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ITERATIVE FEATURE SELECTION FOR COLOR TEXTURE CLASSIFICATION

A. Porebski 2", N. Vandenbroucke ! 2 L. Macaire ?
I Ecole d'Inggnieurs du Pas-de-Calais 2 Laboratoire LAGIS - UMR CNRS 8146
Département Automatique Universi€ des Sciences et Technologies de Lille
Campus de la Malassise Cité Scientifique - Btiment P2
62967 Longuenesse Cedex - FRANCE 59655 Villeneuve d’Ascq - FRANCE
ABSTRACT Thus, with these Haralick features, Palm builds a 96-dimen-

) . sional feature space to characterize textures i &=, B)
In this paper, we describe a new approach for color texturgnd(L’ U, V) color spaces [2]. Although the results given by
classification by use of Haralick features extracted frotorco g approach are great, the dimension of this feature space
co-occurrence matrices. As the color of each pixel can bgpgyid be reduced to decrease the processing time. So, we
represented in different color spaces, we automatically d&rgnose to measure the discriminating power of the extacte
termine in which color spaces, these features are most digg|or texture features, in order to build a feature spach wit
criminating for the textures. The originality of this appoh |5 dimension.
is to select _the most discriminatin_g color tex'ture fgatdnes In the second section of this paper, we present the coloespac
order to build a feature space with a low dimension. OUfnfuence on texture analysis. Then, we describe the Haralic
method, based on a supervised learning scheme, uses an §g;res extracted from color co-occurrence matrices én th
rative selection procedure. It has been applied and tested ¢nirg section. The fourth section details the iterativecgro
the BarkTex benchmark database. dure which selects the most discriminating feature space. O

Index Terms— image color analysis, feature extraction, method, based on a supervised learning, has been applied and
image texture analysis, image classification. tested on the BarkTex benchmark database in the last section

1. INTRODUCTION 2. COLOR SPACE AND TEXTURE ANALYSIS

For the industrial quality control and scene analysis psegp Palm compares the performances reached by several texture
color textures have to be characterized in order to classiffeatures calculated with images coded in different color
images. However, a few of color texture analysis tools aréPaces. He concludes that thie U, V) space is better adap-
available. Since many authors have shown that the use &d than th€R, G, B) space for the color texture discrimina-
color improves the results of texture classification, mdst otion [2].

the color texture feature are deduced from tools designed fd Similar approach is adopted by Drimbarean who underlines
grey level images [1, 2, 3, 4]. that the(Y, I, Q) space allows to obtain better results than the
The color of each pixel is characterized by its three triehro (22, G, B) space [3].

matic component®, G andB. The analysis of the pixel color Chindaro uses a color texture classification system based on
distribution in a color space is not restricted to {ig G, B) @ set of independent classifiers each assigned to a different
color space. Indeed there exists a large number of coldfolor space. In order to classify the considered request ima
spaces which respect different physical, physiological an9€s. he fuses the classification decision of each clasdifeer.
psychological properties. The performance of an image Seg;oncludes that the association of informations coming from
mentation procedure is known to depend on the choice of thie different color spaces improve performance [4].

color space [5, 6]. In this paper, we study the impact of thel he synthesis of these works does not allow to conclude on
choice of the color space on the performance reached by dRe definition of a single color space adapted to color textur
algorithm of texture classification. For this purpose, tezs ~ analysis. That's why we propose to select the most discri-
are characterized by Haralick features extracted fromrcolgMinating texture features of color images coded in 28 diffe-

co-occurrence matrices which are computed in differerdrcol feént color spaces. These color spaces can be classified into
spaces. four families : the primary color spaces, the luminance-

chrominance color spaces, the perceptual color spacefand t
*Corresponding author. Email: alice.porebski@eipc.fr independent color component spaces (see figure 1) [5].
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Fig. 1 : Color space families

color co-occurrence matrices are sensitive to signific#nt d
ferences of spatial resolution. To decrease this sertgjtivi

it is necessary to normalize these matrices by the total co-
occurrence numbey_; " SNt MCHCw [I](4, j), where

N is the quantification level number of the color components.
The normalized color co-occurrence matris¢ i [1](i, 5)

is defined by :
MCCr 1) (i, 5)
St sy MO [T, 5)

m (17, ) =

The color co-occurrence matrices characterize the coker te
tures in the images. However, they cannot be directly ex-
ploited because they contain a large amount of information.
To reduce it, while preserving the relevance of these descri
tors, we use Haralick features extracted from these matrice

3.2. Haralick features

Haralick introduces 14 texture features denafedb I;4 ex-
tracted from co-occurrence matrices [7]. These features ar
statistical measures on the co-occurrence matrices of an
image which allow to reduce the information quantity of each
matrix. For example, Palm uses eight of these fourteen Ha-
ralick features : homogeneity, contrast, correlationiarare,
inverse difference moment, entropy, correlatioand?2 [2].

4. FEATURE SELECTION

4.1. Candidate color texture features

For each image coded in a color space, we dispose of 6 color
co-occurrence matrices and so ®fx 14 Haralick features
extracted from these matrices. The number of color spaces
used here being equal to 28, we examiie= 6 x 14 x 28 =
Color co-occurrence matrices, introduced by Palm [2], are @352 candidate color texture features (see. figure 2). Since the
statistical feature which both measures the color distidbu  total numberN; of candidate color texture features is very
in an image and considers the spatial interaction between phigh, it is interesting to select the most discriminating®m
xels. These matrices are defined for each color space derder to reduce the size of the feature space.

noted (1,C-,C3) of figure 1. LetC) and Cy/, be two of

3. COLOR TEXTURE FEATURES
3.1. Color co-occurrence matrices

the three color components of this spakei{ € {1,2,3}) IR —= 14 Haralick features
and M “xC« [1], the color co-occurrence matrix which mea- mp =14 Haralick features
sures the spatial interaction between the compon@ptand (R,G,B) my's =14 naralick features
Cy of the pixels in the imagé. The cell M ©=Cv [1](i, j) of m@ B —= 14 Haralick features
this matrix contains the number of times that a pikelhose mE L] =% 14 Haralick features
color component valu€’,/(P) is equal toj, has, in its 3x3 L e =14 Haalick features
neighborhood, a pixel) whose color componer@},(Q) is L% uv mf:llﬁ: = ]4 Haralick features
equa| toi. mv »v" <= 14 Haralick features|
Each color imagé is characterized by the six following color Other color spaces. ..

co-occurrence matricesh/ -1 [I], M2 C2[1], M3 1],
MCvC21], MC1Cs[T] and M©>C3[I]. Since the matrices
MC2CuT], MCC1[I] and M “3-C2[I] are respectively sym-
metric to the matriced/“+-“2[I], M “+-%3 1] and M ©=-C3 1],
they are not used. The determination of the most discriminating feature spgace
As they measure the local interaction between the pixets, thachieved thanks to an iterative selection procedure basad o

Fig. 2 : Candidate color texture features

4.2. lterative selection



supervised learning scheme. This non-exhaustive proeeduwhereM = [m!, ...,md]T is the mean vector of thé color
has given very good results to select an hybrid color space faexture features for all the classes. The most discrimmgati

color image segmentation [5]. feature space maximizes the information criterion:
In a first time, N, learning images which are representative
of each of theN; texture classes is interactively selected by J= trace((zc +3 S)*lz S)

the user. This step consists in processing Afye = 2352

color texture features for each learning image. Then, the pr There does not exist any efficient measure to compare the dis-
cedure selects automatically the best features, that iayto S criminating power of two spaces with different dimensions.
those which are the most discriminating for the- texture 5o we retain a very simple stopping criterion of this itera-
classes thanks to the following iterative selection praced  tiye procedure, which is the decreasing of the rate of well-
At each stepl of this procedure, an informational criterioh  ¢|assified learning images. Let us notice that the criterion
is calculated in order to measure the discriminating povier o,seq to determine the dimension depends on the classificatio
each candidate feature space. At the beginning of this proyje. Once the feature space is selected, the requesteaextur

cedure { = 1), the Ny one-dimensional candidate feature jnages are classified thanks to the nearest mean classfier [5
spaces, defined by each of thg available color texture fea-

tures, are considered. The candidate feature which magémiz
J is the best one for discriminating the texture classes. It 5. RESULTS

is selected as the first step and is associated in the second ) ) ) )
step of the procedurel(= 2) to each of theN; — 1) re- In order to show the interest of the interative selectiorcpro

maining candidate color texture features in order to cartsti  dure. the results obtained with the 28 color spaces are com-
(N — 1) two-dimensional candidate feature spaces. We corpared with those obtained by only using {#é, &, B) space.
sider that the two-dimensional space which maximiZes

the best space for discriminating the texture classes. .. 5.1. BarkTex database

In order to only select color texture features which are not ] ]

correlated, we measure, at each step 2 of the procedure, Color images of the BarkTex database availableftpt//

the correlation between each of the available color texaae  tphost.uni-koblenz.de/outgoing/vision/Lakmann/BarkTex are
tures and each of the— 1 other color texture features consti- €gually divided into six tree bark classeBefula pendula
tuting the selected — 1 dimensional space. The considered(11), Fagus silvatica(T3), Pica abies(73), Pinus silvestris
features will be selected as candidate ones only if theiieeor (14), Quercus robus(T5), Robinia pseudacacia(Tt)) with
lation level with the color texture features already seldds 68 images by class. To build the learning database, we have
lower than a threshold fixed by the user [5]. _extracted 32 images of each texturg class. Th_e 36 remaining
We assume that the more the texture classes are well sefd1@ges(68 — 32 = 36) are request images. Figure 3 illus-
rated and compact in the candidate feature space, the high&ates & subset of learning images on the left and a part of the
the discriminating power of the selected color texturetfes rgquest images used to test our classification method on the
is. That leads us to choose measures of class separabiity afight.

class compactness as measures of the discriminating power.
At each stepl of the procedure and for each of th¥; —d+1) T
d-dimensional candidate feature spaces, we define, faf'the

learning imagew; ; (i = 1,...,N,) associated to the tex-
ture classl; (j = 1,..., Nr), a color texture feature vector T
Xij =}, x;{j]T wherez{ ; is thed™ color texture fea-
ture. The measure of compactness of each texture €laiss T3
defined by the intra-class dispersion mafyix:
1 Nr N, Ts
Yo=——" X X — M)(X,;; — M;)T
C N, x Np ;;( ,J J)( ,J J) T

T .
whereM; = [m},...,m¢]" is the mean vector of thé color

texture features of the clags and .V, the number of images
by class. The measure of the class separability is defined by

the inter-class dispersion matriXs: Learning images Request images
NT . .
1 Fig. 3 : BarkTex images
T



5.2. Selected texture feature space of color texture features allows to obtain good results \aith
low number of features. Furthermore, our classification re-
sults should be improved by processing directionnal cader ¢
occurrence matrices as Palm has done for discriminating di-
rectional textures formed by the tree barks.

The supervised learning procedure iteratively selectsist
discriminating color texture features.

Iteratior) Haralick . Rate of well-classified

step | feature | Matrix Color space learning images
1 N1 | mBB (R,G, B) 44.3% 6. CONCLUSION
2 I 11,13 I1,12,13 55.7% o . ,

o ( ) _ The originality of this work is to select the most
3 Ig mL e (L*, u*,v*) 62.5% . — . .

discriminating Haralick features extracted from the calof

4 Is mH (1,5,T) 64.6% occurrence matrices calculated in different color spates-i
5 Is mD I (I,8,T) 70.3% der to build a feature space with a low dimension for texture
6 Iy |mL*a” (L*,a*,b%) 74.5% classification. We have compared our results with those ob-
. = | .oB (R.G.B) 20.8% tained by only using théR, G, B) space and have shown that

the consideration of different color spaces improves fiigni
cantly the classification quality. Our iterative selectmoce-
dure would be generalized to other relevant texture feature
&s wavelets, Gabor filters or Markov random fields.

Table 1 : Texture feature iteratively selected

The table 1 shows that, at the first iteration step, the mo
discriminating color texture feature which maximisésis
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