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INTRODUCTION	

This	 special	 issue	 focuses	 on	 some	 geometrical	 and	 topological	 aspects	 of	 the	 representation	 and	
formalisation	of	musical	structures	and	processes.	There	are	six	words	in	the	previous	sentence	which	have	
been	emphasized	since	they	could	work	as	explanatory	guidelines	for	the	present	issue.	More	generally,	
they	seem	to	offer	 to	 the	“working”	musicologist	and	music-theorist	some	conceptual	and	operational	
principles	 for	 approaching	 contemporary	 “mathemusical”	 research	 from	 a	 more	 philosophical	 and	
epistemological	perspective.	Shedding	some	light	to	this	double	underlying	dimension	may	constitute	a	
fruitful	exercise,	so	we	hope,	for	the	reader	of	the	Jour-	nal	of	Mathematics	and	Music	and	of	the	present	
issue	in	particular.	Let	us	start	with	geometry,	one	of	the	oldest	fields	of	mathematics	and	whose	history	
accompanied	the	discussions	on	the	relations	between	music	and	mathematics	since	the	time	of	Greek	
philosophy.	 Geometry	 has	 a	 central	 place	 in	 the	 Pythagorean	 tradition,	 and	 particularly	 in	 Plato’s	
philosophy,	which	is	well	expressed	by	the	famous	quotation	that	was	supposed	to	be	engraved	at	the	
door	of	the	Plato’s	Academy	in	Athens:	“Let	no	one	ignorant	of	geometry	enter.”	In	Plato’s	perspective,	
geometry	is	surely	far	from	what	it	should	be	according	to	its	etymological	meaning,	which	reduces	the	
scope	of	the	discipline	to	an	“earth	measure.”	Plato	himself	found	such	a	name	totally	ridiculous,	as	he	

says	in	the	Epinomis,	the	short	dialogue	that	serves	as	an	appendix	to	Plato’s	Laws.1	As	it	has	been	pointed	
out	by	several	scholars	and	commentators	of	Plato,	starting	from	the	great	and	influential	music	theorist	
Aristoxenus	of	Tarentum,	geometry	is	first	of	all	a	science	of	abstrac-	tion	enabling	to	transcend	the	level	
of	 sensible	 experience	 and	 reach	 the	world	of	 Ideas.	One	 is	 immediately	 reminded	of	 the	 experiment	
described	in	the	Meno,	where	the	slave	boy	discov-	ers	the	existence	of	truths	via	geometrical	thinking,	as	

in	the	case	of	doubling	the	surface	of	a	square.2	Geometry	is	therefore	intrinsically	linked	to	the	visual	way	
in	 which	 concepts	 are	 repre-	 sented	 and,	 eventually,	 drawn,	 as	 it	 is	 largely	 shown	 by	 Euclid	 in	 his	

Elements.3	The	influence	of	this	geometrical	thinking	goes	until	the	twentieth	century,	as	one	may	observe	
by	considering,	for	example,	David	Hilbert’s	debt	to	Euclid	as	documented	in	his	Grundlagen	der	Geometrie	
(1899).		

It	can	be	easily	shown	that	this	emphasis	on	the	axiomatization	of	geometry,	which	is	prevalent	in	Hilbert’s	
work,	has	a	direct	influence	in	the	way	in	which	twentieth	century	composers,	starting	from	Ernst	Krenek	

(1937),	approached	the	problem	of	the	theoretical	foundations	in	music	via	formalization.4	A	turning	point	
towards	 a	 full	 axiomatic	 thinking	 in	 geometry,	 with	 extremely	 significant	 musical	 consequences,	 is	
symbolized	 by	 the	 way	 in	 which	 geometry	 is	 progressively	 approached	 via	 an	 algebraic	 perspective.	
Starting	from	Felix	Klein’s	Erlangen	Program	(Klein	1893),	the	way	of	conceiving	the	geometry	of	a	space	
is	in	fact	intrinsically	linked	to	the	way	in	which	transformation	groups	act	on	such	a	space.	With	the	entry	
of	abstract	group	theory	into	play	we	assist	to	a	progressive	shift	from	the	purely	representational	nature	
of	geometrical	entities	 to	 their	 truly	operational	power	which	has	a	big	 influence	on	 the	way	 in	which	

music	 theorists	conceptualize	the	musical	phenomena.5	This	 little	historical	digression	may	offer	some	
elements	to	understand	the	complex	link	one	can	establish	between	the	geometrical	properties	of	musical	
structures	and	their	underlying	 formalization	which	accompanied	 the	evolution	of	mathematical	music	
theory	from	a	simply	representational	to	an	operational	discipline	capable	of	approaching	in	a	powerful	



way	the	dynamic	character	of	musical	processes.	Topology	–	 let	us	now	focus	on	 this	 term	–	precisely	
enters	the	picture	as	a	subsidiary	discipline	when	the	focus	on	musical	structures	is	substituted	or	at	least	
accompanied	 by	 a	 new	 attention	 of	 music	 theo-	 rists	 and	 analysts	 towards	 musical	 processes,	 i.e.	
theoretical	 constructions	 in	 which	 time	 plays	 a	 fundamental	 role.	 The	 extensive	 use	 of	 topological	
techniques	 in	 the	 mathematical	 modeling	 of	 musical	 structures	 and	 processes	 is	 a	 relatively	 new	
phenomenon,	 although	 one	may	 already	 find	many	 examples	 of	 genuine	 topological	 constructions	 in	
Guerino	 Mazzola’s	 Geometrie	 der	 Töne	 (1990).	 The	 foundational	 basis	 of	 the	 concept	 of	 “global	
compositions,”	 as	 opposed	 to	 the	 “local”	 ones	 (originally	 considered	 as	 finite	 non-empty	 subsets	 of	 a	
module	over	a	ring),	is	the	mathe-	matical	structure	of	Riemannian	manifolds	allowing	the	music	theorist	
to	make	use	of	several	topological	constructions.	The	reader	familiar	with	this	approach	in	mathematical	
music	theory	will	easily	recognize	some	traditional	visualizations	of	musical	structures,	such	as	the	Möbius	

strip6	and,	more	generally,	the	nerve	of	a	n-dimensional	simplicial	complex	as	representing	the	complexity	
of	the	specific	covering	that	the	analyst	will	associate	to	a	given	global	composition.	Interestingly,	there	is	
already	 in	this	approach	an	 interplay	between	geometry	and	combinatorial	 topology	which	shows	that	
there	 is	 a	 shift	 from	 the	 simple	 characterization	 of	 (static)	 musi-	 cal	 structures	 to	 (dynamic)	 musical	

processes,	such	as	modulation,	whose	properties	are	now	described	in	a	topological	way.7	More	recently,	
it	became	clear	to	music	theorists	that	some	of	most	popular	constructions	in	neo-Riemannian	and,	more	
generally,	 transformational	 music	 anal-	 ysis	 do	 intrinsically	 possess	 a	 topological	 structure.	 The	 most	
celebrated	 example	 is	 probably	 the	 Tonnetz,	 originally	 mostly	 studied	 from	 a	 graph-theoretical	 and	
algebraic	 perspective,	 and	 suc-	 cessively	 apprehended	 from	 a	 more	 topological	 way,	 enabling	 the	
complete	 characterization	 of	 their	 different	 instances	 (or	 Tonnetze)	 via	 the	 study	 of	 the	 associated	
algebraic	invariants,	such	as	Betti	numbers	(Bigo,	Giavitto,	and	Spicher	2011;	Catanzaro	2011;	Bigo	2013).	
This	interplay	between	geometry,	algebra	and	topology	provides	nowadays	a	better	understanding	of	the	
way	 in	which	 generalized	musical	 spaces	 can	 be	 represented	 and	 formalized	 from	 a	 very	 elegant	 and	

computationally	 powerful	 perspective.8	 Each	 of	 the	 three	 contributions	 of	 the	 present	 issue	 can	 be	
considered	as	offering	to	the	reader	a	specific	perspective	on	this	complex	interplay	starting	from	different	
but	intrinsically	linked	music-theoretical	problems.		

“Why	Topology?”	by	Dmitri	Tymoczko	makes	use	of	topological	techniques	to	formalize	voice	leadings	as	
paths	in	n-dimensional	geometric	spaces.	The	approach	is	an	extension	of	the	conceptual	constructions	
that	constitute	the	foundation	of	Tymoczko’s	geometrical	theory	of	music	as	presented	and	discussed	in	
details	 in	 his	 book	 A	 Geometry	 of	 Music	 (Tymoczko	 2011).	 Previous	 work	 by	 the	 author	 also	 uses	
topological	techniques	but	without	the	detailed	argumentation	for	the	value	of	topology	in	contemporary	

mathematics	and	music	research.9	Higher	dimensional	geometric	spaces	whose	points	are	generic	n-notes	
chords	are	orbifolds	in	a	technical	mathematical	sense,	i.e.	quotient	spaces	obtained	by	the	action	of	the	
permutation	(or	symmetric)	group	of	n!	elements	on	the	n-dimensional	torus	and	possess	therefore	non-
trivial	topological	properties.	The	present	paper	focuses	on	the	interpretation	of	voice-leading	properties	
via	 the	 fundamental	group	and	can	 therefore	offer	new	 insights	 to	 the	analyst	 to	 fully	understand	 the	
author’s	previous	music-theoretical	 constructions.	Moreover,	 it	 shows	 that	not	only	 voice	 leading	but,	
more	generally,	transformational	constructions	in	music	analysis	are	linked	to	the	fundamental	concept	of	
homotopy	equivalence,	which	again	puts	algebra	–	and	group	theory	in	particular	–	into	play.	Although	
homotopy	theory	has	become	very	popular	in	recent	years	thanks	to	Guerino	Mazzola’s	gesture	theory,	



the	approach	described	in	Tymoczko’s	paper	is	fundamen-	tally	different	since	it	provides	the	theoretical	
background	to	fully	understand	the	topological	properties	of	different	harmonic	spaces.		

While	Tymoczko’s	voice-leading	geometries	have	 led	to	many	significant	analytical	and	music-theoretic	
applications,	as	is	in	evidence	of	Geometry	of	Music,	to	some	extent	there	has	always	been	a	disconnect	
between	 the	higher	dimensional	orbifolds	defined	 in	Callender,	Quinn,	 and	Tymoczko	2008	and	music	
analysis	and	composition,	because	as	the	spaces	get	more	com-	plex	we	lose	the	benefit	of	direct	spatial	
intuition.	 In	 previous	 work	 (such	 as	 Tymoczko	 2011)	 spatial	 intuition	 has	 often	 been	 recovered	 by	
simplifying	 chord	 spaces	 to	 lattices	 on	 a	 limited	 number	 of	 chord-types,	 which	 renders	 their	 more	
interesting	 topological	 features	 irrelevant.	 In	 the	 present	 work,	 Tymoczko	 instead	 uses	 homotopic	
equivalence	to	simplify	the	spaces.	Remark-	ably,	he	is	able	to	reduce	these	topological	features	to	simple	
two-dimensional	 representations,	 making	 them	 easily	 surveyable	 and	 available	 to	 analytical	 intuition,	
regardless	of	the	chord	cardi-	nality	and	resulting	complexity	of	the	original	space.	He	introduces	two	kinds	
of	 simplifications:	one	 is	 the	circle	of	pitch-class	 sums,	which	has	 the	 topology	of	an	annulus	or	 circle,	
regardless	 of	 cardinality.	 The	 homotopy	 of	 this	 space	 corresponds	 to	 total	 voice-leading	 ascent	 and	
descent.	The	other	simplification	is	a	homotopic	classification	of	set-class	spaces	(which	factor	out	trans-	
position	or	transposition	or	inversion).	The	analytical	applications	in	Tymoczko’s	article	begin	to	reveal	the	
wealth	of	musical	 interest	 in	 the	 interactions	between	 features	of	 a	 voice	 leading	 that	we	usually	 are	
tempted	 to	 “reduce	 out,”	 such	 as	 voice	 crossings	 and	 transpositions	 along	 the	 chord.	 The	 article	 also	
introduces	 a	 principled	 generalization	 of	 neo-Riemannian	 transformations	 to	 any	 chord	 type,	 as	 voice	
leadings	to	its	inversions.		

The	 following	paper	by	 Jason	Yust,	 entitled	 “Generalized	Tonnetze	and	Zeitnetze,	 and	 the	Topology	of	
Music	Concepts,”	 also	 focuses	on	 the	 interplay	between	 the	 topological	 struc-	 ture	of	 the	 generalized	
Tonnetz	 seen	 as	 a	 n-dimensional	 simplicial	 complex	 and	 its	 possible	 graph-theoretical	 and	 geometric	
realizations.	The	notion	of	a	generalized	n-chord	Tonnetz	can	be	articulated	in	fact	at	different	levels	of	
abstraction,	 ranging	 from	 the	 traditional	 presentation	 as	 a	 lattice	 of	 chords	 relating	 by	 maximal	
intersection	to	more	sophisticated	representations,	embedding	this	structure	on	the	powerful	theory	of	
Fourier	 phase	 spaces.	 This	 further	 interpreta-	 tion	 adds	 a	 new	 subfield	 of	mathematics	 to	 the	 overall	
picture,	 also	 showing	 the	 natural	 bridges	 between	 geometry,	 algebra,	 and	 (mathematical)	 functional	
analysis.	 Many	 music-theoretical	 problems,	 from	 the	 construction	 of	 rhythmic	 tiling	 canons	 to	 the	

classification	 of	 homometric	musical	 structures,10	 have	 been	 shown	 to	 be	 deeply	 rooted	 into	 Fourier	
theory,	but	adequate	understanding	of	the	topological	implications	of	such	a	formalism	still	constitutes	an	
open	research	area	in	mathematics	and	music.	A	first	crucial	achievement	has	been	the	characterization	
of	the	geometrical	structure	of	generalized	Tonnetze	as	toroidal	representations	in	the	spaces	of	Fourier	
phases,	 as	 proposed	 by	 Emmanuel	 Amiot	 (2013)	 and	 further	 developed	 by	 Jason	 Yust	 in	 his	 critical	
discussion	on	the	relations	between	the	geometric	extensions	of	Generalized	Tonnetze	and	the	Fourier	
phase	Spaces	(Yust	2018).	The	present	article	pushes	the	previous	conclusions	further	by	focusing	on	the	
implications	of	geometrical	Tonnetze	interpreted	as	embedding	a	sim-	plicial	Tonnetze	in	some	geometric	
space.	Yust’s	article	complements	Tymoczko’s	in	showing	how	a	different	theoretical	emphasis,	on	shared	
pitch-class	content	between	chords	rather	than	the	distances	moved	by	voices,	leads	in	the	direction	of	
different	kinds	of	topologies.	Despite	the	different	mathematic	foundations	of	their	spaces	(Fourier	phase	
vs.	voice-leading	orbifold),	the	two	theories	arrive	at	surprisingly	similar	constructions	in	places,	with	some	



of	Yust’s	foldings	producing	spaces	topologically	equivalent	to	Tymoczko’s	pitch-class	sum	annuli.	Despite	
appear-	ances	however,	a	closer	examination	reveals	that	a	path	or	homotopy-class	of	paths	in	the	two	
kinds	of	space	actually	have	distinct	musical	meanings.	The	two	approaches	also	 lead	to	 inter-	estingly	
different	 generalizations	 of	 neo-Riemannian	 transformations,	 with	 Tymoczko	 focusing	 on	 the	 idea	 of	
inversional	voice	leadings	while	Yust	emphasizes	maximal	intersection.		

There	is	much	music-theoretical	and	mathematical	potential	in	using	this	new	geometric	approach,	as	the	
reader	will	see	by	following	Yust’s	systematic	presentation	of	a	panoply	of	gen-	erated	collections.	These	
include	 dyadic	 Tonnetze	 (that	 reduce	 to	 the	 traditional	 chromatic	 and	 fifths-generated	 circular	
representations	of	the	equal-tempered	system),	trichordal	Tonnetze	and	higher-dimensional	Tonnetze.	All	
these	geometric	structures	are	first	defined	in	toroidal	spaces	before	applying	higher-dimensional	foldings	
which	shed	a	new	light	on	different	n-chord	gen-	erated	spaces.	To	this	family	belong,	for	example,	the	
Tonnetz	of	chromatic	tetrachords	and	of	different	4-note	chords	and	also	Tonnetze	of	ninth	chords,	which	
are	 rare	 in	 the	 literature.	Spe-	 cial	 attention	 is	given	 to	Tonnetze	of	diminished	seventh	chords,	which	
enables	the	author	to	stress	the	fact	that	an	object	that	is	trivial	from	a	graph-theoretical	and	simplicial	
perspective	can	still	be	interesting	from	a	geometrical	and	music-theoretical	perspective.	In	addition	to	its	
elegant	and	powerful	character,	taking	phase	spaces	as	a	geometrical	realization	of	Tonnetze	has	dramatic	
consequences	in	the	way	in	which	traditional	neo-Riemannian	harmonic	constructions	can	be	generalized	
and	applied	to	other	musical	parameters,	and	in	particular	to	rhythm.	Build-	ing	bridges	between	harmonic	
and	rhythmic	spaces	has	a	long	tradition	in	music	theory	and	composition,	as	the	history	of	serialism	clearly	
shows.	Many	other	attempts	at	providing	a	gen-	eral	theory	on	the	structural	relations	between	harmonic	
and	 rhythmic	 domains	 have	marked	 the	 development	 of	mathematical	music	 theory,	 from	Mazzola’s	
formalization	 of	 the	 two	 domains	 as	 local/global	 compositions	 based	 on	 the	 same	underlying	module	
structure	 to	 more	 perceptual-	 based	 approaches,	 such	 as	 Jeff	 Pressing’s	 foundational	 studies	 on	 the	
cognitive	 isomorphism	 between	 pitch	 and	 rhythm	 in	 ethnomusicology	 (Pressing	 1983).	 In	 defining	 a	
“Zeitnetz”	in	anal-	ogy	with	the	Tonnetz,	the	paper	also	suggests	new	very	interesting	connections	between	
research	 in	mathematical	music	 theory	and	problems	 raised	by	scholars	working	on	different	areas,	 in	
particular	cognitive	and	empirical	musicology.		

The	final	paper	by	Mattia	G.	Bergomi	and	Adriano	Baratè,	entitled	“Homological	persistence	in	time	series:	
an	application	to	music	classification”,	provides	a	third	perspective	on	the	inter-	play	between	geometry,	
topology	and	algebra	focusing	on	the	problem	of	automatic	stylistic	music	analysis.	Based	on	persistence	
homology	 as	 a	 specific	 domain	 in	 the	 field	 of	 topological	 data	 analysis,	 the	 paper	 shows	 not	 only	 the	
possibility	but,	for	some	extend,	the	necessity	of	establishing	a	fruitful	dialogue	between	two	apparently	
orthogonal	 research	 tradition	 in	 the	 field	 of	 application	 of	 mathematical	 models	 to	 music	 analysis:	
mathematical	 music	 theory	 and	 music	 information	 research	 (MIR).	 Despite	 efforts	 to	 bring	 together	
researchers	belonging	to	the	Society	for	Mathematics	and	Computation	in	Music	with	those	working	in	the	
area	of	area	of	the	Society	for	Music	Information	Retrieval,	 it	 is	not	difficult	to	recognize	that	there	are	
deep	methodologi-	cal	and	theoretical	differences	between	these	two	major	orientations	in	the	field	of	

computational	musicology.11	The	paper	by	Bergomi	and	Baratè	begins	to	fill	the	gap	by	applying	a	panoply	
of	 topological,	 geometrical,	 and	 algebraic	 techniques	 to	 the	 domain	 of	 automatic	 stylistic	 music	
classification.	Providing	models	and	tools	for	the	automatic	stylistic	classification	is	probably	one	of	the	
most	active	areas	in	the	field	of	music	information	research.	Moreover,	the	authors’	focus	on	time	series	



suggests	that	topology	not	only	applies	to	the	formalization	of	musical	struc-	tures	but	clearly	deals	with	
the	modeling	of	musical	processes	(or,	what	they	call	“time-varying	systems”).	Using	persistence	homology	
as	the	main	conceptual	and	theoretical	framework	for	approaching	style	analysis	is	a	relatively	recent	and	
very	promising	approach.	The	approach	orig-	 inates	 in	one	of	 the	authors’	dissertation	 (Bergomi	2015)	
which	gave	rise	to	different	research	directions	exploring	the	interplay	between	geometry,	topology,	and,	

more	 recently,	 category	 the-	 ory.12	 The	 present	 paper	 clearly	 shows	 the	 interplay	 between	 static	
topological	 representations	 of	 musical	 structures	 and	 dynamic	 geometric	 formalizations	 of	 these	
topological	 features.	 In	 the	 former	 case,	 the	 authors	use	persistent	homology	 as	 the	main	 topological	
framework	to	represent	the	inner	structure	of	musical	object	via	a	collection	of	persistent	diagrams.	These	
static	 repre-	 sentations	 are	 then	 studied	 dynamically	 by	 formalizing	 their	 temporal	 evolutions	 as	 time	
series	 that	 can	be	 compared	 through	dynamic	 time	warping.	 This	 very	 rich	mixture	of	 topological	 and	
geometrical	 techniques	 in	 the	 representation	 and	 formalization	 of	musical	 structures	 and	pro-	 cesses,	
together	with	their	implementation	in	computer-aided	analytical	systems,	also	enable	the	authors	to	offer	
a	new	and	complementary	computational	perspective	on	the	generalized	Tonnetz	with	respect	to	the	one	
presented	 in	 the	 first	 two	articles.	 It	also	starts	with	 the	same	simplicial	complex	 interpretation	of	 the	
Tonnetz	 as	 described	 in	 Yust’s	 article,	 but	 instead	 of	 focusing	 on	 their	 subcomplexes	 generated	 by	 a	
sequence	of	pitch	classes	(as	extensively	studied	in	Bigo	2013	and	Bigo	et	al.	2013)	it	proposes	to	take	into	
account	additional	music	information	in	order	to	break	the	isotropic	character	of	the	simplicial	complex.	
The	 new	 geometric	 space	 in	which	musi-	 cal	 structures	 and	 processes	 are	 represented	 is	 therefore	 a	
deformed	 Tonnetz,	 i.e.	 a	 non-isotropic	 Tonnetz	 exhibiting	 variable	 geometric	 features	 which	 can	 be	
retrieved	via	ad-hoc	filtration	func-	tions.	This	enables	the	authors	to	approach	automatic	stylistic	music	
classification	in	a	geometric	structural	way,	which	is	very	original	in	the	field	of	music	information	research,	
where	statistics	and	machine	learning	constitute	the	main	theoretical	framework	for	retrieval	purposes.	
The	tests	that	have	been	performed	by	the	author	on	different	data	sets,	and	which	are	discussed	in	the	
final	part	of	the	article,	show	very	promising	results	that	shed	new	lights	on	the	nature	of	musical	style.		

We	hope	that	this	short	introduction	provides	the	reader	with	enough	elements	to	appreciate	not	only	the	
singular	character	of	each	of	the	three	papers	published	in	this	special	 issue	but	their	deep	and	fruitful	
intersections.	We	 insisted	 several	 times	on	 the	necessity	 of	 building	bridges	 between	different	music-
theoretical	and	computational	approaches;	but	before	establishing	connections	between	research	groups	
having	different	aims	and	methodological	 criteria,	 it	 is	 important	 to	 reinforce	 the	 synergies	within	 the	
members	of	the	same	community.	Research	carried	out	by	members	of	the	Society	for	Mathematics	and	
Computation	in	Music	has	spread	in	a	multitude	of	different	directions,	as	the	readers	of	our	Journal	can	
easily	 see.	 Whereas	 each	 of	 the	 three	 contributions	 offers	 distinct	 perspectives	 on	 the	 same	 music-
theoretical	constructions,	all	of	them	together	provide	a	comprehensive	picture	of	the	interplay	between	
geometry	and	topology	which	is	surely	more	than	the	sum	of	the	three	local	perspectives.	Probably	the	
time	 for	 a	 synthetic	 view	on	 all	 these	 different	 approaches	 has	 not	 yet	 come,	 but	 the	 reader	 has	 the	
opportunity	to	build	his	or	her	own	conceptual	bridges	between	geometry	and	topology	and	their	mutual	
contribution	to	music	representation	and	formalization.		
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NOTES	

1	This	and	other	very	 interesting	aspects	of	the	role	of	geometry	 in	Plato’s	dialogues	are	developed	by	
Athanase	Papadopoulos	 in	his	 forthcoming	essay	devoted	to	the	relation	between	music,	mathematics	
and	astronomy	starting	from	Plato’s	Timaeus	(Papadopoulos	2020).		

2	There	are	 several	editions	available	of	Plato’s	dialogues,	 including	 the	 two	mentioned	ones.	See,	 for	
example,	Plato’s	collected	work	edited	by	John	M.	Cooper	and	Douglas	S.	Hutchinson	(Plato	1997).		

3	 The	 thirteen	books	of	 Euclid’s	Elements	are	 available	 online	 at	 Clay	Mathematics	 Institute	Historical	
Archive	(https://www.claymath.org/library/historical/euclid/)		

4	 See	 Andreatta	 (2003)	 for	 a	 first	 attempt	 at	 reconstructing	 this	 legacy	 from	 both	 an	 European	 and	
American	perspective.		

5	This	dialectical	principle	between	 the	objectal	and	operational	nature	of	 the	 reality	has	been	deeply	
studied	by	the	French	philosopher	and	epistemologist	Gilles-Gaston	Granger	who	took	this	duality	as	the	
foundational	basis	for	the	very	notion	of	“concept”	in	philosophy	(Granger	1947/1994).		

6	Which	the	author	also	calls	“Harmonisches	Band”	to	emphasize	its	truly	music-theoretical	origin,	that	he	
bases	on	Arnold	Schoenberg’s	writing	on	the	theory	of	harmony	(Schoenberg	1911).		

7	There	are	other	examples	that	could	be	considered	as	genuinely	“topological”	within	the	same	approach	
in	mathemat-	 ical	music	 theory.	We	only	mention	two	of	 them,	both	dealing	with	 the	 formalization	of	
musical	motifs	as	combinatorial	and	topological	structures:	Netske	(2004)	and	Buteau	and	Mazzola	(2008).		

8	We	could	also	add	to	the	picture	the	categorical	perspective	which	is	intrinsically	linked	to	the	interplay	
between	geometry	and	algebra	and	which	can	also	shed	some	new	light	on	existing	topological	approaches	
not	only	in	music	the-	ory	and	analysis	but	also	in	performance	studied	like	in	the	case	of	a	category	and	
topos-based	theory	of	musical	gestures.	See	in	particular	the	third	volume	of	the	revised	version	of	Topos	
of	 Music	 (Mazzola	 2017).	 The	 reader	 who	 might	 be	 interested	 in	 going	 more	 deeply	 into	 some	
philosophical	 and	 epistemological	 aspects	 of	 the	 categorical	 perspectives	 on	 the	 interplay	 between	
geometry,	algebra,	and	topology,	will	find	a	good	starting	point	in	Jean-Pierre	Marquis’	monograph	From	
a	Geometrical	Point	of	View	(Marquis	2009).		

9	 See,	 in	 particular,	 Callender,	 Quinn,	 and	 Tymoczko	 (2008)	 for	 a	 more	 detailed	 presentation	 of	 the	
technical	aspects	of	a	geometrical	approach	in	music	theory,	also	including	the	introduction	of	orbifold	
structures	into	music	formalization.		

10	Summarized	in	Amiot	(2016).		

11	As	pointed	out	by	Anja	Volk	and	Aline	Honingh	in	their	introduction	of	the	special	issue	of	the	Journal	
of	Mathe-	matics	and	Music	devoted	to	“Mathematical	and	computational	approaches	to	music”	(Volk	and	
Honingh	2012),	this	gap	was	already	acknowledged	by	Thomas	Noll	and	Robert	Peck	in	the	first	issue	of	
the	Journal	of	Mathematics	and	Music	in	2007	(Noll	and	Peck	2007).		



12	See,	in	particular,	Bergomi,	Baratè,	and	Di	Fabio	(2016)	for	a	topological	perspective	and	Bergomi	et	al.	
(2019)	for	the	first	attempts	at	going	beyond	a	topological	approach	in	the	study	of	a	category	theory-
based	 persistent	 homol-	 ogy.	 Some	 extensions	 of	 the	 original	 framework	 have	 also	 been	 intensively	
studied	 within	 the	 SMIR	 (Structural	 Music	 Information	 Research)	 project.	 This	 research	 project	 is	 a	
permanent	 interdisciplinary	 research	 axis	 supported	 by	 CNRS	 and	 led	 by	 Moreno	 Andreatta	 at	 the	
University	of	Strasbourg	/	IRMA	(Institut	de	Recherche	Mathématique	Avancée),	in	a	formal	collaboration	
with	 IRCAM.	 Research	 topics	 include	 Mathematical	 Morphology,	 Formal	 Concept	 Analysis,	 Persistent	
Homology	and	automatic	classification	of	musical	styles,	Category	theory	and	transformational	(computer-	
aided)	music	analysis	as	well	as	the	study	of	musically-driven	open	conjectures	in	mathematics	and	the	
epistemological	and	cognitive	implications	of	contemporary	mathemusical	research.	See	Andreatta	(2018)	
for	a	short	overview	of	the	different	research	topics	included	in	the	SMIR	project.		

	

	


