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RÉSUMÉ

Dans cet article, nous présentons un nouveau descrip-
teur pour la classification automatique du style musical.
Notre méthode consiste à définir une trajectoire harmo-
nique dans un espace géométrique, le Tonnetz, puis à la
résumer à ses valeurs de centralité, qui constituent les des-
cripteurs. Ceux-ci, associés à des descripteurs classiques,
sont utilisés comme caractéristiques pour la classification.
Les résultats montrent des scores F1 supérieurs à 0,8 avec
une méthode classique de forêts aléatoires pour 8 classes
(une par compositeur), et supérieurs à 0,9 pour une classi-
fication en 4 classes de style ou période de composition.

1. INTRODUCTION

Genre classification of music is an important branch
in Music Information Research (MIR). Usually, symbo-
lic music classification, as opposed to audio-based ap-
proaches, mainly relies on general descriptors for MIDI
specifications and general statistics, such as the lowest and
highest notes, maximum repetition of chords or notes, etc.,
rather than harmonic characteristics of symbolic scores.
Stylistic classification, in particular, is mainly developed
on monophonic streams [10]. In this article, we propose a
new approach for stylistic music classification, driven by
chord material.

The main issues of polyphonic music classification
are the representation and the reduction of the data. For
instance, some approaches choose to convert polyphonic
extracts to multiple monophonic streams [18] or choose
a restricted alphabet to only represent certain types of
chords [7]. While automatic harmonic analysis seems
promising, with methods such as jSymbolic [25] and Sty-
lerank [13], there are some imposed restrictions such as
the filtration of chords based on duration, persistence,
type, size and rhythmic positioning.

In this paper, we present a novel approach without vo-
cabulary restrictions on the chord material but rather an
evaluation of the total harmonic content. Following Louis

Bigo’s approach on trajectories in generic simplicial com-
plexes [4], we also make use of the Tonnetz in order to
represent the musical data. A compliance function selects
the appropriate Tonnetz for the considered chord material.
In this Tonnetz we build a harmonic trajectory of the MIDI
piece based on some core principles and different case by
case strategies. This trajectory is then reduced to a limi-
ted number of values which are used for the classification
process.

For classification, we suggest basic supervised me-
thods such as Random Forest and k-Nearest Neighbors
(used here in a supervised way). Furthermore, we present
experiments for binary and multi-class versions of clas-
sification. The binary classification utilizes only the tra-
jectory descriptor values, whereas the multi-class version
makes use of other simple descriptors as well, for optimal
performance.

2. TRAJECTORY AND DERIVED DESCRIPTORS

The core of the proposed approach is described in this
section. Assuming that harmony is one of the most im-
portant parameters in determining the style of a musical
piece, the main idea is to transform a series of chords in a
spatial trajectory in an appropriate space, and then derive
descriptors from this trajectory.

From a midi file, chords are extracted using music21
tools [12], and in particular the function chordify.

The next step is to define how to build a trajectory. Ac-
cording to Bigo, a trajectory is defined in a pitch space
called Tonnetz [4]. The Tonnetz is defined as a spatial
organization of musical pitches, along three axes, where
every axis is based on a given interval. A Tonnetz will then
simply be denoted by these three intervals, e.g., T (3, 4, 5)
meaning that the axes represent minor thirds, major thirds
and perfect fourths (and their complementary intervals).

In this article, we use the term Tonnetz in the sense of a
graph which is not bound (i.e. an infinite grid). Let v be a
vertex in this graph. The neighbors of v are defined by the
intervalic relations of the selected Tonnetz. Every vertex
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has 6 neighbors defined by the 3 Tonnetz intervals and
their complement modulo 12. In our approach, we use the
well-tempered 12-semitone system so that we can handle
chords and harmony. Note that one could use a different
tempered system with smaller or larger intervals.

We do not use all 12-note Tonnetze but only the five
which have the topological structure of a torus, as origi-
nally characterized in [9] and studied in details in [21].
This means that we exclude the non-connected Tonnetze
on which finding a compact and connected trajectory
would often be impossible.

Let us provide some examples. Considering the Ton-
netz T (3, 4, 5), a spatial representation can be defined on
a square grid, and T would be represented by associating
the interval 4 (i.e. a major third) to the x-axis, and the
interval 3 to the y-axis. The interval 5 would then be re-
presented on the diagonal. A 4 × 3 size grid is then per-
iodically repeated. In a similar way T (1, 3, 8) will be re-
presented with interval 8 on the x-axis and 3 on the y-
axis. These examples and others are displayed in figure 1,
where a C major chord is represented on four Tonnetze.

Figure 1. The representation of a C major chord, i.e. the
pitch class set Cmaj = {0, 4, 7}, in four different Ton-
netze. The notes of the chord are illustrated in blue. The
intermediate edges and notes (connecting the chord repre-
sentation) are denoted in red. The note C = 0 is always
placed at point (0, 0).

2.1. Trajectory

The trajectory is defined as a path X in the Tonnetz T ,
i.e. an ordered list of positions in the space T .

Let us investigate some basic scenarios for trajectory
construction. Placing the first note in the Tonnetz has no
bearing on the descriptors we ultimately compute, so we
can simply pick an arbitrary position. Now we consider
the case where we have to place two notes : one of them is
placed as in the previous case, and the second one is pla-
ced according to a criterion depending on a distance mea-
sure. To this end, we define a function dist : Z12×Z12 →
N, which assigns to the pitch class representation of notes,

x and y, their distance according to a given Tonnetz as :

dist(x, y) =


0 if x = y

1 if (x− y) ∈ T ∨ (y − x) ∈ T
2 otherwise

(1)

Note that dist(x, y) = dist(y, x). By abuse of notation,
from now on when referring to notes or chords we auto-
matically consider the numerical representations of their
pitch class (PC). They are defined with integer notation,
where C = 0, C] = 1, D = 2, etc. Accordingly, chords
are PC sets.

Two notes x, y are neighbors if dist(x, y) = 1. Thus,
in the case where two notes are neighbors we find which
kind of interval they form and to which Tonnetz axis this
interval corresponds. In the case where dist(x, y) = 2, we
define a positioning according to a shared neighbor. For
example, in Tonnetz T (1, 2, 9), the placement of noteE in
relation to note C is computed using the shared neighbor
D : D is first placed in relation to C, then E is placed
in relation to D. This example is illustrated in figure 1
(horizontal axis). The intermediate neighbors are denoted
in red.

Given a note x, a position p and a fixed Tonnetz T , let
π(x, p) be a positioning function for T which, from the
reference position p, places the note x as described above.

We now move on to chords, which we will demons-
trate on the simple case of a triad but generalize as well
to chords of any size. In figure 1 a C major chord is re-
presented in 4 different Tonnetze, T (1, 3, 8), T (1, 2, 9),
T (3, 4, 5) and T (2, 3, 7). From this representation we can
see that in T (3, 4, 5) the chord forms a connected graph
while in the other cases the graph is disconnected. In all
representations, we place the note C = 0 at point (0, 0).
From there, we place the other notes based on the Ton-
netz intervals and periodicity. For example, we first need
to find whether E and G are neighbors of C in Tonnetz T .
For this we consider the following function, which gives
the neighbors of note y in the chord X according to Ton-
netz T :

neigh(y,X, T ) = {x ∈ X | dist(y, x) = 1 in T} (2)

In the C major scenario, E and G are neighbors of C in
Tonnetz T (3, 4, 5) so we can easily find their place in T .
We define a function which takes a chordX and a position
p in a fixed space T and assigns positions to all notes of
X as follows :

f(X, p) = {π(x, p) | x ∈ X} (3)

If a chord does not strictly consist of neighboring notes,
we first place notes which are neighbors of y, then we at-
tempt to place the remaining notes according to the newly
positioned notes, repeating until no more notes can be pla-
ced. If some notes remain to be placed, then one of the re-
maining notes is placed in relation to an arbitrary already
placed note, and the process is repeated. This process is
summarized in algorithm 1.
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Algorithm 1: Placement of the first chord
Input: (X,T )
Result: placed
Let x ∈ X , px arbitrary;
placed = {(x, px)} ;
to_place = X \ {x} ;
while to_place 6= ∅ do

while ∃(x, px) ∈ placed, ∃y ∈ to_place such
that y ∈ neigh(x,to_place, T ) do

placed = placed ∪{(y, π(y, px))} ;
to_place = to_place \{y} ;

end
let y ∈ to_place, (x, px) ∈ placed :
placed = placed ∪{(y, π(y, px))} ;
to_place = to_place \{y} ;

end

This process analyzes in depth the method for positio-
ning chords with a starting reference point. Given a chord
X and a Tonnetz T we now know how to place all notes
of X in T . The natural question is how to generalize the
previous construction to the case of a sequence of chords.
Let us consider the simplest case with two chords X,Y .
We know the positions for all elements of X and we want
to find a reference note and point to find the positions of
the elements of Y . We need to find the best candidates
y0 ∈ Y and x0 ∈ X to find a position for y0. We remind
that the position px0

of x0 is known. We set :

y0 = argmin
y∈Y

∑
x∈X

dist(x, y) (4)

i.e. the note achieving the minimum of
∑

x∈X dist(x, y),
and similarly :

x0 = argmin
x∈X

∑
y∈Y

dist(x, y) (5)

These are the best candidates of the two chords, and a po-
sition for y0 is then obtained by the function π(y0, px0

).
The rest of the chord is then placed according to the main
loop of algorithm 1. We note u(Ci, Cj , Pi) the function
that assigns positions to the chord Cj based on chord Ci

and its positions Pi.
Although this method ensures termination, it is not

fully satisfying as it does not guarantee the most compact
representation for a larger sequence of chords.

Let [C1, ..., Cn−1, Cn, Cn+1, ..., Ck] be a list of chords.
Suppose that for the chords C1, ..., Cn−1 the correspon-
ding positions P1, ..., Pn−1 are known and we search
a position for the chord Cn. We propose a method for
considering two different positions for chord Cn and a
verification system for checking the compactness of the
solution. Let us define

P ′n = u(Cn−1, Cn, Pn−1) (6)

P#
n+1 = u(Cn−1, Cn+1, Pn−1) (7)

P ′′n = u(Cn+1, Cn, P
#
n+1) (8)

Using the function u we obtain two sets of positions for
the chord Cn, Pn and P ′n. Moreover, we consider conse-
cutive sequences of three chords and, thus, we obtain two
sets of positions :

S′n = Pn−2 ∪ Pn−1 ∪ P ′n (9)
S′′n = Pn−2 ∪ Pn−1 ∪ P ′′n (10)

We want to check the compactness of S′n, S
′′
n. There-

fore, we build the convex hull (CH) of S′, S′′ and compare
their diameters (i.e. the maximum Euclidean distance bet-
ween positions of the convex hull). Thus, we can obtain
the final coordinates for the chord Cn by :

Pn =

{
P ′n if Diam(CH (S′)) ≤ Diam(CH (S′′))

P ′′n otherwise
(11)

This process considers the sequence of three consecu-
tive chords and finds the most compact representation for
them.

An example is illustrated in figure 2, with different tra-
jectories for a chord sequence, and in particular, the se-
quence I–IV–V–I in C major, according to the method de-
fined above. The corresponding chords are :

[{0, 4, 7}, {5, 9, 0}, {7, 11, 2}, {0, 4, 7}] (12)

Let us proceed to a step by step analysis of the positio-
ning of the above sequence in T (3, 4, 5). For the illustra-
tion we refer to figure 2.

The first chord, C major, is positioned by giving the
position (0,0) to C and then finding its neighbors. As ma-
jor chords are connected in T (3, 4, 5) we obtain the blue
triangle using the method defined in algorithm 1.

The second chord, F major, is positioned accordingly
in relation to C major. The best candidate for connectivity
between the two chords is their common note C. We al-
ready have a position for C and this second chord is major
thus we obtain the shame shape, displayed in red.

Following the definition of trajectory we have two so-
lutions for the chord Gmaj, one in relation with F major
and one in relation with the next chord, i.e. C major. We
obtain two sets of points for G major as suggested in the
definition of trajectory sequences above.

As F major and G major have no common notes, in
contrast to G major and C major, the representation of G
major in relation to C major is more compact. Therefore,
we choose the final C major chord as reference chord for
G major and we obtain its position displayed in green.

Finally we obtain the position for C major in relation
with G major with best candidate their common note G.
Therefore, we obtain the trajectory as shown in figure 2.

To illustrate the proposed method on a longer sequence
of chords, we provide in figure 3 the trajectory of Diverti-
mento in C major (Hob.XVI :3), first movement by Haydn
in Tonnetz T (3, 4, 5).

Now for any chord sequence, we also need a measure to
choose the fittest Tonnetz to represent this sequence. For
a sequence of chords S, some Tonnetze represent S by
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Figure 2. Plot of the sequence I–IV–V–I in C major
for Tonnetze T (3, 4, 5), T (1, 2, 9), T (2, 3, 7), T (1, 4, 7).
Cmaj in blue, Fmaj in red and Gmaj in green.

occupying less space or with less connected components.
For this reason, we define the compliance function in the
following section.

2.2. Compliance Function and Compliance Predicate

The compliance function is a notion defined in [4] in
order to quantify the propensity of a space E to best re-
present the properties of a system S. Subsequently, a very
important step is choosing the correct Tonnetz to represent
a piece of music. This process is guided by the compliance
function, in two steps. The input is a set of chords. The
first step is a variation of the compliance function defined
in [4]. The second step builds the trajectories in all Ton-
netze and then measures the compactness of each of them.

For the first step, we define a compliance predicate in
the Tonnetz for each chord.

Definition 1. For a given Tonnetz T and a chord C, C is
connected if :

∀c, c′ ∈ C,∃c0 . . . ck ∈ C :

c0 = c ∧ ck = c′ ∧ ∀i < k, dist(ci, ci+1) = 1
(13)

This definition is equivalent to saying that there exists
a representation of C in T where C is a connected graph.
The placement algorithm guarantees that such a represen-
tation will be used if it exists.

For the second step, we calculate trajectories in all Ton-
netze. From the set of positions, we find the maximum
width and maximum height of the trajectory in the Ton-
netz grid. Connected component labeling is then perfor-
med by traversing all trajectory points and label the points
based on the relative values of their neighbors. At the end
of the process, the number of labels corresponds to the
number of connected components. We select the trajectory
with the least number of connected components, the least
maximum width and the least maximum height. This is
called the most compact trajectory, meaning that the Ton-
netz graph spans in as little space as possible and with the
least connected components.

The most suitable Tonnetz is chosen based on a com-
bination of all criteria. The values obtained for the maxi-
mum height, the maximum width, and the number of
connected components are normalized (using the maxi-
mum value) to provide a value in [0, 1]. Checking the
compliance predicate results in the sum of a binary va-
lue (1 if satisfied, 0 if not) for every chord divided by
the number of chords. All these values are then summed
together and the sum is normalized.

Our hypothesis for the trajectory descriptor states that
the ability of the various Tonnetze to represent a chord
sequence in a compact way captures some central stylistic
features of a musical piece. Consequently, we choose the
two Tonnetze with the highest final values.

Using the compliance function, we can measure the
compactness of each trajectory and find the most suitable
one. In figure 2, the most suitable trajectory turns out to be
in the Tonnetz T (3, 4, 5), with only one connected com-
ponent, a height of three units, a width of three units and
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Figure 3. A Trajectory example of Divertimento in C ma-
jor, Hob.XVI :3, first movement by J. Haydn in Tonnetz
T (3, 4, 5).

four out of four connected chords. Its coefficient is higher
in relation to all the other Tonnetze for the same sequence.

2.3. Reduction to a Weighted Graph and Centrality

Once the trajectory is built, it is important to perform a
dimensionality reduction. Every trajectory has a different
number of points thus the comparison of trajectories is not
a trivial task. We propose to transform the trajectory into
an abstract non-directed weighted graph and calculate its
centrality values.

The result of our trajectory calculation is a list of
chords and their corresponding coordinates in the Z2

plane, where every coordinate is an integer value. In order
to build the edges we take the Cartesian product of the
points of every chord and filter with the Predicate IsEdge .
More precisely, given a point p1 = (x, y) and a point
p2 = (z, t), where x, y, z, t ∈ Z, we define :

IsEdge((x, y), (z, t)) = (x 6= z ∧ y 6= t)∧
(|x− z| = 1 ∨ |y − t| = 1) (14)

Additionally, during the construction of the trajectory we
store the connecting edges between chords.

To find the total vertices we take the set of all points
of the trajectory. To find the edges we filter the Cartesian
product of all trajectory points with the IsEdge predicate.
If an edge appears more than once we keep its multiplicity
to produce weighted edges.

By those vertices and edges we obtain a weighted
non-directed graph. We simplify by discarding the coordi-
nates. We enumerate the vertices and edges thus obtaining
an abstract graph. On this abstract graph we compute
some characteristic values of the graph. We calculate the
Katz centrality [19], the closeness centrality [16], the har-
monic centrality [5], the global clustering coefficient and
the square clustering coefficient [31], using the NetworkX
software [17].

Global measures such as closeness centrality, harmonic
centrality and the clustering coefficients are normalized
measures which are independent of the graph size [26].
The Katz centrality, which is a generalization of eigenva-
lue centrality and measures the number of neighbors for

Figure 4. Plotting of Kalz, Harmonic and Closeness cen-
tralities for 200 Bach Chorales (blue) and various Beetho-
ven pieces (red).

each node, can be correlated with size, however the num-
ber of neighbors of a node in the Tonnetz is fixed.

Graph centralities are sufficient for representing the
graph obtained from the trajectory and, therefore, we use
them for classification. We illustrate this in figure 4 where
we plot the Katz, harmonic and closeness centrality for
200 Bach chorales, denoted in blue, and various Beetho-
ven pieces, denoted in red (every point represents a piece).
A good separation between the two classes is observed.

3. APPLICATION TO CLASSIFICATION

In this section, the proposed descriptors are computed
from Midi files and used as features in classification me-
thods for musical style.

3.1. Descriptors

For the classification experiments we use the va-
lues from trajectory descriptors described in section 2
and some other general midi descriptors mainly defined
in [28].

For each midi or other file format, we extract the chords
using the music21 function chordify [12]. Two trajectories
are then built, in different Tonnetze defined by the com-
pliance function introduced in section 2.2. We extract the
3 centrality values and 2 clustering coefficients as descri-
bed in section 2.3 and the corresponding Tonnetz for each
trajectory. Thus, the trajectory descriptor is composed of
12 values.

The general descriptors extract other midi information
and general statistics such as the number of instruments in
the piece, the type of instruments, an estimated tempo for
the piece, the time signature and the number of signature
changes. These values are computed using music21 [12]
and pretty_midi [29]. These general descriptors and their
type are shown in table 1
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Descriptor Type
Number of Instruments Integer
Instruments List of strings
Estimated Tempo Integer
Time Signatures List of floats
Number of Signature changes Integer

Table 1. General Midi Descriptors.

3.2. Classifiers

Two very usual classifiers have been used to evaluate
the performance of the descriptors on the data set. The
main classifier that obtained repeatedly the best results is
the Random Forest Classifier [6]. For the Random Forest
Classifier we use a number of 1000 trees. Our experiments
have shown that very similar classification results were
obtained by varying the number of trees around this value.
We also provide results obtained with k-Nearest Neigh-
bors (kNN) [11] with k set to 10 neighbors, for validation
and comparison purposes.

3.3. Music Corpora

Our data set consists of nearly 500 pieces (encoded as
midi files) of various composers and styles, namely Stan-
dard Jazz, Beethoven, Bach, Mozart, Palestrina, Monte-
verdi, Chopin and Schumann (i.e. 8 classes). The data
set is well balanced in groups of 60 pieces per compo-
ser. Most of the data set is retrieved from music21 corpus
[12]. In the corpus we find J.-S. Bach chorales, G. Pales-
trina’s vocal works, C. Monteverdi’s madrigals and some
works by W. A. Mozart, L. van Beethoven and R. Schu-
mann. The rest of the data set was retrieved from several
online resources found in [23, 24].

For our data set we used real compositions with no spe-
cific requirement or constraint on the midi score quality.
In particular, we can use a variety of formats such as xml,
mxl, abc, krn and others. All these formats are kinds of
symbolic music notation. This way, we approach a more
inclusive approach to music score processing and classifi-
cation.

3.4. Pre-processing

For the pre-processing of our data, we encode as num-
bers the data which are not in numeric form, such as the
Tonnetze, the list of instruments, the time signatures, and
the list of tempo. We use the label encoder provided by
scikit-learn [27]. We also use scikit-learn classifiers, Ran-
domForestClassifier and KNeighborsClassifier.

3.5. Experimental Results

The experiments on the data-set with 8 the classes lis-
ted above are performed for (i) binary classification (one
class against another class), and (ii) multi-class classifica-
tion, involving the 8 classes.

The results are evaluated with the F1 score which is
defined as the harmonic mean of the precision and recall :

1st Class 2nd Class Random Forest kNN
Bach Beethoven 1.00 0.97
Bach Chopin 0.97 0.94
Bach Jazz 1.00 0.98
Bach Monteverdi 0.83 0.69
Bach Mozart 1.00 0.98
Bach Palestrina 0.83 0.75
Bach Schumann 0.87 0.92

Table 2. Binary classification : F1-score results with
1000 iterations of Random Forest method, and k-Nearest
Neighbors with k = 10. We compared over 60 Bach
chorales from music21 corpus versus various works from
other composers and style as presented above. We use
70% of the data-set to train the model and the other 30%
for testing. Results are for test only, i.e. unseen examples.

F1 = 2.
precision × recall

precision+ recall
=

2.TP

2.TP + FP + FN
(15)

where TP are the true positives, FP the false positives
and FN the false negatives. The result is a real number in
the interval [0, 1] [27].

3.5.1. Binary Classification

For binary classification we use only the trajectory des-
criptor. In table 2 we present the F1 scores between Bach
chorales and each of the other 7 composers’ styles. The
training set contains 70% of the data, and test is performed
on the remaining 30% (i.e. not seen before). Therefore,
approximately 60 pieces per class were compared. For the
Random Forest classifier we produced 1000 decision trees
and used information gain to measure each split.

These results show that, for binary classification, the
proposed descriptors lead to very good results (F1 > 0.8)
with the Random Forest classifier. The results are slightly
lower with kNN, as expected. These results demonstrate
the relevance of the trajectory descriptors in this simple
situation. We can also remark that the lowest scores are
achieved between classes where harmony characteristics
tend to be most similar. For example, Bach’s chorales tra-
jectories received lower scores when compared with Mon-
teverdi’s madrigals or Palestrina’s vocal works. We attri-
bute this result to the fact that Bach’s chorales have a mo-
dal character similar to the one found in renaissance mu-
sic.

3.5.2. Multi-class Classification

For multi-class classification we compared the trajec-
tory descriptors to the general midi descriptors presented
in table 1. Tests have also been carried out using all des-
criptors together. Similarly, the Random Forest method
was applied with 1000 trees and information gain for the
split, and the k-Nearest Neighbors method with k = 10.
As in the previous experiment, training was done on 70%
of the total samples, and we used the remaining 30% for
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Descriptors kNN (k = 10) Random Forest
Trajectory 0.49 0.49
MIDI info 0.68 0.76
Combination 0.68 0.82

Table 3. Weighted F1-score for multi-class classification,
with 8 balanced classes labeled by composer, for different
descriptors.

testing, arranged in well balanced classes of 60. We ap-
plied classification across the 8 classes presented in Sec-
tion 3.3 and verified the results using k-fold cross valida-
tion with k = 5. Table 3 contains the weighted F1 score
of multi-class classification using different descriptors.

One can notice that the trajectory descriptors alone al-
ready provide interesting results. Then, when combined
with the general descriptors the performance is increased,
reaching more than 0.8 for the Random Forest method,
and is better (by 6 points) than the results obtained with
the general descriptors only.

These results suggest that the combination of des-
criptors using the Random Forest Classifier outperforms
classification in comparison with [8] with an average of
0.75 across 3 classes, [3] with an average of 0.71 across
6 classes, and [32] with an average of 64.2 across 19
classes. In particular, the approach in [32] uses classifica-
tion per composer to which our method outperforms their
method on Mozart, Beethoven and Bach classes. However
these results should be considered cautiously since the da-
tabases used in these approaches differ from the one used
in this paper.

In table 4, the confusion matrix as well as the distri-
bution of the samples among classes are displayed. The
classes are ordered by period (composition dates).
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Palestrina 18 0 0 0 0 0 0 0
Monteverdi 0 17 0 0 0 0 1 0

Bach 1 0 17 0 0 0 1 0
Mozart 0 0 0 10 1 3 5 0

Beethoven 0 0 0 3 20 0 1 0
Schumann 0 0 0 5 1 8 7 0

Chopin 0 0 0 2 1 7 8 0
Jazz 0 0 0 0 0 2 0 16

Table 4. Confusion matrix for multi-class classification
with Random Forest. Example reading : 1 Bach piece has
been misclassified as Palestrina.

High values (i.e. correct recognition) are obtained on
the diagonal. For some styles or composers, almost no er-
ror occurs (e.g. Palestrina, Monteverdi, Bach). Moreover
most errors (non-zero off-diagonal values) appear close
to the diagonal, i.e. between composers of the same per-
iod (or close to). From the confusion matrix, we can de-
rive that the middling results of the classification come
from the classes Mozart, Beethoven, Schumann and Cho-

Descriptors kNN (k = 10) Random Forest
Trajectory 0.81 0.84
All descriptors 0.83 0.94

Table 5. F1-score for multi-class classification, with 4 un-
balanced classes based on musical style.

Ren. Bar. Class. Jazz
Renaissance 35 1 0 0

Baroque 2 15 1 0
Classical 0 0 74 2

Jazz 0 0 3 19

Table 6. Confusion matrix based on musical style with
Random Forest.

pin. This observation is crucial as it helps to identify the
problem of classification on the harmonic complexity or
indifference of a certain compositional period. All compo-
sers that appear to yield some classification errors belong
to the classical (1730-1820) and romantic period (1800-
1850).

This problem is solved when we focus on the clas-
sification of style rather than of composer. To this end,
the dataset was re-organized into four classes : renais-
sance (merging the pieces by Palestrina and Monteverdi),
baroque (Bach), classical (Mozart, Beethoven, Schumann
and Chopin) and jazz. Results in table 5 show improved
performance (even with kNN), and support the claim that
works from the same period seem to have similar trajec-
tories. As an illustration, we provide the confusion matrix
in table 6.

4. CONCLUSION

In this paper we presented novel descriptors for the
classification of music style based on symbolic represen-
tations and harmonic trajectories. In particular, we exten-
ded the definition of a harmonic trajectory first proposed
by Bigo [4], and we defined a compliance function that
chooses the most appropriate Tonnetz for a piece, in terms
of compactness. We have shown that a trajectory can be
reduced to 6 values, namely the centralities of the trajec-
tory graph, and still be representative of the piece. This
was demonstrated by using these trajectory descriptors for
the classification of different styles of music. We have ob-
tained some promising results in the field of automatic
stylistic analysis. In particular in binary classification, we
have shown that the trajectory method discriminates up to
100% depending on the style. In comparison with other
techniques used in [1, 2, 3, 8, 30, 32] we implemented ge-
neral midi descriptors and thus achieved average discrimi-
nation up to 82% across 8 classes with the random forest
classifier. It should be noted that the approach is agnostic
to the type of chords present in the musical piece, and does
not depend on a specific dictionary of pre-defined chords.
Hence it can be applied to any type of music, including
contemporary music.

Future work should concentrate on extending the capa-
cities of the trajectory descriptor outside of the pitch-class
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barrier by modeling chroma features or even building
trajectories in the timbre space [33]. Moreover, we pro-
pose working on macro-structure modeling to isolate re-
peating structures or repeating trajectories that represent
a subset of the piece. This process could be achieved
using self-similarity matrices and mathematical morpho-
logy [15, 22]. Additionally, the approach proposed by
Stylerank [13] looks very promising and a future plan will
be to combine its features with the trajectory descriptor,
as well as chord filtration for result optimization.

Moreover, we propose further testing using multiple
descriptors, as well as other classifiers. Last but not least,
we reckon on comparing with classification done on ma-
jor midi libraries such as the Million Song Dataset and the
Lakh Dataset.
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