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Abstract. Marine-based sectors of the Antarctic Ice Sheet
are increasingly contributing to sea level rise. The basal con-
ditions exert an important control on the ice dynamics and
can be propitious to instabilities in the grounding line po-
sition. Because the force balance is non-inertial, most ice
flow models are now equipped with time-independent inverse
methods to constrain the basal conditions from observed sur-
face velocities. However, transient simulations starting from
this initial state usually suffer from inconsistencies and are
not able to reproduce observed trends. Here, using a syn-
thetic flow line experiment, we assess the performance of
an ensemble Kalman filter for the assimilation of transient
observations of surface elevation and velocities in a marine
ice sheet model. The model solves the shallow shelf equa-
tion for the force balance and the continuity equation for
ice thickness evolution. The position of the grounding line
is determined by the floatation criterion. The filter analysis
estimates both the state of the model, represented by the sur-
face elevation, and the basal conditions, with the simultane-
ous inversion of the basal friction and topography. The ide-
alised experiment reproduces a marine ice sheet that is in
the early stage of an unstable retreat. Using observation fre-
quencies and uncertainties consistent with current observing
systems, we find that the filter allows the accurate recovery
of both the basal friction and topography after few assimila-
tion cycles with relatively small ensemble sizes. In addition
it is found that assimilating the surface observations has a
positive impact on constraining the evolution of the ground-
ing line during the assimilation window. Using the initialised
state to perform century-scale forecast simulations, we show
that grounding line retreat rates are in agreement with the
reference; however remaining uncertainties in the basal con-
ditions may lead to significant delays in the initiation of the

unstable retreat. These results are encouraging for the appli-
cation to real glacial systems.

1 Introduction

Despite recent significant improvements in ice sheet mod-
els, the projected magnitude and rate of the Antarctic and
Greenland ice sheets’ contribution to 21st century sea-level
rise (SLR) remains poorly constrained (Church et al., 2013).
Improving our ability to model the century-scale magnitude
and rates of mass loss from marine ice sheets remains a key
scientific objective (Scambos et al., 2017).

Improving SLR estimates requires, amongst other things,
correctly modelling the dynamics of the grounding line (GL),
i.e. the location where the ice detaches from its underly-
ing bed and goes afloat on the ocean (Durand and Pattyn,
2015). In the GL vicinity, the stress regime changes from
a regime dominated by vertical shearing in the grounded
part to a buoyancy-driven flow dominated by longitudinal
stretching and lateral shearing (Pattyn et al., 2006; Schoof,
2007). Because this transition occurs on horizontal dimen-
sions that are smaller than the typical grid size of large-scale
ice sheet models, many studies have focussed on the ability
of the numerical model to properly simulate grounding line
migration using synthetic experiments (e.g. Vieli and Payne,
2005; Durand et al., 2009; Gladstone et al., 2012; Seroussi
et al., 2014). Two Marine Ice Sheet Model Intercompari-
son Projects (MISMIP) have allowed the identification of the
minimum requirements to properly resolve GL motion: (i) in-
clusion of membrane stresses and (ii) a sufficiently small grid
size or a subgrid interpolation of the GL (Pattyn et al., 2012,
2013). These results suggest that, in realistic applications, the
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numerical error could be reduced below the errors associated
with uncertainties in the initial model state, in the model pa-
rameters, and in the forcings from the atmosphere and ocean.

For obvious reasons of inaccessibility, the basal condi-
tions (topography and friction) are an important source of un-
certainties. Because of the intrinsic instability of marine ice
sheets resting over a seaward up-sloping bed, the resolution
of the bed topography in the coastal regions can significantly
affect short-term ice sheet forecasts (Durand et al., 2011; En-
derlin et al., 2013). Analytical developments have shown that
the flux at the grounding line depends on the friction law and
its coefficients (Schoof, 2007; Tsai et al., 2015). The sen-
sitivity of model projections to the basal friction has been
confirmed by several numerical studies on both synthetic and
real applications (Joughin et al., 2010; Ritz et al., 2015; Bron-
dex et al., 2017, 2019). In particular, Brondex et al. (2017)
have shown that, for unbuttressed ice sheets, spatially vary-
ing friction coefficients can also lead to stable GL positions
in up-sloping bed regions.

Uncertainties in the model state and parameters can be re-
duced by data assimilation (DA). The objective of formal
DA methods is to update the model using observations in
a framework consistent with the model, the data and their
associated uncertainties (Bannister, 2017). Most ice flow
models are now equipped with variational methods to con-
strain the basal conditions from surface observations (e.g.
MacAyeal, 1993; Vieli and Payne, 2003; Larour et al., 2012;
Gillet-Chaulet et al., 2012). However most studies perform
“snapshot” calibrations, where the inversion is performed at
a unique initial time step. The state of the model produced
from this calibration is therefore sensitive to inconsistencies
between the different datasets. The resulting transient arte-
facts are usually dissipated during a relaxation period where
the model drifts from the observations.

Because historic remote sensing data collections are spa-
tially incomplete as well as temporally sparse, most dis-
tributed maps are mosaicked, stacked or averaged to max-
imise the spatial coverage at the expense of the temporal
information (Mouginot et al., 2012). However, in the last
few years, the development of space-borne ice sheet obser-
vations has entered a new era with the launch of new satel-
lite missions, considerably increasing the spatial and tempo-
ral resolution of surface observations. Because they require
linearised versions of the forecast model and of the observa-
tion operator, extending the existing variational methods im-
plies important numerical developments (e.g. Goldberg et al.,
2016; Larour et al., 2016; Hascoët and Morlighem, 2018).
In Goldberg and Heimbach (2013), a time-dependent adjoint
ice flow model is derived using a source-to-source algorith-
mic differentiation software combined with analytical meth-
ods. The DA capabilities are illustrated with a suite of syn-
thetic experiments, including the simultaneous inversion of
the basal topography and friction from surface observations
and the assimilation of transient surface elevations to retrieve
initial ice thicknesses. In a real-world application to a region

of West Antarctica, they show that assimilating annually re-
solved observations of surface height and velocities between
2002 and 2011 allows the improvement of the initial model
state, giving better confidences in projected committed mass
losses (Goldberg et al., 2015). Because of the complexity of
the code, Larour et al. (2014) use an operator-overloading ap-
proach to generate the adjoint and assimilate surface altime-
try observations from 2003 to 2009 to constrain the temporal
evolution of the basal friction and surface mass balance of
the Northeast Greenland Ice Stream.

Ensemble DA methods, based on the ensemble Kalman
filter (EnKF), have been successful in solving DA prob-
lems with large and non-linear geophysical models. Com-
parative discussions of the performances and advantages of
variational and ensemble DA methods can be found in, e.g.
Kalnay et al. (2007), Bannister (2017) and Carrassi et al.
(2018). As they aim at solving similar problems, a recent
tendency is to combine both methods to benefit from their
respective advantages.

EnKF approximates the state and the error covariance ma-
trix of a system using an ensemble that is propagated forward
in time with the model, avoiding the computation of the co-
variance matrices and the use of linearised or adjoint mod-
els. Contrary to time-dependent variational methods where
the objective is to find the model trajectory that minimises
the difference with all the observations within an assimila-
tion window, EnKF assimilates the observations sequentially
in time as they become available using the analysis step of the
Kalman filter, as illustrated in Fig. 1. The model trajectory is
then discontinuous and, at a given analysis, the model is only
informed by past and present observations. For the retrospec-
tive analysis of a time period in the past, i.e. a reanalysis, en-
semble filters can easily be extended to smoothers to provide
analyses that are informed by all past, present and future ob-
servations (Evensen and van Leeuwen, 2000; Li and Navon,
2001; Cosme et al., 2012; Nerger et al., 2014). Since the first
version introduced by Evensen (1994), many variants have
been developed, mainly differing in the way the Kalman filter
analysis is rewritten and the analysed error covariance ma-
trix is resampled (e.g. Burgers et al., 1998; Houtekamer and
Mitchell, 1998; Pham et al., 1998; Bishop et al., 2001; Nerger
et al., 2012). A review of the most popular EnKFs using com-
mon notations can be found in Vetra-Carvalho et al. (2018).
Efficient and parallel algorithms have been developed, and
because they are independent of the forward model, several
open-source toolboxes that implement various EnKFs are
now available, e.g. OpenDA (https://www.openda.org, last
access: 25 June 2018) and PDAF (http://pdaf.awi.de, last ac-
cess: 25 June 2018).

As Monte Carlo methods, EnKFs suffer from under-
sampling issues as often the size of the ensemble is much
smaller than the size of the system to estimate. Localisa-
tion and inflation are popular methods to counteract these
issues and to increase the stability of the filtering. Because
they are based on the original Kalman filter equations, EnKFs
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Figure 1. Principle of data assimilation (adapted from Carrassi
et al., 2018). Having a physical model able to forecast the evolu-
tion of a system from time t = t0 to time t = Tf (cyan curve), the
aim of DA is to use available observations (blue triangles) to correct
the model projections and get closer to the (unknown) truth (dotted
line). In EnKFs, the initial system state and its uncertainty (green
square and ellipsoid) are represented by Ne members. The mem-
bers are propagated forward in time during n1 model time steps dt
to t = T1 where observations are available (forecast phase, orange
dashed lines). At T = t1 the analysis uses the observations and their
uncertainty (blue triangle and ellipsoid) to produce a new system
state that is closer to the observations and with a lower uncertainty
(red square and ellipsoid). A new forecast is issued from the anal-
ysed state and this procedure is repeated until the end of the assim-
ilation window at t = Tf. The model state should get closer to the
truth and with lower uncertainty as more observations are assimi-
lated. Time-dependent variational methods (4D-Var) iterate over the
assimilation window to find the trajectory that minimises the misfit
(J0) between the model and all observations available from t0 to
Tf (violet curve). For linear dynamics, Gaussian errors and infinite
ensemble sizes, the states produced at the end of the assimilation
window by the two methods should be equivalent (Li and Navon,
2001).

are optimal only for Gaussian distributions and linear mod-
els. However, the many applications in geoscience with large
and non-linear models have shown that the method remains
robust in general and EnKFs are used in several opera-
tional centres with atmosphere, ocean and hydrology models
(e.g. Sakov et al., 2012; Houtekamer et al., 2009; Hendricks
Franssen et al., 2011). While firstly developed for numerical
weather and ocean prediction where the forecasts are very
sensitive to the model initial state, the method is also widely
used, e.g. in hydrology, for joint state and parameter estima-
tions (Sun et al., 2014).

In the context of ice sheet modelling, encouraging results
have been obtained by Bonan et al. (2014) for the estima-
tion of the state and basal conditions of an ice sheet model
using the ensemble transform Kalman filter (ETKF; Bishop
et al., 2001; Hunt et al., 2007). They study the performance
of the method using idealised twin experiments where per-
turbed observations generated from a model run are used in
the DA framework to retrieve the true model states and pa-

rameters. Using a flow line shallow ice model, they show that
both the basal topography and basal friction can be retrieved
with good accuracy from surface observations with realistic
noise levels, even for relatively small ensembles. The method
has been further developed to assimilate the margin position
in a shallow ice model that explicitly tracks the boundaries
with a moving mesh method (Bonan et al., 2017).

The purpose of this paper is to explore the performance of
ensemble Kalman filtering for the initialisation of a marine
ice sheet model that includes GL migration. In particular, we
want to address (i) the quality of the analysis for the simulta-
neous estimation of the basal topography and friction in the
context of a marine ice sheet that is undergoing an unstable
GL retreat and (ii) the effects of the remaining uncertainties
for the predictability of GL retreat. The ice flow model and
the EnKF used in this study are described in Sect. 2. To test
the DA framework, we define a twin experiment in Sect. 3.
Section 4 presents the results for both the transient assimi-
lation and the forecasts. Finally, perspectives and challenges
for real applications are discussed in Sect. 5, before conclud-
ing remarks.

2 Methods

2.1 Ice flow model

The gravity-driven free surface flow of ice is solved using the
finite-element ice flow model Elmer/Ice (Gagliardini et al.,
2013).

For the force balance, we solve the shelfy stream approx-
imation (SSA) equation (MacAyeal, 1989) in one horizontal
dimension. This is a vertically integrated model that derives
from the Stokes equations for small aspect ratio and basal
friction. In 1D, this leads to the following non-linear partial
differential equation for the horizontal velocity field u:

∂

∂x

(
4ηH

∂u

∂x

)
− τb = ρigH

∂zs

∂x
, (1)

with ρi the ice density, g the gravity norm, H = zs–zb the
ice thickness, and zs and zb the top and bottom surface ele-
vations, respectively. Using Glen’s constitutive flow law, the
vertically averaged effective viscosity η is given by

η =
1
H

zs∫
zb

1
2
A−1/nD

(1−n)/n
e dz, (2)

whereDe is the second invariant of the strain-rate tensor, here
equal to D2

e = (∂u/∂x)
2, A is the rate factor and n is the

creep exponent, taken equal to the usual value n= 3 in the
following. The basal friction τb is null under floating ice and
is represented by the non-linear Weertman friction law for
grounded ice:

τb = Cu
m, (3)
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with C and m the friction coefficient and exponent, respec-
tively. In the following, we use the classical power law with
m= 1/n= 1/3. When in contact with the ocean, the ice is
assumed to be in hydrostatic equilibrium. The floating con-
dition is evaluated directly at the integration points, and τb
in Eq. (1) is set to 0 wherever ice is floating (Seroussi et al.,
2014).

The time dependency is introduced by the evolution of
the top and bottom free surfaces. Because of the hydrostatic
equilibrium, the ice sheet topography is fully defined by
the bed elevation b and only one prognostic variable. Equa-
tion (1) is then coupled with the vertically integrated mass
conservation equation for the evolution of the ice thickness
H :

∂H

∂t
+
∂(uH)

∂x
= as− ab, (4)

with as the surface accumulation rate and ab the basal melt
rate. The free surfaces zs and zb are obtained from the float-
ing condition which, for zs, using a constant sea level zsl = 0,
gives{
zs = b+H for H ≥−b ρw

ρi

zs =H
(

1− ρi
ρw

)
otherwise

(5)

with ρw the sea water density.

2.2 Data assimilation

2.2.1 Filter algorithm

For the assimilation, we use the error subspace ensem-
ble transform Kalman filter (ESTKF; Nerger et al., 2012).
Originally derived from the singular evolutive interpolated
Kalman filter (SEIK; Pham et al., 1998), ESTKF leads to the
same ensemble transformations as the ETKF but at a slightly
lower computational cost. In practice we use the local ver-
sion of the filter implemented in PDAF (http://pdaf.awi.de,
last access: 25 June 2018; Nerger et al., 2005b) and coupled
to Elmer/Ice in an offline mode. This section outlines the ES-
TKF algorithm.

As an EnKF, ESTKF approximates the state xk and the
error covariance matrix Pk of a system at time tk using an
ensemble of Ne realisations xki , i = 1, . . .,Ne. The state vec-
tor, of size Nx , contains the prognostic variables and model
parameters to be estimated and is approximated by the en-
semble mean,

xk =
1
Ne

Ne∑
i=1

xki , (6)

while the error covariance matrix is approximated by

Pk =
1

Ne− 1
X′kX′

T
k , (7)

where X′k = (xk1−x
k, . . .,xkNe

−xk) ∈ RNx×Ne is the ensem-
ble perturbation matrix.

The algorithm can be decomposed in two steps, the fore-
cast and the analysis. Superscripts f (a) denote quantities
related to each step. The forecast propagates the state and the
error covariance matrix of the system forward in time, from
a previous analysis at t = tk−1 to the next observation time
t = tk . For this, the numerical model Mk , assumed perfect
in the sequel, is used to propagate each ensemble member
individually during ndt model time steps:

x
f,k
i =Mk(x

a,k−1
i ). (8)

At t = tk , a vector of observations yko of size Ny (usually
with Ny �Nx) is available. yko is related to the true system
state xf by yko =H(xf )+εk , where the observation error εk

is assumed to be a white Gaussian distributed process with
known covariance matrix Rk , and H is the observation oper-
ator that relates the state variables to the observations. When
yko is the observed surface velocities, the relation between the
observations and the system state, i.e., the ice sheet geometry,
and parameters, i.e. the boundary conditions, is given by the
force balance Eq. (1); thus H is a non-linear elliptic partial
differential equation.

The analysis provides a new estimation of the system state
by combining the information from the forecast and the ob-
servations. In the following we will omit the time index k
in the notations as the entire analysis is performed at t = tk .
As other EnKFs, ESTKF uses the Kalman filter update equa-
tions to compute the analysed system state xa and covariance
matrix Pa from the forecast, the observations and their uncer-
tainties:{
xa = xf +Kd
Pa = (I−KH)Pf ,

(9)

where d = yo−H(xf ) is the innovation and K is the Kalman
gain given by

K= PfHT (HPfHT
+R)−1. (10)

Here, H is the linearised observation operator at the fore-
cast mean. However, in practice H does not need to be com-
puted as it always acts as an operator to project the ensemble
members in the observation space. Defining the forecast en-
semble projected in the observation space by yfi =H(xf1 ),
i = 1, . . .,Ne with yf the ensemble mean, we make the lin-
ear approximation

Yf =HXf , (11)

with Xf = (xf1 , . . .,x
f
Ne
) ∈ RNx×Ne the forecast ensemble

matrix and Yf = (yf1 , . . .,y
f
Ne
) ∈ RNy×Ne its equivalent in

the observation space.
In practice, with large models (Nx>>1), the covariance

matrices Pf and Pa of size Nx ×Nx can not be formed, so
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that, to be implemented, the analysis (Eq. 9) needs to be re-
formulated. Moreover, the sample covariance matrix approx-
imated with an ensemble of sizeNe (Eq. 7) is only a low-rank
approximation of the true covariance matrix and its rank is at
most Ne− 1. ESTKF uses this property to write the analysis
in a (Ne−1)-dimensional subspace spanned by the ensemble
and referred to as the error subspace (Nerger et al., 2005a).
The forecast covariance matrix Pf is then rewritten as

Pf =
1

Ne− 1
LLT , (12)

where L ∈ RNx×Ne−1 is given by

L= Xf�. (13)

The matrix � ∈ RNe×Ne−1 defined as

�ij =


1− 1

Ne
1

1
√
Ne
+1

for i = j, i < Ne

−
1
Ne

1
1
√
Ne
+1

for i 6= j, i < Ne

−
1
√
Ne

for i =Ne

(14)

projects the ensemble matrix Xf onto the error subspace. The
multiplication with Xf subtracts the ensemble mean and a
fraction of the last column of the ensemble perturbation ma-
trix X′f from all other columns.

After some algebra using Eqs. (12) and (9), Pa can be writ-
ten as a transformation of L,

Pa = LALT , (15)

with the transform matrix A ∈ RNe−1×Ne−1 given by

A−1
= ρ(Ne− 1)I+ (Yf�)TR−1Y�, (16)

where ρ ∈ [0,1] is the forgetting factor discussed
in Sect. 2.2.2.

Finally, the update step is obtained as a single equation
for the transformation of the forecast ensemble Xf to the
analysed ensemble Xa as

Xa = Xf +Xf�(W+W), (17)

where Xf is the matrix where the columns are given by the
forecast ensemble mean, W is a matrix where the columns
are given by the vector

w = A(Y�)TR−1(yo− y
f ), (18)

and W is given by

W=
√
Ne− 1C�T , (19)

where C is the symmetric square root of A obtained by sin-
gular value decomposition.

Finally, the analysed ensemble Xa is used as the initial
ensemble for the next forecast, and so on up to the end of the
data assimilation window.

We draw attention to several remarks on the algorithm.

– To compute the innovation d , we have made the same
linear approximation H(xf )= yf as Hunt et al. (2007).
This choice is consistent with the computation of the
covariance matrices PfHT and HPfHT in Eq. (10) us-
ing the linear approximation Eq. (11) (Houtekamer and
Mitchell, 2001).

– Several ensembles can have the same mean and covari-
ance matrix, which is why several EnKFs exactly satisfy
Eq. (9) but lead to different ensemble transformations
and thus different analysed ensembles (Vetra-Carvalho
et al., 2018). With the same arguments several variants
of ESTKF can be introduced, e.g. by replacing � in
Eq. (19) by a random matrix with the same properties
or using a Cholesky decomposition to compute C.

– As written here, the ESTKF leads to the same ensemble
transformation as the ETKF. However, as the computa-
tions are not performed in the same subspace, tiny dif-
ferences due to the finite precision of the computations
may grow, leading to slight differences at the end of the
assimilation window (Nerger et al., 2012).

– The leading computational cost of the
ensemble transformation in ESTKF is
O
(
Ny(Ne− 1)2+Ne(Ne− 1)2+NxNe(Ne− 1)

)
,

so it scales linearly with Nx and Ny (Nerger et al.,
2012). Naturally, increasing Ne also requires an in-
crease in the number of model runs and, in general,
the objective is to get the ensemble size as small
as possible. The performance of the algorithm also
depends on the evaluation of the product of R−1 with
some vectors, which can become more expensive when
the observation errors are spatially correlated.

2.2.2 Filter stabilisation: inflation and localisation

In practice for large-scale problems, EnKFs as Monte Carlo
methods suffer from under-sampling issues. First, because of
the rank deficiency of the covariance matrix Pf , the analy-
sis adjusts the model state only in the error subspace, ignor-
ing error directions not accounted for by the ensemble (Hunt
et al., 2007). This can result in an analysis that is overconfi-
dent and underestimates the true variances. In the long run,
the ensemble spread will become too small and the analy-
sis will give too much weight on the forecast, finally dis-
regarding the observations and diverging from the true tra-
jectory. A common simple ad hoc remedy is to inflate the
forecast covariance matrix with a multiplicative factor (Pham
et al., 1998; Anderson and Anderson, 1999). Here, inflation
has been introduced in Eq. (16) using the forgetting factor
ρ ∈ [0,1] with ρ = 1 corresponding to no inflation (Pham
et al., 1998). It is the inverse of the inflation factor used by
Bonan et al. (2014).

Second, the rank deficiency of Pf leads to the appear-
ance of spurious correlations between parts of the system that
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are far away. As these correlations are usually small, a com-
mon remedy is to damp these correlations with a procedure
called localisation. In covariance localisation, localisation is
applied by using an ensemble covariance matrix that results
from the Schur product of Pf with an ad hoc correlation ma-
trix that drops long-range correlations (Hamill et al., 2001;
Houtekamer and Mitchell, 2001). However, this localisation
technique is not practical for square-root filters where Pf is
never explicitly computed. Here, as in Bonan et al. (2014),
we use a localisation algorithm based on domain localisation
and observation localisation (Ott et al., 2004; Hunt et al.,
2007). Both methods are illustrated in Sakov and Bertino
(2011), who conclude that they yield similar results. Domain
localisation assumes that observations far from a given lo-
cation have negligible influence. In practice, the state vector
in each single mesh node is updated independently during a
loop through the nodes that can easily be parallelised for nu-
merical efficiency. For each local analysis, only the observa-
tions within a given radius r from the current node are used.
In addition, to avoid an abrupt cut-off, the observation error
covariance matrix R is modified so that the inverse obser-
vation variance decreases to zero with the distance from the
node using a fifth-order polynomial function which mimics
a Gaussian function but has compact support (Gaspari and
Cohn, 1999). Because it drops spurious long-range correla-
tions and allows the local analyses to choose different linear
combinations of the ensemble members in different regions,
localisation implicitly increases the rank of the covariance
matrix, leading to a larger dimension of the error subspace,
implicitly increasing the effective ensemble size and the filter
stability (Nerger et al., 2006; Hunt et al., 2007). However, it
has been reported that localisation could produce imbalanced
solutions (Mitchell et al., 2002). Here, because the force bal-
ance is non-inertial and the SSA assumes that the ice shelves
are in hydrostatic equilibrium, this should not be an issue.
Another disadvantage is that, when long-range correlations
truly exist, the analysis will ignore useful information that
could have been used from distant observations.

Here, the forgetting factor ρ and the localisation radius
r will be used as tuning parameters of the filter. Improving
the theoretical understanding of these ad hoc procedures and
developing an adaptive scheme are active research areas and
interested readers can refer to review articles (e.g. Bannister,
2017; Carrassi et al., 2018; Vetra-Carvalho et al., 2018).

3 Experimental design

To evaluate the performance of the DA framework we per-
form a twin experiment. In this section we first describe the
synthetic reference simulation that will be used to assess the
performance of the DA framework. From this reference, we
generate a set of synthetic noisy observations that will be
used by the assimilation scheme. Finally, we describe the ini-

tial ensemble constructed using a priori or background infor-
mation.

3.1 Reference simulation

We start by building an initial steady marine ice sheet. The
domain extends from x = 0km, where we apply a symmetry
condition, u= 0 in Eq. (1), to x = 800km where we have a
fixed calving front. We use 1D linear elements with a uniform
mesh resolution of 200m, leading to 4001 mesh nodes.

Following Durand et al. (2011), we generate a synthetic
bed geometry that reproduces a typical large-scale overdeep-
ening with some small-scale roughness. The bed b = btrend+

br is the sum of a general trend btrend defined as

btrend =

{
−1100+ x for ×≤ 450km

−650− 5(x− 450) for ×> 450km,
(20)

and a roughness signal br that is computed at 200m res-
olution using a random midpoint displacement method
(Fournier et al., 1982). This is a classical algorithm for arti-
ficial landscape generation. In 1D, the algorithm recursively
subdivides a segment, and a random value drawn from a nor-
mal distribution N (0,σ 2) is added to the elevation of the
midpoint. The standard deviation σ is decreased by a fac-
tor of 2h between two recursions. Here we have used 12 re-
cursions using an initial standard deviation σ = 500m and a
roughness h= 0.7. The resulting bed is shown in Fig. 2.

For the basal friction, we use a synthetic sinusoidal func-
tion with two wavelengths for C (MPam−1/3 a1/3)

C = 0.020+ 0.015 sin (5
2πx
L
) sin (100

2πx
L
), (21)

with L= 800km (Fig. 3).
While not tuned to match any specific glacier, this syn-

thetic design compares relatively well to the conditions found
in Thwaites Glacier (Antarctica). Thwaites has been the fo-
cus of many recent studies as it is undergoing rapid ice loss
and, connected to deep marine-based basins, its retreat could
trigger a large-scale collapse of the West Antarctic Ice Sheet
over the next centuries (Scambos et al., 2017). In Fig. 4, C
and b are compared with model results from Brondex et al.
(2019) along three streamlines. In Brondex et al. (2019), C
has been inferred from the observed surface velocities using
a time-independent control inverse method and a SSA model.
We can see that our synthetic design is realistic in terms of
both amplitude and spatial variations. As the other charac-
teristics (geometry, small flow divergence and convergence)
are also similar, the model velocities have a good order of
magnitude.

Using a uniform ice rigidity B = (2A)−1/n
=

0.4MPaa1/3, we grow an ice sheet to steady-state us-
ing a uniform surface accumulation as = 0.5ma−1 and no
basal melting ab = 0. The steady state GL is located at
x = 440km, just downstream of the region of overdeepening
(Fig. 2).
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Figure 2. (a) Reference ice sheet topography every 10 years from t = 0 to t = 200 a (black to grey). (b)–(d) GL position as a function of
the simulation time for the reference (black line), for the ensemble (grey lines), and for the deterministic forecast (magenta line) (b) without
assimilation, (c) with assimilation up to t = 20 a and (d) with assimilation up to t = 35 a. The right column shows a zoom on the first
40 years. In (c)–(d), the horizontal dashed line shows the end of the assimilation window.

In Jenkins et al. (2018), observed ice flow accelerations in
the Amundsen Sea sector have been attributed to the decadal
oceanic variability, where warm phases associated with in-
creased basal melt induce a thinning of the ice shelves, re-
ducing their buttressing effect and initiating short-lived peri-
ods of unstable retreat of the most vulnerable GLs. In a flow
line experiment the ice shelf does not exert any buttressing
effect. Using a suite of melting and calving perturbation ex-
periments for Pine Island Glacier, Favier et al. (2014) have
shown that, when initiated, the dynamics of the unstable re-
treat are fairly independent of the type and magnitude of the
perturbation. Here, to trigger the initial acceleration, we in-
stantaneously decrease the ice rigidity to B = 0.3MPaa1/3 at
t = 0, keeping all the other parameters constant.

This initial perturbation induces an acceleration, a thin-
ning and a retreat of the GL. The model is then run for 200
years with a time step dt = 510−3 a−1. After a short stabil-
isation at x = 437.2km between t = 13a and t = 32a, the
GL retreats at a rate of approximately 1kma−1 during the
following 100 years, and then the rate decreases as the GL

enters an area of down-slopping bed (Fig. 2). The retreat rate
shows small variations associated with spatial variations in
the topography and basal friction.

3.2 Synthetic observations

From the reference run, we generate synthetic noisy obser-
vations that are typical of the resolution and performance of
actual observing systems.

For the bed, we mimic an airborne radar survey conducted
perpendicular to the ice flow with an along-flow resolution of
approximately 15km. For this, we randomly select 54 loca-
tions between x = 0 and x = 800km and then linearly inter-
polate the true bed and add a random uncorrelated Gaussian
noise with a standard deviation σ obs

b = 20 m (Fig. 3).
We assume that the surface elevation and velocities are ob-

served at an annual resolution at each mesh node. We then
add an uncorrelated Gaussian noise with a standard deviation
σzobs

s
= 10m for the surface elevation and σ obs

u = 20 ma−1

for the velocity. The most recent velocity products are now
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Figure 3. (a) RMSE between the reference and the analysed ensemble mean for the bed and friction coefficient. (b) For the bed and friction
coefficient, the reference is shown in black, the synthetic bed measurements in the top panel are shown as green dots, the ensemble mean
before assimilation is in blue and at t = 35a in red. The shading shows the ensemble spread between the minimum and maximum values,
before assimilation (blue) and at t = 35a (red). The dashed vertical lines show the GL position at t = 0 and t = 35a.

posted with a monthly to annual resolution (Mouginot et al.,
2017; Joughin et al., 2018). The reported uncertainty for in-
dividual velocity estimates using the 6 and 12 d image pairs
from the Sentinel-1A/B satellites is 6.2 and 17.5ma−1 for
the two horizontal velocity components in stable conditions;
however this could be underestimated in the coastal areas.
For the surface elevation, the spatial and temporal resolu-
tion as well as the coverage and uncertainty will depend on
the sensors. The ArcticDEM (http://arcticdem.org, last ac-
cess: 31 January 2019) is a collection of openly available
digital surface models derived from satellite imagery and
posted at 2 m spatial resolution. After co-registration, a stan-
dard deviation ranging from 2 to 4m has been reported for
the uncertainty of elevation difference between two individ-
ual models of static surfaces (Dai and Howat, 2017). Us-
ing the same satellites, Greenland digital elevation models
are now posted with a 3-month temporal resolution (https:
//nsidc.org/data/nsidc-0715, last access: 28 August 2019).

3.3 Assimilation setup

We recall that our aim is to initialise the model using the
DA framework to estimate the state together with the basal
conditions. As a simplification to realistic experiments, we
assume in the following that the ice rheological properties
(represented by the Glen flow law and its parameters) and the
forcing (represented by the surface and basal mass balances
in Eq. 4) are perfectly known. In addition, we assume that
the form of the basal friction follows Eq. (3) with m= 1/3,

so that only the spatially varying friction coefficient C is un-
certain.

In our model, as the force balance Eq. (1) contains no time
derivative, the velocity is a diagnostic variable. Because of
the flotation condition, the topography can be represented by
only one prognostic variable. The state vector x is then given
by the free surface elevation zs at every mesh node, and we
use the floatation Eq. (5) for the mapping between the ice
thicknessH and zs. The state vector is augmented by the two
parameters to be estimated, the bedrock topography b and
the basal friction coefficient C. For the parameters we as-
sume a persistence model, i.e. no time evolution, during the
forecast step (Eq. 8). Because the velocities are insensitive to
the basal conditions where ice is floating, these two parame-
ters are included in the state vector only for the nodes where
at least one member is grounded. In addition, to insure that C
remains positive, we use the following change of variable for
the assimilation C = α2. Although it does not insure unique-
ness of the estimation as α and −α would lead to the same
C, this change of variable is classical (MacAyeal, 1993) and
was chosen as the reference friction coefficient spans only 1
order of magnitude. Similar performances were found using
the other classical change of variable C = 10α as in Gillet-
Chaulet et al. (2012).

Because both zs and b are included in the state vector, the
analysis does not conserve the ice sheet volume, for either
the ensemble mean or the individual members. However, as
illustrated in Fig. 1, the estimation of zs and b, and thus of the
ice thickness, should be improved at each analysis as more
data are assimilated, and the final state is the best estimation
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Figure 4. Thwaites Glacier (Antarctica). Model results from Bron-
dex et al. (2019): model velocities (top) and friction coefficient C
and bed elevation b extracted along three streamlines (same colour
code). Synthetic values used in this study are shown with black
dashed lines. Note that the mesh resolution varies from v200 m
close to the GL, shown in yellow in the top panel, to v10 km at
the upstream end of the streamlines.

provided by the filter knowing the model, all the observa-
tions during the assimilation window and their uncertainties.
As mentioned in the introduction, if the main interest is an
analysis of past volume changes, a smoother or a variational
method might be more appropriate. The smoother extension
of the ESTKF can be found in Nerger et al. (2014). Note
however that, interestingly, if we expect that the filter will
improve the estimation of the ice thickness, there is no guar-
anty in general that it will provide a better estimate of the
total volume as an a priori state with a totally different thick-
ness distribution could lead, by compensation of the errors,
to a perfect estimate of the true volume.

Kalman-based filters are based on the hypothesis of the in-
dependence between the background, i.e. the initial ensem-
ble, and the observations that are used during the assimila-
tion. As the synthetic bed observations will be used to con-
struct the initial ensemble (see next section), we assimilate
only the surface elevation and velocity observations, every
year from t = 1a up to t = 35a. The observation operator H
is a simple mapping for the surface elevation and is given by
the non-linear SSA equation (Eq. 1) for the surface veloci-
ties.

Finally, to illustrate the effect of the transient assimilation
on model projections on timescales relevant for sea level pro-
jections, the analysed states at t = 20a and t = 35a are used
to run deterministic and ensemble forecasts up to t = 200a.
The deterministic forecast uses the ensemble mean produced
by the analysis while the ensemble forecast propagates the
full ensemble.

3.4 Initial ensemble

For atmosphere and ocean models, the initial state is usu-
ally sampled from a climatology, either observed or from
a model run. This method can not be used for the parame-
ters and the initial ensemble must reflect the background and
the estimation of its uncertainty, available a priori before the
assimilation. Following previous studies (Gudmundsson and
Raymond, 2008; Pralong and Gudmundsson, 2011; Bonan
et al., 2014; Brinkerhoff et al., 2016), we assume that the ini-
tial distributions for b and C are Gaussian with a given mean
and a prescribed covariance model. Furthermore we assume
no cross-correlation between the initial b, C and zs, and we
draw the initial ensembles independently.

For b and C, the initial samples are drawn using the R
package gstat (Pebesma and Wesseling, 1998). As is classi-
cal in geostatistics, the covariance model is prescribed using
a variogram γ (d) that is half the variance of the difference
between field values as a function of their separation d. It
is usually defined by two parameters, the sill s that defines
the semi-variance at large distances and the range ra which,
for asymptotic functions, is defined as the distance where the
γ (ra)= 0.95s. The package gstat allows one to directly draw
simulations, i.e. random realisations of the field, from the
prescribed spatial moments (Pebesma and Wesseling, 1998).

For the bed we use an exponential function,

γ (d)= s(1− e−
3d
ra ), (22)

with ra = 50km and s = 4000m2. We also add a nugget
model defined by

γ (d)=

{
0 d = 0

nug d > 0
, (23)

with nug= 200m2. This model is meant to represent the bed
measurement error. To draw the initial ensemble, the simu-
lations are conditioned with the bed observations. This pro-
cedure gives an initial ensemble that is drawn from the pos-
terior probability distribution that would be obtained using
ordinary kriging with the same observations and variograms.
The ensemble mean and spread for a 50-member ensemble
are shown in Fig. 3 and the first three members are shown
in Fig. 5. As expected, the ensemble spread increases with
the distance from the observations. At the observation loca-
tions, the spread is controlled by the nugget. For the individ-
ual members, the nugget controls the small-scale variability,
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Figure 5. For the initial ensemble for the bed and friction coeffi-
cient, the ensemble mean is the dashed blue curve, and the shad-
ing shows the ensemble spread. Coloured solid lines show the first
three members. The reference is shown in black and the synthetic
bed measurements are shown as green triangles.

resulting in a roughness larger than the reference. When av-
eraged this roughness disappears, and the ensemble mean has
a much smoother topography.

For the friction coefficient, we assume that we know
the mean value Cmean = 0.020MPam−1/3 a1/3 and draw
unconditional simulations. For the spatial dependence,

we use a Gaussian function γ (d)= s(1− e−3( d
ra )

2
) for

the variogram using a range ra = 2.5km and a sill s =
8.10−5 MPa2 m−2/3 a2/3. This results in initial ensemble
members that have approximately the same maximal ampli-
tude as the reference, as shown in Fig. 5.

For the free surface, we initialise all the members using the
observed (noisy) free surface at t = 0. Doing so, we implic-
itly assume that the spread of the ensemble induced by the
uncertain initial conditions at the first analysis is small com-
pared to the spread induced by the uncertain parameters. This
is motivated by the fact that divergence anomalies induced by
uncertainties in model parameters can typically reach tens to
hundreds of metres per year in fast-flowing areas (Seroussi
et al., 2011).

Figure 6. Velocity, u, at t = 1 a and t = 35 a. The reference is in
black; the ensemble mean before and after the analysis is in blue
and red, respectively. The shading shows the ensemble spread be-
tween the minimum and maximum. The dashed vertical black line
indicates grounding line position.

4 Results

4.1 Assimilation

To assess the performance of the DA in retrieving the basal
conditions, we compute the root-mean-square error (RMSE)
between the analysed ensemble mean and the reference
for both the bed and the friction coefficient, RMSEb and
RMSEC. After each analysis, the RMSE is computed using
all the nodes where the basal conditions have been updated
by the assimilation, i.e. at least one member is grounded,
and where x ≥ 300km. The last value mentioned is close
to the position reached by the grounding line after 200 years
in the reference simulation; moreover, during the assimila-
tion window, the reference velocity at this location is close to
80ma−1 (Fig. 6), so that the relative noise is ∼ 25% and we
do not expect too much improvement from the DA upstream
as the velocity tends to 0.

Here the size of the state vector x, Nx , is approximately
8400, i.e. zs at every node and the basal conditions, b and C,
in the grounded part. To test the performances of DA in con-
ditions that would be numerically affordable for real applica-
tions, we run the assimilation with relatively small ensemble
sizes Ne = 30, Ne = 50 and Ne = 100. In this case, inflation
and localisation are required to counteract the effects of un-
dersampling and we test a range of forgetting factors ρ and
localisation radius r . The errors obtained at t = 20a relative
to the errors from the initial ensemble mean are shown in
Fig. 7. The performances of the assimilation forNe = 50 and
Ne = 100 are very similar. The filter diverges and produces
errors larger than the initial errors for a localisation radius
r ≤ 4km. However, for larger localisation radii, the assimi-
lation is relatively robust for a wide range of r and ρ, with
errors reduced by∼ 30% for b and∼ 40% forC. Decreasing
the ensemble sizes reduces the filter performance but there is
still a reduction of the errors by ∼ 20% and ∼ 30%, respec-
tively, withNe = 30. For the two smallest ensembles, there is
an optimal value for r , and increasing r above this value de-
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Figure 7. RMSE at t = 20 a, relative to the initial (before assimila-
tion) RMSE as a function of the forgetting factor ρ and the locali-
sation radius r for different ensemble sizes Ne. (a) For the bed and
(b) for the friction coefficient. Black lines show isovalues spaced by
5 %.

creases the filter performance. In general, this optimal value
for r increases as ρ decreases, because the ensemble spread
reduction induced by assimilating more observations is coun-
terbalanced by the inflation.

In the sequel we discuss the results obtained with an en-
semble size Ne = 50. As a compromise between the perfor-
mances in retrieving b and C, we choose a forgetting factor
ρ = 0.92 and a localisation radius r = 8km. The evolution of
the RMSEs as a function of assimilation time together with
the initial and final ensembles are shown in Fig. 3. RMSEb
decreases steadily from ∼ 25m for the initial ensemble at
t = 0 to ∼ 12m at t = 35a. For the basal friction, RMSEC is
decreased by a factor of 1.75 during the first 10 years; then
there is still a slight but much smaller improvement as new
observations are assimilated.

At the end of the assimilation, for both fields, the spatial
variations are well reproduced by the ensemble mean, and,
compared to the initial ensemble, the difference from the
reference is decreased everywhere except between 300 and
325km for C. The reduction in the error is also accompanied
by a diminution of the ensemble spread, represented by the
minimum and maximum values in Fig. 3. This reduction is
the most important just upstream of the grounding line where
the relative noise for the velocity is the smallest. For the first
100km upstream of the grounding line, the ensemble stan-
dard deviation increases by a factor of 4, from approximately
4 to 17m for b and from 1×10−3 to 4×10−3 MPam−1/3 a1/3

for C. Downstream of the GL where all members are float-
ing, the model is insensitive to the basal conditions and the
initial ensemble is unchanged.

We expect that uncertainties in the ice sheet interior should
not affect the short-term forecast of the coastal regions (Du-
rand et al., 2011); however for completeness we also show
the results for the first 300km in Fig. 8. For the bed there
is only a small improvement of the ensemble mean with an

RMSE decreasing from 50 to 45m after 35 years. Because
the relative observation error on the velocity is very high
in the first kilometres, the reduction of the ensemble spread
due to the assimilation of new observations is very small and
eventually outperformed by the inflation, leading to an en-
semble spread that becomes larger than before the assimila-
tion. The model seems more sensitive to the basal friction
and this effect is less pronounced for C with a continuous
decrease in the RMSE and a small reduction of the ensemble
spread everywhere.

Figure 2 shows that some members undergo a fast GL re-
treat of a few kilometres before assimilation at the end of the
first year. Interestingly, as the assimilation updates both the
thickness and the bed, it also corrects the GL position, which
never departs by more than a few nodes from the reference
for the rest of the assimilation period.

As in realistic simulations the true bed and friction are not
available to assess the performance of the DA, we also look
at the variables assimilated by the model. Figure 9 shows the
RMSEs between the ensemble mean and the reference for
the velocity u (RMSEu) and the free surface zs (RMSEzs ),
computed for the entire domain (0≤ x ≤ 800km). We also
report the evolution of the ensemble spread, computed as the
square root of the averaged ensemble variance. The veloc-
ities before and after the analysis at t = 1 and t = 35a are
shown in Fig. 6. The RMSEs are largely decreased during
the first few years, especially for the velocity with an error of
more than 300ma−1 before the first assimilation to approxi-
mately the noise level 20ma−1, at t = 20a. For zs, RMSEzs

is already below the noise level before the first analysis and
decreases relatively steadily to reach ∼ 2m after 35 years.
RMSEu increases at the end of the period when the reference
GL leaves the stable region. As can be shown in Fig. 6, the
error is dominated by the larger difference over the ice shelf
due to the few members that still have their GL at the stable
location, largely affecting the ensemble mean.

In general, during the first and last years of the assimila-
tion period, the error and the ensemble spread increase dur-
ing the forecast step. The analysis step reduces both the error
and the ensemble spread (Fig. 9). With the stabilisation of
the grounding line, both the error and the spread remain rela-
tively stable during the forecast, and as RMSEu and RMSEzs

have already reached levels comparable to the observation
noise, there is no much improvement during the analysis. Af-
ter a few assimilation steps, as expected for a reliable ensem-
ble, the error and the spread have similar values.

Similar conclusions are drawn if the assimilation is pur-
sued up to t = 50a. Because of the sensitivity of the ice shelf
velocities to the grounding line position, RMSEu shows a
higher variability, but, with a few exceptions, stays close to
the noise level. RMSEb and RMSEc stagnate as the recon-
struction continually improves mostly in the first few tens of
kilometres upstream of the GL where the relative noise on u
is the smallest.
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Figure 8. Same as Fig. 3 but with the RMSE computed for x ∈ [0,300]km.

Figure 9. RMSE (solid lines) and square root of the averaged en-
semble variance (dashed lines) during the assimilation window for
(a) the velocity, u, and (b) the free surface, zs. Each year, the blue
triangle and the red square are the RMSEs before and after the anal-
ysis, respectively. Each segment represents a 1-year forecast step.

To assess the influence of the observation uncertainties in
the performance of the DA, we repeat the experiment with
the same localisation and inflation but different levels for
the uncertainties on the observed surface velocity (σ obs

u ) and
surface elevation (σ obs

zs
) (see Sect. 3.2). We recall that these

uncertainties are not correlated spatially and temporally. As

shown in Fig. 10, the performance of the DA to retrieve both
b andC increases when the uncertainty on the velocity obser-
vation σ obs

u decreases. However, when looking at the model
velocities and surface elevation, this improvement is not sig-
nificant as the RMSEs were already below the noise level. As
shown in Fig. 11, as expected, decreasing σ obs

zs
improves the

analysis for the surface elevation. However, it does not nec-
essarily reflect on the basal conditions and, on the contrary,
reducing σ obs

zs
below 10m leads to an increase in RMSEC

from 0.004 to 0.005MPam−1/3 a1/3. However, again, this ef-
fect does not reflect on the model velocities that are retrieved
with the same accuracy.

4.2 Forecast simulations

We now discuss model projections from the initial state to
t = 200a.

Without assimilation, the deterministic forecast, i.e. us-
ing the ensemble mean basal conditions, rapidly leads to the
fastest GL retreat, and after a few years the GL position is
no longer included within the previsions from the ensemble
(Fig. 2b). This is due to the fact that the ensemble mean is
smoother than the reference and any of the ensemble mem-
bers. The reference GL position is included in the ensemble,
and at the end of the simulations most of the members are
within±25km from the reference. However, for a few mem-
bers the GL remains very stable near its initial position for
tens to hundreds of years, eventually never switching to an
unstable regime during the duration of the simulation. Re-
treat rates are relatively variable from one member to the
other, depending on the basal conditions.

With assimilation, the ensemble mean is improved and
the difference from the reference reduced. The determinis-
tic forecast cannot be distinguished from the ensemble mem-
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Figure 10. Sensitivity to the surface velocity observation error σ obs
u : RMSEs after each analysis, computed only for x ≥ 300km for b and

C. The thick red lines correspond to the results with σ obs
u = 20ma−1 and σzobs

s
= 10m shown in Figs. 3 and 9. The horizontal dashed lines

correspond to the observation errors σ obs
u and the results are presented with solid lines using the same colour code. σzobs

s
= 10m for all the

experiments.

Figure 11. Sensitivity to the surface elevation observation error σzobs
s

: RMSEs after each analysis, computed only for x ≥ 300km for b and

C. The thick red lines correspond to the results with σ obs
u = 20ma−1 and σzobs

s
= 10m shown in Figs. 3 and 9. The horizontal dashed lines

correspond to the observation errors σzobs
s

and the results are presented with solid lines using the same colour code. σ obs
u = 20ma−1 for all

the experiments.

bers any more (Fig. 2c–d). Retreat rates are closer to the ref-
erence, with the previsions from all the ensemble members
being more or less parallel to the reference. We note however
that when the forecast starts after an assimilation window of
20 years, i.e. during a period of stable GL position for the
reference, the deterministic forecast leaves the stable posi-

tion with a delay of approximately 25 years, and a few mem-
bers remain stable for the entire simulation. On average be-
tween t = 13 and t = 32a, the thinning rate at the GL in the
reference simulation is approximately 0.6 m a−1, decreasing
to 0.25 m a−1 during the last 2 years. The total thinning be-
tween two analyses is then much lower than the noise in the

www.the-cryosphere.net/14/811/2020/ The Cryosphere, 14, 811–832, 2020



824 F. Gillet-Chaulet: Assimilation of surface observations

observed surface elevation and cannot be captured accurately
by the DA. In addition, at the GL, the difference between the
minimum and maximum bed elevation given by the ensemble
is approximately 20 m. This remaining uncertainty induces
a difference of more than 2 m for the floatation surface and
combined with the small thinning rates explains the delays in
the initiation of the instability.

Extending the assimilation window up to t = 35a when
the reference has switched in a fast retreat allows the forcing
of all the members in the unstable retreat. There is a very
good agreement between the reference and the deterministic
forecast up to t = 110a. This is also true for the ensemble,
and after that the spread is larger and the predicted GLs are
less retreated than for the reference.

These results can be summarised by looking at the dis-
tribution of the ensemble forecasts for the grounding line
position and volume above floatation (VAF) at t = 100a
in Fig. 12 where the relative VAF change is computed as
(VAFt=100−VAFref

t=0)/VAFref
t=0, with VAFref

t=0 the reference
VAF at t = 0. As expected there is a clear correlation be-
tween grounding line retreat and mass loss, with higher re-
treat leading to higher mass loss. The distributions are clearly
non-Gaussian; however, even without assimilation there is
already a mode close to the reference. The mode is more
pronounced, with more members close to the reference as
observations are assimilated. As discussed before, with no
assimilation or a short assimilation up to t = 20a before the
unstable retreat, the deterministic forecast can be very differ-
ent from the mode of the ensemble forecast. However they
are very similar if the assimilation is pursued up to t = 35a,
within 1% for the relative volume loss or 5 km for the GL
position.

5 Discussion

Here, we have tested an ensemble Kalman filter to assimi-
late annually observed surface velocities and surface eleva-
tion in a marine ice sheet model. Similar to previous studies,
we have shown that, in fast-flowing regions, it is possible
to accurately separate and recover both the basal topography
and basal friction from surface observations (Gudmundsson
and Raymond, 2008; Goldberg and Heimbach, 2013; Bonan
et al., 2014; Mosbeux et al., 2016). In view of our results, be-
cause the synthetic bed observations were already used once
to generate the initial ensemble, it seems unnecessary to as-
similate these same observations again during each analysis
as in Bonan et al. (2014).

Using a scheme that assimilates time-dependent observa-
tions provides a model state consistent with transient changes
and that can directly serve as an optimal initial condition to
run forecast simulations without the need of an additional
relaxation (Goldberg and Heimbach, 2013; Goldberg et al.,
2015). Interestingly the position of the grounding line is also
corrected during the analysis step, and the ensemble quickly

converges within a few grid nodes from the reference. In
addition, the ensemble framework naturally allows the es-
timation and propagation of the uncertainty of the estimated
parameters. Each assimilation of new data improves the re-
construction of the basal conditions (Fig. 3), and the first 10
years are very efficient in reducing error and the spread of
the model surface velocities and elevation (Fig. 9). Further-
more, we have shown that the remaining uncertainties in the
basal conditions do not significantly affect GL retreat rates
once the unstable retreat is engaged. However, they can lead
to considerable delays in the initiation of the instability. If
the assimilation is pursued up to the beginning of the insta-
bility (35 years in our experiment) all the members exhibit
the unstable retreat, and centennial-scale model projections
converge to the reference (Fig. 12).

Good results have been obtained with relatively small
ensembles (50 to 100 members) for a state vector of size
Nx ≈ 8400 and Ny = 8002 observations. Similar to Bonan
et al. (2014), we still see an improvement with a 30-member
ensemble but the performances to retrieve the basal condi-
tions are not as good. Running 2D plane view simulations
with such ensemble sizes is largely possible as demonstrated
by Ritz et al. (2015), who, using hybrid shallow ice–shallow
shelf model, have run a 200-year ensemble forecast of the
whole Antarctic Ice Sheet using 3000 members.

We have used inflation and localisation to stabilise the fil-
ter. The inflation giving the best results in Bonan et al. (2014)
(ρ = 0.87–1.02) is similar to the values tested in this study.
For the localisation radius r we have used values between
4 and 16 km, while they range from 80 to 120 km in Bonan
et al. (2014). While this seems counter-intuitive as the ve-
locities depend only on the local conditions with the shallow
ice approximation used by Bonan et al. (2014), in fact, be-
cause we use a different grid size (dx = 0.2km compared to
dx = 5km in Bonan et al., 2014), for each node we assimi-
late twice as many observations. Our results are in agreement
with the adaptive localisation radius proposed by Kirchgess-
ner et al. (2014). Using three different models, Kirchgessner
et al. (2014) have shown that good performances are obtained
when r is such that the effective local observation dimension,
defined as the sum of the weights attributed to each obser-
vation during the local assimilation, is equal to the ensemble
size. Here the observation weights decrease with the distance
to the local assimilation domain following a fifth-order poly-
nomial function mimicking a Gaussian function (Gaspari and
Cohn, 1999). The value r = 8km used for the 50-member
ensemble gives an effective observation dimension of 56. Fu-
ture studies should investigate if this result can be transposed
to realistic 2D simulations with unstructured meshes.

In the experiments presented above, we have used a depth-
integrated model for the force balance equations where GL
migration is implemented through a hydrostatic floatation
condition. This allows a full description of the ice topography
with only one prognostic variable. Adaptation of the frame-
work to a full-Stokes model requires minimum adaptations
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Figure 12. Ensemble forecast at t = 100a: (a)–(c) relative change of volume above floatation (VAF) and (bottom) GL position with (a, b) no
assimilation, (b, e) assimilation up to t = 20a and (c, f) assimilation up to t = 35a. The red circle correspond to the reference run and the
magenta square to the deterministic forecast.

as these models do not rely on the floatation condition and
solve a proper contact problem for the grounding line migra-
tion (Durand et al., 2009); this implies incorporating the two
prognostic free surfaces zb and zs in the state vector. These
models might be more sensitive to unbalanced geometries
that could result from the analyses, especially when locali-
sation is used (Cohn et al., 1998; Houtekamer and Mitchell,
2001). However, the ESTKF, as the ETKF, induces a mini-
mal transformation of the ensemble members and thus has
better chances to preserve balance (Nerger et al., 2012).

Before generalising such methods to real glacial systems,
several points must be taken into consideration. They are
independent of the DA method but they will eventually be
treated differently in a variational or in an ensemble frame-
work.

First, if the implementation is not an issue, the compu-
tational cost implied by running a full-Stokes model might
remain a limiting factor. Compared to the Stokes solution,
the SSA is known to overestimate the effects of bed topogra-
phy perturbations on the surface profile for wavelengths less
than a few ice thicknesses (Gudmundsson, 2008). How this
issue can affect the reconstruction of the basal properties has
never been quantified; however snapshot basal friction inver-
sions have shown that the solution is sensitive to the force
balance approximation (Morlighem et al., 2010). In addition,
the MISMIP experiments have shown that the GL position
and its response to a perturbation depend on the force bal-
ance solved by the models (Pattyn et al., 2012, 2013). In real

applications, the performance of DA can be improved by ex-
plicitly taking into account the model error. Several strate-
gies have been developed to account for this error, one ap-
proach with EnKFs being to use different versions of the
model for different ensemble members (Houtekamer et al.,
2009). Further studies could investigate the potential bene-
fits of using ensembles that combine several force balance
approximations.

Second, the quality of the analysis and the accuracy of the
error estimates depends on the observation error covariance
matrix R. It is then important to provide meaningful error es-
timates. Recent velocity maps provide an error estimate re-
ported as the 1σ value for each individual location (Moug-
inot et al., 2012; Joughin et al., 2018). In general, this value
agrees well with independent estimates; however care must
be taken when the maps result from a composite of differ-
ent sensors or different periods, and in general it might be
difficult to properly estimate R.

A review paper by Tandeo et al. (2020) illustrates the im-
pacts of badly calibrated observation and model error covari-
ance matrices in a sequential DA framework and discusses
available methods and challenges for their joint estimation.
For the question of the impact of systematic errors, i.e. bias,
either in the model or in the observations, and their correction
by augmenting the system state in variational and ensemble
DA, interested readers are referred to Dee (2005).

Third, the results depend on prior assumptions on the con-
trol variables and their variability, represented here by the
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initial ensemble. For the basal topography, current reference
maps provide local error estimates (Fretwell et al., 2013;
Morlighem et al., 2017); however they do not provide in-
formation about spatial correlations so that generating initial
ensembles with the correct statistics might be problematic.
In addition, the gridding can result in a loss of information
for some regions of dense measurements, or it can lead to
too smooth terrains in sparsely sampled areas. With the aim
of generating terrains that have the correct high-resolution
roughness, Graham et al. (2017) propose a synthetic 100 m
resolution Antarctic bed elevation that combines the refer-
ence topography of Bedmap2 (Fretwell et al., 2013) with an
unconditional simulation where the spatial correlation is fit-
ted from dense radar measurements. This method could be
used to generate initial ensembles but requires having access
to the initial high-resolution measurements. Generating ini-
tial ensembles for the basal friction might be more problem-
atic as there is in general no independent a priori information
about the magnitude and spatial variability of the basal fric-
tion. If there is a correlation between the basal drag and the
seismic observations of the bed conditions at a large scale, a
proper physical theory is still missing to quantitatively incor-
porate such information in the models (Kyrke-Smith et al.,
2017). It could be interesting to investigate how the existing
multi-model basal friction reconstructions, based on snap-
shot inversions, could be used to derive initial uncertainty
statistics and reduce the initial ensemble spread.

Finally, in our synthetic applications, we have not ac-
counted for all potential sources of uncertainty which are,
for example, as follows.

– The ice flow law. The ice viscosity depends on the
englacial temperature, which itself is a function of the
ice sheet history and the boundary forcing, including the
geothermal heat flux (e.g. Van Liefferinge and Pattyn,
2013). Several other processes also affect the ice vis-
cosity, including damage and strain-induced mechanical
anisotropy (e.g. Pimienta et al., 1987; Schulson and Du-
val, 2009; Borstad et al., 2013). For the stress exponent,
if the value n= 3 is used by most models, published
values ranges between 1 and 5 (e.g. Gillet-Chaulet et al.,
2011).

– The friction law. More and more direct or indirect evi-
dence shows that the friction under fast ice streams is at
least partially controlled by the presence of sediments,
leading to a Coulomb-type friction law (e.g. Tulaczyk
et al., 2000; Murray, 1997; Joughin et al., 2010; Gillet-
Chaulet et al., 2016). For hard beds, the development of
subglacial cavities also implies deviations for the clas-
sical Weertman friction law (Schoof, 2005; Gagliardini
et al., 2007).

– The density. The firn layer is not accounted for in most
models; however its depth and density affect the floata-
tion condition and thus the GL position (e.g. Griggs

and Bamber, 2011). Directly assimilating the GL po-
sition, using, for example, the moving mesh approach
developed by Bonan et al. (2017), would certainly be
beneficial in realistic applications to reduce the discrep-
ancy between the modelled and observed GL (Goldberg
et al., 2015).

– The external forcings from the atmosphere and the
ocean. Increasing mass loss rates from the ice sheets, in
a large portion, can be attributed to a response to oceanic
forcing, but multiple challenges remain for a proper as-
sessment of their magnitude (Joughin et al., 2012).

Realistic simulations with ice flow models cover a wide
range of spatial and temporal scales, and the relative impor-
tance of these uncertainties as well as their representation
in the models will certainly have to be evaluated partly on
a case-by-case basis, requiring the development of a robust
framework for a variety of applications.

6 Conclusions

Developing model initialisation strategies that properly re-
produce the ice sheet dynamical mass losses observed over
the last decades requires developing transient assimilation
frameworks that are able to account for the growing availabil-
ity of dense time series, especially from space observations.
Here, we presented a synthetic twin experiment demonstrat-
ing the possibility of calibrating a marine ice model using
an ensemble Kalman filter which requires fewer numerical
developments than variational methods.

Using resolutions and noise levels consistent with current
observing systems, good performances are obtained to re-
cover both the basal friction and basal topography with an
ensemble of at least 50 members. Localisation and inflation
have been tuned manually; however the results are consistent
over relatively wide ranges. Future studies should investigate
how these values can be transposed to realistic applications.
Nevertheless, there is an abundant and growing literature in
other geophysical fields to overcome problems that we might
be facing in future studies.

Once the GL enters an unstable region, retreat rates largely
depend on the basal conditions; thus using DA to reduce
the associated uncertainties largely increases the skill of
the model to predict rates and magnitude of GL retreat for
timescales relevant for sea level rise projections. In our sim-
plified application, the assimilation of the surface observa-
tions was sufficient to capture the GL migration during the
assimilation window, without explicitly assimilating the ob-
served position. However, for the GL to enter an irreversible
retreat, the thickness must reach a tipping point, i.e. the thick-
ness at the GL must reach floatation. This can seriously im-
pact the predictability of the system as, for small perturba-
tions, remaining uncertainties on the basal conditions can
lead to an uncertainty on the residence time of the GL on
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stabilisation points, which can be similar to the simulation
timescale. However, if the assimilation is pursued up to a
time when the glacier is engaged in unstable retreat, all the
members exhibit instability, and the spread of centennial-
scale model projections, in terms of volume and grounding
line position, is largely reduced.

Finally, we have discussed the main challenges to tackle
before generalising transient DA in ice sheet modelling. This
includes a better assessment of the uncertainties in the model
and in the observations used for the background and for the
assimilation.

Code availability. Elmer/Ice code is publicly available through
GitHub (https://github.com/ElmerCSC/elmerfem, last access: 25
June 2018, Gagliardini et al., 2013). PDAF is distributed under
the GNU General Public License, version 3, and is available at
http://pdaf.awi.de (last access: 25 June 2018; Nerger et al., 2005b).
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Appendix A: Notations

Table A1. Notations and values used in this study associated with the ice flow model.

Prognostic variables

H = zs− zb m Thickness
zs m top surface elevation
zb m bottom surface elevation

Diagnostic variable

u ma−1 horizontal velocity

Parameters

ab = 0.0 ma−1 basal melting
as = 0.5 ma−1 surface accumulation
b m bed elevation
B = 0.4 MPaa1/3 ice rigidity
C MPa m−1/3 a1/3 basal friction coefficient
m= 1/3 friction law exponent
n= 3 Glen’s creep exponent
ρi = 900 kgm−3 ice density
ρw = 1000 kgm−3 sea water density

Numerical parameters

dt = 510−3 a model time step
dx = 200 m mesh resolution

Table A2. Notations and values used in this study associated with the ensemble filter.

Variables

x = (zs,b,C) state vector
P covariance matrix

Stabilisation parameters

r m localisation radius
ρ forgetting factor

Sizes

Ne ensemble size
Nx state vector size
Ny observation vector size

Others

1t = 1 a time interval between two analyses
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