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Abstract. This paper contributes to a line of research that consists
in applying qualitative reasoning techniques to the formalization of the
case-based inference, and in particular, to its adaptation phase. The im-
portance of capturing case differences has long been acknowledged in
adaptation research, but research is still needed to properly represent
and reason upon case differences. Assuming that case differences can be
expressed as a set of feature differences, we show that Category The-
ory can be used as a mathematical framework to design a qualitative
language in which both case differences, similarity paths and adaptation
rules can be represented and reasoned upon symbolically.
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1 Introduction

Qualitative modeling provides formalisms that focus on how people represent
themselves and reason about dynamical systems. Qualitative representations
partition continuous quantities, and turn them into entities that can be rea-
soned upon symbolically [8]. The case-based inference aims at finding a com-
plete description of a target problem by transferring information from a set of
past problem-solving episodes, called cases, that are indexed in memory. Adap-
tation is the part of this process that aims at modifying a retrieved case when
it can not be reused as it is in the new situation. Previous work on applying
qualitative modeling techniques to adaptation includes a qualitative represen-
tation of relationships between quantities (called variations in [3]), such that
co-occurrences of variations (called co-variations in [4]) can be interpreted as
qualitative proportionalities. These proportionalities have been shown in [4] to
play a great role in different commonsense inferences, and in particular, it has
been suggested that adaptation was essentially an “analogical jump” performed
on such proportionalities.

In existing formalizations, adaptation is recognized as being part of the case-
based reasoning cycle [1], but surprisingly, the adaptation step is not included
in the case-based analogical inference [17]. A study of the literature shows the
adaptation step is always performed after the analogical inference (i.e., retrieval,
mapping, and transfer) has taken place, and only aims at modifying its result.



Some adaptation methods such as critique-based adaptation [11], or conservative
adaptation [14] are used to resolve inconsistencies in the reused source case,
whereas others such as differential adaptation [9], case-based adaptation [6] or
adaptation by reformulation [15] modify the reused source case in order to fit the
requirements on the target case. One of the reasons why adaptation is left out of
the case-base inference is that adaptation essentially consists in reasoning on the
differences that exist between two cases. While the importance of capturing case
differences has long been acknowleged in adaptation research (see for example
[13], for a recent review), research is still needed to properly represent and reason
on case differences.

Establishing a difference between two states is the result of a comparison
process. Comparisons are qualitative judgements that play an important role
in similarity assessment and in the analogical inference. According to [12], “ a
comparison assembles two elements in order to come up with a third term that
will tell their relationship ”. Comparison involves three ideas: the source of the
comparison, the target of the comparison (what the source is compared to), and
their relationship. For example, one could compare a sheep (the source) to a
goat (the target), on how they forage (their relationship): a sheep would graze,
whereas goats are browsers. Comparisons are usually made with respect to a
particular feature (or property), shared by the objects under comparison, and
which can be measured, like the size, the weight, or the type of forage [21].
Some results even suggests that people use aggregated features inferred from
the features of individual objects to compare collections of objects [20].

Assuming that case differences can be expressed as a set of differences in
feature value, we show that Category Theory can be used as a mathematical
framework to design a qualitative language in which both case differences, but
also “horizontal” connections of variations (similarity paths), and “vertical” con-
nections (adaptation rules) can be represented and reasoned upon symbolically.

The paper is organized as follows. The next section provides some preliminary
definitions. Feature comparisons are modeled in Sec. 3 as labeled arrows, and
formalized in Sec. 4 as morphisms of a category. Two constructions are made on
such categories: products (Sec. 5), and paths (Sec.6). In Sec.7, comparisons are
ordered by generality using a subsumption relation. Finally, Sec.8 concludes the
paper.

2 Preliminaries

Category theory is the mathematical study of algebras of functions [2]. A cat-
egory consists of a set of objects and a set of arrows. For each arrow f , there
are given objects dompfq and codpfq called the domain and the codomain of
f . We write f : A ÝÑ B to indicate that dompfq � A and codpfq � B. For
two arrows f and g such that codpfq � dompgq, there is a given arrow g � f
called the composite of f and g. For each object A, there is a given arrow
1A : A ÝÑ A called the identity arrow of A. Arrows satisfy the associativity
law : h � pg � fq � ph � gq � f for all f : A ÝÑ B, g : B ÝÑ C, and h : C ÝÑ D.



Identity arrows verify f � 1A � 1B � f � f for all f : A ÝÑ B. An arrow
f : A ÝÑ B is called an isomorphism if there is an arrow g : B ÝÑ A such
that g � f � 1A and f � g � 1B . A groupoid is a category in which every ar-
row is an isomorphism. The category Rel is the category where objects are sets
and arrows are binary relations. The identity arrow on a set A is the identity
relation: 1A � tpa, aq P A � A | a P Au. Given f � A � B and g � B � C, the
composition g � f is defined as: pa, cq P g � f iff Db P B | pa, bq P f and pb, cq P g.
Categories are mathematical structures which underlying structure is a quiver,
i.e., a directed graph where loops and multiple arrows between two vertices are
allowed, on which the definition of a category adds constraints on identity mor-
phisms, associativity, and composition. A path in the graph of a category is a

sequence
c1ÝÑ

c2ÝÑ . . .
cnÝÑ of arrows of C such that for all i, domp

ci�1
ÝÝÝÑq � codp

ciÝÑq
A path category (or free category) generated by a directed graph is the category
where the objects are vertices, and arrows are paths between objects. A func-
tor F : C ÝÑ D between two categories C and D is a mapping of objects to
objects and arrows to arrows that preserves domain and codomains, identities,
and composition: F pf : A ÝÑ Bq � F pfq : F pAq ÝÑ F pBq, F p1Aq � 1F pAq,
and F pg � fq � F pgq � F pfq. The product C � D of two categories C and
D is the category of pairs and arrows. Its objects have the form pC,Dq, for
C P C and D P D, and its arrows have the form pf, gq : pC,Dq ÝÑ pC 1, D1q for
f : C ÝÑ D P C and g : C 1 ÝÑ D1 P D. Compositions and units are defined
componentwise, i.e., pf 1, g1q � pf, gq � pf 1 � f , g1 � gq, and 1C�D � p1C, 1Dq.

3 Modeling Feature Differences

We are interested in modeling the comparison between two values of a same
feature. In the following, the term feature denotes either a binary variable (i.e.,
a variable which takes one of the two values 0 or 1), or a nominal variable (i.e., a
variable which takes nominal values, like the color), or a quantity (i.e., a variable
which take values on ordinal, interval, or ratio scales [18]). The term feature space
denotes the set of values taken by a particular feature.

A straightforward way to represent a comparison from a source A to a target
B is to trace an arrow from A to B and to label this arrow with a term that
represents their relationship. For example, an arrow named g Ñ b can be used
to represent the relationship in which the forage differs from g(raze) to b(rowse)
from source to target (Fig. 1). The distinction between the source and the target

A B
gÑ b

Fig. 1: A comparison of two feature values represented by a labeled arrow.

of a comparison makes the process by essence directional. It can be noted that



this remains true even if the underlying relation is symmetrical. To illustrate
this, consider the symmetrical binary relation brother, which relates two people
when they are brothers. For two brothers A and B, both brotherpA,Bq and

brotherpB,Aq hold (by symmetry), but A
brother
ÝÝÝÝÝÑ B and B

brother
ÝÝÝÝÝÑ A represent

two different comparisons.
When the source and the target of the comparison are values of a same feature

space, the comparison relation is transitive: if A can be compared with B and B
with C, then A can be compared with C [5]. Besides, the relation is invertible,
by which we mean that it is not possible to compare an object A to an object
B without also being able to “reverse the viewpoint” and compare B with A
with another relationship (possibly the same). For example, if a sheep A can be
compared to a goat B with the relationship g Ñ b (g stands for graze, and b

for browse), then an inverse relationship bÑ g can be used to compare B to A.
It can be noted that feature value comparisons constitute a special case among
similarity relationships. In the general case, similarity relationships are neither
transitive nor invertible. For example, if Ted went to the same school as John
and John went to the same school as Mary, it does not entail that Ted went to
the same school as Mary. Comparisons may also not be invertible in simili (“a
tree is like a man”) or metaphors (“love is a battlefield”): we might say “a man
is like a tree”, meaning that a man has roots, but not “a tree is like a man” [21].

4 Formalization

Feature spaces can be formalized as categories, which we will call feature cat-
egories. The objects are the values of the feature space, and arrows represent
comparisons between these values. Category Theory seems to be a natural set-
ting to represent such comparisons, since arrows (also called morphisms) are
the main “building blocks” of categories as mathematical structures. The cat-
egorical notion of composition of arrows corresponds to the transitivity of the
comparison relation. Besides, each object of a category must be related to itself
by an identity arrow. So representing a feature space as a category requires to
distinguish identity arrows from difference arrows. Identity arrows, like dÑ d or
�, have the same object as origin and destination, and express commonalities.
Difference arrows, like dÑ m of  , have different origin and destination objects,
and express differences. As all arrows are invertible in a feature category, the
obtained category is a groupoid.

For example, the category Bin (Fig. 2) represents the quantity space of
Boolean values, by taking as objects the two Boolean values 1 (True) and 0
(False), and as arrows the possible comparisons between these values. Feature
categories may also represent quantity spaces. For example, consider the category
C , in which objects are elements of N, and there are three arrows

�
ÝÑ,

 
ÝÑ, and

¡
ÝÑ. The arrow

�
ÝÑ is the identity arrow that links every integer x P N to itself.

The arrow
 
ÝÑ (resp.,

¡
ÝÑ) links two integers x and y whenever x   y (resp.,

x ¡ y). Every arrow
 
ÝÑ is invertible since y ¡ x holds whenever x   y. The

category Area (Fig. 3) represents location areas of apartments. Its objects are



10

1Ñ 0

0Ñ 1

1Ñ 10Ñ 0

Fig. 2: The example category Bin, in which objects represent the Boolean values
0 and 1, and arrows represent comparisons between these values.

the three nominal values d(owntown), m(idtown), and u(uptown), and its arrows
the nine possible comparisons between them.

u

md

dÑ m

mÑ d

u
Ñ
m

m
Ñ
uu

Ñ
d

d
Ñ
u

dÑ d mÑ m

uÑ u

Fig. 3: The example category Area, in which objects represent the three ar-
eas d(owntown), m(idtown), and u(uptown), and arrows represent comparisons
between areas.

4.1 Semantics

Feature categories are interpreted on a set (like a set of patients, of cooking
recipes, etc.). Let X denote such a set. The semantics of a feature category
C on a set X is given by a functor .I : C ÝÑ Rel, called the interpretation
functor, which maps each object of the category C to a subset of X , and arrows
to subsequent binary relations. The functor .I generalizes the notion of binary
variation. The definition of a binary variation as proposed in [3] corresponds to
the indicator function of .I , when it is restricted to a given arrow of C.

If there exists a field function ϕ : X ÝÑ C, which maps each element of X to
an object of C, the interpretation functor .I can be defined to map each object
a of C to its inverse image by ϕ in X , i.e., to the set of elements of X which



take the value a for the property ϕ:

aI � tx P X | ϕpxq � au for an object a of C

paÑ bqI � aI � bI � X � X for an arrow aÑ b of C

For example, let X be a set of patients, and ϕ : X ÝÑ C  be a field function
that associates to each element of X an object of the category C , representing
the age of the patient. The interpretation functor .I : C  ÝÑ Rel maps each
age value n P N to the set of patients having that age, and maps each compari-
son to the corresponding binary relation. The binary relation p

 
ÝÑqI is the set of

pairs pa, bq of patients such that b is (strictly) older than a. Likewise, let X be
a set of apartments, and ϕ : X ÝÑ Area be a field function that associates to
each element of X an object of the category Area. The interpretation functor
.I : Area ÝÑ Rel maps each nominal value to the set of apartments having the
corresponding location area, and maps each comparison to the corresponding bi-

nary relation. The binary relation p
mÑd
ÝÝÝÑqI is the set of pairs pa, bq of apartments

such that a is located in midtown and b is located in downtown.

5 Representing Differences on Multiple Features

The product C1 �C2 � . . .�Cn of n comparison categories C1, C2,. . . ,Cn has
as objects the n-tuples pa1, a2, . . . , anq where ai is an object of Ci, and as arrows
the n-tuples pa1 Ñ b1, a2 Ñ b2, . . . , an Ñ bnq, where ai Ñ bi is an arrow of Ci.

For example, p
mÑd
ÝÝÝÑ,

�
ÝÑq is an arrow in the product Area � C , and could be

used to represent the comparison between an apartment located in midtown and
an apartment located in downtown, both having the same price.

The interpretation functor .I is extended to products in such a way that
an element x P X is in the interpretation of the product if it is common to all
interpretations of Ci’s:

pa1, a2, . . . , anq
I �
£

i

ai
I for n objects ai of Ci

pa1 Ñ b1, a2 Ñ b2, . . . , an Ñ bnq
I �
£

i

pai Ñ biq
I for n arrows ai Ñ bi of Ci

6 Similarity

6.1 Analogy as Shared Differences

Two pairs are analogous when the same comparison can be made between them.
When comparisons represent relations, this idea is consistent with the idea of
analogy as a transfer of a relational structure, as outlined by Structure-mapping
Theory [10]. For example, in the Andromeda galaxy, the X12 planets resolve
around the X12 star, which can be represented as comparisons of the form

“A:X12 planet
resolve around
ÝÝÝÝÝÝÝÝÝÑ X12 star”. An analogy can be made between the



Andromeda galaxy and the solar system, by mapping these comparisons with

comparisons such as “A:solar system planet
resolve around
ÝÝÝÝÝÝÝÝÝÑ sun”. But the idea

of analogy as shared comparisons can be generalized to the comparisons made
to establish feature differences, that do not represent relations. For example, a
same comparison g Ñ b can be made from a sheep to a goat and from a cow
to a moose: cow graze, whereas moose browse. As a result, a cow is to a sheep
what a moose is to a goat.

The same idea can be applied to logical proportions, which can be seen as
shared comparisons. For two propositional variables x and y, there are four
indicators: I1px, yq � x ^ y, I2px, yq � x ^ y, I3px, yq � x ^ y, and I4px, yq �
x^y, and each logical proportion is defined by two distinct equivalences between
these indicators [19]. For example, two pairs px, yq and pz, tq are in analogical
proportion if I2px, yq � I2pz, tq and I3px, yq � I3pz, tq, i.e., if x ^ y � z ^ t and
x^ y � z^ t (here, � denotes the logical equivalence). Let Cx, Cy, Cz, and Ct

be the feature categories constructed as in Fig. 4. The category Cx contains the

xx

xÑ x

xÑ x

xÑ xxÑ x

Fig. 4: The category Cx, with two objects (x and x) for a propositional variable
x, and arrows represent changes between these values.

two objects x and x for the propositional variable x. The interpretation functor
.I is defined using the valuation function v, which is a function from the set of
propositional variables to t0, 1u, seen as the class of all subsets of a one-element
set (0 is the empty set and 1 is the one-element set):

aI � vpaq P t0, 1u for an object a of Cx

paÑ bqI � aI � bI � t0, 1u � t0, 1u for an arrow aÑ b of Cx

The arrow pxÑ x, y Ñ yq of the product Cx �Cy is interpreted as the binary
relation px Ñ x, y Ñ yqI � vpx^ yq � vpx^ yq. Two pairs px, yq and pz, tq are
in analogical proportion if the interpretation of the two arrows px Ñ x, y Ñ yq
and pz Ñ z, t Ñ tq are the same, i.e., if px Ñ x, y Ñ yqI � pz Ñ z, t Ñ tqI .
Likewise, two pairs px, yq and pz, tq would be in paralogy if the interpretation of
the arrows pxÑ x, y Ñ yq and pz Ñ z, tÑ tq are the same.

6.2 Similarity Paths

Let C be a feature category. A similarity path of C is a combination of arrows

of C. For example,
dÑd
ÝÝÝÑ �

dÑm
ÝÝÝÑ is a similarity path in the category Area. The

free category FpCq generated by C is the category that has the paths of C as



arrows. This definition can be extended to the product Π � C1�C2� . . .�Cn

of n comparison categories C1, C2,. . . ,Cn. A path in Π is an arrow of the free

category FpΠq generated by Π. For example, (
dÑd
ÝÝÝÑ,

 
ÝÑq � p

dÑm
ÝÝÝÑ,

�
ÝÑq is a path

in the free category generated by the product Area�C .
The interpretation of a similarity path on the set X is given by the in-

terpretation functor .I which by definition of functors, preserves composition:

p
c
ÝÑ �

d
ÝÑqI � p

d
ÝÑqI � p

c
ÝÑqI . Here, the composition operation � on the arrows of

the category Rel is the usual composition of binary relations. This definition can
also be extended to the product Π � C1�C2� . . .�Cn of n feature categories
C1, C2,. . . ,Cn: for two sets of arrows ci, di P Ci,

pp
c1ÝÑ, . . . ,

cnÝÑq � p
d1ÝÑ, . . . ,

dnÝÑqqI � p
d1ÝÑ, . . . ,

dnÝÑqI � p
c1ÝÑ, . . . ,

cnÝÑqI

For example, for an apartment srce P X located in downtown, and an apartment
tgt P X located in midtown, the pair psrce, tgtq is in the interpretation of

the similarity path p
dÑd
ÝÝÝÑ,

 
ÝÑq � p

dÑm
ÝÝÝÑ,

�
ÝÑq if there is an apartment pb such

that srce p
dÑd
ÝÝÝÑ,

 
ÝÑqI pb p

dÑm
ÝÝÝÑ,

�
ÝÑqItgt, that is, such that the location of pb is

downtown and its price is strictly greater than the price of srce, and equal to
the price of tgt. This definition is consistent with the notion of similarity path,
which is defined in [16] as a sequence of relations

srce � pb0 r1 pb1 r2 pb2 . . . pbq�1 rq pbq � tgt

such that the pbi’s are problems and ri’s are binary relations between problems.

7 Ordering Differences

7.1 A Subsumption Relation

A subsumption operator � enables to order comparisons by generality. Let C1

and C2 be two feature categories. For an arrow
c1ÝÑ of C1, and an arrow

c2ÝÑ
of C2, we write

c1ÝÑ�
c2ÝÑ to represent that whenever an A can be compared to

B using the comparison
c1ÝÑ, then A can be compared to B using comparison

c2ÝÑ. For example, in Π � Area � C , the subsumption relation
dÑm
ÝÝÝÑ�

 
ÝÑ

represents the fact that any apartment located in downtown is more expensive
than any apartment located in midtown. The subsumption operator � can also
relate the arrows of two product categories ΠC � C1�C2� . . .�Ck and ΠD �
D1 �D2 � . . .�D`. For example, if ΠC � C  �Area represents comparisons
between the number of rooms and the location of apartments, and ΠD � C 

represents comparisons in price, then p
�
ÝÑ,

mÑd
ÝÝÝÑq �

 
ÝÑ represents the fact that for

a same number of rooms, an apartment located in downtown is more expensive
than an apartment located in midtown.

Subsumption relations
c1ÝÑ�

c2ÝÑ are interpreted as set inclusions in X � X :

c1ÝÑ�
c2ÝÑ if

c1ÝÑ
I
�

c2ÝÑ
I



This definition extends naturally to product categories:

p
c1ÝÑ, . . . ,

ckÝÑq � p
d1ÝÑ, . . . ,

d`ÝÑq if p
c1ÝÑ, . . . ,

ckÝÑqI � p
d1ÝÑ, . . . ,

d`ÝÑqI

A subsumption relation corresponds to the notion of co-variation, that is de-
fined in [4] as a functional dependency between variations, and may be used to
represent adaptation rules.

7.2 Analogical Jump

An analogical ”jump” consists in making the hypothesis that a subsumption
relation on comparisons holds for a given pair of objects. From a logical point
of view, an analogical jump is defined in [7] as the following hypothetical rule of
inference:

if P pxq � P pyq and Qpxq, then we can infer Qpyq

For example, Bob’s car and John’s car share the property P of being a 1982
Mustang GLX V6 hatchbacks, and Bob’s car has the property Q of having a
price of 3500 $. The inference is that the price of John’s car should also be
around 3500 $. This schema can be rephrased using comparisons:

from x
P
ÝÑ y, infer x

Q
ÝÑ y

In this schema,
P
ÝÑ and

Q
ÝÑ are two comparisons representing respectively that

an element shares the property P with another element, and that it shares the
property Q. This inference consists in making the hypothesis that the subsump-

tion relation
P
ÝÑ�

Q
ÝÑ on comparisons holds for the pair px, yq. Such inference

can also be made when the comparisons represent differences. For example, if
ΠC � C �Area represents comparisons between the number of rooms and the
location of apartments, and ΠD � C  represents comparisons in price, then the

subsumption relation p
�
ÝÑ,

mÑd
ÝÝÝÑq �

 
ÝÑ can be applied to a pair px, yq of apart-

ments to infer that an apartment y located in downtown is more expensive than
an apartment x with the same number of rooms, but located in midtown.

8 Conclusion

Category Theory seems to be a natural setting to represent the feature compar-
isons made when establishing case differences. We showed that it can be used to
and to design a qualitative language in which both case differences, similarity
paths and adaptation rules can be represented and reasoned upon symbolically.
We believe that such results open the way to new qualitative formalizations
of the case-based inference, that would be able to integrate both retrieval and
adaptation in a same analogical process.
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