
HAL Id: hal-03031133
https://hal.science/hal-03031133v1

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wireless Mesh Network Monitoring: Design,
Implementation and Experiments

Francoise Sailhan, Liam Fallon, Karl Quinn, Paddy Farell, Sarah Collins,
Daryl Parker, Samir Ghamri-Doudane, Yangcheng Huang

To cite this version:
Francoise Sailhan, Liam Fallon, Karl Quinn, Paddy Farell, Sarah Collins, et al.. Wireless Mesh
Network Monitoring: Design, Implementation and Experiments. IEEE Workshop on Distributed
Autonomous Network Management Systems (DANMS), Oct 2007, Washington, DC, United States.
�hal-03031133�

https://hal.science/hal-03031133v1
https://hal.archives-ouvertes.fr


Wireless Mesh Network Monitoring: Design, Implementation and Experiments

Françoise Sailhan1,2, Liam Fallon1, Karl Quinn1, Paddy Farrell1, Sandra Collins1,

Daryl Parker1, Samir Ghamri-Doudane1,3, Yangcheng Huang1

1 Ericsson Ireland Research Center, LM Ericsson Ltd,

Cornamaddy road, Athlone, Co. Westmeath, Ireland.
2 LIFC, University of Franche Comté,

Centre de Développement Multimédia, 1 cours Leprince-Ringuet 25201 Montbéliard, France.
3 LIP6, Pierre et Marie Curie University, 8 rue du capitaine Scott 75015 Paris, France.

2 sailhan@ieee.org, 1 {FirstName.Surname}@ericsson.com, 3 samir.ghamri-doudane@lip6.fr

Abstract

Mesh networks conveniently complement infrastructure-

based networks, allowing devices to spontaneously form a

network and connect with other networks. However, effec-

tive service provisioning requires a network monitoring so-

lution with adequate support for topology data dissemination

and diagnosis, due to the underlying network dynamics and

the absence of pre-existing network infrastructure. In ad-

dition, monitoring systems have to face a number of chal-

lenges relating to autonomy, robustness and scalability. To

this end, we have created a self-organised management over-

lay that homogeneously and dynamically organises devices

into a cluster-based hierarchy on which monitored data is dis-

seminated. Scalability of the monitoring system is achieved

through the minimisation of the generated traffic, as a result

of the optimised design. We have implemented the proposed

monitoring system and evaluated through experiments the re-

sulting performance.

1 Introduction

In the last decade, mesh networks have been drawing con-
siderable attention from operators and service providers
due to their potential for extending the coverage of pub-
lic hot-spots, corporate buildings or large-scale urban areas;
enabling savings on cabling, deployment and maintenance
costs. In this case, mesh networks represent a continua-
tion of the fixed/wireless networking infrastructure (Core
and Radio Access Network), with users being expected to
demand similar services, e.g., browsing, email, multimedia
computing, collaborative networking applications. From a
network management perspective, the challenge related to
the deployment of mesh networks lies in providing effective
service provisioning despite the unreliability caused by un-
predictable addition, failure or removal of Network Elements
(NEs), and also network merging or partitioning. This re-
quires provision of adequate support for topology monitor-
ing so as to enable applications, and/or network adminis-
trators, to react in a timely way to any topology change.
Note that network monitoring is not restricted to this us-
age. On the contrary, network monitoring may also be used

for (i) providing statistics to pinpoint the sources of net-
work failure, (ii) verifying if the strategies adopted by (rout-
ing) protocols, applications or middleware perform well, and
(iii) locating potential bottlenecks so as to redimension the
network. Traditional solutions for monitoring wire-line net-
works provide poor performance in mesh networks due to
several reasons. First, unlike wired network, wireless mesh
networks are characterised by the absence of underlying in-
frastructure; the network being maintained by the combined
effort of the constituent hosts. Second, these hosts often op-
erate under severe constraints such as limited bandwidth for
example. Third, mesh networks experience significant signal
quality fluctuation caused by unreliable physical medium,
obstacles, interferences, hidden hosts and some varying con-
ditions in the environment. To deal with the above limi-
tations, we propose a low overhead monitoring architecture
specifically customised for mesh networks. The key idea be-
hind our approach is to automatically organise all nodes into
a hierarchy of clusters dedicated to the delivery of monitor-
ing data, and to dynamically and autonomically reconfigure
the cluster-based structure in the presence of network dy-
namics (e.g., node failures). The rationale for introducing
this novel self-configurable cluster-based monitoring system
is twofold. First, this monitoring system does not necessitate
any pre-existing network infrastructure; instead it is auto-
matically deployed and requires minimal human interven-
tion. Second, the adopted cluster-based hierarchical model
for collecting data is both appropriate and message efficient
since intermediate levels of the hierarchy can conveniently
collate data (possibly producing a digest) before forwarding
it to upper layers in the hierarchy. To achieve high availabil-
ity and graceful degradation, we distribute the monitoring
system functionality in a scalable way; nodes dynamically
cooperate and form a monitoring overlay which adapts to
the underlying network characteristics. In addition to the
above, the monitoring requirements are complemented with
a lightweight detection and diagnosis scheme which collects
information related to the local network topology so as to
keep to a minimum the traffic generated whilst also requir-
ing minimal memory and computational capabilities. We
further build our monitoring system upon an event notifi-
cation service which supports an asynchronous one-to-one,

1



one-to-many and many-to-many interaction model, which
optimises the notification and monitoring system for inter-
connecting and monitoring the loosely-coupled components
which form mesh networks. We have both implemented the
proposed monitoring system and demonstrated the robust-
ness and scalability of our system through experiments. This
work is an important and novel component in designing auto-
nomic network management systems which reduce network
operators’ and service providers’ OPEX (operating expen-
diture). The reminder of this paper is organised as follows.
We first give an overview of related work (§ 2). We then in-
troduce our monitoring architecture in more detail (§ 3) and
demonstrate and evaluate its performance (§ 4). Finally, we
conclude this paper with a summary of our results along
with directions for future work (§ 5).

2. Related Work

Network monitoring includes 2 main steps, consisting of:

· a measurement phase, which lies in evaluating the state
of NEs along with their performances,

· a gathering phase, which corresponds to the collection
of the measurement data with the intended purpose of
inferring the state of the overall network.

Several design choices differentiate network monitoring sys-
tems with regard to the two above phases. During the gath-
ering phase, they refer to the behaviour (proactive versus re-
active) and the organisation (centralised versus distributed)
whereas during the measurement phase, they relate to the
swiftness (active versus passive), and the type of communi-
cation adopted (broadcast versus unicast). In the following,
we describe the above approaches in turn. With proactive
monitoring, the system actively collects and analyses net-
work states to detect past events and predict future events
so as to maintain network performance. Typically, informa-
tion is collected on a regular basis, providing a partial or
complete picture of the network. This is especially impor-
tant for time-critical traffic. With reactive monitoring, the
system collects information relating to the network states
on-demand, i.e., only when it is requested. A particular cat-
egory of reactive system refers to event driven monitoring
systems whereby data is emitted when an event of interest
occurs; information is then transmitted typically in a sum-
marised format. Due to their complementary nature, proac-
tive and reactive monitoring system should not be seen as
competitive. Network monitoring systems can also be clas-
sified according to the network organisation: centralised or
distributed. A centralised model is characterised by a unique
data collecting point which gathers all the information from
a set of agents limited to the role of dumb data collector.
Due to the concentration of data processing and traffic on
a single entity, the monitoring system scales poorly. In con-
trast, distributed monitoring systems are typically organised
into a hierarchy (a multi-layer pyramid) comprising top-level
and mid-level managers as well as monitoring agents at the
bottom layers. Such top-down delegation improves the scal-
ability of the monitoring system and may be enriched using

vertical delegation which involves the cooperation between
nodes located at the same level of the hierarchy. An alterna-
tive approach of handling network monitoring is built upon
mobile code agents. However, this involves a non trivial
overhead on routers [10].

Network measurements may be categorised according to
their behaviour which is either active or passive, and
broadcast- or unicast-based. Passive measurement [2, 5] con-
sists of analysing the network traffic by capturing and exam-
ining individual packets passing through the monitored NE,
allowing for fine-grained operations such as deep packet in-
spections. In contrast, active measurement [8, 6] involves
the injection of probe packets into the network. This re-
quires active participation from all actors in the network
and therefore can be used to monitor network sanity (i.e.
the presence/absence of a resource and its behaviour can
be detected regardless if this resource is used). Active and
passive monitoring have distinct advantages and drawbacks.
Whereas active monitoring causes competition between ap-
plication traffic and measurement traffic, passive monitoring
avoids the problem of contention and also avoids using stale
data. On the other hand, contrary to passive monitoring, ac-
tive monitoring improves fault tolerance, incurs minimal de-
lays in obtaining measured data, and has a global relevance
in the sense that it is independent of specific applications.

3 Proposed Monitoring Architecture

We organise the network nodes into a cluster-based hier-
archical structure which is then used to implicitly deliver
monitoring information; a cluster head being a node that
is elected to coordinate and publish information relating to
the topology of the cluster(s) and cluster elements that are
under its supervision and to the neighbouring cluster heads.
This approach keeps to a minimum the information dissem-
inated across the network. The basic building block of the
Monitoring Architecture is a Topology controller (TC). A
TC corresponds to a cluster head which is responsible for
building and maintaining a local view of its cluster(s) and
the logical connections between itself and the neighbouring
cluster heads. A TC further acts as a mediation point and
may also aggregate and correlate data for the cluster. TCs
co-operate with each other to build and maintain the net-
work topology (i.e., the entire network, or a particular level
or a sub-tree of the topology). A full topology consists of
an aggregation of all local topology information for the TCs
in that topology. Apart from monitoring, our platform is
also required to support real time queries related to network
topology. The monitoring service gathers measurement in-
formation from all, individual, or even components of NEs.
When the service on a NE receives a request for informa-
tion, it passes the request to all its subordinate nodes in
parallel. Each subordinate node, in turn, passes the request
down the tree until the bottom of the tree is reached. The
data is then read by each node and passed up to the supe-
rior nodes where it is aggregated and again passed upwards
until the top of the tree is reached. Users can specify a
scope and filter on a topology request to limit the amount
of data returned. Users of a topology such as an external

2



system (e.g. a network management system or a particular
application) may register for topological events. Notification
subscriptions may vary in scope from an entire topology, to
a sub-tree of a topology, or a single NE.

In order to monitor the network, each node holds 4 main ser-
vices (Figure 1): a measurement (3.2), directory (3.3), event
notification (3.4) and grouping (3.5) service. The measure-
ment service gathers measurements (i.e., information relat-
ing to the topology) which are archived by the directory ser-
vice. The grouping service organises the NEs in order to col-
lect monitoring information; the event notification service is
used to support the communication inherent to the grouping
or monitoring of the nodes. Before delving into the design
details of the above services, we firstly need to introduce the
underlying network environment which we presuppose.

3.1 Network Architecture

We consider a mesh network whereby nodes are stationary
and are connected with each other by multi-hop wireless
links, as enabled by the Ieee 802.11 technologies. Each node
in the network operates as a router, forwarding each others’
data packets; with the discovery and the maintenance of the
routes being handled by the OLSR routing protocol [3, 4].
The mesh network is attached to a wide area network via

one or more on-line gateways which correspond to a node
equipped with several radio interfaces. Apart from providing
access to a WAN, gateways are expected to provide special
configuration capabilities relating to the IP host’s configu-
ration (e.g., allocating unicast, broadcast and multicast ad-
dress), and domain name resolution (mapping from address
to names and vice versa). These functionalities are offered
by a so-called zero-conf protocol, which generally provides a
user-configurable network infrastructure. In addition to the
above, a gateway should act as a Foreign Agent, implement-
ing mobile IP functionalities so as to support user’s macro-
mobility. Further, in order to accommodate user’s micro-
mobility, we leverage the multi-hop communication facilities
(multi-hop routing and forwarding techniques as enabled by
the OLSR routing protocol), which remove radio coverage
limitation. However, instability of the mesh network topol-
ogy may lead users to experience significant quality fluctua-
tion. This calls for a solution which adequately measures and
monitors topology changes, enabling diagnosis and repair.

3.2 Measurement gathering

We identify two basic mechanisms to monitor mesh networks
and describe network changes. The first one stems from re-
lying on the SNMP-inherited MIB [1, 9] and traps mech-
anism whereas the second relies on listening to the OLSR

traffic. Recall that OLSR is a link state protocol optimised
to operate in mesh network and that derives from OSPF

[7]. Therefore we take the second approach, following the
recommendations presented in [10], which showed the su-
periority, in term of reliability and robustness, of passively
listening to the link state advertisements and updates, which
are propagated by OSPF.

Remembering that the OLSR protocol :

Figure 1: Host Architecture

· represents the topology as a graph,

· defines the concept of multipoint relays (MPR) as a set
of selected nodes; those nodes forwarding link state in-
formation1 intended for diffusion into the entire network
on behalf of the other nodes.

Therefore, we model topology dynamics as a sequence of
changes to the underlying OLSR graph, wherein a change
represents an addition/removal of a vertice(s)/edge(s) to this
graph. A device is treated as a vertex; the backbone nodes,
i.e., the nodes characterised by a high connectivity degree,
designating MPRs. A link between two devices is identified
as an edge. In order to reconstruct the routing table of any
given set of routers at a given point of time, the measurement
module communicates with the OLSR protocol to receive
updates on the network topology, with the directory service
archiving the communicated information.

3.3 Directory Service

The directory service aims to (i) archive information that
has been collected relating to nodes and (ii) map nodes with
their corresponding information structure, e.g., role, capabil-
ities. The directory service further allows nodes to be looked
up using a graphical interface. In order to allow an efficient
lookup, each node is characterised by a permanent identifier
that can trace each host lifecycle. This unique identifier is
attributed either by a network administrator or generated
using the MAC addresses, as layer 2 addresses are known to
be globally unique and readily available in devices of interest.
This prevents any inconvenience caused by the plausible re-
attribution of an IP address by the zeroconf protocol due to
the addition and removal of hosts, or the re-arrangement of
network segments. In addition to its identifier, each node is

1Link state information are limited to the 1-hop away nodes how-
ever, additional available link state information may be possibly
utilised for redundancy purpose.

3



characterised by its role (e.g., bridge, gateway, access point),
capabilities, location (expressed as a number of hops), and
up-time. A (management) user may rely on the directory
service to obtain a snapshot of the topology enriched by
the above information concerning the nodes. The directory
service also provides a management user the ability to do
historical analysis. This allows determination of the end-to-
end paths in use within the OLSR domain at any given time,
and determination of how those paths change in response to
network events within a specified period of time.

3.4 Event Notification

The main reason that motivated our choice for an event-
based communication mechanism is the asynchronous in-
teraction model promoted by an event system, which ren-
ders these latter particularly suitable for interconnecting the
loosely-coupled monitoring components that form a mesh
network. Our event system derives from the well known
publish/subscribe paradigm, in which:

· consumers express their monitoring demands to produc-
ers during a subscription process,

· producers transfer to subscribers the description of any
event that has been triggered locally.

This service handles event notification (hereafter simply re-
ferred to as notification) internally between the components
deployed on the host in an asynchronous manner with no
guarantee on the notification ordering. The subscription

Figure 2: Event dispatcher using thread pool

and notification format derives from the Java event model2;
any state associated with an event notification being encap-
sulated in a java object. As described in Figure 2, event
notification is organised around an event notification queue
manipulated by an event dispatcher. More precisely, this
queue is populated with the produced notifications; each no-
tification being extracted from that queue by the dispatcher
with the intended purpose of notifying the subscribed Java-
technology listeners. During the design phase, our main con-
sideration was to ensure a thread safe queue, as the producer
may be adding events from multiple threads. Our initial ap-
proach consisted of providing a single dispatch thread. How-
ever, this requires an event consumer to guarantee that the
callback function completes as those functions are running in
the same dispatcher thread. If the callback method blocks,
then the dispatcher is blocked. Our improved mechanism
which alleviates the chance of deadlocking and enables the
support of a continuous flow of communication, lies in im-
plementing the dispatcher as a pool of threads that han-
dle events in a parallel manner. Applications or services

2http://java.sun.com/j2se/1.3/docs/guide/awt/designspec/
events.html

that are using the notification service have to implement
some event handlers and subscribe to the notification service.
Our event notification service also handles notifications in a
distributed way, i.e., between remote notification services.
From a communication point of view, our distributed event
notification consists of exchanging notifications and control
messages (i.e., subscriptions and un-subscriptions) between
producers and subscribers through a collection of interme-
diate routers. A router is a device which holds the notifi-
cation service. The notification system maintains consistent
connection with adjacent routers (1-hop away nodes); these
routers constituting the potential candidates for forwarding
notifications. In practice, different way of communicating -
one-to-one, one-to-many many-to-many3 and reliable versus
unreliable - may be selected by an event listener for noti-
fication depending on the requirements for a certain event.
For the purpose of forwarding selectively notifications, each
router holds a repository which encompasses a set of the con-
sumer’s subscriptions. This repository is also used to filter
notification, i.e., to define if there exists a consumer that has
subscribed for this notification.

3.5 Grouping

The grouping service on a NE cooperates with the grouping
service on other NEs to build a topological structure made
up of hierarchical clusters composed of NEs. Clusters are
formed as follows. In order to guarantee a loop-free hierar-
chical structure, a NE in a level i cluster (with i ∈ [0, n], n

referring to the upper-bound of the number of layers) is the
cluster head from a level i − 1 cluster. NEs in a level i − 1
cluster elect a cluster head which represents the level i − 1
cluster in the level i cluster. The hierarchy is self-configuring
and re-forms dynamically and seamlessly whenever NEs are
added, moved, or removed or if any of the parameters (e.g.,
QOS parameter or location) that influence it are changed
during network operation. The mechanisms for the forma-
tion and supervision of clusters, along with the election of
cluster heads are detailed below.

Cluster formation Cluster formation is triggered by
the addition of a new node at any time. When a node
starts-up, the node waits for a parameterised random time
period4 and then sends a (multicast or broadcast) cluster
head query. This query is sent to the neighbouring nodes,
i.e., to the j-hops away nodes (j being set to 1 by default).
In a parallel way, the new node initialises its topology data
table and inserts a table entry at level 0 indicating that the
node is a member of a cluster at that level and has no clus-
ter head. If after a parameterised interval time no reply is
received, the node promotes itself as cluster leader. Alter-
natively, after checking its parameters, a cluster head either
refuses or admits the node in question into its cluster. In the
second case, the cluster head reserves a place for the mem-
ber and responds with an acceptance message. Note that

3In practice, one-to-many and many-to-many delivery of control
messages to producers, as well as notifications to consumers, is han-
dled by a dedicated multicast protocol.

4Delaying the emission of the query avoids a message deluge if
nodes join simultaneously.

4



different criteria (e.g., arrival order of the query/acceptance
message, QOS parameters, load, location) may be used to
select a cluster head or refuse the insertion of a member in
a cluster. Note also that the clustering is not restricted to
network monitoring. On the contrary, clustering can also
be designed on a per-application basis , grouping NES with
common functionalities /application use, for e.g. efficient
data or resource sharing.

Cluster supervision A cluster head periodically polls
its members to ensure that they are still active. If any mem-
ber does not reply within a specific time period, the cluster
removes that member from its cluster, updating its member
list. Similarly, a cluster member expects to be polled by
its cluster head periodically. it therefore assumes its cluster
head has disappeared in absence of receipt of polling mes-
sages; such assumption triggering a cluster head promotion.
In addition to the above, when a cluster member or leader is
expecting impending removal or stoppage, it sends a removal
message to its cluster head (resp. all its cluster members).

Cluster Head Promotion When a cluster head is pro-
moted, it initialises a list to hold the addresses of all its
cluster members. Initially, this list includes just the address
of the local host. This promotion may result from the initial
configuration of the grouping structure, or when the failure
(resp. leaving) of a cluster head is discovered (resp. an-
nounced), or at the receipt of a cluster query. On reception
of a cluster query, and if the monitoring node is a cluster
member but not a cluster head at that level, then it can be
inferred that there are two cluster members at the same level
with no cluster head. The node then checks its cluster pa-
rameters (e.g., load, localisation) and, if the check permits,
promotes itself to cluster head.

4 Assessment

This section presents a set of simulation tests, results, and
analyses that aim to evaluate the performance of the pro-
posed monitoring architecture. We conducted our evalua-
tion considering a variety of networking scenarios including:
different network sizes (10, 30, 50, 70, and 100 nodes), clus-
ter sizes (0, 3, 5, and 7 NEs per cluster), variable enabled
services (grouping service enabled/disabled) and topology
changes (0% and 10%); topology changes being measured
at the percentage of nodes that are not available, or have
restarted, on average over a one minute period. We per-
formed multiple passes and then averaged the results to re-
duce the impact of any incidental effects. The approximate
average resources available to each node are as follows; CPU:
186.2 KHz with 204Kb, virtual memory 50Mb, and network
bus speed of 1Mb/s.
In order to assess the effectiveness of our solution, we use 2
performance metrics, the robustness (Figure 3 and Figure 4)
and the scalability (Figure 5 and Figure 6) of the solution.
Robustness is defined as the ability of the monitoring system
to withstand various loads induced by external applications.
Scalability refers to the ability of the monitoring system to
grow in a graceful and functional manner as the constituent
dependencies change (e.g. number of NEs, load). These two

performance metrics have been investigated in terms of CPU
and memory usage, time delay, and bandwidth usage.

Robustness Figure 3 illustrates how CPU usage alters
with increasing packets per node and per second varying
from 0 up to 50 packets per second. We measured the CPU

Figure 3: Average CPU Usages with different data rates

usage on each physical machine, with a sample rate of 1
second, and gathered and averaged the result among the 10
nodes that form the experimental networks. We can observe
that the CPU usage increases linearly as the load increases;
the change in CPU usage observed being approximately 1%,
which is negligible. In addition, based on further measure-
ment, we identified that the CPU increase levels out at a
higher rate, and from that point5 (approximately 1500 Pack-
ets per node and per second) onwards the performance slow
down. Therefore, we can conclude that the system can with-
stand various loads and maintain robustness from a CPU
perspective. We next complement this evaluation of the ro-

Figure 4: Data rate and packets number with 10-nodes network
and 6 packets/sec/node

bustness with an analysis of the traffic in a 10 nodes exper-
imental network for duration of 30 minutes with a sampling
rate of 1 second. We observe a rapid increase in the traffic
(average number of packets received by a node per second,
and the size of the payload of those packets, see Figure 4)
when considering the period [200 second, 350 second]. The
explanation for this increase is that this region corresponds
to the initialisation period; the node using bandwidth to
join the cluster-based structure. Then a knee in the curve
develops when the nodes grouping is completed and when
the gathering of the monitoring information commences.

Scalability In order to highlight the effect on traffic of
increasing the number of nodes in a network, we display in

5Such value is dependant on the limitations of the specification of
the host machine.

5



Figure 5: Data rate, packet
number as number of nodes

Figure 6: Data rate, packet
number as the cluster size

Figure 5 the average number of packets and payload band-
width per node as the numbers of nodes increases for the
combined full set of cluster groupings (0, 3, 5, and 7) and
rate of topology changes (0%, 5%, and 10%). We observe
that the traffic (numbers of packets received by a node and
the payload bandwidth) increases slowly; the fluctuations in
data rate being approximately 3Kb and the fluctuations in
numbers of packets being within 5. We next demonstrate
in Figure 6 the effect of the grouping service (enabled or
disabled6) and cluster size (0, 3, 5, and 7) on the traffic gen-
erated and throughput experienced by a node, with regards
to a combination of number of nodes (30, 50, and 70) and
disruption rates (0%, 5%, and 10%). There is an initial in-
crease in both the data rate and number of packets when
the grouping service is turned on, i.e. from 1 grouping to
3 grouping. When increasing the grouping size from 3 to
5 the data rate increases, however the number of packets
reduces. Finally, further increasing the grouping from 5 to
7 reduces both the data rate and the number of packets.
Further analysis into the effect of disruption rates with the
grouping service disabled shows that the number of packets
increases 4 fold when disruption rate increases from 0% to
10%. This 4 fold increase is derived from all samplings of
number of nodes, i.e. 30, 50, and 70. When the grouping
service is turned on under similar circumstances the effect
of increasing the disruption rate from 0% to 10% is reduced.
At best the activation of the grouping service can result in
the number of packets for an average single node increas-
ing 2 fold, which is half the number of packets without the
grouping service. We can conclude that the grouping ser-
vice not only provides a scalable solution for the proposed
monitoring architecture but can also significantly reduce the
effects of disruption. This reduction has an increased cost
in terms of the number of packets sent, however it leads in
turn to a more robust system.

5 Conclusion

This paper has presented a novel self-organising monitoring
system for mesh networks which addresses the main require-
ments of those networks: scalability, autonomy and robust-
ness. One of the key ideas behind this approach is the use
of a cluster-based hierarchical structure created and main-
tained in a distributed manner by the proposed grouping
service. This structure is then used to propagate efficiently

6A grouping size equal to 0 signifies that the grouping service is
disabled, i.e., that the network is flat.

the monitoring information, enabling that information to be
filtered, aggregated and correlated so as to keep to a mini-
mum the resulting bandwidth usage. The monitoring system
is optimally based on an event-based communication mech-
anism which is suitable to interconnect nodes in a loosely-
coupled fashion. In addition, this paper has included sim-
ulation results for the proposed monitoring system which
demonstrate its robustness and scalability. Indeed, CPU us-
age does not significantly alter as the packets per second is
increased. In addition the traffic generated is very stable
with regard to an increasing number of nodes or cluster size.
Our experiments have also shown that activating the group-
ing service increases the data rate and number of packets,
but that the grouping service can significantly reduce the
effects of disruption within the network. This work has im-
portant application to the area of Network Management, in
particular autonomic configuration, fault and performance
management, leading to potential OPEX (operating expen-
diture) reduction for network operators.

Acknowledgements Authors would like to acknowl-
edge the financial support provided by the Marie Curie Intra-
European fellowship and the Celtic Initiative.

References

[1] J. Case, M. Fedor, M. Schoffstall, and al. A sim-
ple network management protocol (snmp), rfc 1157.
http://www.ietf.org, May 1990.

[2] A. Ciuffoletti and M. Polychronakis. Architec-
ture of a network monitoring element. Tech-
nical Report TR-0033, CoreGRID Project,
http://dcs.ics.forth.gr/Activities/papers/netelement.coregrid-
middlware06.pdf, 2006.

[3] T. Clausen and P. Jacquet. Optimized link state rout-
ing protocol (oslr). RFC 3626, http://ietf.org, October
2003.

[4] T. Clausen, P. Jacquet, A. Laouti, and al. Optimized
link state routing protocol, 2001.

[5] Dressler, Falko, Nebel, and al. Distributed passive mon-
itoring in sensor networks. In IEEE INFOCOM, 2007.

[6] J. Moulierac and M. Molnr. Active monitoring of link
delays in case of asymmetric routes. In IEEE ICN, 2006.

[7] J. Moy. Ospf v2, rfc 2328. http://www.ietf.org, April
1998.

[8] H.X Nguyen and P. Thiran. Active measurement for
multiple link failures diagnosis in ip networks. In DAM

workshop, 2004.
[9] R. Presuhn. Management information base (mib) for

the simple network management protocol (snmp) net-
works, rfc 3418/std 0062. http://www.ietf.org, Decem-
ber 2002.

[10] A. Shaikh, M. Goyal, A. Greenberg, and al. An ospf
topology server: Design and evaluation. IEEE Selected

Areas in Communications, 2002.

6


