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High-temperature superconductivity emerges from an un-conventional metallic state. This

has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve

into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle

excitations break down in momentum space. Here we show, using angle-resolved photo-

emission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped

superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The

quasiparticle scattering and residue behave differently along the Fermi surface and hence the

Kadowaki–Wood’s relation is not obeyed. This kind of Fermi liquid breakdown may apply to a

wide range of strongly correlated metal systems where spin fluctuations are present.
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L
andau theory of Fermi liquids, and its notion of quasipar-
ticles, underlies much of our understanding of how electron
interactions affect the properties of a metal1. The breakdown

of this concept has therefore been studied in great detail by
transport and thermodynamic measurements2–10. A common
assumption is that the Fermi liquid self-energy ImS is local, that
is, that it depends only on excitation energy o:

Im�ðoÞ ¼ � l ðo=ocÞ2; oooc;
F o=ocð Þ; o4oc;

�
ð1Þ

and not on momentum (k)11,12. The Fermi liquid breakdown
then appears as the cutoff energy oc vanishes although the
electron coupling constant l and the a priori unknown function F
remain constant. There exist relatively few studies of non-local
Fermi liquids13–16. CeCoIn5 is an example of a three-dimensional
multi-band material that may have a directional breakdown17,18.

Angle-resolved photoemission spectroscopy (ARPES) is a
unique technique to extract the self-energy S(k, o). It measures
an intensity I(k, o) that is proportional to the spectral function
A(k,o), a matrix element M(k,o) and the Fermi distribution
f(o)19. Often matrix elements vary only weakly as a function
of (k,o) in which case the ARPES intensity becomes a direct
measure of the occupied part of the spectral function,
Iðk;oÞ � Aðk;oÞ ¼ ð� 1=pÞImð1=ðo��ðk;oÞ� ekÞ, where
ek is the bare-band dispersion. The self-energy S, carrying
information about all correlation effects, can be derived
experimentally from ImS¼ vkGk

20–23, where vk ¼ @ek=@k is the
bare-band velocity and Gk is the linewidth of I vs k.

Here we demonstrate, using ARPES, that quasiparticle
excitations – found in overdoped La1.77Sr0.23CuO4 – are strongly
anisotropic in momentum space. We find that true Fermi liquid
quasiparticles exist around the nodal region, whereas non-Fermi
liquid excitations provide a better description of the spectra found
near the anti-nodal region (see schematic Fig. 1). The
quasiparticle scattering and residue are studied as a function of
momenta. The simple relation between quasiparticle scattering
and mass renormalization proposed by Kadowaki–Wood does
not appear to be obeyed.

Results
Photoemission spectra. ARPES spectra acquired24,25 at T¼ 15K,
from overdoped La2� xSrxCuO4 (LSCO) x¼ 0.23 are shown in
Fig. 2a–f. Data were recorded as a series of cuts in momentum
space, as indicated in the inset of Fig. 2m. Near the nodal point,
the spectra (Fig. 2a–b) display a DG¼G(o)�G(0)po2 depen-
dence (see Fig. 2g,h) implying ImSpo2 as vk varies weakly with
o (Fig. 2n). This Fermi liquid property survives up to excitation
energies as large as oB0.2 eV. For larger o, a DGpo depen-
dence is found (see Fig. 2g,h). This sudden change from DGpo2

to po is accompanied by a marked kink in the dispersion
(Fig. 2n).

Data parametrization. Data are parameterized according to the
Fermi liquid self-energy (Equation 1) by identifying the Fermi
liquid cutoff energy (oc) with the energy scale below which
DGpo2. Furthermore, the bare-band width W¼ 4t¼ 1.72 eV26,
obtained from local density approximation (LDA) calculations is
used to evaluate bare-band velocity vk. This yields
oc¼ 0.15±0.02 eV and l=o2

c ¼ 11:1 � 0:1 eV� 1 for the
spectra shown in Fig. 2b. A second result of this parametriza-
tion is that FBo provides a better description, of the data, than
the commonly made assumption: F¼ 1 (ref. 11). Notice that these
values of l=o2

c and oc compare well with those extracted from
magneto-resistance measurements on overdoped Tl2Ba2CuO6þ x

(Tl2201)27,28.

Momentum dependence. Continuing the parametrization, using
the Fermi liquid self-energy of cuts 1–6 (inset of Fig. 2m) yields
the k-dependence of oc and l=o2

c . A main result of this work is
that both oc and l=o2

c are strongly anisotropic as a function of
momentum k (from hereon expressed by the Fermi surface angle
f, defined in the inset of Fig. 2m). The energy scale oc softens
rapidly as a function of Fermi surface angle f and eventually it
vanishes at a finite angle f0E16� (Fig. 3a). At the same time,
l=o2

c increases significantly as f-f0 from above (see Fig. 3b).
Thus within the experimental resolution, this marks the complete
breakdown of Fermi liquid quasiparticle excitations. This fact
is further supported by the observation that ImS po provides
a better description of the data for fof0 (Fig. 2l and
Supplementary Fig. S1).

Not only does the self-energy change from o2 to o, the
scattering is generally increasing upon moving from the nodal
towards the anti-nodal region. This is consistent with angle-
dependent magneto-resistance experiments on overdoped
Tl22014. ARPES experiments on overdoped Tl2201 have,
however, reported the opposite trend29. The origin of this
discrepancy remains an open question.

Discussion
The angular breakdown of Fermi liquid quasiparticles implies
that the Fermi surface consists of (FL) Fermi arcs connected
by gapless non-Fermi liquid quasiparticle excitations (Fig. 3c
inset). Notice that these Fermi arcs are different from the Fermi
arcs found inside the pseudogap phase of underdoped cuprates30.
In fact, the last mentioned arcs are typically not composed of
Fermi liquid quasiparticles31 in the strict sense imposed here and
the arcs are separated by gaped excitations32. It is, however, not
impossible that there is a connection between the non-Fermi
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Figure 1 | Schematic phase diagram of cuprates Doping dependence of

the Mott insulating, superconducting, pseudogap and Fermi liquid phase46.

A strongly correlated Fermi liquid has a self-energy that scales as

Im� � o2 near the Fermi surface as illustrated schematically in the top-

right inset (blue region). Here we show, using angle-resolved

photoemission spectroscopy in the doping regime indicated by the vertical

line, that the non-Fermi liquid state appears through an angular breakdown

of the Fermi liquid as shown schematically in the top-left inset (blue

region). This results in arcs of Fermi liquid quasiparticles separated by

gapless non-Fermi liquid excitations (red region in the inset) with

Im� � o. These Fermi liquid arcs are different from the Fermi arcs inside

the pseudogap phase as there the arcs are separated by (pseudo) gaped

excitations. Notice that around 1/8 doping a Fermi liquid re-entrance is

realized47 (not shown).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3559

2 NATURE COMMUNICATIONS | 4:2559 | DOI: 10.1038/ncomms3559 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


liquid like excitations and the pseudogap. The ‘broken’ Fermi
surface could, for example, be a precursor to the pseudogap
phase.

The momentum dependence of oc and l=o2
c implies that also l

has a strong dependence on the Fermi surface angle (see Fig. 3c).
This strongly suggest that l and oc are coupled parameters.
Within error bars, lpoc as predicted for two-dimensional Fermi
liquids in the presence of spin fluctuations33,34. In this context, it
is interesting to notice that the broken Fermi surface sections are

connected by the incommensurate antiferromagnetic spin
excitation wavevectors35 observed by neutron spectroscopy36

(see inset Fig. 3c). It is, however, not impossible that disorder37

also contributes to the Fermi liquid breakdown. The elastic
scattering, presumably originating from impurities, increases
dramatically across the Fermi liquid breakdown as shown in
Supplementary Fig. S2. Nonetheless, spin fluctuations appear as
the most plausible driving mechanism for the anisotropic Fermi
liquid breakdown.
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Figure 2 | ARPES spectra of overdoped La1.77Sr0.23CuO4 (LSCO). (a–f) Angle-resolved photoemission intensity as a function of binding energy (o) and
momenta (ky) acquired along the cuts indicated in the top-right inset of m. The intensities of the spectra were normalized so that they are identical

at the momenta indicated by the white bars (see supplementary Fig. S3). (g–l) Half-width half-maximum linewidth DG¼G(o)�G(0) of MDCs vs

excitation energy (o) for spectra shown in a–f. Horizontal and vertical error bars indicate the applied energy resolution and standard deviations,

respectively. The vertical grey bands indicate the precision with which oc – the energy scale below which DGpo2 (see also supplementary Fig. S4) – can

be determined. A zoom on the low-o part is shown in panel m where the bottom-left inset displays DG vs o2. The top-right inset of m indicates the cuts

(1–6) and the locus of the gapless excitations with a tight-binding fit (solid line) that is consistent with previous ARPES studies of the Fermi surface in

overdoped LSCO48,49. In the present LSCO x¼0.23 sample, the area U¼ 1.28 enclosed by the gapless excitations is somewhat larger than the number of

carriers48 n¼ 1þ x¼ 1.23. The doping concentration of the cleaved surface may therefore be slightly larger than that of the bulk. This may explain why no

traces of superconductivity was found even though the measurement were carried out at Tbulk
c ¼ 25K. (n) Dispersion derived from the MDCs and plotted

as ~ek vs ky� kF. The arrow indicates a kink in the dispersion and the solid line is the bare-band LDA dispersion26 with t¼0.43 eV.
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Kramers–Kronig transforming ImS yields the real part of the
self-energy ReS and hence the quasiparticle residue Z � (1�
qReS/qo)� 1. In the most simple case where l and F¼ 1 are
constants, Zpoc is found11,13. This leads to the Kadowaki–
Woods relation11,13 (Z� 2 � l=o2

c ) between the quasiparticle
residue Z and the electron scattering amplitude l=o2

c . However,
in our case neither l nor F is a constant. A Kramers–Kronig
transformation of a self-energy, that has ocpl and Fpo, yields
Z � ln� 1ð1=ocÞ. Consequently, the Kadowaki–Woods relation
cannot be obeyed.

We also notice that Z � ln� 1ð1=ocÞ is consistent with
theories of itinerant electrons near a magnetic quantum critical
point14,38. In this scenario, oc is a measure of the distance to
the so-called hot spot38,39. This kind of quantum criticality
predicts a logarithmic divergent thermopower S=T � lnð1=ocÞ

� lnð1=TÞ, where T is the temperature38. Such a temperature
dependence has been reported40,41 for La2� x� yRySrxCuO4 with
R¼Eu (y¼ 0.2) or Nd (y¼ 0.4) and dopants x¼ 0.24 comparable
to this study. As pointed out in recent numerical studies, the
vicinity of the van-Hove singularity to the Fermi level should not
be neglected and in concert with electron correlation this can also
produce non-Fermi liquid behaviour42,43.

Methods
LSCO sample. The LSCO with x¼ 0.23 (Tc¼ 25 K) sample used for this ARPES
study was grown by the floating zone method at Bristol University. The quality of
the current LSCO x¼ 0.23 single crystal has been demonstrated in previous pub-
lications. Resistivity curves in high magnetic field showed a residual resistivity of r0
E20 mO cm (ref. 2). The spin excitation spectrum was probed by inelastic neutron
spectroscopy44 and the excellent superconducting properties of these samples were
demonstrated by a small angle neutron scattering study of the vortex lattice45.

ARPES experiments. The ARPES experiments were carried out at the Swiss Light
Source on the surface and interface spectroscopy beam line24 using 55 eV circular
polarized photons. The sample was cleaved at T¼ 15K by employing a cleaving
tool25 operated in situ in the sample space kept under ultra high vacuum
(10� 11mbar). The photoemitted electrons were analysed by a SCIENTA 2002
electron analyser configured to have a 0.15� angular resolution as in Chang et al.21

Different detector channel efficiencies were normalized by measuring a spectrum
on poly-crystalline copper in thermal and electrical contact with the sample. The
Cu-spectra were also used to extract (i) the chemical potential m and (ii) the overall
energy resolution DEE24meV for the experimental setup. All ARPES spectra
reported in this work were recorded in the second Brillouin zone but are, for
convenience and clarity of display, presented by their equivalent cuts in the first
zone.

Elastic scattering. The elastic momentum distribution curve (MDC) linewidth
G0(f) sharpens rapidly as the Fermi surface angle f is varied towards the nodal
direction (f -p/4), see Supplementary Fig. S2. This is consistent with previous
reports on LSCO, for this and other dopings49. Note that the linewidth G0(fEp/
4)¼ 0.028Å� 1 reported here, is somewhat sharper than what we reported for
underdoped LSCO x¼ 0.145, and also sharper than G0(fEp/4)E0.05Å� 1

reported in Yoshida et al.49. The elastic MDC linewidth G0 originates, most likely,
from scattering due to impurities50. The sharpness of G0 can therefore be taken as
evidence for high sample quality. The measured elastic linewidth can be modelled as

G0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
r þG2

i ð0Þ
q

, where Gr � 0:1Å� 1 is the instrumental momentum

resolution and Gi(0) is the intrinsic elastic scattering. We find that G0E2Gr near the
nodal point and hence Gið0Þ ¼

ffiffiffi
3

p
Gr . The elastic MDC linewidth is therefore fully

resolved with the applied momentum resolution of 0.15�, see Supplementary Fig. S2.
Elastic and inelastic scattering usually originates from fundamentally different

processes. To first approximation, the self-energy therefore becomes a sum of the
two: ImS¼ ImSelasticþ ImSinelastic

11,12,27. The elastic component is commonly
assumed to be independent of energy (o) and temperature T, but may depend on
momentum (see Supplementary Fig. S2). These assumptions were applied,
throughout this paper, to disentangle elastic and inelastic contributions. In
Supplementary Fig. S1, it is shown how an alternative modelling
(Im� ¼ ðIm�2

elastic þ Im�2
inelasticÞ

0:5) provides a poor description of the
observed data.

Electronic band structure. The band structure of La1.77Sr0.23CuO4 can be para-
meterized by a tight binding model:

ek þ m ¼� 2t½cosðkxxÞþ cosðkyyÞ�
� 4t1cosðkxxÞcosðkyyÞ
� 2t2½cosð2kxxÞþ cosð2kyyÞ�
� 4t3ðcosð2kxxÞcosðkyyÞþ cosðkxxÞcosð2kyyÞÞ
� 4t4cosð2kxxÞcosð2kyyÞ;

ð2Þ

where m is the chemical potential, and t, t1 and t2 denote nearest, second-nearest
and third-nearest neighbour hopping integrals on a square lattice, respectively.
The ratios m/t¼ 0.86, t1/t¼ � 0.136, t2/t¼ 0.068, t3/t¼ 0 and t4/t¼ � 0.02 are
chosen such that ek ¼ 0 fits the marginal Fermi surface as shown in Fig. 2m.
The bare band ek is herein modelled by using the LDA bandwidth W¼ 4
t¼ 1720meV (ref. 26).
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