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ThumbText: Text Entry for Wearable Devices Using a Miniature Ring 

Junhyeok Kim, William Delamare, Pourang Irani 
University of Manitoba 

Winnipeg, R3T 2N2 

ABSTRACT 
Users can benefit from using an auxiliary peripheral that could 
mitigate many concerns with direct text entry on wearable devices. 
We introduce ThumbText, a thumb-operated text entry approach 
for a ring-sized touch surface. Through a multi-part exploration, we 
first identify a suitable discretization of the miniature touch surface 
for thumb input. We then design a number of two-step selection 
techniques for supporting the input of at least 28 characters. On a 
miniature touch surface, we find that a continuous touch-slide-lift 
selection technique in a 2×3 grid discretization offers improved 
performance gains over other selection methods. Finally, we 
evaluate ThumbText against techniques also designed for wearable 
devices and find that ThumbText allows for higher text entry rates 
than SwipeBoard and H4-Writer. 

Keywords: Text Entry; Wearables; Design; Smartwatch; Head-
Worn Display; Ring; Touch; Thumb. 

Index Terms: H.5.2. User Interface. Input devices and strategies. 

1 INTRODUCTION 
Supporting text entry on wearable devices is still an open challenge 
[12,13,16,24,32,35,44]. This has led researchers to propose novel 
approaches to address some of the key text entry challenges on 
emerging wearables, such as smartwatches [7,14,16,32] and head-
worn displays (HWDs) [13,38]. However, these approaches are 
optimized for each device separately and significant design 
iterations are needed to make them usable across devices [7,13,38]. 
Ideally one unique text entry mode should be usable across a 
multitude of wearable devices and thus provide the opportunity to 
design-and-learn once, and reuse often. Such an approach could 
mitigate concerns peculiar to any one device, such as finger 
occlusion [43] and two-handed use on smartwatches, or fatigue [15] 

and social awkwardness on HWDs [18].  
One promising solution is the use of wearable text entry peripherals 
[10,12,20,22,25,31,38]. Such devices allow for indirect input and 
can be used, if designed appropriately, across more than one 
wearable display. However, existing peripherals come at a cost. 
Some require users to hold it, which minimizes the use of an entire 
hand that can often be indispensable in mobile and wearable 
contexts [21,39]. In other cases, the peripherals require a steep 
learning curve, making them unusable for short activity bursts 
[31,41].  
For the text entry task on wearable devices, no current peripheral is 
able to satisfy the following design requirements: 
• miniaturization: the peripheral should ideally be as small as 

possible to avoid holding it, but yet not too small to detract 
significantly from its core task;  

• one-handed operation: given the requirements for one-handed 
operation while on-the-go, users should be able to enter text in 
one-handed mode; 

• self-contained: for optimum mobility, users should not be 
required to depend on additional materials or surfaces for text 
entry; and 

• unified input: users should be able to apply the same text entry 
approach across wearable devices; 

We propose ThumbText, a peripheral that makes text entry possible 
via thumb input onto a miniature touchpad affixed to the thumb’s 
opposing fingers (index or middle finger). As such, ThumbText 
offers one-handed indirect input, with subtle finger movements [6], 
and independent of the associated wearable displays. Through a 
multipart design process, we first assessed the thumb’s dexterity for 
input on a small touch surface by carefully discretizing the 
available input space. The ideal discretization patterns were then 
used to map alphabet characters onto touchpad positions. While 
operating a smartwatch, we found that ThumbText outperforms 
SwipeBoard [7] and H4-Writer [27], two very efficient text entry 
methods applicable to wearable devices. 
Our contributions include: (1) ThumbText, a peripheral device and 
its associated text entry method for wearable devices; (b) a multi-
part design process integrating an understanding of the thumb’s 
dexterity for text entry with ThumbText; and (c) an evaluation 
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Figure 1: Illustration: typing ‘c’ with ThumbText. (A) The user first locates the character ‘c’ in the top row, middle column 
(B) then touches the appropriate cell. The second step displays the selected cluster of characters. (C) The user can slide 
the thumb to reach the ‘c’ character and confirm the selection by lifting the thumb from the screen. 
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demonstrating ThumbText’s performance in comparison to 
existing text entry techniques applicable on a miniaturized touch 
surface. 

2 RELATED WORK 
We first present peripherals devised and applicable to text entry in 
wearable contexts. We then review text entry techniques, making 
the distinction between one- and multi-step techniques on small 
input devices. 

2.1 Peripheral Device and Applicability 
We discuss the relationship between wearable peripheral devices 
and our design requirements. We only discuss physical devices 
which come with an associated text entry technique. 
Handheld devices: Twiddler [25] is a one-handed keyboard device 
that allows user to input characters. GesText [20] uses 
accelerometer based gestures for text entry. Both systems require 
users to hold a physical device on one hand, preventing users to 
perform another task while holding it. Handheld devices do not 
satisfy our miniaturization design requirement. 
Wristband devices: One-Key Keyboard [22] uses a touch-
sensitive surface attached to the wrist for text entry. PalmType [38] 
uses IR sensors embedded on a wristband to detect touch on the 
palm. Touch-Sensitive Wristband [10] enables touch interaction 
directly on the wristband. However, these wristband solutions force 
users to interact with both hands: one for wearing the wristband, 
one for typing. Therefore, this does not meet our one-handed 
requirement. 
Ring devices: TypingRing [31] allows users to type letters with 
three fingers on any solid surface. Similarly, TAP [19] allows users 
to type text with chorded input on nearby surface. Both require a 
solid surface in the proximity of the user and as such are not self-
contained. 
Wearable rings that provide auxiliary buttons or a touch surface 
offer a promising solution. They do not need to be held, they can 
operate in one-handed mode, and are self-contained. Instead of 
relying on an external surface for input, touch can be directly 
embedded on the device itself.  

2.2 One-Step Text Entry Techniques 
One-step text entry techniques on a small device consists in 
gesture-based input to overcome space limitation issues.  
EdgeWrite [42] allows users to input letters by performing 
sequences of hits in the corners of a square, offering improved 
entry-rates compared to Graffiti [4]. However, input vocabularies 
[4,42] require users to pre-learn gestures, an often heavy burden for 
pick-up-and-use contexts such as is common on wearable devices. 
One solution to overcome memory limitations is to select a letter 
on a custom keyboard layout. However, techniques enabling users 
to select 28+ letters on a soft-keyboard need to consider space 
limitation issues. Two solutions can overcome space limitations: 
technology-based and interaction-based approaches. Technology-
based solutions use statistical inference of imprecise actions. This 
is the case of WatchWriter [11], InvisiBoard [29], or COMPASS 
[44]. However, such solutions rely on automatic corrections and 
predictions that can be detrimental in specific scenarios, e.g., out-
of-vocabulary words and non-alphabetical characters [11]. 
Interaction-based techniques propose to select a letter via an 
explicit disambiguation step using a second modality (e.g., TiltText 
[40], TiltType [33] or GesText [20]), such as a wrist rotation. In 
this work, we focus on techniques using only one modality: one 
finger touch. 

2.3 Multi-Step Text Entry Techniques 
We distinguish between techniques focusing on soft keyboard 
manipulation and techniques focusing on cluster of letters. 
First, text entry techniques can propose to manipulate the soft 
keyboard visualization. With ZoomBoard [32], a first tap area is 
zoomed in so that a second tap can comfortably select a letter. 
However, since the area is defined by the first tap, an absolute 
second tap might not be precise when the input and output spaces 
are decoupled, as with indirect input. ZShift [23] creates a callout 
of a magnified portion of the keyboard occluded by the finger 
touch. However, the zoomed callout requires a display space above 
the keyboard that might not be always available. Virtual Sliding 
QWERTY [5] displays only a portion of the soft keyboard to 
display larger characters. Users can pan the keyboard to reveal 
hidden characters. On the same principle, SplitBoard [16] displays 
a half of QWERTY keyboard at a time. Users can swipe 
horizontally to switch between each half-keyboard. DriftBoard [36] 
allows users to pan a soft keyboard to select characters via an on-
screen pointer at a fixed location.  
Second, text entry techniques can propose multiple characters per 
area followed by a disambiguation step. With Quikwriting [34], 
once the stylus enters a zone, the user can choose a letter within this 
zone by moving to another one and moving back to the resting zone. 
8Pen [45] builds on Quikwriting and allows users to choose which 
subgroup they want to select a letter from by moving their finger in 
a clockwise or counter-clockwise direction. Other techniques adopt 
the same strategy with different layouts. With MessagEase [30], 
users perform a first tap to select a cluster of characters, followed 
by a slide-lift action to further refine the selection. Other techniques 
build on MessagEase by using different layouts [3], by reducing the 
number of characters in each area [35], or by integrating a 
predictive mechanism [9]. The H4 family, e.g., H4-Writer [27] and 
H4-TEG [2] extend the concept of ‘two-steps’ to multiple steps 
depending on the frequency of characters. Thus, frequent characters 
are selected with two actions, while less frequent characters are 
selected with 4+ actions. Since H4 operates with only four buttons 
on a console controller, we hypothesize that this technique can also 
be adapted on a small ring touchpad. With SwipeBoard [7], users 
perform two swipe gestures on a smartwatch to enter a letter: the 
first swipe gesture selects one zone out of nine, the second swipe 
gesture selects a letter contained in the previously selected zone. 
SwipeZone [13] extends the SwipeBoard technique to consider the 
specific form factor of Google Glass’ lateral touchpad. SwipeZone 
extends SwipeBoard since (1) the discrete nature of the input 
interaction is well suited for limited input spaces, and (2) the 
technique does not require users to perform precise absolute touch 
selection. Thus, SwipeBoard is also a good candidate to adapt on a 
small ring touchpad device. 
None of the above techniques were designed for an indirect ring 
form-factor for text entry on wearable devices. In the remainder of 
this paper, we present our design process for ThumbText. 

3 HARDWARE 
We describe our ring prototype, and the hardware and software 
apparatus used in our studies. 
Ring prototype (Figure 1, A): The ring consists of a MTCH6102 
Capacitive Touch Controller on top of customized printed circuit 
board. The touch sensitive area is 18mm×13mm with a resolution 
of 256×160 pixels. The ring device communicates with an Arduino 
Fio V3 via the I2C protocol.  
Apparatus: In the following studies, our main software was 
implemented in C# with the Unity 5 game engine and ran on a 3.4 
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Figure 2: Discretization techniques on the touch surface for 
identifying the suitable thumb input resolution on our device. 

GHz Intel Core i7-3770 with 8GM RAM computer. The ring 
prototype (i.e., Arduino board) communicated with the main 
software via USB. Participants were sitting 50cm in front of a Dell 
U2312HM with 1920x1080 resolution desktop screen. Wearable 
display devices were an iMacwear M7 smartwatch and the Epson 
Moverio BT-200 smartglasses. Data communication between the 
main software and the ring (resp. wearable displays) was done via 
USB (resp. Wi-Fi). 

4 STUDY 1: THUMBTEXT DESIGN 
Our final objective is to get users to input 28+ characters. In the 
first experiment, we explore the performance of thumb input on a 
ring touchpad. Based on these results, we next explore solutions 
that can extend the number of selectable targets. 

4.1 Experiment 1 – Precision 
We look at three experimental factors:  
Discretization Shape: We consider the linear, grid, and radial 
shapes (Figure 2). A linear is the simplest form. We chose the 
horizontal discretization, adapted to the wider form factor of our 
prototype. A grid divides the touchpad into rectangular areas. A  
radial divides the touchpad into triangular areas radiating from the 
touchpad center.  
Discretization Level: We also explored the number of areas that 
could be defined on the touchpad. We considered 4, 8, 16 and 32 
areas. Levels of the linear discretization were equal to the number 
of columns. Levels of the grid discretization lead to 2×2, 2×4, 4×4 
and 4×8 grid sizes (Figure 2). We chose more columns than rows 
to fit our prototype wider form-factor. Levels of the radial 
discretization were equal to the number of triangles, with all 
triangles having the same surface area. 
Finger: We considered two fingers on which to attach the ring 
touchpad: the index and the middle finger. The index finger is the 
first finger opposite to the thumb: the thumb can hence reach the 
touchpad quickly. The middle finger allows to keep the index finger 
free while still allowing a comfortable access to the touchpad. 
Participants: 12 participants (5 females), between 19 and 35 years 
old (M=23.16, SD=4.08), were recruited from local community. 11 
of them were right-handed and one was ambidextrous. 11 
participants had 3+ years’ experience with touch sensitive devices. 
5 participants had experience with wearable devices. 
Procedure: The study lasted 30 minutes per participants after 
which they filled a questionnaire for qualitative data. The task 
consisted in selecting a colored target displayed on a screen. We 
asked participants not to look at the ring touchpad or their fingers. 
They were instructed to be as accurate and fast as possible. 
Participants could practice for a minute before each condition. 
Participants were instructed to select a blue target by a tap-and-lift 
action on the touchpad, with the tap as close as possible to the 
target. If they needed to correct the landing position, (1) the current  

 
Figure 3: (A) Selection time (s), (B) Error rate (%), and (C) user 
preference for shapes and (D) for fingers. (95% CI). 

area corresponding to the actual thumb position turned red, and (2) 
participants could slide the thumb toward the target area. Once the 
thumb was in the target area, the target area turned green and users 
could lift their thumb to validate the selection. Auditory feedback 
indicated success or failure, and participants could rest before the 
next trial. 
Experimental Design: We used a repeated-measure within-
participant design. The independent variables were the 
discretization Shape (linear, grid, radial), the discretization Level 
(4, 8, 16, 32) and the Finger (index, middle). The ordering of 
Finger and Shape was counterbalanced across participants using a 
Latin-square design. The ordering of Level followed an increasing 
difficulty: from level 4 to 32. 
The experiment was split into two sections: one for each finger. 
Each section contained three blocks, i.e., one block per shape. Each 
block consisted in 4 series of trials, one per discretization level. For 
each condition, we collected 20 successful selections. In case of an 
error, the selection was re-queued to the pool of remaining 
selections. This design ensured the collection of 3 shapes × 4 
discretization levels × 2 fingers × 20 successful selections = 480 
acquisitions per participants, hence a total of 5760 acquisitions. 

4.2 Experiment 1 – Results 
The main dependent measures for the task were the selection time 
and the error rate defined as: ER= ##$$%$&

#'())*&&	,	##$$%$&
. We collected 

a total 8340 trials, including 5760 successful selections and 2580 
failed selections. 
Error rate: We found a significant effect of Shape on the error rate 
[F2,26=49.81, p<0.001, ηp

2=0.82]: Grid offers a better accuracy than 
radial [p<0.01], which gives a better accuracy than linear 
[p<0.001]. We also found a significant effect of Level [F3,26=70.23, 
p<0.0001, ηp

2=0.86] with each level being significantly more error 
prone than the previous smaller one [p<0.001]. We did not find any 
significant effect of Finger on the error rate [F1,26=4.32, p=0.06]. The 
grid and radial shapes are significantly different only for the 
discretization level 16 [F2,33=22.04, p<0.001, ηp

2=0.67] (Figure 3, B). 
In contrast, the linear shape is significantly different from the two 
other shapes as soon as we reach level 8 [F2,33=15.85, p<0.001, 
ηp

2=0.59]. 
Selection time: We consider only successful trials for the selection 
time analysis. We applied a log transform to our data to satisfy the 
normality and homogeneity of variances assumptions. Figures 
show non-transformed data. We performed two-ways ANOVAs 
and accounted for repeated measures by treating participants as a 
random variable. We used multiple pairwise t-test comparisons 
with a Bonferroni correction for post-hoc tests. We found a 
significant main effect of Shape [F2,26=48.49, p<0.00001, 
ηp2=0.82] and Levels [F3,26=96.97, p<0.00001, ηp2=0.90], but no 
effect of Finger [F1,26=0.75, p=0.40] on the selection time. Post-
hoc tests reveal a significant difference between all shapes 
[p<0.001]. Grid leads to faster selection times than radial, which  
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Figure 4: (1) Illustration of Tap-4-8. (2) Lift-6-6. A) User touches an 
area. B) Second step displaying the characters included in the 
previously selected area. C) Users (1) tap or (2) slide toward the final 
character to select it. 

leads to faster selection times than linear. We also found significant 
differences between all discretization levels [p<0.001]: the more 
discretized areas, the longer the selection time (Figure 3, A). We 
did not find any interaction effect. 

4.3 Experiment 1 – Discussion 
From the results, we infer the need for a two-step interaction 
technique to input 28+ characters on our ring touchpad. Large 
discretization levels led to poor performances in terms of both the 
selection time and the accuracy. Since (1) the grid-shaped 
discretization offers a better precision than the linear and radial 
discretization, and (2) participants’ preferences lean toward the grid 
discretization (Figure 3, C), we focus on two-step interaction 
techniques using the grid-shaped discretization. Regarding the 
finger to which the ring touchpad is attached, we did not find any 
significant difference. However, it seems that participants preferred 
using the ring on the index finger (Figure 3, D). We hence use the 
index finger for the remaining studies. 

4.4 Experiment 2: Multi-Steps Selection 
Our approach to increase the number of selectable areas on a ring 
touchpad involves a two-step concept [7,30,35]: a top-level for 
selecting a cluster of letters, and a lower-level for selecting a 
character. 
• Grid4-Grid8: We first consider the simplest grid shaped 

discretization: 4 areas. The second step can use a discretization 
of 8 areas, offering 4×8 = 32 characters (Figure 4, 1). Once a 
top-level area is selected, the associated characters are displayed 
in a grid-8 design. The second step has two potential drawbacks. 
First, a discretization level of 8 is more difficult to use than a 
smaller one. Second, the two steps use a different layout which 
could impose a cognitive load on users when transitioning 
between these two steps. 

• Grid6-Grid6: We hence consider another alternative. A 
discretization level of 6 is in-between the 4 and 8 levels. It offers 
a good compromise for both the first and second steps. In 
addition, since both steps use the same layout, users do not have 
to switch their mental model of the discretization during the 
transition. This design offers the possibility to select 6×6 = 36 
characters (Figure 4, 2). 

For both designs, we explore different input techniques: 

• Tap: users perform (i) a first tap to select a cluster of characters 
from the top-level cells, and (ii) a second tap to select a character 
from the lower-level cells (Figure 4, 1). We designate designs 
using the ‘tap’ keyword and the discretization used, i.e., Tap-4-8 
and Tap-6-6. 

• Touch and lift: users (i) touch an area to select a cluster of  

 
Figure 5: Experiment 2 result (A) Selection time (s) (B) Soft error (%), 
and (C) Hard error (%) 

characters, (ii) can slide their thumb to navigate in the lower-
level, and (iii) validate their selection by lifting their thumb from 
the touchpad (Figure 4, 2). This input technique allows users to 
select a ‘main character’ in each top-level area without sliding to 
other discretized lower-level area, i.e., 4 with Grid4-Grid8 and 6 
with Grid6-Grid6. Such main characters could be based on the 
letter frequency in the user’s language. We designate these 
designs using the ‘lift’ keyword and the discretization used, i.e., 
Lift-4-8 and Lift-6-6. 

Participants: 8 new participants (4 females), ages between 19 and 
37 (M=27.1, SD=7.98) volunteered for the experiment. All of them 
had experience with touch sensitive devices, three of participants 
had < 1-year experience with wearable devices. 
Procedure: The experiment lasted about 1 hour per participants 
after which they filled a questionnaire to get qualitative data. 
Participants selected a character using one of the four designs 
described above. A trial consisted in a character selection. The 
character to select was displayed on top of layout. Visual feedback 
consisted in a blue coloration of the area in which the thumb was 
on. Auditory feedback indicated the success of the selection. 
Participants could rest before starting the next trial. Minimal 
training was allowed to ensure that participants understood the task. 
Experimental Design: The task used a repeated-measure within-
participant design with Designs (Tap-4-8, Tap-6-6, Lift-4-8, Lift-
6-6) as an independent variable. The ordering of Designs was 
counterbalanced across participants using a Latin-square design. 
The task was divided into 4 blocks: one for each Design. Each block 
consisted of 10 sequences of trials. In each sequence, participants 
had to select 8 letters. The 8 letters and character positions were 
randomly chosen for the 1st sequence and remained the same until 
switching the Design.  We then considered two distinct repetition 
blocks with 5 successive sequences of trials each. The independent 
variables were the Design and the Repetition (1, 2). We collected 4 
designs × 8 characters × 10 repetitions = 320 acquisitions per 
participant, for a total of 2560 acquisitions. 

4.5 Experiment 2 – Results 
The main dependent measures for the task were the selection time 
and the error rate. We also distinguished between soft errors and 
hard errors [7], i.e., errors on the first step (selection of a cluster of 
characters) and the second step (the actual character selection).  We 
removed 1.46% of the data considered as outliers, i.e., with a 
selection time more than three standard deviations from the mean. 
Error rate: We found a significant main effect of Design 
[F3,56=6.71, p<0.01, ηp

2=0.49] on error rate. Tap-4-8 leads to more 
errors than all the other designs [p<0.05]. We did not find any 
improvement over time [F1,56=0.00001, p=0.99]. There was no 
significant difference between Design regarding soft errors 
[F3,56=2.64, p=0.08]. For the hard error type, we found a significant 
main effect of Design [F3,56=14.67, p<0.0001, ηp

2=0.68]. Not 
surprisingly, Tap-4-8 leads to more hard errors than all the other 
designs [p<0.01] (Figure 4). 
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Figure 6: Heatmap for Lift 6-6 based on the experiment 2 results. 

Selection time: We performed two-way ANOVAs on log-
transformed successful data and accounted for repeated measures 
by treating participants as a random variable. We used multiple 
pairwise t-test comparisons with a Bonferroni correction for post-
hoc tests. We did not find any significant effect of Design on the 
selection time [F3,56=2.23, p=0.12]. There was a learning effect 
[F1,56=88.41, p<0.0001, ηp

2=0.93]: participants were faster at the end 
than at the beginning with all designs. There was no interaction 
effect. 

4.6 Experiment 2 – Discussion 
Except for Tap-4-8, all designs hold promising results, without 
significant differences regarding the selection time and the error 
rate. Participants preferred the 6-6 design (Figure 4, 2). However, 
there is no clear distinction between Tap and Touch-and-Lift input 
methods. Yet, “[with Tap] there is no going-back in case of error” 
(P1). Thus, we chose Lift-6-6 as a basis for ThumbText. 
We also generated a heatmap (Figure 6) based on ‘lift-6-6’ results. 
As landing precision (soft error) indicates, the bottom-center area 
(where ‘W’,’D’,’L’,’R’,’A’, and ‘G’ are) was the most error-prone 
cell. However, once participants managed to land correctly in this 
cell, the following selection of characters was easy (hard error).  

4.7 Resulting ThumbText Design 
ThumbText uses a 2×3 discretization of the ring touchpad for both 
steps of the character selection: selecting a cluster (tap) and 
selecting a character (slide and lift). ThumbText hence 
extends the family of techniques proposing multiple characters per 
area [34,45], disambiguated by a slide-and-lift action [30,35]. For 
the ThumbText final design, we also optimized our layout based on 
the frequency of English letters: most frequent letters are placed in 
less error-prone cells (Figure 6). Although a near-QWERTY layout 
could be applied, we chose to consider the precision difference 
between cells at the extra cognitive cost for novice users to learn 
this new layout. 

5 STUDY 2: THUMBTEXT EVALUATION 
We evaluate ThumbText against existing baseline techniques in a 
context deliberately difficult for ThumbText (Experiment 3), and 
in a normal context (Experiment 4). 

5.1 Experiment 3: ThumbText Evaluation – Difficult 
Context 

We explore how ThumbText performs under difficult conditions 
against existing techniques, namely SwipeBoard [7], and H4-
Writer [27]. Our baseline techniques demonstrate considerably 
high performance in their original evaluations (19.58 words-per-
minute, 20.4 WPM, respectively). H4-Writer’s layout uses only 
four areas, which should lead to good results on our ring touchpad 

based on results from experiment 1 (Figure 3). SwipeBoard uses 
swipe gestures to select characters. We hence want to evaluate how 
Tap (H4-Writer), and Touch-and-lift (ThumbText) perform against 
swipe gestures that is not considered in the previous study. 
The study uses our ring prototype as the input device for all three 
techniques, and the iMacwear M7 smartwatch as a wearable 
display. All techniques are hence used as an indirect text entry 
method. The layout was divided into a 9-cells to replicate 
SwipeBoard, and into a 4-cells radial layout for H4-Writer. 
We adapted the protocol from Chen at al. to simulate expert 
performances [7]. We used a subset of 6 characters deliberately 
difficult for ThumbText, instead of choosing letters fair for all 
techniques – which might be impossible without introducing a bias.  
This also allows us to determine the lowest performance of our 
technique: any other context will hence lead to similar or better text 
entry rates. We chose the letters (‘U’, ‘F’, ‘B’, ‘P’, ‘I’, ‘L’), leading 
to 17 4-letters words such as ‘FLIP’ or ‘BLIP’. With ThumbText, 
these letters (i) all require a sequence of touch-slide-lift actions, and 
(ii) are placed on error-prone cells (Figure 6). For H4-Writer, this 
resulted in 1 character using 2 taps, 4 characters using 3 taps, and 1 
character using 4 taps. With SwipeBoard, all characters require two 
actions. 
Experimental Design: The task used a repeated-measure within-
participant design with Technique (ThumbText, SwipeBoard, H4-
Writer) and Block (1 to 8) as independent variables. The ordering 
of Technique was counterbalanced across participants using a 
Latin-square design. 
The experiment consisted of two sessions separated by at least 2h 
and at most by 24h. A session was divided into 3 sections: one per 
Technique. Each section consisted of 4 blocks, with each block 
involving 5 sets. A set consisted of 7 words, each randomly picked 
in the list of 17 words generated via our 6 letters. We collected 2 
sessions × 3 sections × 4 blocks × 5 sets × 7 words = 840 words per 
participants, for a total of 7560 acquisitions. 
Participants: We recruited 9 new participants (3 females), aged 
between 20 and 25 (M=22, SD=1.41). Participants received a $15 
gift card for their participation. All participants had more than 3 
years of touch sensitive devices.  
Procedure: The experiment lasted about 90 minutes per session and 
per participant. Participants filled a questionnaire to get qualitative 
data after the second session. Participants could rest between sets. 
The target word was displayed on top of the smartwatch screen, 
with the transcribed word right underneath. In case of an incorrect 
input, the transcribed word turned red and participants had to 
correct the error. A trial automatically ended as soon as the 
transcribed word matched the target word. No training was 
provided as we wanted to evaluate the learning process. 

5.2 Experiment 3: Results 
We report standard text entry metrics when applicable [1,37]. For 
instance, since participants had to input the correct word to end a 
trial, the number of Unnoticed Error and the Minimum String 
Distance are always 0, leading to a Minimum String Distance Error 
Rate of 0%. We focus our analysis on three quantitative metrics 
(words-per-minute, total error rate, and keystroke per character [1]) 
and on qualitative feedback. We performed two-way ANOVAs on 
log-transformed data and accounted for repeated measures by 
treating participants as a random variable. Post-hoc tests used 
multiple pairwise t-test comparisons with a Bonferroni correction. 
Figures show non-transformed data. 
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Figure 7: Experiment 3 – Difficult result. 

Each metric is calculated with the following formulas [1]: 

𝑊𝑊𝑊𝑊𝑊𝑊 =
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𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇
× 60 ×

1
5

 

𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇	𝐸𝐸𝐸𝐸 =
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Words-Per-Minute (WPM): We found a significant main effect 
of Technique [F2,18=14.64, p<0.0001, ηp

2=0.65] and Block 
[F7,18=35.06, p<0.0001, ηp

2=0.81] on the text entry rate. Post-hoc tests 
show that ThumbText (8.47±2.45 wpm) allows for higher wpm 
values than SwipeBoard (6.96±1.29 wpm) [p<0.05] and H4-Writer 
(6.19±2.02 wpm) [p<0.05] in the 8th block. We didn’t find 
interaction effect between Technique and Block. 
Total Error Rate (Total ER): We did not find any significant 
effect from Technique on the total error rate [F2,18=2.27, p=0.13]. We 
found a significant main effect of Block on the total error rate 
[F7,18=3.47, p<0.005, ηp

2=0.30], as participants managed to decrease 
the number of errors from 11.96±7.08% in the 1st block to 
7.94±3.96% in the last block. We also found an interaction effect 
between Technique and Block [F14,18=2.25, p<0.05] (Figure 7).  
Keystrokes Per Character (KSPC): We found a significant main 
effect of Technique [F2,18=25.77, p<0.0001, ηp

2=0.76] and Block 
[F7,18=6.30, p<0.0001, ηp

2=0.44] on the KSPC. We also found an 
interaction effect between Technique and Block [F14,18=2.94, 
p<0.005, ηp

2=0.26]. With SwipeBoard, KSPC reaches a plateau 
after the 3rd block around 2.75±0.61. Nearly constant KSPC values 
indicates that the increase of text entry rates is most likely due to a 
motor-skills learning. With ThumbText, KSPC reaches a plateau 
after 2nd block around 3.53±0.29. 

5.3 Experiment 4: ThumbText Evaluation – Normal 
Context 

We next evaluate ThumbText without focusing on characters 
explicitly difficult to input. For this, we chose characters based on 
an optimized H4-Writer. H4-Writer optimizes the complete set of 
characters based on their frequency. Evaluating techniques with 
characters spread out along this frequency range allows us to 
evaluate techniques in a normal context (i.e., not designed to be 
difficult or easy).  
In this comparison, we chose letters spread out across the range of 
number of Tap action of H4-Writer: (‘E’, ‘A’, ‘D’, ‘R’, ‘B’, ‘Z’), 
leading to a set of 14 4-letters words (e.g., ‘BADE’ and ‘RAZE’). 
This allows us to evaluate technique based on the English letter 
frequency. Thus, H4-Writer uses two characters using 2 taps, two 
characters using 3 taps, one character using 4 taps, and one 
character using 5 taps. ThumbText uses two characters needing 1 
tap, and four characters needing a sequence of tap-slide-lift actions. 
With SwipeBoard, all characters require two actions. We expect 
H4-Writer’s performance to incur a drop of performance compared 
to the previous study, and SwipeBoard’s performance to remain the 
same. 

 
Figure 8: Experiment 4 - Normal result. 

Participants: We recruited 9 new participants (3 females), aged 
between 22 and 30 (M=26.1, SD=2.84) for the experiment. All of 
them had more than 2 years of experience with touch sensitive 
devices and one participant had more than 3 years of experience 
with wearable devices (smart wristband). The experiment followed 
the exact same protocol and procedure as Experiment 3. 

5.4 Experiment 4 – Results 
Overall, text entry metrics (i.e., WPM, Total ER, and KSPC) follow 
the same trends as in the previous experiment. 
WPM: We found a significant main effect of Technique 
[F2,18=35.96, p<0.0001, ηp

2=0.82] and Block [F7,18=130.74, p<0.0001, 
ηp

2=0.94] on the text entry rate. Post-hoc tests show that ThumbText 
(11.41±2.30 wpm in 8th block) allows for higher wpm values than 
SwipeBoard (6.49±1.26 wpm in 8th block) [p<0.0001] and H4-
Writer (6.83±1.88 wpm 8th block) [p<0.0001]. We also found an 
interaction effect [F14,18=1.80, p<0.05, ηp

2=0.18]: all techniques 
indicate a learning effect. However, the learning reaches a plateau 
after the 4th block with H4-Writer, and the 6th block with SwipeBoard 
and ThumbText. Interestingly, SwipeBoard is significantly faster 
than H4-Writer only during the first block [p<0.05], while 
ThumbText provides faster entry-rates than the two other 
techniques in all blocks [p<0.01] (Figure 8). 
Total ER: As in the previous experiment, we did not find any 
significant effect from Technique on the total error rate [F2,18=3.51, 
p=0.055]. We found a significant main effect of Block on the total 
error rate [F7,18=2.91, p<0.05, ηp

2=0.27], as participants managed to 
decrease the number of errors from 13.30±7.21% in the 1st block to 
9.08±3.27% in the last block. We did not find any interaction effect 
[F14,18=1.21, p=0.27]: only SwipeBoard demonstrates a higher error 
rate than the other techniques during the first block, but leads to 
approximately the same values on the second block (Figure 8).  
KSPC: When using ThumbText and H4-Writer, participants 
increased their text entry rate without significantly decreasing their 
error rate. Constant KSPC values support this observation (p>0.05) 
(Figure 8). Thus, the increase of text entry rates is most likely due 
to a motor-skills learning. On the contrary, with SwipeBoard, 
participants decreased their error rate while also reducing the KSPC 
value (p<0.05). This indicates that participants learnt how to use 
SwipeBoard by mostly reducing the number of input errors, and 
hence their input actions. 

5.5 Experiment 3 and 4 – Discussion 
WPM: Both cases, 8.46±2.45 wpm (experiment 3 – difficult 
context) and 11.41±2.30 wpm (experiment 4 – normal context) 
show that our technique, ThumbText, perform significantly better 
than the other techniques. For SwipeBoard, no significant 
difference was observed as predicted (6.96±1.29 wpm, 6.49±1.26 
wpm). With H4-Writer, however, text entry rates improved from 
6.19±2.02 wpm to 6.83±1.88 wpm as predicted. 
Total ER: From the results, we showed that no significant 
differences between two experiments were observed as in the first 
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block (11.96±7.09%, 13.30±7.21%) and the last block 
(7.95±3.96%, 9.08±3.27%). These similar differences between the 
first block and the last block (approximately 4% each) validate our 
initial hypothesis. Note that with more participants, some 
significant differences with little effect size could appear. 
KSPC: ThumbText dropped its KSPC values from experiment 3 
(3.86 in the first block, 3.39 in the last block) to experiment 4 (2.70, 
2.53 respectively) as predicted due to different character set used. 
SwipeBoard and H4-Writer, however, didn’t change their KSPC 
values as predicted. 
First, we showed that ThumbText allows for faster text entry rates 
than SwipeBoard and H4-Writer. We argue that ThumbText, 
designed step-by-step, is hence more suitable than state-of-the-art 
techniques adapted to a ring touchpad. 
Second, we note that in this work, SwipeBoard (6.96, 6.49 wpm) 
and H4-Writer (6.19, 6.83 wpm) do not reach performances 
reported in their original work, 19.58 wpm and 20.4 wpm 
respectively. One hypothesis for this drop of performance is the 
different input devices used in these studies, as already 
hypothesized in previous work [36].  
Finally, we asked participants’ feedbacks on each technique they 
used in experiments. Qualitative results show that participants 
reported that SwipeBoard’s QWERTY layout was an asset 
compared to the other techniques (P3, P4, P7, P8). Also, the idea is 
intuitive (P3, P4, P7, P9, P2’) and the cancel action is a real 
advantage (P5, P9). H4-Writer was easy to use (P1, P9, P1’, P2’), 
but participants noted the learning curve (P1, P2, P3, P5, P6, P7) 
and the number of taps to enter a character (P3, P4, P7). Participants 
also noticed the unusual layout used by ThumbText (P2, P6, P7, 
P8). However, participants considered ThumbText as fast, 
convenient (P1, P3, P7, P9, P1’, P2’), and easy to use (P1, P5, P8). 
Overall, participants preferred ThumbText and H4-Writer to 
SwipeBoard. 

6 LIMITATIONS 
We did not integrate any correction or prediction mechanism in our 
study as we were essentially focusing on human performances. 
Such mechanism could create artificial problems (e.g., wrong auto-
correction) and/or artificial advantages (e.g., good prediction). 
These artificial effects would have prevented us from 
understanding how the ring touchpad could effectively be used for 
text entry purposes. Although we were able to determine the users-
only performances (8.47 wpm in a difficult context), we did not 
evaluate the full potential of ThumbText offered by standard text 
entry technique enhancements. Results from previous work show a 
maximum of  82% increase in text entry rates depending on the 
presented words [17,28]. This indicates that ThumbText could 
theoretically allow for well over 20 wpm. However, this result 
remains to be scientifically validated via user experiments. 
We identified a few limitations on our analysis and experimental 
design. The difficult word set for experiment 3 was based on our 
resulting heatmap, and normal words were chosen based on their 
English letter frequency. Thus, experiment 3 covers 20% of English 
characters’ frequency, and experiment 4 covers 32%. While 
popular phrase sets  cover 95% of letters frequency [26], we 
covered over 50% of letter frequency with participants considered 
at expert-level [7]. In these experiments, we showed that 
ThumbText outperformed two existing techniques, with both 
infrequent (experiment 3) and frequent letters (experiment 4). 
Beside an evaluation with experts and full sentences, ThumbText 
remains to be adapted for full text edition tasks (e.g., editing font 
size, font decoration, font colors, etc.) to be considered a complete 

text-editing input technique. Note that the sample sizes were not 
large in experiment 3 and 4. However, our effect sizes, which are 
independent from sample sizes, were unanimously high according 
to Cohen’s rule of thumb [8]. We also observed p values <.05. 
Therefore, we believe that our data, even with small sample sizes, 
captured phenomena nicely.  

7 CONCLUSION AND FUTURE WORK 
The growing use of wearable devices opens opportunities for novel 
input techniques. This requires users to adapt to the way they 
interact with each device. We propose ThumbText, a text entry 
technique that works across multiple wearable devices to help users 
from learning multiple device-dependent text entry techniques. 
With ThumbText, users select characters on a ring touchpad. This 
setup allows ThumbText to meet multiple requirements for 
wearable text entry situations such as one-handed input. We report 
the results of a multipart design process. ThumbText uses a two-
step selection process with a seamlessly continuous touch-slide-lift 
action of the thumb on the touchpad. The ring touchpad is 
discretized using a 2×3 grid. Each cell contains 6 characters. First, 
users select a group of letters by touching the ring touchpad. The 6 
corresponding characters fill the 6 cells. For the second step, users 
can slide their thumb on the touchpad and lift to confirm the 
selection. We designed ThumbText so that frequent letters are 
positioned on less error-prone cells. We validated ThumbText and 
demonstrated that (1) ThumbText offers faster text entry speed than 
established wearable techniques, namely SwipeBoard and H4-
Writer, and (2) ThumbText can be used across multiple wearable 
displays without loss of performance. 
In addition to the evaluation of ThumbText with auto-correct and 
prediction features, we plan to extend this work by making the most 
of our prototype in ecological longitudinal studies. Our working 
prototype can be connected to smartwatches and smartglasses via 
Bluetooth. We will be able to assess expert performance in the wild 
and compare this to our in-lab study. Furthermore, our early 
prototype, which we restricted to one phalange can be designed 
more ergonomically to fit onto the user’s finger. Methods for 
precise touch detection over the user’s skin will also be 
experimented with to design more seamless text input approaches 
for wearable devices. 
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