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The study and analysis of heavy spherical-top molecules is often not straightforward. The presence of hot bands and of many isotopologues can lead to a high line congestion very difficult for assignment. In this work, using a low-order model we have derived very simple isotopic relations in order to determine initial parameters of the analysis. We also show that an identical approach can be used for XY 4 and XY 6 molecules and all these results are illustrated by the comparison of numerical computations and experiments.

Introduction

Spherical-top molecules constitute an important class of molecular species whose study requires extensive use of symmetry [START_REF] Hougen | Classification of Rotational Energy Levels. II[END_REF] and group theory methods [START_REF] Champion | Spherical top spectra[END_REF][START_REF] Boudon | Symmetryadapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups[END_REF][START_REF] Boudon | Spherical top theory and molecular spectra[END_REF]. Besides the iconic example of methane [START_REF] Amyay | New investigation of the ν 3 C-H stretching region of 12 CH 4 through the analysis of high temperature infrared emission spectra[END_REF], there exist many heaver species of this type, either tetrahedral like CF 4 [START_REF] Carlos | High-resolution spectroscopy and global analysis of CF 4 rovibrational bands to model its atmospheric absorption[END_REF], SiH 4 [START_REF] Tyuterev | Parameters of reduced Hamiltonian and invariant parameters of interacting E and F 2 fundamentals of tetrahedral molecules : ν 2 and ν 4 bands of 12 CH 4 and 28 SiH 4[END_REF][START_REF] Crogman | Local modes of silane within the framework of stretching vibrational ployads[END_REF], GeH 4 [START_REF] Boudon | Line positions and intensities for the ν 3 band of 5 isotopologues of germane for planetary applications[END_REF][START_REF] Richard | Line positions and intensities for the ν 2 and ν 4 bands of the 5 isotopologues of germane[END_REF], OsO 4 [START_REF] Louviot | High-resolution spectroscopy and analysis of the ν 1 /ν 3 stretching dyad of osmium tetroxide[END_REF][START_REF] Louviot | High-resolution spectroscopy and structure of osmium tetroxide. A benchmark study on 192 OsO 4[END_REF], RuO 4 [START_REF] Reymond-Laruinaz | Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν 3 band[END_REF], P 4 [START_REF] Boudon | High-resolution Fourier transform infrared spectroscopy and analysis of the ν 3 fundamental of P 4[END_REF], C 10 H 16 [START_REF] Pirali | Rotationally resolved infrared spectroscopy of adamantane[END_REF], C 6 N 4 H 12 [START_REF] Pirali | Rotationally resolved IR spectroscopy of hexamethylenetetramine (HMT) C 6 N 4 H 12[END_REF], . . . or octahedral like SF 6 [START_REF] Faye | The high overtone and combination levels of SF 6 revisited at Doppler-limited resolution: A global effective rovibrational model for highly excited vibrational states[END_REF], SeF 6 [START_REF] Rotger | High resolution spectroscopy and analysis of the ν 4 band of 80 SeF 6[END_REF], WF 6 [START_REF] Boudon | High-resolution spectroscopy of the ν 3 band of WF 6 and ReF 6 in a supersonic jet[END_REF], UF 6 [START_REF] Aldridge | Measurement and analysis of the infrared-active stretching fundamental (ν 3 ) of UF 6[END_REF], C 8 H 8 [START_REF] Boudon | Synthesis, High-Resolution Infrared Spectroscopy, and Vibrational Structure of Cubane, C 8 H 8[END_REF], . . . . Most of them possess, in natural abundance, several isotopologues, some being sometimes quite rare [START_REF] Faye | First high resolution analysis of the ν 3 band of the 36 SF 6 isotopologue[END_REF] or even radioactive [START_REF] Reymond-Laruinaz | Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν 3 band[END_REF]. It is thus desirable to derive at least approximate relations to calculate isotopic shift relations for the lower order molecular parameters in order to get a first estimate and simulation of the absorption spectrum of low-abundance or radioactive isotopologues [START_REF] Boudon | Line positions and intensities for the ν 3 band of 5 isotopologues of germane for planetary applications[END_REF][START_REF] Richard | Line positions and intensities for the ν 2 and ν 4 bands of the 5 isotopologues of germane[END_REF][START_REF] Reymond-Laruinaz | Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν 3 band[END_REF][START_REF] Reymond-Laruinaz | High-resolution infrared spectroscopy and analysis of the ν 2 /ν 4 bending dyad of ruthenium tetroxide[END_REF]. Isotopic relations, however, have never been published in detail for such molecules, although there exist some partial studies [START_REF] Wilson | Molecular Vibrations[END_REF][START_REF] Poussigue | Contribution à la détermination du champ de forces internucléaire des molécules à symétrie tétraédrique du type XY 4[END_REF][START_REF] Aboumajd | Contribution à la détermination du champ de forces des molécules toupies sphériques 12 CH 4 , 12 CD 4 et SF[END_REF] (some studies are part of old French theses which are difficult to find). In the present paper, we reinvestigate this question using a simple low-order model which is sufficient for the above-described purpose, that is to estimate initial parameters to allow initial simulations of infrared-active bands of minor isotopologues, based on the main isotopologue results. This method is applicable to all isotopologues with the same symmetry. The problem is more more complicated when the isototopic substitution lowers the symmetry (for instance, the passage from CH 4 to CH 2 D 2 ). In the latter case, there exist other techniques, see for instance the work of Ulenikov et al. [START_REF] Ulenikov | On the 'expanded local mode' approach applied to the methane molecule: isotopic substitution CH 2 D 2 ←CH 4[END_REF].

Quadratic isotopic relations, for all molecules, are usually established using the GF matrix method [START_REF] Wilson | Molecular Vibrations[END_REF], since force constants are invariant through isotopic substitution (within the Born-Oppenheimer approximation).

Here, we apply this method to infrared absorption active triply degenerate modes of tetrahedral and octahedral species using the approach of Hoy et al. [START_REF] Hoy | Ambiguities in the harmonic force fields of XY 3 molecules[END_REF]. This one leads, a priori, to two systems of linear equations that allow to calculate harmonic frequencies (or wavenumbers) and Coriolis constants for the different isotopologues.

We also propose an alternative approach based on force constants in the Cartesian coordinate system [START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF].

Section 2 describes the internal coordinate approach, while Section 3 presents the Cartesian coordinate point of view that leads to the isotopic relations derived in Section 4. Finally, we illustrate this through simple examples for tetrahedral and octahedral molecules in Sections 5 and 6, respectively.

XY 4 force constants in symmetrized internal coordinates

Let's consider a molecule made up of one nucleus X of mass M and four nuclei Y of mass m (see Figure 1). The symmetry group is the T d group and the molecule possesses four vibration modes; s = 1 of symmetry A 1 , s = 2 of symmetry E and s = 3, 4 of symmetry F 2 . The quadratic potential, restricted to the modes 3 and 4, is expressed as:

V 34 = 1 2 α=x,y,z F 33 i S 2 3α + F 44 i S 2 4α + 2F 34 i S 3α i S 4α , (1) 
where the oriented symmetrized coordinates i S 2 sα are expressed as a function of internal coordinates (see equations 2). (

) 2 
To determine force constants F 33 , F 34 and F 44 , we use the GF method of Wilson [24] which allows to link these constants to the molecular masses and harmonic frequencies ω s following the secular equation:

det (GF) i j -λδ i j = 0, (3) 
with

λ s = 4π 2 c 2 ω 2 s . (4) 
For F 2 type vibrations we obtain:

λ 2 -λ (F 33 G 33 + 2F 34 G 34 + F 44 G 44 ) + F 33 F 34 F 43 F 44 G 33 G 34 G 43 G 44 , (5) 
where (F) and (G) are symmetric matrices and (G) depends of the choice of the symmetrized coordinates. The solutions are λ 3 and λ 4 with the following relations:

G 33 F 33 + G 44 F 44 + 2G 34 F 34 = λ 3 + λ 4 , (6) 
G 33 G 44 -G 2 34 F 33 F 44 -F 2 34 = λ 3 λ 4 . (7) 
A third equation is needed to determine the three force constants. We use here this equation from Ref. [START_REF] Hoy | Ambiguities in the harmonic force fields of XY 3 molecules[END_REF]:

C 33 F 33 + C 44 F 44 + 2C 34 F 34 = λ 3 ζ 3 + λ 4 ζ 4 , (8) 
where C is a matrix only depending of masses and geometry of the molecule and where Coriolis constants ζ 3 and ζ 4 are not independant and follow sum rules. Nevertheless, the above equation ( 7) is not linear. So, by combining equations ( 6), ( 7) and (8), Hoy et al. [START_REF] Hoy | Ambiguities in the harmonic force fields of XY 3 molecules[END_REF] have obtained a third linear equation:

(G 33 C 34 -G 33 C 33 ) F 33 + (G 34 C 44 -G 44 C 34 ) F 44 + (G 33 C 44 -G 44 C 33 ) F 34 = (λ 3 -λ 4 ) ζ 3 ζ 4 |G| -|C|, (9)
where |G| and |C| stand for the G and C matrix determinants and = ±1, leading to two possible solutions.

For XY 4 molecules, the G matrix has been given by Simanouti [START_REF] Simanouti | The Normal Vibrations of Polyatomic Molecules as Treated by Urey-Bradley Field[END_REF] and Aboumajd [START_REF] Aboumajd | Contribution à la détermination du champ de forces des molécules toupies sphériques 12 CH 4 , 12 CD 4 et SF[END_REF], while the C matrix was given by Mills [START_REF] Mills | The calculations of accurate normal co-ordinates-i: General theory and application to methane[END_REF]. Considering our choice of symmetrized coordinates, these matrices can be expressed as follows:

G =        4 3M + 1 m 8 3M 8 3M 16 3M + 2 m        , C =        4 3M 8 3M + 1 m 8 3M + 1 m 16 3M + 1 m        . (10) 
Therefore (see Appendix 1), equation ( 9) leads to

F 33 -2F 44 + F 34 = µmD = (λ 3 -λ 4 ) 2µM (1 -ζ 4 ) 1 2 + ζ 4 . (11) 
Then, we obtain force constants F 33 , F 44 and F 34 by solving the system of 3 linear equations ( 6), ( 8) and [START_REF] Louviot | High-resolution spectroscopy and analysis of the ν 1 /ν 3 stretching dyad of osmium tetroxide[END_REF]. Their expressions are given in equations ( 12) and we have two solutions depending of the value of :

6F 33 = (µ + 2m) (λ 3 + λ 4 ) + 1 3          (2m -µ) (4ζ 4 -1) + 8 2µm (1 -ζ 4 ) 1 2 + ζ 4          (λ 3 -λ 4 ) , 6F 34 = (µ -m) (λ 3 + λ 4 ) + 1 3          (m + µ) (1 -4ζ 4 ) + 2 2µm (1 -ζ 4 ) 1 2 + ζ 4          (λ 3 -λ 4 ) , 6F 44 = µ + m 2 (λ 3 + λ 4 ) + 1 3          m 2 -µ (4ζ 4 -1) -4 2µm (1 -ζ 4 ) 1 2 + ζ 4          (λ 3 -λ 4 ) . (12) 
Knowing numerical values of these constants from λ 3 , λ 4 and ζ 4 of one isotopologue, we can compute λ 3 , λ 4 and ζ 4 for other isotopologues by using equations ( 5) and [START_REF] Crogman | Local modes of silane within the framework of stretching vibrational ployads[END_REF] and by adapting the G and C matrices.

Force constants of XY 4 in the symmetrized Cartesian coordinate system

In a symmetrized Cartesian coordinate system, the quadratic potential, restricted to modes s = 3 and s = 4, is expressed as [START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF]:

V 34 = 1 2 α=x,y,z k 33 c S 2 3α + k 44 c S 2 4α + 2k 34 c S 3α c S 4α , (13) 
where oriented symmetrized coordinates c S 2 sα are expressed as a function of Cartesian coordinates:

c S 3α = 1 4 √ µm         m 5 i=2 α i -Mα 1         , c S 4x = 1 2 √ 2 (-y 2 -y 3 + y 4 + y 5 -z 2 + z 3 -z 4 + z 5 ) , c S 4y = 1 2 √ 2 (-x 2 -x 3 + x 4 + x 5 + z 2 -z 3 -z 4 + z 5 ) , c S 4z = 1 2 √ 2 (y 2 -y 3 -y 4 + y 5 -x 2 + x 3 -x 4 + x 5 ) . (14) 
The λ's are solutions of the secular equation:

det k i j -mλδ i j = 0. ( 15 
)
At that point, let k 33 = k 1 , k 44 = k 2 and k 34 = k 3 in order to simplify the notations. We thus write:

(k 1 -mλ) (k 2 -mλ) -k 2 3 = 0 (16) 
and

λ 3 = k 1 + k 2 -(k 1 -k 2 ) 2 + 4k 2 3 2m , λ 4 = k 1 + k 2 + (k 1 -k 2 ) 2 + 4k 2 3 2m . ( 17 
)
We also obtain:

ζ 3 = 1 - 3 2 cos 2 γ, ζ 4 = 1 - 3 2 sin 2 γ, (18) 
hence,

ζ 3 + ζ 4 = 1 2 . ( 19 
)
For XY 4 molecules [START_REF] Poussigue | Contribution à la détermination du champ de forces internucléaire des molécules à symétrie tétraédrique du type XY 4[END_REF][START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF], we have:

cos γ = 1 √ 2             1 + k 2 -k 1 (k 2 -k 1 ) 2 + 4k 2 3             1/2 , sin γ = 1 √ 2             1 - k 2 -k 1 (k 2 -k 1 ) 2 + 4k 2 3             1/2 , (20) 
noting that for the XY 6 molecules, Moret Bailly [START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF] switched cos γ and sin γ.

Some additional relations are given in Appendix 2.

We can also deduce from formulas ( 17)-( 20):

λ 3 + λ 4 = k 1 + k 2 m , λ 3 ζ 3 + λ 4 ζ 4 = k 1 m - k 2 2m , λ 3 λ 4 = 1 m 2 k 1 k 2 -k 2 3 . (21) 
The system of equations ( 6), ( 8) and ( 11) becomes:

G 33 F 33 + G 44 F 44 + 2G 34 F 34 = k 1 + k 2 m , C 33 F 33 + C 44 F 44 + 2C 34 F 34 = k 1 m - k 2 2m , F 33 -2F 44 + F 34 = 3 2 2µ m |k 3 |. (22) 
By solving the system, we obtain:

F 33 = αk 1 + 2 3 k 2 + 2 3 β |k 3 |, F 44 = αk 1 + 1 6 k 2 - 1 3 β |k 3 |, F 34 = αk 1 - 1 3 k 2 + 1 6 β |k 3 |, (23) 
with

75 α = µ 3m , β = 2µ m . ( 24 
)

Isotopic relations in Cartesian coordinates

As for the force constants F i j , the k 2 constant is invariant relative to isotopic substitutions as far as c S 4α coordinates do not depend of masses.

Therefore, we can write:

αk 1 + 2 3 β |k 3 | = α k 1 + 2 3 β |k 3 |, αk 1 - 1 3 β |k 3 | = α k 1 - 1 3 β |k 3 | (25) 
and so:

β |k 3 | = β |k 3 |. ( 26 
)
However, in the relations from [START_REF] Faye | The high overtone and combination levels of SF 6 revisited at Doppler-limited resolution: A global effective rovibrational model for highly excited vibrational states[END_REF] to [START_REF] Aldridge | Measurement and analysis of the infrared-active stretching fundamental (ν 3 ) of UF 6[END_REF], allowing to calculate frequencies and Coriolis 80 constants, only the parameter k 2 3 is needed. Consequently,

β 2 2 |k 3 | 2 = β 2 2 |k 3 | 2 (27)
and thus,

β 2 k 2 3 = β 2 k 2 3 , (28) 
Then k 3 2 can be expressed as

k 3 2 = µ µ m m k 2 3 . (29) 
Also, from equation ( 25) we show that:

k 1 = µ µ m m k 1 , (30) 
and

k 2 = k 2 . ( 31 
)
From formula (32) below, deduced from relations (21), we can calculate k 1 , k 2 and k 2 3 constants for one isotopologue that we know λ 3 and λ 4 frequencies and ζ 3 or ζ 4 Coriolis constants, and apply isotopic relations [START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF] to [START_REF] Mills | The calculations of accurate normal co-ordinates-i: General theory and application to methane[END_REF] to compute frequencies and Coriolis parameters of other isotopologues using formula [START_REF] Faye | The high overtone and combination levels of SF 6 revisited at Doppler-limited resolution: A global effective rovibrational model for highly excited vibrational states[END_REF] to (20):

3 2 k 1 m = λ 3 ζ 3 + 1 2 + λ 4 ζ 4 + 1 2 , k 2 m = λ 3 + λ 4 - k 1 m , k 2 3 = k 1 k 2 -m 2 λ 3 λ 4 . (32) 
Moreover, we have shown that isotopic relations [START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF] to [START_REF] Mills | The calculations of accurate normal co-ordinates-i: General theory and application to methane[END_REF] are independant of . Then, using GF method, both set of parameters F i j (for = ±1) obtained by [START_REF] Louviot | High-resolution spectroscopy and structure of osmium tetroxide. A benchmark study on 192 OsO 4[END_REF] lead to the same frequency values and Coriolis constants (λ s and ζ s ) for one isotopologue.

Application to XY 4 molecules

We present here applications of the previous formulas to three tetrahedral spherical-top molecules: methane (CH 4 ), germane (GeH 4 ) and ruthenium tetroxide (RuO 4 ). Methane is of course a very important hydrocarbon molecule for many applications in atmospheric and astrophysical sciences, whose spectroscopy is exensively studied (see [START_REF] Amyay | New investigation of the ν 3 C-H stretching region of 12 CH 4 through the analysis of high temperature infrared emission spectra[END_REF][START_REF] Amyay | Global analysis of the high temperature infrared emission spectrum of 12 CH 4 in the dyad (ν 2 /ν 4 ) region[END_REF] and references therein). There already exist many studies concerning its different isotopologues. We use it here as a simple illustration example. Recent studies [START_REF] Amyay | New investigation of the ν 3 C-H stretching region of 12 CH 4 through the analysis of high temperature infrared emission spectra[END_REF][START_REF] Amyay | Global analysis of the high temperature infrared emission spectrum of 12 CH 4 in the dyad (ν 2 /ν 4 ) region[END_REF] use sophisticated effective Hamiltonians that take into account the complex polyad structure of this molecule, with many intra-polyad interactions (Fermi resonances, Coriolis interactions between different bands, etc). Their parameters are not easily usable for the present simple application since one would need to extract decorrelated band centers and Coriolis constants. We rather use here simpler old studies that considered fits of the ν 3 and ν 4 bands as isolated. If the accuracy is not as high as what can be done nowadays, this is largely sufficient for simple low order calculations like the present ones. We thus start from 12 CH 4 values taken from Ref. [START_REF] Gray | The anharmonic force field and equilibrium structure of methane[END_REF] and then deduce, using the method explained in Sections 3 and 4, the corresponding constants for 13 CH 4 , 12 CD 4 and 12 CT 4 . The results are compared to the literature [START_REF] Gray | The anharmonic force field and equilibrium structure of methane[END_REF][START_REF] Dang-Nhu | Étude de la bande ν 3 de 13 CH 4 entre 2863 et 3132 cm -1[END_REF][START_REF] Dang-Nhu | Analyse de la bande ν 4 de 13 CH 4 entre 1231 et 1369 cm -1[END_REF][START_REF] Jones | Infrared spectrum and molecular constants of CT 4[END_REF]. This is presented in Table 1.

Some important points should be noticed:

• The method described in Section 2 using internal coordinates gives exactly the same results, within numerical rounding errors. The two choices for (±1) give different force constants F, but the same band center and Coriolis constant values. The cartesian coordinate method (Section 4), as it does not depend on , does not have this drawback.

• In principle, calculations should use the harmonic wavenumbers ω. As an approximation, we can also use the band center ν, knowing that the fitted effective hamiltonian parameter ν corresponds to the true band center (J = 0 level) only when bands are studied as isolated.

As we can see in Table 1, both calculations work well, the one using harmonic wavenumbers ω being significantly better, considering the relative isotopic shift error. For instance, the error on the 12 CH 4 → 12 CD 4 shift is 3.3 % for ν 3 and better for ω 3 , as expected for our simple model. The result is similar for ν 4 .

• For high-resolution, more elaborated but heavier models should be used, like for instance that of Rey et al. [START_REF] Rey | First principles intensity calculations of the methane rovibrational spectra in the infrared up to 9300 cm -1[END_REF]. We can notice, however, from Table 9 of this reference, that we get very similar 12 CH 4 → 12 CD 4 isotopic shifts for ν 3 and ν 4 band centers, taking into account the expected accuracy of our simple model.

• According to the correspondance between the Dijon tensorial formalism [START_REF] Champion | Spherical top spectra[END_REF][START_REF] Boudon | Symmetryadapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups[END_REF][START_REF] Boudon | Spherical top theory and molecular spectra[END_REF] (used for the fits) and "classical" notations, [START_REF] Champion | Spherical top spectra[END_REF][START_REF] Robiette | The effective vibration-rotation hamiltonian for triply-degenerate fundamentals of tetrahedral XY 4 molecules[END_REF] we have

t 1(1,0F 1 ) {i}{i} = 3 √ 2(Bζ) i , (33) 
(with i = 3 or 4) for the tensorial Coriolis parameter. We use this relation to estimate the ζ value, with the approximation (Bζ

) i B 0 ζ i , (34) 
B 0 being the ground state rotational constant.

• The Coriolis constants ζ should follow the sum rule [START_REF] Boudon | High-resolution spectroscopy of the ν 3 band of WF 6 and ReF 6 in a supersonic jet[END_REF]. However, when using such constants resulting from independent fits of ν 3 and ν 4 spectroscopic data, this sum rule is generally only approximately respected (within a few %). The present calculations proved to give better results if we make the following choice: (i) we take the experimental ζ 3 value obtained through [START_REF] Dang-Nhu | Étude de la bande ν 3 de 13 CH 4 entre 2863 et 3132 cm -1[END_REF] and ( 34) and (ii) we use

ζ 4 = 1 2 -ζ 3 . ( 35 
)
This only slightly differ from the experimental ζ 4 value and is more consistent with the present method that is based on the sum rule.

Our second exemple is GeH 4 . The fundamental bands of this molecule, which is of importance in planetology (see [START_REF] Boudon | Line positions and intensities for the ν 3 band of 5 isotopologues of germane for planetary applications[END_REF] and references therein) have been recently studied in our group [START_REF] Boudon | Line positions and intensities for the ν 3 band of 5 isotopologues of germane for planetary applications[END_REF][START_REF] Richard | Line positions and intensities for the ν 2 and ν 4 bands of the 5 isotopologues of germane[END_REF]. In this case, we do not have anharmonic constants and thus ω values cannot be obtained. But band centers are well determined and ν are convenient. Moreover, for this molecule, no strong Fermi resonance is observed between bending and stretching modes. The ν 3 and ν 4 constants are obtained through fits of two dyads, ν 2 /ν 4 [START_REF] Richard | Line positions and intensities for the ν 2 and ν 4 bands of the 5 isotopologues of germane[END_REF] and ν 1 /ν 3 [START_REF] Boudon | Line positions and intensities for the ν 3 band of 5 isotopologues of germane for planetary applications[END_REF], which only present limited rovibrational interactions of Coriolis type. Thus, the fitted values of ν 3 and ν 4 are almost identical to band centers as it can be verified by calculating the J = 0 levels.

Germanium in natural abundance presents 5 isotopes. We can thus calculate germane force constants using experimental ν The third example that we show here is ruthenium tetroxide. This molecule is of importance for nuclear power plant security and other industrial applications (see [START_REF] Reymond-Laruinaz | Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν 3 band[END_REF][START_REF] Reymond-Laruinaz | High-resolution infrared spectroscopy and analysis of the ν 2 /ν 4 bending dyad of ruthenium tetroxide[END_REF][START_REF] Vander Auwera | Line intensity measurements and analysis in the ν 3 band of ruthenium tetroxide[END_REF] and references therein). In natural abundance, it possesses 5 isotopologues, due to the different ruthenium isotope (we do not consider here oxygen isotopes): 99 RuO 4 , 100 RuO 4 , 101 RuO 4 , 102 RuO 4 (the main one) and 104 RuO 4 . There are also two isotopologues with very low abundance, namely 97 RuO 4 and 98 RuO 4 and two radioactive, short-lived, isotopologues, 103 RuO 4 and 106 RuO 4 .

In Ref. [START_REF] Reymond-Laruinaz | Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν 3 band[END_REF], we analyzed in detail the ν 3 band for all observable isotopologues and extrapolated the band center and Coriolis parameter for the others. In Ref. [START_REF] Reymond-Laruinaz | High-resolution infrared spectroscopy and analysis of the ν 2 /ν 4 bending dyad of ruthenium tetroxide[END_REF], we analyzed the ν 2 /ν 4 bending dyad for 102 RuO 4 only. We can thus apply the same method by starting with 102 RuO 4 values. As for germane, we use band centers, the ω values being unknown and we also consider ζ 4 as 1/2 -ζ 3 (the ζ sum with the experimental ζ 4 value [START_REF] Reymond-Laruinaz | High-resolution infrared spectroscopy and analysis of the ν 2 /ν 4 bending dyad of ruthenium tetroxide[END_REF] being 0.484). The calculated results are compared with experimental and extrapolated values from Ref. [START_REF] Reymond-Laruinaz | Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν 3 band[END_REF] on Figure 3. Again, the results are very satisfying, with small errors on isotopic shifts; values are very close to those of Ref. [START_REF] Reymond-Laruinaz | Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν 3 band[END_REF]. It is then possible to deduce values for the ν 4 band for the different isotopologues that, apart from 102 RuO 4 , have not yet been analyzed up to now. As an illustration, Table 2 gives the ν 4 predicted band centers and Coriolis constants. For these ones, we can calculate the difference between the experimental parameter for 102 RuO 4 [START_REF] Reymond-Laruinaz | High-resolution infrared spectroscopy and analysis of the ν 2 /ν 4 bending dyad of ruthenium tetroxide[END_REF] 

ζ p 4 = ζ c 4 + ∆ζ 4 . (36) 
As we saw for GeH 4 (lower right panel of Figure 2), the variation of the experimental and calculated (starting from 

Application to XY 6 molecules

Formula established for XY 4 molecules can be applied to XY 6 molecules by simply replacing G, C and µ by [START_REF] Aboumajd | Contribution à la détermination du champ de forces des molécules toupies sphériques 12 CH 4 , 12 CD 4 et SF[END_REF][START_REF] Kim | Molecular force fields of octahedral XF 6 molecules[END_REF][START_REF] Hodgkinson | Anharmonicity of the stretching vibrations in SF 6[END_REF][START_REF] Pistorius | Potential field and force constants of octahedral molecules[END_REF]:

G =        2 M + 1 m 4 M 4 M 8 M + 2 m        , C =        2 M -1 m -4 M -1 m -4 M 1 m + 8 M        (37) 
and

µ = mM M + 6m . (38) 
In this case, the ν 3 and ν 4 normal mode coordinates possess the F 1u symmetry in the O h point group.

We can thus apply the present theory to the SF 6 molecule. This one is a very strong greenhouse gas, see [START_REF] Faye | The high overtone and combination levels of SF 6 revisited at Doppler-limited resolution: A global effective rovibrational model for highly excited vibrational states[END_REF] and references therein. It possesses four isotopologues in natural abundance, namely 32 SF 6 , 33 SF 6 , 34 SF 6 and 36 SF 6 , the latter one having a very small abundance of only 0.02 % [START_REF] Faye | First high resolution analysis of the ν 3 band of the 36 SF 6 isotopologue[END_REF]. We can thus use the very accurate values for 32 SF 6 (using band centers as for germane above) to deduce the constants for the other isotopologues and compare them to experimental values, when available. The results are presented on Figure 4 and, again, are very satisfying. We see here that this method allows to estimate constants that are not known for some minor isotopologues and serve as a starting point for their future analysis. The legend is the same as for Figure 2. In this case, no data exist for the ν 4 band of 36 SF 6 . As for 33 SF 6 the ν 4 band center is an extrapolated value from Ref. [START_REF] Boudon | High-resolution spectroscopy and analysis of the ν 4 bending region of SF 6 near 615 cm -1[END_REF], while the Coriolis constant is no known.

Conclusion

We have shown that isotopic relations, when established in the Cartesian coordinate system for tetrahedral and octahedral molecules, lead to simple calculations for harmonic and Coriolis constants. As a matter of fact, these calculations depend only on masses (µ and m) and not on the whole G and C matrices as when using the internal coordinate system.

We have also shown that the ambiguity on the determination of force constants is not involved in these isotopic relations. Moreover, it should be noticed that the ambiguity in Cartesian coordinates only resides in the sign of the interaction parameter k 34 = k 3 , while for internal coordinates, the three force constants lead to three different values when changing the sign of .

Finally, we have illustrated the use of the simple isotopic relations developed here for a few tetrahedral molecules and for octahedral SF 6 . Such relations can be of help to make initial predictions for various rare isotopologues of spherical top molecules, provided that one main isotopologue is well known. (51)

Figure 1 :

 1 Figure 1: An XY 4 molecule in its reference configuration.

  "experimental" value; the "true" experimental ζ sum is given at the beginning of the line.

Figure 2 : 3 √ 2 (

 232 Figure 2: The band center and Coriolis constant (3 √ 2(Bζ), see text) as a function of the germanium isotope for the GeH 4 molecule. Blue curves show the values fitted on experimental spectra; the red curves show the calculated values determined from the 70 GeH 4 experimental value. In the case of ζ 4 , we used the 1/2 -ζ 3 value (green curve), the experimental value being farther away from this sum rule. We also indicate the resulting relative error for the 76 GeH 4 itotopologue.
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 332 Figure 3: The band center and Coriolis constant (3 √ 2(Bζ 3 ), see text) as a function of the ruthenium isotope for the ν 3 band of the RuO 4 molecule. We use symbols to distinguish between observed and extrapolated data for the different isotopologues.

Figure 4 : 3 √ 2 (

 432 Figure 4: The band center and Coriolis constant (3 √2(Bζ), see text) as a function of the sulfur isotope for the SF 6 molecule. The legend is the same as for Figure2. In this case, no data exist for the ν 4 band of 36 SF 6 . As for 33 SF 6 the ν 4 band center is an extrapolated value from Ref.[START_REF] Boudon | High-resolution spectroscopy and analysis of the ν 4 bending region of SF 6 near 615 cm -1[END_REF], while the Coriolis constant is no known.

  -∆r 3 -∆r 4 + ∆r 5 ) , -∆r 3 + ∆r 4 + ∆r 5 ) ,

	i S 3x = (∆r 2 i S 3y = 1 2 1 2 (-∆r 2 + ∆r 3 -∆r 4 + ∆r 5 ) ,
	i S 3z = (-∆r 2 i S 4x = 1 2 1 √ 2 r e (∆Θ 34 -∆Θ 25 ) ,
	i S 4y =	1 √ 2	r e (∆Θ 24 -∆Θ 35 ) ,

i S 4z = 1 √ 2 r e (∆Θ 23 -∆Θ 45 ) .

Table 1 :

 1 Band center and Coriolis ζ 32] as the strating point to calculate values for the other isotopologues and compare with literature values. Two calculations are made in each case: one using experimentally fitted band centers (ν) and ζ constants and one using calculated harmonic frequencies (ω, estimated by authors from the experimental values of ν

	constant for the ν 3 and ν 4 fundamental bands of different tetrahedral methane isotopologues. We use experimental values for 12 CH 4 from Ref.	and of the anharmonic constants	and ζ constants. For these two calculations, the ζ constants are denoted ζ ν and ζ ω , respectively.	Isotopologue ν 3 / cm -1 ω 3 / cm -1 ζ ν 3 ζ ω 3 ν 4 / cm -1 ω 4 / cm -1 ζ ν 4 † ζ ω 4	exp calc exp calc exp calc exp calc exp calc exp calc exp calc exp calc	12 CH 4 [32] 3019.2 3019.20 3156.8 3156.80 0.054 0.056 0.046 0.046 1310.8 1310.80 1367.4 1367.40 0.446 0.444 0.454 0.454	ζ ν 3 + ζ ν 4 exp = 0.508	13 CH 4 [32-34] 3009.5 3008.45 3146.6 3145.76 0.045 0.046 0.036 0.036 1302.8 1302.77 1358.9 1358.94 0.455 0.454 0.464 0.464	ζ ν 3 + ζ ν 4 exp = 0.509	12 CD 4 [32] 2260.1 2234.47 2336.2 2334.86 0.163 0.173 0.165 0.165 997.8 990.10 1034.1 1033.49 0.337 0.327 0.335 0.335
			X)							

[

  [START_REF] Boudon | Symmetryadapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups[END_REF] , ν 4 , ζ 3 and ζ 4 values (with the same remarks as for methane above) for 70 GeH 4 and then deduce these constants for 72 GeH 4 , 73 GeH 4 , 74 GeH 4 and 76 GeH 4 and compare them to the experiment. The results are presented on Figure2. Taking into account the many approximations made, the results are very satisfying. The relative error on isotopic shifts is small. We also notice on the lower right panel the limited error on the ζ sum rule. The experimental ζ 4 value is shifted from the 1/2 -ζ 3 value, but follows the same tendency.

		2112.2 2112.0			ν 3 band center	821.6 821.4				ν 4 band center
		2111.8 2111.6			Experiment Calculation			821.2					Experiment Calculation
	ν3 / cm -1	2111.4	1.295 cm -1					-1 ν4 / cm	821.0 820.8	1.218 cm -1			
		2111.2												
		2111.0							820.6					
		2110.8							820.4					
		2110.6			0.0549 cm -1 ~ 4.6 %				820.2				0.0096 cm -1 ~ 0.80 %
		70	71	72	73	74	75	76		70	71	72	73	74	75	76
				Germanium isotope						Germanium isotope
		-0.550			ν 3 Coriolis	6.40 6.38					
	Coriolis parameter (ν3) / cm -1	-0.565 -0.560 -0.555	0.02 cm -1			Experiment Calculation	Coriolis parameter (ν4) / cm -1	6.36 6.34 6.32 6.30	0.0984 cm -1 ~ 1.54 % Error on ζ sum rule 1.72 %	ν 4 Coriolis Calculation 0.00083 cm -1 ~ 4.1 % Experiment Using 1/2 -(ζ 3 ) exp
									6.28	0.02 cm -1				
		-0.570			0.00083 cm -1 ~ 4.1 %			6.26					
		70	71	72	73	74	75	76		70	71	72	73	74	75	76
				Germanium isotope						Germanium isotope

  and the 1/2 -ζ 3 value used in the present calculation; then we predict ζ 4 value, say ζ p 4 thanks to the calculated value ζ c 4 obtained in the present paper through:

Table 2 :

 2 1/2 -ζ 3 for the reference isotopologue) value of ζ 4 are parallel; it is thus justified to apply the same correction ∆ζ 4 to all isotopologues. The tensorial constant is also evaluated by multiplying ζ p Predicted ν 4 band centers and Coriolis constants (see text for notations) for the different isotopologues of RuO 4 . The reference isotopologue is 102 RuO 4 , so the values given here for this one are identical to the experimental ones[START_REF] Reymond-Laruinaz | Infrared spectroscopy of ruthenium tetroxide and high-resolution analysis of the ν 3 band[END_REF].

	√			
	4 by 3	2B 0 .		
	Isotopologue ν 4 / cm -1	ζ p 4	t 1(1,0F 1 ) {4}{4}	/ cm -1
	97 RuO 4	337.047	0.2808	0.1618
	98 RuO 4	336.683	0.2828	0.1629
	99 RuO 4	336.325	0.2848	0.1641
	100 RuO 4	335.972	0.2867	0.1652
	101 RuO 4	335.623	0.2886	0.1663
	102 RuO 4	335.281	0.2904	0.1673
	103 RuO 4	334.942	0.2922	0.1684
	104 RuO 4	334.609	0.2940	0.1694
	106 RuO 4	333.957	0.2976	0.1714

Appendix 1: Formulas for the GF method Following the G and C matrix definition from Equation [START_REF] Richard | Line positions and intensities for the ν 2 and ν 4 bands of the 5 isotopologues of germane[END_REF], Equation ( 9) becomes

whence

According the sum rules for spherical tops [START_REF] Hoy | Ambiguities in the harmonic force fields of XY 3 molecules[END_REF][START_REF] Kim | Molecular force fields of octahedral XF 6 molecules[END_REF][START_REF] Mcdowell | Coriolis zeta sums for some spherical-top molecules[END_REF][START_REF] Mcdowell | Vibrational-rotational angular-momentum coupling in spherical-top molecules. II. General zeta sums[END_REF]]

and

In addition, we have:

Appendix 2: Relations in terms of Cartesian force constants From ζ 3 and ζ 4 (cf. Eq. ( 18)) and noticing that sin 2γ is positive by definition, we deduce:

Then, from cos γ and sin γ from Eq. ( 20) we obtain the following relations:

with k = (k 2k 1 ) 2 + 4k 2 3 .

(49)