 for all experiments.
Following physical intuition, one expects the velocity of the
block to act as follows: (1) decrease when the viscosity of
the surrounding fluid η2 increases (i.e., when going from
Exp. 1 to Exp. 5) and (2) increase with the density con-
trast (ρ1− ρ2) in each experiment. To check this behavior,
we measure vη2/(ρ1−ρ2) as a function of the viscosity con-
trast log10(η2/η1). The results of the benchmark are plotted
in Fig. B2.

We can see that the experimental points line up on a single
curve, which shows that FAIStokes can deal with gravity-
driven simulations where 0.6%≤ (ρ1−ρ2)/ρ2 ≤ 210 %, and
the viscosity contrasts are as strong as 10−6

≤ η2/η1 ≤ 105

in a consistent manner.

https://doi.org/10.5194/se-11-1909-2020 Solid Earth, 11, 1909–1930, 2020



1924 M. Schuh-Senlis et al.: Creeping flow for geomechanical restoration

Appendix C: Advecting particles: the rotation
benchmark

The last benchmark aims at assessing the error in the advec-
tion part only.

Figure C1. Setup for the rotation benchmark, assessing errors on
the advection of particles.

The setup of the model is a square of size 10× 10 km,
where we study the advection of a single particle, starting
at coordinates (8, 5 km) and doing a 2π rotation around the
center point (5, 5 km) (Fig. C1). A velocity field is prescribed
in the domain and discretized on the grid: on each grid point,
the velocity has a constant norm and is always normal to the
line connecting the point to the model center:

v = v0 · eθ =

(
v0 · sinθ
v0 · cosθ

)
. (C1)

The grid is not adaptively refined here and is composed of
16×16 elements. In order to have scales that are geologically
relevant, we choose v0 = 3 cm yr−1 and vary the time step1t
between 500 and 2000 years (in this setup, the CFL numbers
chosen for our simulations would give a time step between
175 years for the lowest CFL number and 1753 years for
the highest CFL number). The second-order Runge–Kutta
scheme presented in Sect. 3.6 is used at all time steps. We
then evaluate the distance1r = |r(θ = 0)−r(θ = 2π)|. This
distance gives us a measure of the error made in the com-
putation of the particle advection and allows us to compare
different advection schemes.

Figure C2 shows the results obtained for a 2π rotation of
the particle with different interpolation schemes. We can see
that reducing the time step linearly reduces the error on the
radius r(θ). In this setup, the type of interpolation mostly
impacts the stability of the interpolation and not the accuracy.

Figure C2. Results for the rotation benchmark obtained with differ-
ent time steps and advection schemes.

Figure D1. Model setup for the 2-D free surface benchmark.

Appendix D: Taking into account the top surface in
contact with air: the free surface benchmark

This benchmark is presented in Crameri et al. (2012), where
it is applied on several numerical codes to compare their im-
plementation of the free surface and evaluate the use of the
“sticky air” method. It will be used here to evaluate the qual-
ity of our approximation and interpolation of the free surface.
It consists on a cosine-shaped layer of homogeneous litho-
sphere overlaying a homogeneous layer of mantle. For this
type of model, Ramberg (1981) gives an analytical solution
for the maximal height of the topography at each time t :

hanalytical(t)= hinitial exp(−γ t), (D1)

where γ is the relaxation rate and hinitial is the value of h
at the beginning of the simulation. The model setup for the
benchmark is shown in Fig. D1.

The bounding box of the model spans 2800× 707 km. The
underlaying mantle layer is 600 km thick, while the litho-
sphere has a thickness between 93 and 107 km. The litho-
sphere’s top surface is cosine-shaped with an amplitude of
7 km and a wavelength of the size of the domain. The mantle
and lithosphere have a density of ρM = ρL = 3300 kg m−3

and a viscosity of ηM = 1021 Pa s and ηL = 1023 Pa s, respec-
tively. We set free-slip boundary conditions for the sides and
a no-slip condition on the bottom of the model. The initial
grid is made of 16× 64 elements and is adaptively refined
three times. The particle swarm contains 484 160 particles;
it is constructed by first sampling regularly the domain and
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Figure D2. Comparison between the analytical and numerical re-
sults of the maximum topography over time for the free surface
benchmark.

then adaptively densifying the swarm to 64 times more par-
ticles in the lithosphere and upper part of the mantle. In this
setup, Crameri et al. (2012) gives a characteristic relaxation
rate (γ = 0.2139×10−11 s−1) and a characteristic relaxation
time (trelax = 14.825× 103 years). The results obtained with
FAIStokes are given in Fig. D2.

The numerical results are close to the analytical ones, with
only a 1.3 % error at the characteristic relaxation time. This
shows the capacity of FAIStokes to compute the solution
of Stokes equations with a free surface for small vertical
deformation and to advect the particles inside the model.
It also gives another evaluation of the handling of gravity-
driven flow, this time with the addition of evolution inside
the model.

Appendix E: Upgrading the free surface movement: the
sloshing benchmark

This benchmark is presented in Kaus et al. (2010), where it is
used to assess the results of the FSSA presented in the same
article. It is used here to verify the implementation of the
same algorithm in our code, as well as check the behavior
of the free surface in another setup. The benchmark model is
another Rayleigh–Taylor instability with a dense, more vis-
cous layer sinking into a less dense fluid (Fig. E1).

The model span is 500 km× 500 km; the side boundaries
have a free-slip condition, the lower boundary has a no-slip
condition, and the top boundary is a free surface. The initial
perturbation between the two layers is sinusoidal with an am-
plitude of 5 km. The computation is carried out on a grid with
25× 25 initial elements and three adaptive refinement steps.
The particle swarm counts 25 000 particles; it is constructed
by first sampling regularly the model and then densifying it
to 64 times more particles around the interface. The speci-
ficity of this benchmark is the apparition of a sloshing insta-
bility (also referred to as the “drunken sailor” instability) if
the simulation time step is too large. Specifically here, with-

Figure E1. Sloshing free surface benchmark initial setup.

Figure E2. Simulation evolution for 1t = 5000 years, showing the
sloshing instability: the velocity pattern changes from one time step
to the other, with the velocity norm increasing each time.

out the FSSA, the forward simulation is stable with a time
step 1t of 2500 years, but with 1t = 5000 years, an insta-
bility emerges as the velocity pattern changes direction from
one time step to the other (Fig E2).

In order to follow the evolution of the free surface, we keep
trace of the altitude of the most top-left point over time. Re-
sults of a 0.5 Myr simulation, for different time steps1t , with
and without the FSSA, are shown in Fig. E3.

We can see that the implementation of the FSSA stabilizes
the sloshing behavior of the free surface that appeared with a
time step 1t of 5000 years and keeps the free surface stable
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Figure E3. Altitude of the most top-left point of the grid over time,
for the sloshing free surface benchmark, for different time steps
with and without the FSSA.

even with higher time steps. Moreover, the results show great
similarities to those that can be found in Kaus et al. (2010)
and Thieulot (2019). This validates the implementation of
the free surface stabilization algorithm. It also gives another
evaluation of the handling of gravity-driven flow with a free
surface, this time with the additional resolution of an insta-
bility that can occur with free surfaces.
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