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SUMMARY

Microtubules (MTs) are essential for many cell
features, such as polarity, motility, shape, and vesicle
trafficking. Therefore, in a multicellular organism,
their organization differs between cell types and
during development; however, the control of this
process remains elusive. Here, we show that during
Drosophila tracheal morphogenesis, MT reorganiza-
tion is coupled to relocalization of the microtubule
organizing centers (MTOC) components from the
centrosome to the apical cell domain from where
MTs then grow. We reveal that this process is
controlled by the trachealess patterning gene in
a two-step mechanism. MTOC components are first
released from the centrosome by the activity of
the MT-severing protein Spastin, and then anchored
apically through the transmembrane protein Piopio.
We further show that these changes are essential
for tracheal development, thus stressing the
functional relevance of MT reorganization for
morphogenesis.

INTRODUCTION

MT cytoskeleton plays essential roles in determining cell

shape, cell polarity, and vesicle trafficking. As a consequence,

MT reorganization during differentiation is essential for

morphogenesis. MTs are filamentous polymers composed of

a- and b-tubulin heterodimers and form highly organized,

polarized networks. MT formation takes place primarily at

morphologically distinct structures termed microtubule orga-

nizing centers (MTOCs) (Pickett-Heaps, 1971; Wiese and

Zheng, 2006). In most animal cells, polarized arrays of MTs

are nucleated from the centrosome, an organelle composed

of a pair of centrioles that recruits and organizes a large

number of proteins to form the pericentriolar material (PCM).

Within the PCM, many proteins assemble into a scaffold that

docks the g-tubulin ring complex (g-TuRC), which nucleates

and controls MT growth (Raynaud-Messina and Merdes,
790 Developmental Cell 18, 790–801, May 18, 2010 ª2010 Elsevier In
2007). The g-TuRC is composed of g-tubulin and highly

conserved factors named Grips (from gamma-tubulin ring

proteins) (Oegema et al., 1999) that are distinctly organized.

First, Dgrip84 and Dgrip91 together with g-Tubulin assemble

into the g-tubulin small complex (g-TuSC) (Wiese and Zheng,

2006). Then, outer Dgrip subunits (Dgrip75, Dgrip128, and

Dgrip163, for example) associate with the g-TuSC, thus orga-

nizing the g-TuRC (Wiese and Zheng, 2006), although these

outer Dgrip subunits are nor necessary to target g-tubulin to

centrosomes (Verollet et al., 2006). However, in many cell

types, MTs are not associated with the centrosome (Keating

and Borisy, 1999). Noncentrosomal arrays of MTs are

frequently generated in differentiated cells and are likely to

expand the functional repertoire of the MT cytoskeleton. This

is particularly true during the differentiation of specialized

cell types in multicellular organisms (for review see Bartolini

and Gundersen, 2006). The relocation of MT-anchoring

proteins to noncentrosomal sites, such as the apical cell

surface, occurs during the development of numerous tissues.

But the mechanisms that regulate this process and its function

are poorly understood.

We studied the control of MT nucleation and organization and

its role in morphogenetic processes during tracheal formation in

Drosophila, a well-established model used to study the develop-

ment of organs with complex tubular structures (Affolter et al.,

2003). The tracheal system arises from clusters of ectodermal

cells or tracheal placodes at each side of ten embryonic

segments. By stage 11, cells of each tracheal placode invaginate

to form a sac-like structure that generates a luminal cavity and

thereafter migrate to form the different tracheal branches, which,

by stage 13, fuse with those of adjacent metameres (Uv et al.,

2003). Importantly, once tracheal cells invaginate, there is no

further cell division.

In this study, we uncover a regulatory mechanism orches-

trating the formation of noncentrosomal arrays of microtubules

in an in vivo developmental context. We demonstrate that this

mechanism requires g-TuRC apical relocalization and is

controlled in a two-step process by Trachealess (Trh), a tran-

scription factor specifying tracheal fate. First, it proceeds with

a Spastin-mediated release from the centrosome and second

with a Piopio-mediated anchoring in the apical membrane.

Finally, we reveal the functional significance of MT reorganiza-

tion during organ formation in a living organism.
c.
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RESULTS

MT Network Organization in Tracheal Cells and Changes
in MT Subnetworks during Development
We first characterized MT organization during tracheal morpho-

genesis. In invaginating placodes and throughout tracheal devel-

opment, the nucleus is basally located, the apical domain faces

the lumen, and centrosomes localize within a subapical domain

(Figures 1A–1F). As reported in other epithelial cell types (Barto-

lini and Gundersen, 2006), an apical array of short MTs, orga-

nized into a meshwork, forms a cap-like structure at the apical

domain whereas long MT fibers are distributed along the baso-

lateral cell domain (Figures 1B, 1C, 1E, and 1F). We observed

that a-tubulin levels, and therefore relative levels of MT (see

Experimental Procedures), are 2-fold higher in tracheal meta-

meres compared with the surrounding epithelial cells and these

levels remain constant during tracheal morphogenesis (Fig-

ure 1K). We subsequently examined tyrosination, which is

associated with newly assembled MT fibers, and a-tubulin post-

translational modifications such as acetylation, which occurs on

stable MT fibers (Hammond et al., 2008). At stage 11, most MTs

contain tyrosinated tubulin (referred as tyr-MT) (Figures 1G, 1G00,

and 1L) and appear as long fibers along the basolateral domain.

Conversely, the level of acetylated-tubulin in MTs (ace-MT) is low

(Figures 1I, 1I00, and 1L) and ace-MTs are significantly shorter

than tyr-MTs (Figures 1G0 and 1I0). From stage 13, tyr-MT levels

gradually decrease whereas ace-MT levels progressively

increase (Figures 1H–1J00 and 1L). This observation suggests

a progressive decrease in MT nucleation activity and an increase

in MT stabilization during tracheal morphogenesis.

g-TuRC Is Apically Relocalized in Tracheal Cells
during Invagination
g-Tubulin colocalizes with centrosomes in the ectoderm before

tracheal specification and remains at centriole-containing

centrosomes in surrounding epithelial cells (Figure 2A, arrow-

heads). However, g-tubulin is no longer associated with centri-

oles in the invaginating tracheal cells and later on (Figures 2A0

and 2K; see Figures S1A–S1D available online and data not

shown). The same is true for Dgrip84, a g-TuSC component,

which besides a cytoplasmic distribution colocalizes with

centrosomes in epidermal (Figures 2H and 2H00) and tracheal

cells before invagination (Figures 2B–2B00 0) but is largely and

gradually removed from centrioles during this process (Figures

2C–E00 0 and 2K). By the end of invagination, Dgrip84 and

g-tubulin are localized just below Crumbs, a marker of the apical

cell domain (Figures 2F and 2G; data not shown). Dgrip84 apical

localization persists throughout tracheal morphogenesis

(Figures 1E–E00 0 and Figures S1K and S1K0). Initial Dgrip84 apical

relocalization is MT-dependent, as indicated by its loss either by

Spastin (Spas) overexpression, which has efficiently been used

to disassemble MTs (Jankovics and Brunner, 2006; Sherwood

et al., 2004), or by cold treatment to depolymerize MTs (Figures

S1G, S1G0, S1J, and S1J0). Furthermore, Dgrip84 apical distribu-

tion is restored when MTs are reassembled (Figures S1H–S1I00).

However, from stage 12, the apical localization of Dgrip84 is not

compromised when MTs are disassembled (Figures S1K–S1L0),

which suggests a multistep mechanism of g-TuRC repositioning.

Similar results were obtained with Dgrip91, the other g-TuSC
Deve
component (not shown). In addition, we also observed an apical

localization of Dgrip75 (data not shown) and Dgrip163 (Figures

S1E–S1F0) in the tracheal cells during branching process, indi-

cating that not only the g-TuSC but the whole g-TuRC is apically

relocalized in tracheal cells during invagination where it remains

during tracheal morphogenesis.

MT Nucleation Center Shifts from Centriole Position to
Cell Apical Domain during Tracheal Morphogenesis
We then addressed whether the change in g-TuRC localization

implied a shift in MT nucleation activity. Alternatively, MTs might

still be nucleated at the centrosomes and then released together

with the g-TuRC and apically anchored (Keating and Borisy,

1999). We depolymerized MTs by cold treatment and monitored

their regrowth over 2 min in tracheal cells (Figures 3B–3M0;

Figure S2) compared to epithelial cells (Figures 3N–3S0). To iden-

tify the MT nucleation center, we defined areas of maximum

intensity for tyrosinated tubulin signal (see Experimental Proce-

dures and Figures 3A, 3C, 3F, 3I, 3L, 3O, and 3R, colored outline)

and then compared it with the centriole position (Figures 3D, 3G,

3J, 3M, 3P, and 3S, green dots) and quantified their overlap

(Figure 3T). In tracheal cells of stage 11, centrioles lie within

the maximum intensity domain in 87% of untreated controls

and in 89.5% of 2 min regrowth; in the remaining cases, they

partially overlap but are never apart (Figures 3D0, 3G0, and 3T).

In contrast, in tracheal cells of stage 13, the maximum intensity

areas lie in the apical domain and not at centrioles in 84.2% of

untreated controls and 69.2% of 2 min regrowth (Figures 3J0,

3M0, and 3T). Furthermore, areas occupied by the maximum

intensity signal are significantly larger at stage 13 than at stage

11 (data not shown). The shift in MT regrowth activity is specific

to tracheal cells. In epidermal cells, maximum intensity domains

overlap predominantly with centrosomes. Indeed, at stage 11

(data not shown) or stage 13 (Figures 3P0 and 3S0), in almost all

the cases centrioles lie within the maximum intensity domain

(Figure 3T). Together with the change in g-TuRC localization,

these results strongly suggest that, in tracheal cells, MT nucle-

ation activity is associated with centriole-containing centro-

somes at stage 11 and shifts to the apical domain by stage 13

while it remains at centriole-containing centrosomes in over-

laying epithelial cells.

Piopio Contributes to the g-TuRC Apical Anchoring
We next aimed to identify the molecular effectors required for MT

reorganization. trh codes for a transcription factor that triggers

tracheal development (Isaac and Andrew, 1996; Wilk et al.,

1996). We therefore examined whether MT changes in tracheal

cells were a consequence of tracheal fate specification. Indeed,

relocalization of g-tubulin and Dgrip84 are impaired in trh mutant

cells (Figures 2I–2J00 0 and 2K). Similarly, the higher MT levels

observed in wild-type are not detected in trh mutants

(Figure 1K). Thus, MT reorganization in tracheal cells is associ-

ated with their fate specification and is ultimately controlled by

the activity of trh.

We thus searched for trh-regulated mechanisms and consid-

ered Piopio (Pio) a good candidate for a g-TuRC anchoring

factor. Pio is a transmembrane protein that contributes to

tracheal branch extension, and in wing epithelial cells it is

required for MT organization (Bokel et al., 2005). pio is expressed
lopmental Cell 18, 790–801, May 18, 2010 ª2010 Elsevier Inc. 791



Figure 1. MT Organization and Changes in MT Subnetworks during Tracheal Development

(A–F) MT distribution and centriole position within tracheal cells at stages 11 (A–C) and 13 (D–F). (A and D) Schematic representation of a tracheal placode ([A],

stage 11) and of the dorsal part of a tracheal metamere ([D], stage 13). Apical side of tracheal cells, facing the lumen, appears in red and their nuclei are basally

located (B, C, E, and F). (C) and (F) are schematic representations of an enlarged view of (B) and (E), respectively. Anti-a-tubulin labels the MT network, centrioles

are detected by an anti-GFP antibody on asl-YFP embryos, and anti-spectrin labels cell membranes. Here and in the rest of the figures, anterior is to the left and

dorsal is to the top.

(G–J00) Dynamics of posttranslational modifications of a-tubulin and a-tubulin contents using anti-tyrosinated tubulin (G-H00) and anti-acetylated tubulin (I-J00),

respectively, at stages 11 (G and I) and 15 (H and J) and their respective quantifications (K and L). Note that epithelial cells are dividing (arrowheads, [G and I])

while tracheal cells have already stopped dividing.

(K) Graph showing ratios between values of signal intensity for a-tubulin at stages 11, 13, and 15 of WT embryos (gray bars) and at stage 11 of trh mutant

embryos (dark gray bar) (see Experimental Procedures).

(L) Graph showing ratios between values of signal intensity for tyrosinated tubulin (blue bars) and acetylated tubulin (green bars) of WT stage 11, 13, and 15. Error

bars indicate standard deviation.
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in the tracheal placodes under trh control (Figure 4A). In addition,

ectopic Trh expression driven by armGAL4 leads to ectopic

expression of Pio in dorsal epidermal cells (Figure 4B). Further-

more, ectopic Trh expression under a salGAL4 driver is able to
792 Developmental Cell 18, 790–801, May 18, 2010 ª2010 Elsevier In
induce Pio expression at specific positions where Trh has the

capacity to induce its target genes (Boube et al., 2000)

(Figure 4C). Altogether, these results indicate that Trh regulates

pio expression. Although these results do not indicate whether
c.



Figure 2. The Apical Translocation of MT Nucleation Activity during Invagination Is trh Dependent

(A) At late stage 11, g-tubulin colocalizes with the centriole position in epithelial cells surrounding tracheal cells (arrowhead). In contrast, in tracheal cells, g-tubulin

is mostly distributed outside centriole location (A0–A00 0 ).

(B–E00 0) Dynamics of Dgrip84 relocalization in tracheal placode invagination during stages 11 and 12. At early stage 11, Dgrip84 colocalizes with centrioles in

tracheal and epithelial cells (B–B00 0). In addition, a more diffuse Dgrip84 staining is restricted to a small group of tracheal cells that have initiated invagination

([B00 0], arrows). At mid-stage 11 (C–C00 0), some centrioles are depleted in Dgrip84 (arrowheads) and others present a lower Dgrip84 detection level. A large

part of the Dgrip84 signal is distributed in cytoplasm. At the end of invagination (D–D00 0), most centrioles are depleted in Dgrip84 (arrowheads). (E–E00 0) At stage

12, Dgrip84 is mostly detected apically in the tracheal cells. Only a few centrioles contain Dgrip84.

(F–F00 0) At late stage 11, Dgrip84 colocalizes with the Crumbs-containing apical domain.

(G) Schematic representation of Crumbs and Dgrip84 apical distribution in tracheal cells at placode stage.

(H–H00) In epidermal cells, Dgrip84 colocalizes perfectly with centrioles.

(I–J00 0) Remarkably, g-tubulin (I–I00 0) and Dgrip84 (J–J00 0 ) colocalization with the centriole are restored in trh mutant tracheal cells and are then identical to epidermal

cells (H-H00 00).

(K) Plot showing percentage of centriole colocalizing (in yellow) or not (in green) with Dgrip84 from early stage 11 to stage 12 of WT embryos and of stage 11 trh

mutant embryos. Plot also showing percentage of centriole colocalizing (in purple) or not (in blue) with g-tubulin from early stage 11 to stage 12 of WT embryos.

See also Figure S1.
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pio is a direct trh target gene, we note that there are trh binding

sites in the D. melanogaster pio promoter that are also present in

D. pseudoobscura (unpublished data).

We do not detect Pio protein in tracheal cells prior to mid stage

11 (Figure 4D; Figure S3A). In early stage 11 pio mutants, we
Deve
observed that Dgrip84 localizes correctly to centrioles

(Figure S3F). In late stage 11 embryos, Pio protein becomes

restricted to the apical part of the cell (Figures 4E, 4F, and 4G,

and Jazwinska et al., 2003). In pio mutants of late stage 11,

Dgrip84 is diffused in the cytoplasm (Figures 4H, 4I, and 5D),
lopmental Cell 18, 790–801, May 18, 2010 ª2010 Elsevier Inc. 793
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indicating that g-TuRC is released from centrosomes but that it is

not anchored at the apical site. We can rule out that the lack of

g-TuRC apical anchoring could be explained by the absence of

an apical domain in pio mutant tracheal cells as the apical marker

Crumbs (shown in Jazwinska et al., 2003) and PKC are correctly

distributed (Figures S3D and S3E). Thus, Pio is required for

g-TuRC apical anchoring. However, another independent mech-

anism must regulate g-TuRC release from the centrosomes.
Spastin Contributes to the g-TuRC Releasing
from Centriole
For that reason, we examined the role of Spas, a member of the

microtubule-severing AAA ATPases superfamily (Roll-Mecak

and Vale, 2005, 2008), which partially localizes to centrosomes

in Cos7 and SK-N-AS cells (Svenson et al., 2005) where it

releases MT minus ends (Zhang et al., 2007). Interestingly,

Spas is also partially associated with centrosomes in tracheal

cells (Figure 5A). We verified that the frequency of overlap

between then centriole and Spas is higher that expected by

chance (see Experimental Procedures) (Figures S4D–S4F). At

late stage 11, when Dgrip84 is mainly apically located in the

wild-type, Dgrip84 remains at centrosomes in spasm/z mutant

tracheal cells (Figure 5B) in more than 80% of cases

(Figure 5D) (see Experimental Procedures for genotype).

Concurrently, in the same embryos, g-tubulin is also detected

at centrosomes (Figure 5C). Hence, Spas activity is required

for the release of the g-TuRC from the centrosomes.

We next examined the effect of Spas function on MT organi-

zation in tracheal cells. We first looked at the distribution of ace-

MTs fibers with respect to the centriole position at stages 11

and 13 (Figures S4G–S4J). While in WT and pio mutants ace-

MTs fibers are rarely visible in the vicinity of the centriole in

the tracheal cells (Figures S4G, S4H, and S4J), ace-MTs fibers

of spasm/z embryos are frequently detected close to the

centriole (Figures S4I and S4J). We also measured MT levels

in spasm/z and wild-type tracheal cells and found a 41%

decrease at stage 11 and a 20% decrease at stage 15 in

spasm/z compared with the wild-type (Figure S4K). Lower levels

of MTs in spasm/z mutants correlate with an increased MT stabi-

lization: at stage 11 there are twice more ace-MT in spasm/z

mutants than in wild-type (Figure S4L). We also examined pio

mutants; at stage 11 the overall MT levels and the ratio of

ace-MT are indistinguishable from wild-type (Figure S3G). In

contrast, at stage 15, the relative levels of MT in tracheal cells

are lower in pio mutants compared with the wild-type: the ratio

of MT level is 1.65 in the former compared with 2.6 in the latter

(Figure S3G) (see Experimental Procedures for details). In addi-

tion, and in contrast to the wild-type, stable ace-MTs do not
Figure 3. MT Nucleation Center Shifts from Centriole Position to Cell A

(A) R&B LUT profile in which maximum and minimum intensity signals appear in

(B–S0) Tyrosinated tubulin detects MTs newly assembled and centrioles are labe

(B–M0) Tracheal cells of stage 11 (B–G0) and stage 13 (H–M0) are identified by a T

(N–S0 ) Epidermal cells of stage 13. Controls (B–D0, H–J0, and N–P0) or 2 min MT r

(B, E, H, K, N, and Q) Single confocal sections showing Tyr-tubulin staining (in w

(C, F, I, L, O, and R) R&B LUT applied on Tyr-tubulin signal. Areas corresponding t

(D, D0, G, G0, J, J0, M, M0, P, P0, S, and S0) Outlined areas only and enlarged view

(T) Graph showing the percentages of maximum intensity areas overlapping, p

epidermal cells. See also Figure S2.

Deve
increase in the tracheal cells of pio mutants. Thus, Spas and

Pio activity are crucial to sustain higher MT levels and to allow

MT stabilization (Figures S3G, S4K, and S4L), pointing to a func-

tional role of the relocalization of the MTOC components at the

apical membrane.
MTs Are Critical for Tracheal Morphogenesis
and for Specific Tracheal Function
To study the functional requirement of MTs in tracheal morpho-

genesis, we first induced early Spas overexpression (see Exper-

imental Procedures), which leads to depolymerization of most

MTs in tracheal cells at stage 11 (Figures 6A0and 6B0). Under

these conditions, tracheal placodes invaginate abnormally

(Figures 6A–6B00) (80%, n = 15 placodes). As development

proceeds, we observe absence of branches, breaks in the

tracheal tree (29%, n = 45 metameres) (Figures 6I–6J00 and

Figures S5A–S5B00) and defects in lumen formation, as indicated

by the low and abnormal deposition of chitin (Figures 6J0 and

6K0). Chitin is synthesized by apically secreted enzymes and its

abnormal deposition suggests that the MT dependent

membrane transport (Vaughan, 2005) is largely impaired in the

absence of MTs. Some MTs are still present upon Spas overex-

pression (Figures S5A0 and S5A00), which could explain why

branch and lumen formation are not totally impaired. We

confirmed the tracheal cell-autonomous defect of MT depoly-

merization with a specific driver that overexpresses Spas only

in the tracheal cells, although later and at lower levels, and

thus the phenotypes observed were less severe (Figures S5C–

S5E00). In a second approach, we used a cold treatment assay,

which is reversible and allows the evaluation of both MT disas-

sembly and reassembly. After 6 hr at 4�C, MT fibers are depoly-

merized in tracheal cells at placode stage (Figures 6C–6D00) and

remaining MTs are associated mostly with centrioles (Figures

6C–6D00). Under these conditions, the invaginating placode is

disorganized (Figures 6D–6D00). Remarkably, upon MT regrowth,

the placode readopts its proper organization (Figures 6F–6F00). In

neither of the two assays does MT depletion alter the distribution

of adherens junctions (Halbleib and Nelson, 2006) (Figures S5F–

S5G00) or apical markers, such as Crumbs and aPKC (Goldstein

and Macara, 2007) (Figures 6G–6H00). Similar phenotypes were

observed by impairing g-TuRC with RNAi against Dgrip84,

Dgrip163, and Dgrip128 or in zygotic Dgrip84 mutants at late

stages (Figures S6H–S6Q00). To more precisely analyze the role

of g-TuRC relocalization, we monitored tracheal morphogenesis

in spasm/z embryos. We also observed branch migration and

fusion defects (Figure 6L), and lower lumen deposition of chitin,

which is also detected in the cytoplasm (Figures 6I0, 6M, and

6M0), thereby suggesting that it was not properly secreted.
pical Domain during Tracheal Morphogenesis

red and blue, respectively.

led using anti-GFP antibody on asl-YFP embryos.

RH-positive nuclei pseudocolored in white (C, F, I, and L).

egrowth after MT depolymerization by cold treatment (E–G0, K–M0, and Q–S0).

hite) and centrioles (in green).

o the maximum intensity signal (in red) are outlined as well as centriole location.

s.

artially overlapping or not overlapping with centriole position in tracheal and
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Figure 4. Piopio Is Required for g-TuRC Apical Anchoring

(A) Pio is not detected in trh mutant tracheal cells.

(B and C) By contrast, Trh ectopical-expression, driven by armGAL4 (B) or sal-

GAL4 (C), leads to ectopic expression of Pio in epidermal cells (arrowheads).
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Measurements of MT and ace-MT contents (Figures S4K and

S4L) show that lower levels of MTs in spasm/z mutant tracheal

cells correlate with an increase in the amount of ace-MTs fibers.

Together with the higher number of ace-MTs fibers detected

close to centrioles in spasm/z mutants (Figures S4I and S4J),

these results illustrate how perturbing MTOC relocalization

affects MT organization. As a consequence, modifications in

MT organization lead to branch malformations and lumen

defects in the trachea, two phenotypes described when

MTs are depleted. Altogether this demonstrates the importance

of the correct organization of the MT network during

morphogenesis.
DISCUSSION

In summary, we identify a two-step mechanism that controls

g-TuRC relocalization and MT network reorganization during

in vivo development and show that these changes are essential

for morphogenesis (Figure 6N). In a first step, Spas releases

g-TuRC from centrioles, probably by severing MTs close to the

centrosome, thus stimulating the depolymerization of the MT

stubs attached to g-TuRC and leading to g-TuRC detachment

from centrosomes (Zhang et al., 2007) (Figure 6N). Because

Spas shows a normal distribution in trh mutants, we speculate

that Spas activity, but not its expression, is regulated by trh.

Another enzyme, Katanin, has been implicated in the release of

MTs from the centrosome in neurons (Ahmad et al., 1999).

However, two observations indicate that Katanin appears not

to have a role in this process. First, we do not see any effect

upon expression of a UAS-RNAi construct for katanin in tracheal

morphogenesis (data not shown). Second, using a Katanin anti-

body (Zhang et al., 2007), we did not detect Katanin in the

tracheal cells (data not shown), which fits with the absence of

the RNAi effect in the trachea. Subsequently, g-TuRC is trans-

ported in a MT-dependent manner toward the apical membrane.

Further work will be required to elucidate this transport mecha-

nism, but we speculate that upon detachment from centrosome,

the g-TuRC associated with released MT will be directed toward

the apical cortex. Interestingly, g-TuRC has been recently

observed along interphasic MTs (Bouissou et al., 2009). In

a second step, trh controls the expression of Pio, which was

known to act as a MT anchor in Drosophila wing cells. We thus

establish Pio as an intermediate between a cell-fate-inducing

gene and MT network reorganization and show that Pio

anchoring of MTs is linked to its ability to act as a g-TuRC apical

anchor.

Regulation of the MT network is likely to be an essential step in

morphogenesis, and previous studies have shown that signaling

pathways such as Decapentaplegic (Shen and Dahmann, 2005)

and Hedgehog (Corrigall et al., 2007) affect MT organization.

However, the molecular effectors responsible for the MT
(D–F) Pio expression in tracheal cells at mid stage 11 (D), late stage 11 (E), and

late stage 12 (F).

(G) At late stage 11, Pio localizes with an apical domain containing the Crumbs

protein.

(H and I) At stage 11, Dgrip84 localization in tracheal cells of WT (H) and pio

mutant (I) embryos. Dgrip84 appears diffuse in the cytoplasm of pio�/�

tracheal cells. See also Figure S3.

c.



Figure 5. Spastin Is Required for g-TuRC Release from the Centriole

(A) Spas distribution at stage 11 in tracheal cells. In part, Spas closely associ-

ates with centrioles (arrowheads).

(B) In contrast to WT, Dgrip84 largely colocalizes with the centriole position in

spasm/z tracheal cells (arrowheads) and apical distribution is much affected.

(C) In the tracheal cells of stage 11 of spasm/z embryos, g-tubulin localization is

detected at centrioles as opposed to WT embryos.

(D) Graph showing the percentages of centrioles colocalizing and not colocal-

izing with Dgrip84 in WT, pio�/�, and spasm/z contexts. See also Figure S4.
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changes were not identified. Here, we unveil the molecular

mechanisms triggered by the trh transcription factor to induce

the apical relocalization of the g-TuRC and the MT network reor-

ganization during tracheal morphogenesis.

Although the apical relocalization of MT nucleation activity

takes place in tracheal cells, our results show that centrosomes

continue to act as MTOCs in neighboring epithelial cells. This is in

contrast to what happens in cells of the amnioserosa and leading
Deve
edge cells during dorsal closure in late Drosophila embryogen-

esis. In both these cell types, the centrosomes do not function

as MTOCs (Jankovics and Brunner, 2006; Rogers et al., 2008),

although the mechanisms required for switching from centroso-

mal to noncentrosomal MT nucleation are not understood.

Differences between centrosome nucleation activity in early

epithelial cells (stage 13) and in the amnioserosa and leading

edge cells could be related to their developmental stage and

extent of differentiation.

Apical MT anchorage is a common feature of epithelial struc-

tures (Meads and Schroer, 1995) (Mogensen, 1999) and, as in

tracheal cells, is associated with more stable MTs in many cell

types (Keating and Borisy, 1999). However, the way in which

this process occurs and its function are not well understood.

Thus, in some cases, MT nucleation could still occur at the

centrosome and subsequently MTs would be released and

apically anchored. Consistent with this possibility, the vertebrate

protein Ninein, which participates in the docking of g-TuRC to

the centrosome (Delgehyr et al., 2005), is translocated to the

apical cell domain in some epithelial cells where it then anchors

the MT minus ends independent of g-TuRC, which remains

associated with centrosomes (Lechler and Fuchs, 2007).

Conversely, in neural tube development, the Xenopus Shroom

protein participates in the establishment of an apical MT array

and controls apical redistribution of g-tubulin (Lee et al., 2007).

Similarly, g-tubulin and some MTOC markers are located

apically in vertebrate lens cells (Dahm et al., 2007). Although

the mechanisms triggering apical MT redistribution are not well

known in theses cases, Shroom and related proteins might

play a similar role to Pio. In this regard, it is also worth mentioning

that Endoglin, the mammalian protein most similar to Pio, is re-

ported to be essential for angiogenesis in the mouse. This

process has been found to share many similarities with tracheal

development (Jazwinska et al., 2003). More precisely, both

Endoglin and Pio have a conserved short C-terminal domain

together with a ZP domain in the extracellular domain. In

addition, the Endoglin cytoplasmic domain interacts with MT-

associated proteins (Meng et al., 2006) and thus, in mammals,

Endoglin could also have a similar role to Pio. Therefore,

a two-step process combining the control of MT severing activity

in the centrosome with the regulation of a spatially restricted

anchoring protein might be a general mechanism to trigger the

relocalization of MTOC components and to reorganize the MT

network, and consequently to enable specific cell functions

and morphogenesis.
EXPERIMENTAL PROCEDURES

Fly Strains

A description of most of the genetic elements can be found at http://

flybase.net (FlyBase Consortium, 1999). Drosophila stocks and crosses

were kept under standard conditions at 25�C. The asl-YFP transgenic line

was used to detect centriole position (Varmark et al., 2007). The following

loss-of-function mutations were used: trh1, pio2R16 (Jazwinska et al.,

2003), Dgrip84R20 (Colombie et al., 2006), spas5.75 (Sherwood et al.,

2004). FM7-ftz-lacZ, CyO-wg-lacZ, TM3-ftz-lacZ, or TM6-Ubx-lacZ blue

balancers were used to identify homozygous embryos. In Drosophila,

spas has a large maternal contribution and zygotic mutants do not have

any tracheal phenotype. Thus, to test Spas function, we examined embryos

maternally and zygotically mutant for spas, referred to as spasm/z. Germline
lopmental Cell 18, 790–801, May 18, 2010 ª2010 Elsevier Inc. 797
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Figure 6. MTs Are Critical for Specific Tracheal Function and Tracheal Morphogenesis
(A�B00) Spas overexpression, driven by both btlGAL4 and armGAL4, leads to almost complete MT depolymerization (A0, B0). At stage 11, after MT depletion, the

tracheal placode lacks its characteristic ‘‘finger-like’’ structure (A, B).
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clones were generated by the FLP/FRT technique (Chou et al., 1993) using

the following lines: w[*]; P{neoFRT}82B P{ovoD1-18}3R/st[1] betaTub85D[D]

ss[1] e[s]/TM3,Sb[1], P{hsFLP}1, y[1] w[1118]; Dr[1]/TM3,Sb[1], P{neoFRT}82B

Spastin/TM3-ftz-lacZ. We used the GAL4 system (Brand and Perrimon, 1993)

for misexpression experiments. The armGAL4 (Vincent et al., 1994), btlGAL4

(Shiga et al., 1996) and salGAL4 (Boube et al., 2000) lines were used at 29�C

in combination with UAS-spastin-EGFP (Trotta et al., 2004), UAS-trh (Wilk

et al., 1996), UAS-Dgrip84-RNAi, UAS-Dgrip128-RNAi, UAS-Dgrip163-RNAi

(VDRC consortium, Dietzl et al., 2007).

Immunohistochemistry

Embryos were staged as described elsewhere (Campos-Ortega and Harten-

stein, 1985) and fixed and stained following standard protocols. To visualize

MTs, embryos were fixed for 10 min as described previously (Lee et al.,

2003). Primary antibodies were as described elsewhere (Brodu and Casanova,

2006) with the following additions: anti-Crumbs (1:10, Cq4 DSHB), anti-

a�Catenin (1:20, DCAT-1 DSHB), anti-Pio (1:20, (Jazwinska et al., 2003)),

anti-a�tubulin-FITC and anti-acetyl-tubulin (1:200, Sigma) anti-tyrosine-

tubulin (1:200, Tyr1/2 Abcam), and g-tubulin specifically directed against

D. melanogaster g-tubulin 23C (1:500, R62 [Raynaud-Messina et al., 2001]),

anti-Dgrip84 (1:1000, R67 [Colombie et al., 2006]), anti-Dgrip75 (1:200,

Schnorrer et al., 2002), anti-Dgrip163 (1:100, Gunawardane et al., 2000),

anti-Spas (1:200, Zhang et al., 2007), anti-CP309 (1:1000, our own stock).

Alexa Fluor 405, Cy2, Cy3, and Cy5 secondary antibodies (Invitrogen and

Jackson ImmunoResearch, respectively) were used at a dilution of 1:200.

DAPI was used for DNA detection. Tracheal cells were identified either using

antibodies against transcription factors Tango or Trh. Tango has been shown

to dimerize in vivo with Trh. As a heterodimer, Trh functions to specify trachea

cell fate. Anti-spectrin labels cell membrane and anti-a�tubulin labels MT

network. Centrioles were detected using anti-GFP antibody on asl-YFP

embryos or using an antibody against CP309, a constitutive pancentriolar

protein. All fluorescent images were collected using confocal microscopy

(Leica TCS-SP5-AOBS system, Leica DMI6000B microscope and Leica

confocal software [LAS-AF 1.7.0]) and processed using ImageJ and Photo-

shop (Adobe Photosystems). These images are projections of two consecutive

confocal sections, except for Figures 2A–2A00 0, 3B, 3E, 3H, 3K, 3N, 3Q, and 5A

and Figures S4D–S4F, which show single confocal sections, and Figures S6A–

S6E, S6I, S6K, S6M, S6O, and S6P, which show projections of several

confocal sections.

Image Processing and MT Quantification

Embryos from overnight collections were fixed for MTs and stained with

a�tubulin, acetylated tubulin, and tyrosinated tubulin antibodies. Images

were acquired, for a given antibody, using the same confocal settings through

different stages. Quantification of a-tubulin, acetylated, and tyrosinated

tubulin signal intensity was performed on a single confocal section using the

‘‘integrate density’’ function of ImageJ. ROI corresponding to one cell area

was defined and signal intensity, reflecting the amount of a-tubulin, acetylated

tubulin, and tyrosinated tubulin, was determined. This operation was repeated

for 35–76 cells of the same confocal section and through two or three sections.

To compare values between sections, we integrated the decrease in signal
(C–F00) After a 6 hr incubation at 4�C (D00), MTs are largely depolymerised (compa

maining MTs are associated with centrioles (arrowheads in D00). After 2 min at room

of cell division in epithelial cells (white arrow in [E00]). After 30 min at RT (F00), MT

centrioles are detected with asl-YFP transgene.

(G and H) MT depletion does not affect cell polarity as Crumbs (G and H) and aP

(I–K00) Spas overexpression produces branch breaks, resulting from either absen

arrowhead in [J]).Visceral branches are often missing (white arrowhead in [J00]).

WT (I0). In contrast, Spas overexpression leads to a reduction in CBP secretion

uniformly secreted.

(L and M) Tracheal phenotypes in spasm/z embryos at stage 16 showing lack of b

CBP secretion is not uniform and lower than in WT.

(N) A model for the two-step process controlling the translocation of MT nucleatio

upon trh expression. MTs are nucleated from g-TuRC containing centrosome. A

a change in Spastin itself or another component required for its activity. In addit

protein. First, Spastin* triggers g-TuRC release from the centriole and the g-TuRC

Second, Pio anchors the g-TuRC apically. MTs are then nucleated from the apic

Deve
intensity along the Z-axis. To do so, we measured the decrease in signal inten-

sity along the Z-axis for ubiquitous and uniformly expressed markers such as

neurotactin, spectrin, and DAPI. We then extrapolated value intensity depend-

ing on the Z-axis [value intensity = 0.7639 * exp(0.1128 * (Z step)]. It is worth

noting that signal intensity depends on confocal settings defined for a given

antibody, thereby explaining why ratios can be above 1. Error bars indicate

standard deviation. For pio mutant embryos, we quantified overall MT levels

and ace-MT levels in pio�/� tracheal cells with respect to epidermal cells.

pio is not expressed in epidermal cells and changes in these ratios reveal a

specific change in tracheal cells. For spasm/z mutant embryos, we compared

MT levels and ace-MT levels between wild-type and spasm/z tracheal cells.

To define the MT nucleation center, we applied, on raw images using LAS-

AF software, the R&B LUT in which the signal of maximum and minimum inten-

sity appears in red and blue, respectively. We then delineated areas

corresponding to this maximum intensity signal for tyr-Tub staining and

measured surface area. We also measured centriole surface, which remained

constant throughout development.

MT Disassembly and Regrowth

For maximum MT depolymerization, embryos were collected overnight at

25�C, dechorionated with 50% bleach, and incubated on ice for 6 hr. To

follow MT regrowth, embryos were subsequently incubated at 25�C for 2

min or 30 min. Control embryos were processed in a similar way but

kept for 6 hr at 25�C. Embryos were then fixed as described previously

(Lee et al., 2003) and stained for MTs.

Measure of Overlap Frequency between Centrioles and Spas Dots

We quantified the frequency of overlap between centrioles and Spas dots

and measured that 32% of centrioles dots overlap with Spas dots. To

assess that this overlap is higher than expected by chance, we calculated

the frequency of overlap when centriole channel had been rotated clock-

wise. Overlap frequency was dropped to 1.7% as compared with controls,

clearly indicating that Spas and centriole colocalization is not random.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and can be found with this

article online at doi:10.1016/j.devcel.2010.03.015.

ACKNOWLEDGMENTS

We thank the Imaging Facilities at ‘‘Institut Jacques Monod,’’ in particular T.

Piolot and V. Contremoulins, for assistance with image quantification; M.

Affolter, D. Brunner, C. Gonzalez, B. Raynaud-Messina, D. Sharp, F.

Schnorrer, N. Sherwood, and Y. Zheng for reagents; and R. Basto, M. Bor-

nens, Kyra Campbell, L. Gervais, C. Gonzalez, J. Lüders, and D. Shaye for crit-
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re C0 with D0), leading to disorganization of the tracheal placode. The only re-

temperature (RT) (E00), MTs start regrowing, which is illustrated by the resuming

s have fully regrown and the tracheal placode regains its original shape. Here

KC (G0 and H0) localizations remain apical in WT (G00) and after 6 hr at 4�C (H00).

ce of fusion (red arrowhead in [J00]), or from a failure of cell migration (yellow

Lumen product secretion, revealed by CBP, is continuous in all branches in

levels. Gaps are observed (white arrows in [K00]), indicating that lumen is not

ranch migration (asterisks in [L]) and branch misrouting (arrows in [L] and [M]).

n activity in tracheal cells. At stage 10, epidermal cells acquire tracheal cell fate

t stage 11, TRH (dashed line) modulates Spas activity (now Spastin*) either by

ion, TRH activates pio expression. Pio is an apically localized transmembrane

is then transported via MT motors toward the apical membrane (blue arrow).

al domain. See also Figure S5.
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