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Abstract 

The effects of ageing at 800 °C on the properties of the IRIS alloy (Ti49.9Al48W2B0.1) are studied. 

The initial microstructure of this alloy densified by Spark Plasma Sintering (SPS) is mainly 

composed of lamellar colonies which are surrounded by  grains. The evolutions of the alloy 

strength and creep resistance resulting from this ageing treatment are measured by the related 

mechanical tests. The microstructural changes are investigated by scanning and transmission 

electron microscopies and by X-ray diffraction.  

The main structural evolutions consist in a shrinkage of the lamellar areas and in a precipitation 

of 0 phase, which is accompanied by a moderate segregation of tungsten and a decrease of the 

2 lamellar width. However, these evolutions are relatively limited and the microstructural 

stability is found to result mainly from the low diffusivity of tungsten. Conversely, a moderate 

effect of this ageing treatment on mechanical properties, at room and high temperatures, is 

measured. Such experimental results are interpreted and discussed in terms of the 

microstructural evolutions and of the deformation mechanisms which are activated at different 

temperatures under various solicitations. 
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1. Introduction 

With the aim to reach a service temperature possibly above 800°C in aeronautic and automotive 

engines, an appropriate solution to improve the mechanical properties of TiAl alloys is to add 

refractory elements, like Nb, Mo, Ta and W, with low diffusivity. Indeed, these elements are 

known to improve the high temperature strength but also the oxidation resistance of these alloys 

[1]. A well-known example of this is related to the Nb- and Mo-containing TNM alloys [2]. 

Moreover, these elements also have the property to stabilize the /0 phase, which is soft and 

ductile at high temperatures, making the forging operations easier to be performed.  
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The high capability of tungsten to improve the creep resistance of TiAl alloys has firstly been 

demonstrated through the development of cast ABB alloys by Nazmy and Staubli [3]. Alloys 

of this family have subsequently been investigated in several studies concerning their 

microstructure and mechanical properties at high temperatures, with a special attention to their 

structural stability [4-7]. The positive effect of tungsten addition has been attributed to different 

processes: reduction of the dislocation mobility, stabilisation of the interfaces, and pinning of 

dislocations or interfaces by fine 0 precipitates. More recently, taking advantage of the powder 

metallurgy (PM) – Spark Plasma Sintering (SPS) route, the W-containing IRIS alloy 

(Ti49.9Al48.0W2.0B0.1, composition in at.%) has been found to offer a good compromise to 

achieve a reasonable ductility at room temperature and a high strength at elevated temperature 

[8-9]. Boron has been incorporated to reduce the grain size, a well-known effect for TiAl alloys 

which has been recently illustrated in the case of alloys densified by the SPS route [10]. The 

plastic elongation at room temperature of the IRIS alloy is due to the control of the grain size 

which results from the presence of both borides and  phase at high temperatures, thus forming 

obstacles to the  grain growth [11]. 

Thermal treatments performed in the range 700°C - 1000°C for W-containing TiAl alloys have 

been found to lead to a number of microstructural evolutions such as the formation of 0/B2 

phase as, precipitates, coarsened rods or fine needles, the dissolution of 2 lamellae and the 

growth of  phase [4;12-16]. Depending on the alloy characteristics and on the applied thermal 

treatment, these microstructural changes have been associated either to an improvement or to a 

reduction of the alloy mechanical properties. To gain further understanding of these 

phenomena, the aim of the present work is to identify whether an ageing treatment such as 500 

hours at 800 °C could be deleterious or not on the microstructure and mechanical properties of 

the IRIS alloy.  

 

2. Experimental 

The alloy used in this work was densified by Spark Plasma Sintering from an IRIS pre-alloyed 

powder (Ref A1261) atomised by the ATI company (Pittsburgh, PA, USA). SPS experiments 

were performed on the Dr Sinter Sumitomo 2080 apparatus (Sumitomo Coal Ming Co. Japan) 

implemented in the “Plateforme Nationale de Frittage Flash /CNRS” in Toulouse, France. The 

measured dwell temperature of the SPS cycle was 1290°C, which corresponds to a temperature 

for the material of 1350°C [17]. The chemical composition of the IRIS–SPS billet as measured 

by Inductively Coupled Plasma Spectroscopy was found to be Ti50.11Al47.92,W1.86B0.12. The 

oxygen content as measured by Instrumental Gas Analysis is 1200ppm wt. A single ageing 

treatment was carried out in this work, which consists of 500 hours at 800°C in air, followed 

by furnace cooling. This treatment was applied on the as-SPSed billet and then the tensile 

specimens were machined from these treated materials. 

The microstructural investigations and local chemical analyses were performed by scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM), using four different 

microscopes. Two SEM were used: a JEOL 6490 equipped with a tungsten emission gun for 

standard observations and a FEI HELIOS Nanolab 600i field emission gun (FEG) dual focused 

ion beam device for high resolution investigations. Local chemistries of Ti, Al and W contents 

were measured by Energy-dispersive X-ray spectroscopy (EDS) in the SEM and TEM and will 

be given in at. % in the following. Every experimental mean value is the result of at least ten 
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measurements. Boron, the role of which being to limit the grain growth, will not be discussed 

in this paper. The SEM micrographs were obtained using back-scattered electron mode. A 

JEOL 2010 TEM equipped with a LaB6 cathode was used for structural investigations and 

orientation determination whereas the chemical measurements were performed in a Philips 

CM20 TEM equipped with a field emission gun. The selected dark field technique which was 

used to determine the orientations of lamellae and precipitates, is described in details elsewhere 

[18]. Phase identification was also carried out by means of X-ray diffraction using a Bruker D8 

Advance diffractometer in Bragg-Brentano geometry (Cu-Kα radiation). Quantitative data were 

extracted from SEM micrographs by using ImageJ software. The grain size is evaluated by 

considering the diameter of a circle covering the same area as the grain. 

Tensile tests were performed at a constant strain rate of 10-4 s-1 at room temperature (CEMES), 

800°C and 900°C (ONERA) and the creep tests were carried out at 800°C under 200 MPa 

(ONERA).  

3. Microstructure of the as-SPSed alloy 

Fig. 1 shows the microstructure of the as-SPSed IRIS alloy, which is mainly formed of lamellar 

colonies [11]. At grain boundaries, single-phased  zones, hereafter called  borders, consist of 

several adjacent  grains. The orientations of these  grains of the borders have been found 

identical to those of one of their neighbouring lamellae [11]. Consistently, Fig. 1 illustrates that 

the two sides of the borders are different. Firstly, from one side where the  grains and the 

lamellae exhibit the same orientation, their separation limit is diffuse (yellow arrows) and the  

grains appear to be rather an extended zone of the lamellar colonies. Secondly, from the other 

side, the boundary forms a clear limit (green arrows) with the other neighbouring lamellar 

colony. The  borders are present irrespectively of the lamellar interface orientation with respect 

to the grain boundary. These borders contain precipitates of 0 phase (white dots), which are 

generally attached to the well delimited boundary and extend towards the border. It has been 

found that the orientation relationship of 0 phase with the  phase does follow the Kurdjumov-

Sachs relation {110}0//{111} and <111>0//<110> [17]. A few single-phased  zones are 

also observed within lamellar colonies, while also containing 0 precipitates. Similar 

observations of equiaxed/globular  grains have been presented in various W-containing TiAl 

alloys [7,19,20]. 

One particular quantitative study was conducted on an area containing 100 adjacent grains, 

covering a total area of 32 495 μm², with a statistical analysis of every grains and borders. The 

average size of the included grains, lamellar colonies and borders, corresponds to 17.8 μm; that 

of the lamellar colonies (borders excluded) is 14.1 μm. The single-phased zones (borders and 

intragranular zones) cover 27% of the surface fraction. The average chemical composition of 

the  phase of the borders, measured by SEM-EDX, is 48.7Ti-49.2Al-2.1W in at.%. 

 



4 
 

 
 

Fig. 1. Microstructure of the as-spsed IRIS alloy.  

 

4. Mechanical properties 

The mechanical properties of the as-SPSed and aged IRIS alloys are compared at room and 

high temperatures in Figs 2 and 3. The experimental results are also compiled in Tables 1 and 

2.  

At room temperature, from the unaged alloy six tensile tests were performed and have led to a 

yield stress (YS) ranging between 397 MPa and 464 MPa and a plastic elongation at rupture 

ranging between 0.86 % and 1.89 % [20]. Such a scattering is relatively high for a SPS alloy 

since the reproducibility in tensile properties is generally very high for SPS-TiAl alloys due to 

the PM route which enhances the uniformity of microstructures (see for instance Fig. 7b of [22] 

and Fig. 5a of [23]). The average behaviour of this alloy is represented by the blue curve in Fig. 

2 a and by the data given in Table 1. Even if only one tensile experiment was performed on the 

aged alloy, nevertheless the following differences can be stated between the room temperature 

behaviour of the as-SPSed and aged IRIS alloy. The ageing has no significant effect on YS but 

induces a slight drop of the plastic elongation by about 0.2% and of the ultimate tensile strength 

(UTS) by about 60 MPa. Indeed, one may consider that such a reduction of the plastic strain is 

significant, as this plastic strain and the maximum strength are concomitantly reduced. 

At 800°C and 900°C, a decrease in YS by about 20-25 MPa and in UTS by 55-75 MPa can be 

emphasized, without change in the general shapes of the curves (Fig. 2b). This behaviour is 

indicative of a moderate decrease in alloy strength due to this 500-hour treatment.  
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Fig. 2. Tensile curves at room temperature (a), 800°C and 900°C (b) of the as-spsed and aged 

IRIS-TiAl alloys. The temperatures specified on (b) are the deformation temperature. 

 

Table 1 Results of the deformation experiments at constant strain rate (10-4 s-1) performed on 

the as-SPSed and aged alloys at room temperature, 800°C and 900°C. 

Deformation 

Temperature 
Alloy YS (MPa) UTS (MPa) A (%) 

RT 
As-SPSed 432 656 1.30 

Aged 422 594 1.08 

800°C 
As-SPSed 420 696 21.1 

Aged 396 623 27.8 

900°C 
As-SPSed 344 450 28.2 

Aged 322 393 20.8 

 

Fig. 3a shows the creep curves of both unaged and aged IRIS alloys, in comparison with that 

of a cast GE alloy (GE-C) previously studied at CEMES [24,25]. The latter, which exhibits a 

microstructure made of a central equiaxed area surrounded by columnar grains, is similar to 

those currently used in GEnX and LEAP engines by GE and SAFRAN companies [26]. As 

compared with the GE-C alloy, the lifetime of the as-SPSed IRIS alloy is significantly higher 

(Tab. 2). Fig. 3a indicate a lower creep resistance of the aged alloy with respect to that of the 

unaged alloy. This behaviour raises the question of whether the loss of strength is higher at low 

strain rate (creep) than at high strain rate (tensile tests at constant strain rate). For a better 

quantification of these differences, the creep properties of these three alloys have been reported 

on a Larson-Miller diagram using the relationship: 𝐿𝑀 ∶ 𝑇. (20 log(𝑡)). 10−3, where LM is the 

parameter of Larson-Miller at 1% of strain, T the temperature in kelvin and t the time in hour. 

From this diagram, the green points and the green curve represent the GE-C alloy for which 27 

conditions applied in the range 650°C - 850°C were tested. The points in pink, for the same 

GE-C alloy, result from 8 tests carried out at the same condition (750°C-150 MPa) that we had 

studied in detail. This diagram illustrates the creep property scatter for an alloy obtained by the 

casting route which, however, is certainly expected to be higher than for a PM alloy. The blue 

marks give the results for four conditions used for the unaged IRIS-SPS alloy (700°C/300MPa, 

750°C/200MPa, 800°C/200MPa and 850°C/150MPa), with the blue square corresponding to 

the 800°C/200MPa condition. The red square corresponds to that of the aged alloy for the same 
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800°C/200MPa condition. Using this Larson-Miller diagram, it can be emphasized that the drop 

in creep strength resulting from the exposure of 500 hours at 800°C appears to be relatively 

moderate, compared to the scatter for the GE-C alloy at 750°C/150 MPa, and keeping in mind 

the difference in strength between the GE-C and IRIS-SPS alloys. Therefore, this creep property 

reduction is likely to be related to the loss in YS as observed for high temperature tensile tests 

at constant strain rate. For both tests, the similarity and the repeatability of the curves in the 

unaged and aged alloys must be underlined. This is indicative of the fact that, at least for each 

solicitation, the loss in mechanical strength with ageing is related to a microstructural 

characteristic that affects the overall mechanical properties. 

 

 

Fig. 3. Creep behaviour of the as-spsed and aged IRIS-TiAl alloys in comparison to those of a 

GE alloy obtained by the cast route. (a) creep curves at 800°C-200MPa. (b) Larson-Miller 

plot at 1% of strain (LM is the Larson-Miller parameter - see text for details).  

 

 

Table 2. Results of the creep experiments performed on different alloys (see the text for 

details). 

 Solicitations Vmin (s
-1) trup (h) th th 

IRIS as-SPSed 800°C/200MPa 2.8 10-8  669 67.5 473 

IRIS aged 800°C/200MPa 4.5 10-8 431 29.5 238 

GE-C 800°C/200MPa 3.9 10-7 58 4.2 29.7 

      

IRIS as-SPSed 700°C/300MPa 3 10-9 4052 154 2838 

IRIS as-SPSed 750°C/200MPa 5 10-9 3138 569 2641 

IRIS as-SPSed 850°C/100MPa 6 10-8 260 13 146 

 

5. Microstructure of the aged alloy 

As shown in Fig. 4, the microstructure of the aged alloy looks very similar to that of the non-

aged one. Quantitative measurements of the surface fractions of the different constituents of the 

microstructure are given in Table 3. The average size of the grains, lamellar colonies and 

borders included, are unchanged during the thermal exposure. In contrast, these measurements 

reveal an increase of the surface fraction of  zones at the expense of the lamellar colonies. In 
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the author opinion, the measured variation of 10% is over the uncertainty of this kind of 

measurements. Accordingly, the measured variation is thus significant for us, which should be 

related to a shrinkage of the lamellar colonies, as illustrated by the areas encircled in yellow 

dashed lines in Fig. 4. This phenomenon seems to occur at the extremities of the lamellar 

colonies, close to the grain boundary, thus leading to an increase of the borders. The 0 

precipitation is also observed to be increased in the aged alloy, as previously mentioned in 

[16,209]. The precipitates located in the  borders are mainly linked to the clearly formed 

boundary separating the border from one neighbouring lamellar grain. Another microstructural 

change corresponds to the occurrence of black strips at grain boundaries (some examples are 

marked by yellow arrows in Fig. 4), which are mostly located at the side of the  border. Similar 

black strips were previously evidenced in the same alloy aged during 8200 hours at 750°C [27]. 

In the following, quantitative measurements of the physical and chemical characteristics of the 

various zones of the microstructure will be presented. 

 

 
Fig. 4. Microstructure of the aged alloy. Yellow arrows indicate black strips at the grain 

boundaries and yellow encerclements mark zones where the lamellar microstructure is partly 

vanished. 

Table 3. Characteristics of the microstructures of the as-SPSed and aged alloys. For the 

average grain size, the standard deviation are given in brackets. 

 
Total areas 

(µm²) 

Average grain 

sizes (µm) 

Lamellar colonies 
Surface fraction 

of  zones (%)  
Average size 

(µm²)  

Surface 

fraction (%) 

As-SPSed 32 495 17.8 (9.8) 14.1 (10,1) 73 27 

Aged 33 302 17.8 (10,3) 11.2 (10,2) 63 37 

 

5.1. 0 precipitation in the borders 

The chemical compositions of precipitates at the borders were measured by both EDS-SEM 

and EDS-TEM, which have led to similar results. Average values are given in Table 4. In the 

as-SPSed and aged alloys, the W content is of the same order of magnitude, about 15 at. %. A 

slight enrichment in W is detected after the thermal exposure. A reduction of the standard 
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deviation is also measured, which may indicate that the precipitates tend to approach their 

equilibrium composition. However, due to the small precipitate size with respect to that of the 

interaction volume between the electron beam and the material from which X-rays are 

generated, these evolutions will not be further discussed. A W content of about 15% in the 0 

phase is consistent with that performed previously by Yu et al. [28], which was supported by 

electronic and energy calculations based on first-principles [29]. These results also agree with 

the partition coefficients given in [6,30]. 

 

Table 4. Chemical compositions of the 0 precipitates located at the  borders of the as-SPSed 

and aged alloys. For the chemical contents, the standard deviations are given in brackets. 

 Al Ti W 

As-SPSed 37.6 (4.5) 49.6 (3.9) 12.5 (3.1) 

Aged 34.8 (3.2) 48.5 (2.8) 16.5 (1.3) 

 

A quantitative study of the number of precipitates located at the borders has been performed. 

The measurements were repeated in three zones of both unaged and aged conditions (Tab. 5). 

The images (Fig. 5a) were binarized to isolate the precipitates (Fig. 5b). Note that Fig. 5a only 

shows a quarter of the area which was investigated, the size of which was 128 µm x 87.6 µm = 

11 213 µm² for each measurement. The black areas larger than 1 pixel (0.1x0.1 µm²) were then 

automatically counted and their surfaces were calculated using ImageJ software. Results appear 

to be very reproducible from one zone to the others. During ageing, the precipitate number is 

approximately multiplied by 3.5, and their average surface by 2.5, thus leading to a 

multiplication of the surface fraction by a factor of 9.  

For the aged sample 2 where 1719 precipitates with an average size of 0.12 μm² were measured, 

those contained in the borders were separated from those located at lamellar colonies. For this 

purpose, the lamellar colonies were delimited to extract the borders (Fig. 5c) and the image was 

binarized (Fig. 5d). A number of 956 precipitates, nearly half of the total number, were found 

in the borders; their average size being 0.18 μm². Consequently, the precipitates of the lamellar 

colonies should have an average size of approximatively 0.06 μm². This result confirms that the 

vast majority of the largest precipitates are located at the borders. 

Table 5. Counting of the number and size of precipitates located at the  borders of the as-

SPSed and aged alloys. 

 Specimens Numbers 
Average Surface 

(µm²) 

As-SPSed 

1 442 0.04 

2 526 0.05 

3 488 0.05 

Average 485 0.05 

Aged 

1 1677 0.14 

2 1719 0.12 

3 1665 0.14 

Average 1687 0.13 
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Fig. 5 . Example of a quantitative study of precipitates situated in the borders (specimen 2 of 

the aged alloy – Tab. 5). (a) SEM micrograph; (b) Binarized image of (a) with the precipitates 

in black; (c) extraction of the borders; (d) Binarized image of (c). 

 

5.2. Precipitation in the lamellar colonies 

In lamellar colonies of the aged material, TEM allows to show some precipitates which cannot 

be seen with the JEOL-6490-SEM (Fig. 4). The technique of selective dark field in the TEM 

has been used to study these very small precipitates, in particular to determine their structure, 

characteristics and orientations. Fig. 6a, taken under an inclination of the interface plane at 60°, 

shows a general view of several families of precipitates. Fig. 6b, in bright field mode, with the 

interface plane normal to the observation plane, displays the precipitate arrangement in a series 

of thin lamellae (S1), which are alternatively of  and 2 phases, this point being described in 

detail below (section 5.4). Fig. 6 b shows that the precipitates are spread in the 2 lamellae and 

that a higher number of precipitates are located in the two lamellae bordering this series than in 

those located in the middle. For the area surrounded in dashed blue line in Fig. 6a, the series of 

dark field micrographs taken with a diffracting vector illuminating the precipitates (Figs. 6 c to 

f) enables us to distinguish these various families, which are elongated along different 

directions. As particularly evidenced in Figs. 6 c and d, the precipitates often have finite and 

straight limits, which should be located in a plane parallel to the interface plane since their two 

extremities are separated by the apparent width of the interface plane. From our observations 

of many precipitates under different inclinations, we were not able to situate the directions of 

theses limits along specific crystallographic directions of the 2 lamellae without ambiguity. 

This might be explained by the effect detected by Zhang et al. [31] who have observed that 0 

precipitates grow in 2 grains along invariant lines resulting from a strain homogenization 
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process. Fig.6 e was taken with the interface plane almost upright (inclined at 7 °). This figure 

shows that these precipitates are not planar and located in the interface plane but, spread out of 

this plane.  

 

Fig. 6. Micrographs of the precipitates in lamellar zones. i gives the inclination angle of the 

sample when the picture was taken, whereas for this grain the interface plane was inclined at + 

20° under zero tilt. (a) general view in dark field mode under an inclination of +40 °. (b) 

micrograph in bright field mode with the interface plane edge on of the series S1 of thin lamellae 

characterised in section 5.4. (c) to (f) dark field micrographs of the area surrounded in blue on 

(a). 

Because of their very small size, it was not possible to determine the precipitate structure and 

orientation by analyses in electronic precession diffraction or convergent beam electron 

diffraction modes. Fig. 7 presents the study of one family of precipitates illustrated in Fig. 6a 

(surrounded in green), using the selective dark field technique. The precipitates are in contrast 

with five diffracting vectors which are all compatible with the B2 structure. Using classical 

stereographic methods, their orientations were determined from the tilt angles and from the 

diffracting vector directions given by the diffraction patterns. It is represented by the stereogram 

(Fig. 7 f), for which the projection plane is the thin foil plane under zero tilt. Comparing this 

orientation to those of the  and 2 lamellae of the neighbouring lamellae, a coincidence relation 

can be put forward, for which the plane of interface of the lamellar structure is parallel to the 

plane (110) of the 0 phase. Moreover, a dense direction of 0, [111], is found to be parallel 

with a direction of type < 112̅0 > of 2 phase. These results concerning the crystallographic 

structure and orientation of these 0 precipitates are fully consistent with those previously 

obtained in a Ti-47Al-2Nb-1Mn-0.5W-0.5Mo-0.2Si cast alloy aged in the range 760 C - 1050°C 

[14]. Clearly, the studied precipitates keep a high aspect ratio under different inclinations, which 
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is consistent with a needle shape. Many precipitates which are shown in Fig. 6a do not have 

this needle shape but seem to be extended in a plane parallel to the interface plane of the area. 

The precipitates are likely to grow firstly with this needle shape and subsequently spread in 

other directions. Accordingly, precipitates with needle shape and planar spreading are observed 

for the same family (Figs. 6 c and d). The same kind of structure and orientation determination 

of precipitates was successfully repeated for that surrounded in yellow in Fig. 6 a. 

 
Fig. 7. Micrographs in dark field mode of one family of 0 precipitates. For each micrograph 

the diffraction pattern in bright mode is reported, with the red circle indicating the used 

diffracting vector for the dark field. For recording the micrograph (e), the specimen was rotated 

of 90° around the direction of the electron beam. (f) stereogram under zero tilt representing the 

orientation of this family of precipitates. 

5.3. Evolution of the chemical composition in the borders 

From the SEM micrographs (Fig. 8a), thin black bands are connected to a grain boundary. They 

are rather located at the side of the  phase than on that of the lamellar colonies. The EDS W 

mapping shows in Fig. 8b that these zones are depleted in W. Table 6 gives the chemical 

composition of the  borders in the unaged and aged alloys, with a distinction for the latter 

between the normal and W depleted zones. The  phase is not affected by the exposure of 500 

hours at 800°C except in such W depleted zones. Figs. 4 & 8 apparently show that this W 

depletion is accompanied by an elongation of 0 precipitates beyond the limit of this zone, and 

this mainly in a direction perpendicular to the grain boundary. 
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Fig. 8. Thin black bands in a  border. (a) SEM micrograph; (b) STEM-EDS map of W. Arrows 

indicate the sharp transition between the oversaturated and equilibrated zones of the  phase. 

 

Table 6. Chemical composition of the borders in the as-SPSed and aged alloys. For the 

chemical contents, the standard deviations are given in brackets. 

  Al Ti W 

As-SPSed  zones 49.2 (6.6) 48.7 (5.6) 2.1 (0.6) 

Aged 
 zones 49.2 (5.5) 48.7 (5.5) 2.05 (0.4) 

W depleted zones 49.3 (1.6) 50.0 (1.7) 0.7 (0 .2) 

 

5.4. Transformations in the lamellar colonies 

Fig. 9a displays a TEM micrograph of a lamellar colony for an aged sample, with the interfaces 

upright and parallel to the tilt axis of the TEM specimen holder. The phases and orientations of 

every lamella which are specified in Fig. 9b were determined using the selective dark field 

technique. It is recalled that in lamellar TiAl alloys,  lamellae precipitate in  grains along the 

(0001) basal plane and exhibits six different variants differing by the stacking sequence along 

the normal of the {111} interface (as …ABCABC… or …ACBACB…) and/or by the relative 

orientations of the <110] monoatomic row in the planes parallel to the interface [18]. This 

results in the formation of three different types of / interfaces in addition to the /2 interface 

in the lamellar structure: ordered domain, true-twin and pseudo-twin interfaces. Only two dark 

field micrographs among the seven which were necessary for a full characterization of this area 

are reported here (Figs. 9c and d). Fig. 9c points out the 2 lamellae and Fig. 9d those of one  

orientation (labelled O1). Fig. 9e shows the chemical composition profiles of the three major 

elements, integrating over the whole area of Fig. 9a. For comparison, Fig. 9f displays the 

composition profiles in an unaged sample recorded in the same experimental conditions, with 

the insert giving a view of the microstructure. For the area in Fig. 9a, Fig. 10 shows the 

composition profiles at three locations separated by 700 nm along the interface plane, with an 

integration width of 100 nm.  

The following experimental results can be highlighted from this TEM study: 

 This lamellar zone contains 15 lamellae (marked L1 à L15 on Fig. 9b) and two series of 

thin lamellae (marked S1 and S2) which are formed by a perfect alternation of  and 2 
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lamellae. As often observed in lamellar TiAl alloys [32], one  orientation is predominant 

(O1 in this example) and thin 2 lamellae are often present between two  lamellae which 

are pseudo-twin related (L6 between L5 and L7, L10 between L9 and L11, and L12 

between L11 and L13), which means that their orientation relationship involves both a fault 

of order and a change of the stacking sequence of interface planes [18]. The formation of 

wide  lamellae predominantly oriented with the same orientation and that of series of fine 

lamellae result from the activation of two different lamellar transformations activated at 

high and lower temperatures, respectively [32].  

 In the aged alloy (Fig. 9e), an enrichment in W is measured at the 2 lamellae (see for 

example L4 and L6, the positions of which are marked in figures) which is more irregular 

and more pronounced than in the as-SPSed alloy in which these W peaks at 2 lamellae are 

regular and approximately equal to 3 at. % (Fig. 9f). This amount of 3 W at. % in the 2 

phase is consistent with the measurement of Yu et al. [28]. The local profiles displayed in 

Fig. 10 show that high W peaks (encirclements in blue) or weak peaks (zones encircled in 

red) could be indifferently measured at the positions of 2 lamellae, within a small area 

analysis. The highest peaks of W reach 10 at. %. Let us assume that the W enrichment 

which occurs during the ageing treatment is concentrated in the 0 precipitates, as described 

in section 5.2 in a similar manner as the precipitates in the borders. Hence, the abrupt 

variations of the W content along 2 lamellae could be associated to the irregular presence 

of 0 precipitates. 

 Looking at these fine and isolated 2 lamellae, irregular depletions in aluminium and 

enrichments in titanium and tungsten are measured. The higher W enrichments correspond 

to the larger Al depletion (L4 and L6 compared to L10 and L12 on Fig. 9e). A Ti 

enrichment is measured for L6 but is null (L10) or quasi-null (L4 and L12) at some other 

2 lamellae. In comparison, in the non-aged alloy (Fig. 9f), the variations of the Al, Ti and 

W contents are more regular and enrichment in Ti is always present at 2 lamellae, thus 

clearly highlighting the presence of 2 lamellae (in dark in the insert of Fig. 9f). It thus 

appears that, simultaneously to the 0 precipitation, irregular decreases in the width of 2 

lamellae occur during the thermal treatment. However, very thin 2 lamellae and interfaces 

are still present at these areas (Fig. 9c), thus indicating that 2 lamellae were not fully 

dissolved in these typical lamellar areas.  

 At the series of fine lamellae (encirclements in green in Fig. 10), the W enrichment is less 

pronounced and mainly located at the external lamellae of the series (for the clearest 

example, see series 1 in profiles 1 and 3 of Fig.10 b and d).  

 Even if the resolution on the chemical composition is relatively limited, these profiles 

indicate that, despite the segregation in 0 precipitates, a dramatic reduction in the W 

content for the  lamellae is not observed. EDS-TEM measurements in the  lamellae have 

led to nearly the same values: 1.89 in the as-SPSed alloy and 1.85 in the aged one. 

As a summary, we have observed in the lamellar zone the formation of fine 0 precipitates in 

2 lamellae which is accompanied by a partial dissolution of these 2 lamellae and by the 

segregation of tungsten atoms coming from the  lamellae. The W content in  lamellae is nearly 

unchanged.  
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Fig. 9. Study of the lamellar microstructure in the aged alloy. (a) view with the interfaces upright 

and parallel to the tilt axis of the TEM specimen holder, (b) phases and orientations of the 

lamellae, (c) – (d) dark field images, (e) chemical composition profile of the three major 

elements integrated over the whole area; (f) for comparison, chemical composition profiles in 

a non-aged sample. Green, red and blue profiles correspond to aluminium, titanium and 

tungsten elements, respectively. 
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Fig. 10. Study of the local chemical composition of the lamellar microstructure in the aged 

alloy. (a) view of the zone, (b) to (d) local chemical composition profiles of the three major 

elements for the three areas P1, P2 and P3 marked in red on (a). Green, red and blue profiles 

correspond to aluminium, titanium and tungsten elements, respectively. 

 

5.5. Evolution of the volume fraction of phases 

Quantitative phase analysis was performed using Rietveld refinement on X-ray diagrams 

obtained on as-SPSed and aged specimens. On both specimens, X-ray diagrams show the 

presence of the three model phases: γ – TiAl type tetragonal structure, α2- Ti3Al type hexagonal 

structure, and β0 type cubic structure. The chemical compositions of these model structures are 

different from those determined from EDX measurements. For this reason, the chemical 

compositions of the three model phases used in the Rietveld refinement model were adjusted to 

fit the chemical compositions measured by EDX in this study and reported in Table 4. The 

occupancy factors of atoms were adjusted and Ti/Al substitution on the Ti sites have been 

considered. The results of the quantitative phase analysis are given in Table 7. 

Upon annealing, XRD results show that the fractions of  and 2 phases slightly decrease while 

the fraction of 0 increases. This result is in full agreement with the microstructure observations, 

which have shown a larger content of precipitates in the annealed specimen, accompanied with 

a decrease in size of the lamellar grains and of the 2 lamellae. The decrease in the  phase 

fraction results from the fact that the 0 precipitation is more pronounced than the 2 dissolution 
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in lamellar zones, due to the low initial fraction of the latter phase. The thermally activated 

migration of W atoms from  and 2 phases seems to favour the formation of the precipitate 

phase.  

Table 7. Fraction of phases (at%) determined using Rietveld refinement.  

Phase As-SPSed Aged 

 89.6 88.2 

2 9.2 8.3 

0 1.2 3.5 

 

6. Discussion 

During the ageing treatment of 500 hours at 800 °C for the IRIS alloy, the first change in the 

microstructure is the precipitation of 0 phase in both single phased  zones and lamellar 

colonies. In  borders, growth of existing precipitates and nucleation of new ones have been 

evidenced, thus leading to the multiplication by a factor of nine of the volume fraction of 0 

phase. The main consequence of this precipitation is the formation of W-depleted thin bands 

situated at grain boundaries. In the lamellar colonies, needle shaped and planar 0 precipitates 

are formed in the 2 lamellae, leading here again to W segregation. However, the full 

dissolution of 2 lamellae is not observed consistently with the limited size of these precipitates. 

Segregation of W atoms in precipitates comes from the partially dissolved 2 phase and from 

the neighbouring  lamellae.  

On the one hand in the aged alloy, counting the precipitates and measuring their size (section 

5.1) from SEM micrographs, have resulted to a mean number and size of precipitates of 1687 

and 0.13 µm² in an area of 2 480 µm². This corresponds to a surface fraction of 0 phase of 

1.95% in the aged material, in comparison to 0.21% obtained by the same method in the as-

SPSed alloy. On the other hand, the volume fraction of 0 phase has been measured to be 3.5 

and 1.2 in the same alloys by XRD (section 5.5-Tab. 7). In the case of SEM investigation with 

the JEOL-6490-SEM, the smallest precipitates, particularly those in the lamellar areas, could 

not be revealed, which can partially explain the discrepancy between the measurements 

obtained with these two experimental methods. In order to obtain a rough estimation, we will 

take as approximate values, 1% and 3% as 0 phase contents in the unaged and aged alloys 

respectively. Taking a W content of 15 at. % in this 0 phase, it is found that only 7.5 % and 

22.5 % of the W atoms which were initially incorporated in the IRIS alloy, were found to 

segregate in the 0 precipitates of the unaged and aged alloys. Therefore, whatever the alloy 

condition, aged or non-aged, a large fraction (more than 75%) of the incorporate tungsten atoms 

is still present in the  phase for a hardening purpose. These evaluations are consistent with the 

data obtained in the present work by XRD (Tab. 7), i.e. a  phase presents in nearly 89.6 % and 

88.2 % with a W content of 2 at. % and an 2 phase present in nearly 8.2 % and 8.3% with a W 

content of 3 at. %, respectively in the aged and non-aged alloys.  

The thin bands depleted in W, which form at the lamellar grain boundaries after ageing, are 

indicative of diffusion and segregation phenomena (Fig. 8 and Table 6). The driving force for 

these mechanisms is probably the supersaturation of W in the  phase. During the SPS cycle, 

the material is brought to the single  phase field, in which the W solubility is quite high, 
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ranging from 1.06 at. % [33] to 2.4 at. % [30] depending on the authors. Then, during 

subsequent cooling, the  phase transforms into lamellar colonies, which is mainly composed 

of  phase (> 90 %), in which the W solubility is significantly lower than in the  phase: values 

of 0.62 at. % [33] and 1.06 at. % [30] are reported by the same authors. This results in 

supersaturation of W in the  phase. Indeed, the onset of W precipitation has actually been 

observed during SPS processing [9,23]. However, due to the rapid of SPS processing, the 

desaturation process of the  phase is only partial and there should be a tendency for W to 

segregate into precipitates during ageing subsequently to SPS processing. The observation of 

an increase in the number and size of  precipitates at boundaries between lamellar grains after 

ageing (Table 5), which is accompanied by a localized W depletion at these locations (Fig. 8), 

support this assumption. More precisely, the desaturation of the  phase occurs by nucleation 

and growth of  precipitates at the boundaries between lamellar colonies, which are the most 

favorable sites in terms of interfacial energy, by a classical heterogeneous nucleation 

mechanism. The mass transport of W involved in this mechanism occurs by diffusion, firstly in 

the  phase, then in the grain boundaries. However, the lateral extension of the W-depleted zone 

in is rather limited (≈ 1 µm, Fig. 8), which suggests that the desaturation in W of the  phase is 

difficult at 800°C. The dissolution of W in the  phase is therefore considered to be minor. In 

the lamellar areas, the desaturation driving force for the precipitation is accompanied by the 

one coming from the 2 dissolution. An intriguing observation can however be made in the W-

depleted zones (e.g. Fig. 8b): the transition between the supersaturated  (in bright) and the 

equilibrated  (in dark) is rather abrupt (see arrows in Fig. 8b). This is unexpected, because 

volume diffusion phenomena generally induce smoother compositional variations. This point 

is not fully elucidated yet, but a potential interpretation could be a strong concentration 

dependence of the solute diffusion coefficient of the W atoms. Indeed, mathematical analyses 

show that, in the case of strong diffusion coefficient variations with concentration, the 

concentration profiles exhibit abrupt transitions [34]. 

In the lamellar colonies, the W enrichment at former positions of 2 lamellae is firstly 

originated from W atoms within the 2 lamellae, as a consequence of the partial dissolution of 

the fine 2 lamellae. In this case, the fine lamellar zones would enhance the diffusion of W 

atoms compared to the large  zones. However, at the series of fine lamellae, the W enrichment 

is less pronounced and mainly located at the external lamellae of the series (section 5.4 – Fig. 

10 and 11). This observation is consistent with the observation of a high number of precipitates 

in the lamellae bordering this specific series (section 5.2 – Fig. 6b). This suggests that, in 

addition to the segregation coming from the 2 lamellae dissolution, the W atoms segregating 

in the precipitates are at least partly coming from  lamellae, over a distance larger than the 

width of the fine  lamellae of the series. Indeed, for the 2 lamellae inside the series, their 

bordering  lamellae are too fine to provide enough tungsten atoms.  

It has been measured that the ageing treatment results in a reduction of the surface fraction of 

the lamellar microstructure from 73% to 67% through the expansion of the  borders at the 

periphery of the lamellar colonies. The associated reduction of the volume fraction of 2 phase 

is only of 1% due to the low volume fraction of this phase in these lamellar colonies. Such a 

diminution of the fraction of lamellar areas might however be assumed to have dramatic 

consequences on the mechanical properties since the number of interfaces is then reduced. The 

fraction of  phase globally decreases of 1% as a consequence of the balance between different 
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mechanisms: the precipitation of 0 phase, the decrease of the 2 lamella width and the 

diminution of the lamellar areas. Except in the zones directly affected by some microstructural 

changes, as the W-depleted bands in the borders or the lamellae in which lamellar 0 precipitates 

have nucleated, the chemical composition of the phases do not vary so significantly. 

For all types of solicitations, 20°C, 800 °C and 900 °C in tension at constant strain rate of 10-4 

s-1 or during creep at 800 °C under 200 MPa (section 4), the IRIS alloy strength is moderately 

affected by this ageing treatment of 500 hours at 800 °C and by the microstructural changes. 

Previous works on W-containing TiAl alloys have resulted in opposite effects of ageing 

treatments on mechanical properties: Beddoes et al. [13] and Zhu et al. [16] noted a reduction 

of the instantaneous primary creep strain and of the creep strain rate interpreted as an effect of 

the 0 precipitation at interfaces whereas Munoz-Morris et al. [6] measured a reduction in YS 

at 20 °C and 700 °C, which was attributed to the dissolution of the 2 phase. In the author’s 

opinion, the interpretation of these ageing effects requires deep understanding of the 

microstructure evolutions versus ageing time and of the deformation mechanisms activated 

under the various applied solicitations. The deformation mechanisms activated at room and 

high temperatures in the SPS-IRIS alloy have been investigated elsewhere by the present 

authors [9,35]. Indeed, it has been shown that, at high temperatures, the interaction between 

dislocations moving by glide or climb processes and atoms of tungsten is the controlling 

phenomenon for the alloy strength. At room temperature, the IRIS alloy is not among the 

stronger TiAl alloys [9] due to its relatively high proportion of single-phased areas (borders) in 

which ordinary dislocations glide and twins propagate. YS is comparable to that of a GE alloy 

densified by SPS [36] which confirms that the role of tungsten is not prevalent at room 

temperature. A significant part of the ductility loss measured in the aged alloy (0.22 %) could 

be attributed to the increase of the mean free path between obstacles for twins in the  phase 

with the reduced size of lamellar areas: the longer this distance, the larger the number of piled-

up twin dislocations at given stress, the higher the associated internal stress leading to the 

sample failure. At 800°C under high strain rate, the deformation results from the glide of 

ordinary dislocations controlled by a frictional force enhanced by the interaction between 

dislocations and tungsten atoms and from the crossing of / and /2 interfaces by the mobile 

dislocations [35]. Here again, the diminution of the interface number through that of the 

lamellar zones should slightly reduce the alloy strength. However, the effect of W atoms on the 

intrinsic mobility of gliding dislocations [37], is still present and preserve the IRIS alloy of a 

drastic loss of strength. During creep at 800°C under low stress, the dislocation propagation 

occurs by climb of [001] and ordinary 1/2<110] dislocations in the  phase which is controlled 

by the low diffusivity of tungsten atoms [35,38]. The creep properties of the aged alloy are 

therefore moderately affected because a suitable amount of tungsten is maintained in this  

phase. The measured reduction of the alloy strength is postulated to be resulting from the 

increase in the volume fraction of  phase up to 37% (Tab. 3) due to the dissolution of the 

lamellar structure. Indeed, the lamellar structures are well known to be more creep resistant 

than single-phased or even duplex ones [1].  

As a summary, for the three situations investigated in the present work (high strain rate at RT 

and HT, and creep), the strength of the IRIS alloy is mainly preserved after the ageing treatment 

of 500 hours at 800°C because it is controlled by the tungsten atoms distributed in the  phase, 

which have weakly segregated. Conversely, the moderate drop of strength results from the 

expansion of the single phased  areas, arising from the dissolution of the lamellar counterparts. 
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Consequently, one way to reduce the loss of creep resistance due to ageing at 800°C, should be 

towards stabilising the lamellar structure in the as-SPSed IRIS alloy. Incorporation of a small 

amount of silicon or carbon is a possible solution and an objective for further investigations. 

Other alternatives under discussion concern the decrease in aluminium content to 47 at. % or in 

tungsten content to 1.5 at. %, thereby reducing the driving force for the 2 lamellae dissolution, 

directly for the first case and indirectly for the second one, through the limitation of 0 

segregation. Now, the question of the stability of the lamellar structure of the as-SPSed IRIS 

alloy during long - term ageing of about 10 000 hours which correspond to the operation time 

of turbine blades in aero-engines is still open and will be further investigated, in a context where 

ABB23 alloys have been found to be unstable during such long processing times [7]. 

7. Conclusion 

In the present work, the evolution of the microstructure and of the mechanical properties of the 

SPS - IRIS alloy during an ageing treatment of 500 hours at 800 °C has been studied. This 

ageing treatment was found not to reduce drastically the mechanical properties of the alloy. At 

room temperature, YS is not affected, but the plastic elongation at rupture is decreased by 0.22% 

in absolute values. At 800 °C and 900 °C, during deformation at constant strain rate, a slight 

decrease in YS of less than 25 MPa can be emphasized. The creep properties under 800 °C and 

200 MPa are moderately affected. This exposure leads to a precipitation of 0 phase in the 

single-phased  areas and in the lamellar colonies, which in turn induces the formation of W-

depleted bands in the borders and the reduction of the width of 2 lamellae, as well as some 

tungsten segregation in these precipitates. However, because of its low diffusivity, the tungsten 

content in the  phase is maintained at a sufficient level close to 2 at. %, which sufficiently 

preserves the mechanical properties at high temperatures. 

This particularly good behaviour of the IRIS alloy after exposure as compared to many other 

TiAl alloys, actually results from the initial homogeneous repartition of tungsten atoms, owing 

to the use of the SPS route and to the low diffusivity of this element, thus limiting segregations 

which would be detrimental for the alloy strength. Another advantage of the very weak 

diffusivity of tungsten is to allow a strong hardening effect for a content of only 2 at. % in the 

alloy chemical composition, namely at a level which prevents the formation of 0 grains. The 

latter would result in an alloy softening at high temperatures. However, the minimum amount 

of tungsten required to sufficiently harden the alloy is not known. Alternatively, the current 

investigations are focused on the stabilisation of the lamellar microstructure through the 

incorporation of elements like silicon or carbon and/or a slight decrease in the aluminium 

content, which can also represent interesting solutions for an even better resistance of the IRIS-

SPS alloy during ageing. 
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