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Abstract. A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller
spherical grains far from any boundaries and without gravity is presented with a non-smooth contact
dynamics method. A dense granular “cluster” zone builds progressively around the moving sphere until
a stationary regime appears with a constant upstream cluster size. The key point is that the upstream
cluster size increases with the initial solid solid fraction ϕ0 but the cluster packing fraction takes an about
constant value independent of ϕ0. Although the upstream cluster size around the moving sphere diverges
when ϕ0 approaches a critical value, the drag force exerted by the grains on the sphere does not. The
detailed analysis of the local strain rate and local stress fields made in the non parallel granular flow inside
the cluster allows us to extract the local invariants of the two tensors: dilation rate, shear rate, pressure and
shear stress. Despite different spatial variations of these invariants, the local friction coefficient µ appears
to depend only on the local inertial number I as well as the local solid fraction, which means that a local
rheology does exist in the present non parallel flow. The key point is that the spatial variations of I inside
the cluster does not depend on the sphere velocity and explore only a small range around the value one.

PACS. 45.70.-n Granular systems – 83.80.Fg Granular solids (rheology)

1 Introduction

The response of a granular material to a mechanical per-
turbation by the motion of a solid object at its surface or in
its bulk is a fundamental issue in many fields. For instance,
in civil engineering, the resistance of soils to the pene-
tration or extraction of stakes and piles is an important
point for the safety of structures. In biophysics, the un-
derstanding of animal locomotion in sand [1] may inspire
new robotics in very different situations, from agricultural
to military machinaries. And in geophysics, the collision
phenomena in the impacts of meteorits on planets or aster-
oids [2], or in the formation of protoplanetary disks from
dust particles [3], are the basic elementary processes that
need to be taken into account for a better understand-
ing of the evolution of the universe. In all these cases,
the complex rheology of the granular material plays a key
role and needs to be well-understood, which is particularly
hard when the packing is dense with a high solid fraction
ϕ close to the so-called liquid/solid or jamming transition
[4–6]. Different rheological laws have been proposed for
dense granular flows, such as the so-called µ(I) rheology
which relates the local friction coefficient µ and the local
packing fraction ϕ to the dimensionless inertial number
I [7]. This local rheology has been built from numerical
and experimental results obtained in stationary parallel
flows: Couette flow between two close parallel walls in rel-

ative motion [8] or thin flows down inclined planes [9].
Although such a rheological law may give some good re-
sults in quasi-steady and quasi-parallel flows [10–14], its
validity for strongly non parallel flow still needs to be ad-
dressed. Even in simple parallel shear flows, the existence
of such a local rheology and the influence of solid walls is
still under investigation [15,16]. As a matter of fact, the
presence of far boundaries such as fixed or mobile solid
walls has shown to have strong and non elucidated ac-
tions in different situations [17–19]. To examine this im-
portant question, one must have access simultaneously to
the strain and stress fields in the bulk flow. Different ex-
perimental tools have been developed to measure both
the kinematic properties of granular flows and the force
contact network such as image correlation techniques [19,
20] or light backscattering [21] for the former, and non-
linear acoustics [22], photoelastic techniques [5,23–26], or
even X-ray or neutrons diffraction [27] for the latter. In
addition to these remarkable experimental tools, discrete
numerical techniques is now a powerful tool to investigate
deeply the complex granular flows [8,10,15,16,28,29].

The object of the present paper is to investigate the
local rheology of granular matter in a strongly non paral-
lel flow around a moving sphere without any gravity field
and far from any other boundaries. We use for this a re-
cent powerful numerical method described in section 2 to
investigate such a sphere motion within a bidimensional
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cloud of spherical particles initially at rest with a solid
fraction ϕ0 far below the jamming point. The size of the
dense cluster that builds progressively around the moving
sphere is characterized in section 3 and the corresponding
stationary drag force in section 4. A local analysis of the
stress and strain rate in the stationary flow that arises
in the dense cluster around the sphere intruder is made
in section 5 and the local rheology in finally examined in
section 6.

2 Numerical model

In the Discrete Elements Methods (DEM) used to simu-
late granular flows, two classes of numerical methods can
be distinguished. “Explicit methods”, also called “smooth
methods”, consider that collision forces can be explicitly
expressed as a function of the configuration of the system
as, e.g., for a spring network. This leads to very stiff Or-
dinary Differential Equations which impose to use small
time steps in the simulations. The numerical method we
use here belongs to the class of “Non-Smooth Contact Dy-
namic methods” [30,31] and is described in details in [32].
In these methods, impenetrability is expressed by writing
that the gap between solid bodies should remain positive
and the contact force is an unknown of the problem. This
leads to robust numerical schemes and allows to use larger
time steps. Here, we simulate the motion of dissipative
rigid spheres with a non-elastic impact law (zero restitu-
tion coefficient for the collisions) but without any static
nor dynamic friction between the spheres.

The present simulation configuration is as follows. The
granular assembly is contained in a rectangular box of size
Lx along the x streamwise direction of motion and Ly in
the transverse direction y with (x, y) = (0, 0) at the cen-
ter of the box. It is made of slightly polydisperse spherical
grains of mean diameter dg and density ρ, with an uniform
size distribution in the range 0.9dg to 1.1dg in order to
avoid any possible crystallization during the simulation.
A sphere of larger diameter d = 10dg, which is initially
placed at one side of the rectangular box at x = −Lx/3
and y = 0, is then moved at constant velocity V0 in the
x direction toward the opposite side. The interaction be-
tween the grains and the moving sphere as well as between
the grains and the walls is solved using the same law as
for the grain-grain interaction.

To prepare the granular medium at the initial solid
fraction ϕ0 = N(πd2g/4)/(LxLy − πd2/4), we pick ran-
domly N centers of non-intersecting spheres of diame-
ter dg in the box of size Lx × Ly = 1100dg × 800dg,
and apply a random force on the grains to ensure a uni-
form spatial configuration of spheres without any contact
force. For required ϕ0 values higher than 0.7, an initial
ϕ0 = 0.7 configuration is slightly compacted by slightly
moving one side wall of the box thus slightly decreas-
ing Lx to reach the required ϕ0 > 0.7, before a ran-
dom force is applied on the grains to obtain again an
uniform spatial distribution of grains without any con-
tact. For the highest range of the solid fraction built here
(0.7 6 ϕ0 6 0.75), the length of the box thus lies in the

reduced range 1030 6 Lx/dg 6 1100. It is worth noting
that all the explored initial solid configuration are far be-
low the jamming point which is known to be at the packing
fraction ϕJ ≃ 0.84 in 2D [24,33].

Starting the intruder sphere motion, the numerical solver
gives the velocity vm of each particle m and the contact
force fmn exerted by particle m on particle n (which is
zero if particles m and n are not in contact). The velocity
field v at any point of the domain is computed using an
interpolation of the vm values onto a cartesian grid of step
∆x = ∆y = 0.05dg. Besides, for each particle m, one can
define the corresponding stress tensor:

σm =
4

πd2g

∑
n

emn ⊗ fnm,

where emn is the unit vector giving the direction from the
center of particle m toward the center of particle n and
⊗ is the vector outer product. The stress tensor σ at any
point of the domain is then computed by interpolating the
σm values on the same cartesian grid as for the velocity
field v.

The local solid fraction ϕm around each particle m is
first computed using a Voronoi tesselation, and the local
solid fraction ϕ at any point of the domain is then com-
puted by interpolating the ϕm values on the same carte-
sian grid as for v and σ.

From the velocity field v and the stress tensor field σ,
one can define the following quantities of interest in the
whole domain:

– the pressure p = −1
2

∑
k σkk, defined by the opposite

of the mean normal stress,

– the shear stress τ =
√

1
2

∑
i,j (σij + pδij)

2
, defined by

the mean deviatoric component of the stress tensor,
where δij is the Kronecker symbol.

– the dilation rate ε̇ = 1
2

∑
k Dkk, defined by the mean

normal strain, where Dij = (∂ivj+∂jvi)/2 is the strain
rate tensor,

– the shear rate γ̇ =
√

1
2

∑
i,j (Dij − ε̇δij)

2
, defined by

the mean of the deviatoric component of the strain
rate tensor.

Note that the 1/2 factor for p and ε̇ arises from the
present bidimensionnal configuration.

The drag force F exerted by the grains on the intruder
can be calculated as F = −

∑
m fm0 · ex, where fm0 is the

contact force exerted by particle m on the intruder and ex
is the unit vector along the x direction of motion.
In the following, dg will be chosen as unit of length and
V0 as unit of velocity, so that dg/V0 will be chosen as
unit of time. As no gravity acts and no external pressure
is externally imposed in the present configuration, there
is no pressure scale other than ρV0

2, which will thus be
chosen as the unit of stress and ρd2gV0

2 as the unit of
force. The spatial variation of each local quantities will be
presented in the polar coordinates (r, θ) adapted to the
geometry, where θ is the angle relative to the x direction
of motion and r the radial position relative to the moving
sphere center (Fig. 1b).
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3 Dynamical clustering

As the intruder starts moving, it perturbs progressively
the initial grain assembly and a dense cluster zone of
touching grains grows around as illustrated in Fig. 1. In
this figure, the grains are drawn as open disks in light gray
(light blue online) and non-zero contact forces between
touching grains are drawn as black lines connecting the
grain centers. The open disks and black lines can be seen
individually in Fig. 1b that displays only a zoomed part
close around the moving intruder. In Fig. 1a that displays
the entire domain, touching grains appear in dark gray
(dark blue online). The dense cluster exhibits an ovoid
shape which does not touch any limiting walls, so that
the cluster is surrounded by non contacting grains at the
initial fraction ϕ0 which have not moved yet. The posi-
tion rc(θ, t) of the corresponding front delimiting the inner
perturbed cluster zone to the outer unperturbed zone is
extracted from the simple criterion p(r > rc) = 0 for each
θ. A triangular zone with no grain inside, thus appearing
in white in Fig. 1a, exists in the wake of the intruder as al-
ready reported and analyzed in details by [34] in bidimen-
sional experiments. In the present paper, we only focus on
the cluster zone upstream the intruder (−π/2 . θ . π/2)
which is the key region where the drag force originates,
with high stresses and strain rates inside. The upstream
extension of the cluster λ = rc − d/2 is averaged in the
small θ range −5 ◦ < θ < 5 ◦ around the x-direction of mo-
tion. As in one dimensional experiments where a straight
rake starts moving [35], we observe that the front position
λ moves away linearly in time, with a velocity that is pro-
portional to the intruder velocity and increases with the
initial fraction ϕ0. But in contrast to the one-dimensional
configuration of [35], this regime is here only transient
until a steady regime is reached with a constant value λc.
This steady regime appears when the grain flux upstream
the intruder is balanced by the grain flux on the intruder
sides which can not occur in the one-dimensional config-
uration of [35] as no grains can circumvent the rake. In
the following, we restrict our study to this steady state
regime which allows time averaging of the different mea-
sured quantities.

The steady size of the dynamic cluster that appears
around the moving sphere is observed to increase with ϕ0

(see Fig.2a) from only a few grains at low ϕ0 (e.g. λc ≃ 3dg
at ϕ0 = 0.3) to many grains at high ϕ0 (e.g, λc ≃ 53dg
at ϕ0 = 0.7). The radial variation of the local solid frac-
tion ϕ(r, 0) in the streamwise direction θ = 0 in front of
the moving sphere is displayed in Fig. 2b for different ini-
tial solid fractions ϕ0. For large enough ϕ0 (ϕ0 & 0.6), ϕ
reaches a plateau value ϕp ≃ 0.83 in the cluster except
close to the intruder where ϕ decreases down to about
0.75 and near the front where ϕ decreases down to ϕ0.
This plateau value ϕp is not reached for low enough ϕ0

(ϕ0 . 0.6). As demonstrated by the log-log inset plot of
Fig.2a, λc diverges at the approach of a critical value ϕc

with the scaling λc/dg = α(ϕc−ϕ0)
−2 where α = 1.5±0.3

and ϕc ≃ 0.85 ± 0.01. The critical value ϕc found here
is very close to the jamming point ϕJ reported in other
studies [24,33]. Note that the local solid fraction ϕ does

(a)

x

y

λc

(b)

θ

r

Fig. 1. (Color online). (a) Snapshot of a simulation for the ini-
tial solid fraction ϕ0 = 0.75. The length λc corresponds to the
cluster size in front of the sphere moving from left to right. (b)
Same snapshot but zoomed in around the sphere intruder. The
black lines indicate non-zero contact forces between touching
grains.

not vary significantly with θ in a large azimutal range as
shown by the inset of Fig.2b.

4 Drag force

In the present simulations where no gravity acts and no
external pressure is imposed from any external boundary,
no stress scale exists except the kinetic pressure ρV 2

0 aris-
ing from collision processes. We have checked that the drag
force F exerted by the grains on the moving sphere indeed
scales as ρV 2

0 for any velocity range V0. The present regime
corresponds therefore to the inertial high velocity regime
found by [36,37] in their bidimensional experiments of a
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Fig. 2. (Color online). (a) Cluster size λc as a function of
the initial solid fraction ϕ0. (�) Numerical results and (- - -)
best fit of equation λc/dg = α(ϕc − ϕ0)

−2 with α = 1.44 and
ϕc = 0.85. Inset: Log-log plot of λc/dg vs ϕc − ϕ0. (b) Radial
variation of the local solid fraction ϕ in the direction of motion
(θ ≃ 0) for different initial solid fractions ϕ0 = 0.3 (· · ·), 0.5
(- - -), 0.7 (- · -), 0.75 (—). Inset: Azimutal variations of ϕ at
the radial distance r ≃ 8dg for ϕ0 = 0.3 (▽), 0.5 (⋄), 0.7 (◦),
0.75(△).

disk dragged within a monolayer of steel beads and also
found by [29] in their numerical simulations of a bidimen-
sional assembly of disks with no friction with the bot-
tom plate. In our simulation, we do not observe any quasi
static regime at low velocity where the drag force would
be velocity independent or would depend only weakly on
the velocity. The existence of such a quasi-static regime
which is the most often seen regime [19,20,38] arises from
the existence of another natural scale of pressure in the
system which may come either from gravity or from wall
friction.

Figure 3a shows that the present normalized drag force
F/ρdg

2V 2
0 increases with the initial solid fraction ϕ0 in

a linear way even at high ϕ0 when approaching ϕc. In-
deed, a linear fit F/ρdg

2V 2
0 = Kϕ0 with K = 4.9 ± 0.1

passes quite well through the all data range. Thus, F
does not seem to diverge at the approach of ϕc in con-
trast to the cluster size λc. Hence, if the increase of F
may be related to the increase of λc at small ϕ0, this is
not the case at high ϕ0: F remains finite whereas λc di-
verges. Figure 3b displays the evolution of the drag force F
with the cluster size λc. From the previous simple scalings
λc/dg = α(ϕc−ϕ0)

−2 and F/ρdg
2V 2

0 = Kϕ0 found for the
ϕ0 dependence of F and λc, one can infer the simple scal-
ing F/ρV 2

0 d
2 = K[ϕc − (αdg/λc)

1/2]. The corresponding
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Fig. 3. Normalized drag force F/ρdg
2V 2

0 as a function of
(a) the initial solid fraction ϕ0 fitted by the linear equation
F/ρdg

2V 2
0 = Kϕ0 with K = 4.9 (- - -), and (b) as a function

of the dimensionless cluster extension λc/dg fitted by equation
F/ρdg

2V 2
0 = 4.9[0.85− (1.44dg/λc)

1/2] (- - -).

law passes quite well through the data as shown in Fig. 3b
where the normalized drag force is expected to saturate
at the value Kϕc ≃ 4 when λc/dg goes to infinity for ϕ0

approaching ϕc. The present saturation of the drag force
at high ϕ0 is a strong result. Indeed, the present finding is
different from the scaling prediction of [37] based on their
experimental measurements where the drag force F seems
to diverge for initial solid fractions approaching a critical
value. It is also different from the divergence of the drag
force observed in the numerical simulations of [29]. But
the present finding is consistent with theoretical predic-
tions of dense packing of spheres where the yield stress is
not expected to diverge when the system crosses the jam-
ming point [39]. The reason why we do not observe any
divergence for the force may be explained by the fact that
the grains at the outer limit of the growing cluster do not
touch any limit boundary in our simulations.

5 Local invariants

Let us now focus on the flow around the moving intruder.
As there is no grain motion and no contact force outside,
we will only consider the dense cluster zone in the study
of the invariants of both the local strain rate tensor and
the local stress tensor: the local dilation rate ε̇ and shear
rate γ̇ together with the local pressure p and shear stress
τ . Figures 4a and 4b display the spatial evolution of the
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Fig. 4. (Color online). Spatial evolution of the four invariants
of the strain rate and stress tensors around the intruder for
different initial solid fractions ϕ0 = 0.5 (- - -, ⋄), 0.7 (- · -
,◦), 0.75 (—,△): (a-b) dilation rate ε̇, (c-d) shear rate γ̇, (e-f)
pressure p, and (g-h) shear stress τ . Plots (a, c, e, g) are for the
radial variations along the direction of motion (θ ≃ 0) whereas
plots b, d, f, h are for the azimuthal variations at the radial
distance r ≃ 8dg from the intruder. The vertical dashed lines
correspond to the front position rc = d/2 + λc.

normalized dilation rate ε̇dg/V0 as a function of the nor-
malized radial distance r/dg in front of the moving sphere
(θ ≃ 0) and as a function of the azimuthal angle θ close to
the moving sphere (r ≃ dg) for three values of the initial
solid fraction ϕ0 with a significant cluster size (λc > 10dg).
We can see in Fig. 4a that ε̇dg/V0 is about zero in the over-
all cluster except near the cluster rim at the front where a
strong peak emerges at low ϕ0. This result is in agreement
with the measured field of the local solid fraction ϕ in the
cluster zone which shows a constant plateau value ϕp ex-
cept in a narrow crown around the moving sphere and
at the cluster front. Indeed, mass conservation equation,
which reads ϕ ε̇ + v · ∇ϕ = 0 where v is the local veloc-
ity of the grains, thus leads to ε̇ ≃ 0 for ∇ϕ ≃ 0 where
ϕ = ϕp in the nearly overall cluster (Fig. 2a). In the less
dense zone close to the moving sphere (r ≃ d/2), ∇ϕ ̸= 0
but is mainly radial and thus normal to v which is here
mainly azimuthal, so that v ·∇ϕ ≃ 0 which again leads to
ε̇ ≃ 0. By contrast v ·∇ϕ ̸= 0 at the cluster front (r ≃ rc)

where ∇ϕ ̸= 0 but is now nearly parallel to v ≃ V0, so
that a significative peak of non zero ε̇ appears here. This
peak is higher for smaller ϕ0 values as ε̇dg/V0 is expected
here to scale with ϕc − ϕ0. We can conclude that even if
the local density presents some spatial variations, the flow
can be considered as incompressible in the overall cluster
except in a narrow external cluster rim around r = rc.

The corresponding spatial evolutions of the normalized
shear rate γ̇dg/V0 as a function of r/dg and θ are shown in
Fig. 4c and 4d respectively. The shear rate is observed to
be maximum close to the moving sphere at r ≃ d/2 and
then strongly decreases away from it at larger r roughly
as γ̇ ∼ 1/r2. At the front of the dense zone (r ≃ rc), a
peak of γ̇dg/V0 arises from large velocity gradient in this
transition zone, especially when the dense moving zone
is of small extension for low ϕ0 values. This peak almost
disappears for a large enough dense zone at high enough
ϕ0 values as for the peak of ε̇ already seen in Fig. 4a. The
key point is that the maximal shear rate does not depend
significantly on the initial solid fraction ϕ0 neither does its
radial decreasing rate. This means that an intrinsic flow
appears close to the moving sphere within the cluster zone
independently of its possible diverging size. This flow has
an intrinsic length scale which is thus independent of ϕ0

and is of the order of 1d and thus of about 10dg for the
present size ratio d/dg = 10. This flow zone corresponds to
the narrow crown of lower solid fraction ϕ < ϕp. Note that
we do not observe here the triangular static zone reported
by [40] in their experimental granular chute flow around
a large disk confined between two glass plates.

Let us now look at the spatial variations of the stresses
in Fig. 4e-h. As expected, the local pressure p is maximal
at the sphere surface in front of the moving sphere (r ≃
d/2, θ ≃ 0) and decreases radially away from it and toward
the equator. As the drag force on the intruder was shown
to increase linearly with ϕ0 (Fig. 4a), the good rescaling
for the stresses should be ϕ0ρV

2
0 . This is the case as the

maximal value of p/(ϕ0ρV
2
0 ) (and τ/(ϕ0ρV

2
0 ) resp.) at the

sphere surface is the same whatever ϕ0. Moreover, all the
curves of Figs. 4e and 4f collapse on a same master curve
except near the cluster front. The spatial variations of the
shear stress τ are very similar to those of the pressure p
with always τ < p. The stresses p and τ scale roughly as
1/r. Note that γ̇, p, τ does not vanish at large r.

6 Local rheology

Let us now consider any possible local relation that may
exist between each of the local invariants of the strain
rate tensor and stress tensor. As already discussed, we
can consider the flow as incompressible (ε̇ = 0) within
the overall dense cluster zone (except at the cluster rim
r ≃ rc) so that we can discard any key role of the dilation
rate ε̇ and focus on the possible relations between the three
other invariants γ̇, p and τ . The strong coupling between
τ and p means that the rheological behavior appears to be
of frictional type although no microscopic friction exists
in the system. We thus test the possible existence of the
local rheology µ(I) [7] where the local friction coefficient
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Fig. 5. (Color online). (a) radial and (b) azimutal variation
of the inertial number I in the dense zone around the intruder
for different initial solid fractions ϕ0. Same symbols as in Fig.
4.

µ = τ/p would be linked to the local inertial number I =

γ̇dg/
√
p/ρϕ related to the local shear rate γ̇, the local

pressure p and local density ρϕ. As τ and p have the same
scaling in V0, the local friction coefficient µ will not depend
here on the velocity V0. Also the local inertial number I
that arises in the dense cluster zone will not depend on
the intruder velocity V0 as both γ̇ and

√
p scales as V0.

The only spatial variation of I will come from the weak
difference of the spatial scalings of γ̇ and

√
p, together

with the weak spatial variation of the local solid fraction
ϕ. Figure 5 shows the variations of I in the cluster with
(a) the radial position r and (b) the azimuthal position θ
relative to the intruder. We see in Fig. 5a that I has its
highest value of about 5 close to the intruder and decreases
away from it following the same master curve whatever
the cluster size except at the cluster front. For the largest
cluster size (ϕ0 = 0.75), we see that I tends towards a
non-zero asymptotic value close to 1/2. Figure 5b shows
that there is only weak azimuthal variations of I around
the intruder.

In Fig. 6a where the local friction coefficient µ is plot-
ted as a function of the local inertial number I, all data col-
lapse in one master curve which means that a local rheol-
ogy appears in the present flow. A fit through the data by
the often used empirical law [11] µ = µs+(µ2−µs)I/(I0+
I) works quite well with the values µs = 0.25 ± 0.05,
µ2 = 0.78±0.02 and I0 = 1.0±0.3. To describe completely
the rheological behavior of the grains in the present flow,
the local solid fraction ϕ inside the cluster is now shown
as a function of I in Fig. 6b. Again all data collapse
on a master curve, which is well described by the linear
decrease ϕ = ϕm(1 − aI) with ϕm = 0.846 ± 0.002 and
a = 0.025 ± 0.001. As expected the maximal value ϕm

found here for ϕ at vanishing I is slightly larger than the
plateau value ϕp ≃ 0.83 found previously in the core of the
cluster flow. Moreover, ϕm value is found very close to the
critical value ϕc ≃ 0.85 found for the divergence of λc. We
believe that ϕc and ϕm both correspond to the jamming
point ϕJ of the system. The plateau value ϕp observed in
the cluster core corresponds to the asymptotic minimum
value of Im ≃ 1/2 reached in the flow. The observed µ(I)
and ϕ(I) variations are very similar to what have been
already observed in other granular flow configurations. In
the present configuration, the inertial number I that nat-
urally arises is of order one and ranges within only one
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Fig. 6. (Color online). (a) Local friction coefficient µ = τ/p
and (b) local solid fraction ϕ as a function of the local inertial
number I inside the cluster zone for different initial solid frac-
tions ϕ0. Same data symbols as in Fig. 4. (- - -) Fits of equations
(a) µ = 0.25 + 0.53I/(1 + I) and (b) ϕ = 0.846(1− 0.025I).

decade from about 0.5 to 5. As a consequence the local
friction coefficient only varies roughly from 0.45 to 0.70
and the local solid fraction roughly from 0.75 to 0.83. The
region of high I (high µ and low ϕ) is close to the moving
sphere but it is worth noting that I does not vanish far
away.

7 Conclusion

Our simulation results show that a steady state regime
arises for an intruder sphere moving at constant veloc-
ity within a cloud of spherical grains initially at rest and
without contact between them and any boundaries. In the
present case of dissipative collisions between the grains,
a dense cluster of high packing fraction ϕp ≃ 0.83 builds
progressively around and reaches a dynamical steady state
with a constant size that increases with the initial solid
fraction ϕ0 of the grains and diverges when ϕ0 approaches
the jamming point ϕJ ≃ 0.85. The drag force exerted by
the grains on the moving sphere increases linearly with
ϕ0 and does not present any diverging behavior close to
ϕJ by contrast to the cluster size. A detailed inspection of
the velocity and stress fields inside the cluster reveals that
the strongly non parallel flow can be considered as incom-
pressible inside the overall cluster except at its rim. This
flow is observed to be strongly localized within a few grains
close to the sphere surface in the direction of motion with
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a maximal shear rate γ̇, pressure p and shear stress τ that
decreases away. The granular flow is found to obey a local
rheology where the local friction coefficient and the local
solid fraction are given by the sole inertial number I even
if no microscopic friction between the grains is considered
here. The scalings of γ̇, p and τ are such that I does not
depend on the flow velocity and varies only by one decade
inside the overall cluster around one. This specific behav-
ior originates from the fact that no pressure scale exists in
the present configuration that would come from gravity or
solid walls, so that the pressure that builds in the system
arises from the cluster flow itself. The present simulation
results show thus that a local rheology may exist within
dense granular materials even for non parallel flow at least
when boundaries do not play any role.
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