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Abstract

This paper is concerned with the development of imaging methods to localize sources or reflectors in inhomogeneous
moving media with acoustic waves that have travelled through them. A typical example is the localization of broad-
band acoustic sources in a turbulent jet flow for aeroacoustic applications. The proposed algorithms are extensions
of Kirchhoff migration (KM) and coherent interferometry (CINT) which have been considered for smooth and ran-
domly inhomogeneous quiescent media so far. They are constructed starting from the linearized Euler equations for
the acoustic perturbations about a stationary ambient flow. A model problem for the propagation of acoustic waves
generated by a fixed point source in an ambient flow with constant velocity is addressed. Based on this result imag-
ing functions are proposed to modify the existing KM and CINT functions to account for the ambient flow velocity.
They are subsequently tested and compared by numerical simulations in various configurations, including a synthetic
turbulent jet representative of the main features encountered in actual jet flows.

Key words: Travel-time migration, Kirchhoff migration, Coherent interferometry, Random flow, Doppler shift.

1. Introduction

This paper is concerned with the problem of localizing acoustic sources or reflectors buried in a randomly hetero-
geneous moving medium. Our main motivation is the localization of broadband acoustic sources in a turbulent jet flow
for aeroacoustic applications [18, 19, 20, 32, 38]. Our main goal is to introduce a wave-based imaging method that can
address such a problem. Wave-based imaging has generally two steps. 1) In the first step a data set is collected by an
array of sensors. In passive imaging, the goal is to localize sources and the data set consists of the signals transmitted
by the sources to be localized and recorded by an array of receivers. In active imaging, the goal is to localize reflectors
and the data set consists of the signals transmitted by an array of controlled sources through the medium to be imaged
and recorded by an array of receivers. 2) In the second step, the data set is processed to form an image of the medium
that is intended to show the positions of the targets (sources or reflectors).

Wave-based imaging has many modalities and applications. In seismic imaging the goal is to estimate the locations
of one or more underground sources or reflectors with a passive network of receivers (seismometers) on the surface
of the earth, or the locations of reflective structures from the seismic signals generated by active sources (explosions
or air guns) in reflection seismology [6, 25]. The same principle is used in medical ultrasound echography [28], in
underwater acoustics (sonar) [29] or in radar [22] for instance.

Imaging sources or reflectors, when performed in a smooth medium, is effective with Kirchhoff migration (KM)
[7], when the background propagation velocity is known or can be estimated. The KM imaging technique consists
in travel-time migration of the recorded signals, a simplified version of the reverse-time imaging technique where the
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time-reversed recorded signals are numerically back-propagated by solving a wave equation in a fictitious environ-
ment. The waves travel back to their origins (original sources or reflectors) and one can then form an image of them.
KM is known to be robust with respect to additive noise, such as measurement noise [1]. This is illustrated for example
in [14]. However, KM fails to image in a randomly heterogeneous (cluttered) stationary medium [16]. Indeed, when
the medium is cluttered (i.e., when it contains unknown small-scale inhomogeneities), which is generally the case in
real-life imaging, travel-time or KM does not work well, because this method in which sources transmit pulses are
dependent on clear arrival times. When the medium is cluttered the recorded temporal traces are randomly shifted by
the fluctuations of the speed of propagation and they contain long and noisy coda resulting from multiple scattering.
The images obtained are then very noisy. Worse they are dependent on the medium, and for two different realizations
of the random medium with the same statistical properties we can get two significantly different images.

Contrarily to measurement noise which induces additive independent perturbations in the recorded signals, the
noise generated by cluttered medium in the recorded signals has a complex and correlated structure, which itself
generates complex and strong noise in the images formed by KM. For these reasons it is necessary to use imaging
methods that are robust with respect to the fluctuations of the medium when it is randomly heterogeneous. In several
studies Borcea and her co-workers [9, 10, 11, 12, 13, 15, 16, 14, 17] have introduced a new imaging modality called
Coherent INTerferometry (CINT) whose principle is to back-propagate the cross correlations of the recorded signals,
and not the signals themselves. In [16] the authors analyze the KM and CINT methods for passive and active arrays of
sensors, and quantify their resolution limits and their signal-to-noise ratio (SNR). The resolution and statistical fluc-
tuations of the images are analyzed when the ambient environment is random and wave propagation can be modeled
mainly by the distortion of the wavefront. KM loses statistical stability at an exponential rate with the propagation
distance and leads to unreliable images that change unpredictably with the detailed features of the clutter. Borcea et
al. [9, 10] as well as Chan et al. [21] show that CINT imaging statistically stabilizes the images. That is, images have
small variance with respect to the random fluctuations of the propagation medium. However, the statistical stability
of the CINT method comes at the detriment of some blurring of the images. The trade-off between the resolution
and the stability of the CINT imaging function can be explicitly quantified [16]. The results obtained so far are very
encouraging and this is the reason that motivates us to extend this kind of imaging techniques to heterogeneous flows,
i.e. random moving media.

More recently, correlation-based imaging have been used to observe fast moving objects [17, 24]. In these papers,
the authors introduce a Doppler compensation parameter which is used in the imaging function to provide the neces-
sary correction of the movement of the object to be observed. In our paper we will consider the same compensation
mechanism to extend the CINT imaging algorithm to moving heterogeneous media such as jet flows. One of the most
important results is that a sparse configuration of a small number of uniformly distributed receivers over an area big
enough is sufficient to create an image with the same resolution as the one obtained with a dense set of receivers. It is
therefore possible, with a Doppler correction, to obtain an image of a fast moving object. This opens very interesting
perspectives for the objective of imaging through a random flow, which we do in our paper.

The rest of the paper is organized as follows. In Sect. 2 a model problem of acoustic wave propagation in a
flow with constant velocity is addressed, starting from the linearized Euler equations with a fixed point source being
either a monopole or a dipole. Imaging functions for moving cluttered media extending the existing KM and CINT
functions for quiescent cluttered media are then proposed. They introduce a phase compensation factor accounting
for the Doppler shift induced by the background flow velocity. Here we also connect KM with delay-and-sum (DAS)
beamforming (see [15] and references therein) which is often used in aeroacoustics [26]. The KM and CINT functions
for quiescent media are reviewed in Sect. 3 for configurations already considered in the literature in order to validate
our numerical implementation by comparisons with the existing results in [10, 11]. Then the proposed imaging
functions are tested in Sect. 4 for moving cluttered media with a random speed of sound and either a constant or a
randomly perturbed velocity of the background flow. They are applied to a numerically generated synthetic jet in
Sect. 5, where a compensation scheme for refraction of the acoustic waves at the jet sheared layers is introduced in
addition to the Doppler shift compensation. A summary of this research and conclusions are finally drawn in Sect. 6.
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2. Imaging functions in moving random media

2.1. Model problem

We start by considering the problem of computing the pressure field emitted by a point source in an ambient flow
with stationary velocity because it has relevance to the imaging algorithms considered in the subsequent developments.
The Euler equations for mass, momentum, and energy conservation in the compressible flow of an ideal fluid without
friction, heat conduction or heat production read:

d%
dt

= −%∇ · v + m ,

dv
dt

= −
1
%
∇p + f ,

ds
dt

= 0 ,

(1)

where d
dt = ∂t + v · ∇ is the convective derivative with ∇ = ( ∂

∂x ,
∂
∂y ,

∂
∂z ), v(r, t) is the fluid velocity, %(r, t) is the density,

p(r, t) is the (static) fluid pressure, s(r, t) is the specific entropy, m(r, t) is a specific mass source per unit time, and
f(r, t) is a body force per unit mass (neglecting gravity), at the position r = (x, y, z) in R3 and time t in R. The flow is
isentropic (i.e. each fluid particle has constant entropy), and by the equation of state p = p(%, s) we have:

dp
dt

= c2 d%
dt
, c2(%, s) =

∂p
∂%

∣∣∣∣∣
s
, (2)

where c is the adiabatic speed of sound. For a perfect gas of heat capacity ratio γ, the equation of state p%−γ = C along
particle paths, where the constant C may differ for each particle in isentropic flows, yields c2 = γp/%. The foregoing
Euler equations are linearized about an unperturbed, stationary flow for which the pressure p0(r), velocity v0(r), and
density %0(r) do not depend on time. They satisfy:

(v0 · ∇)%0 = −%0∇ · v0 ,

(v0 · ∇)v0 = −
1
%0
∇p0 ,

(v0 · ∇)p0 = c2
0(v0 · ∇)%0 ,

(3)

where c0(r) stands for the sound velocity not influenced by the acoustic waves propagating in the actual flow. Lin-
earization consists in considering that the latter is a perturbation (p′, v′, %′) of the stationary flow generated by the
specific mass m injected to the fluid:

p(r, t) = p0(r) + p′(r, t) ,
v(r, t) = v0(r) + v′(r, t) ,
%(r, t) = %0(r) + %′(r, t) .

The primed quantities p′, v′, and %′ are the acoustic pressure, velocity, and density, respectively, of which non-
linear contributions to the Euler equations (1) are assumed negligible. In other words, these quantities are first-order
increments of the zero-th order stationary quantities. They satisfy the following linearized Euler equations (LEE):

d%′

dt
+ ∇ · (%0v′) + %′∇ · v0 = m ,

dv′

dt
+ (v′ · ∇)v0 +

1
%0
∇p′ −

%′

%2
0

∇p0 = f ,
(4)

together with the barotropic assumption p′ = c2
0%
′. Here and from now on the convective derivative is defined as

d
dt = ∂t + v0 · ∇, i.e. the convective derivative within the stationary, ambient flow.
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If the ambient quantities are non vanishing constant (p0, v0, %0), that is, the ambient flow is uniform which is
consistent with Eq. (3), we obtain by taking the convective derivative d

dt of the first equation in (4) and the divergence
∇· of the second equation in (4):

1
c2

0

d2 p
dt2 − ∆ p =

dm
dt
−%0∇ · f . (5)

Here we have dropped the primes (·)′ for convenience. The convected wave equation:

d
dt

 1
c2

0

dp
dt

 − %0∇ ·

(
1
%0
∇p

)
=

dm
dt
−%0∇ · f

first proposed by Blokhintzev [8] for steady irrotational ambient flows, reduces to Eq. (5) for a uniform flow. A
solution can be constructed explicitly by introducing a local frame moving at the constant velocity v0, in which case
Eq. (5) reads as a classical acoustic wave equation with a vanishing ambient flow velocity. The analysis is outlined in
e.g. [33, Chapter 5]. First, considering a monopole source m(r, t) = A(t)δ(r − rs) of amplitude A and centered at the
position rs and no dipole (momentum) source, the solution of Eq. (5) reads:

p(r, t) =
A′

(
t − γD(r, rs,M) |r−rs |

c0

)
4π |r − rs|

√
1 − M2 +

(
M · r−rs

|r−rs |

)2
, (6)

where M := v0
c0

is the Mach number (a vector in the present case) of the ambient flow, M = |M|, and:

γD(r, r′,M) =
1

1 − M2


√

1 − M2 +

(
M ·

r − r′

|r − r′|

)2

−M ·
r − r′

|r − r′|

 (7)

is a Doppler compensation factor which compensates for the shift of the arrival time induced by the flow when the
ambient medium moves at the constant velocity v0. We note that this factor depends on the direction of r − r′ but not
its length. We will resort to this expression to form imaging functions in moving media in the next sections.

Second, considering a dipole source d(r, t) = A(t) [δ(r − r+) − δ(r − r−)] such that −%0∇ · f ≡ d with r− − r+ = εe,
ε the small distance between r− and r+, e the direction of the dipole, and no monopole (mass) source, the solution of
Eq. (5) for ε � |r − r+| reads:

p(r, t) ' εe · ∇

 A
(
t − γD(r, r+,M) |r−r+ |

c0

)
4π |r − r+|

√
1 − M2 +

(
M · r−r+

|r−r+ |

)2

 . (8)

Thus the same compensation factor γD for the phase arises in these expressions for either a monopole source or a
dipole source.

2.2. Reverse-time and Kirchhoff migration
We first consider the classical reverse-time (RT) [39] and Kirchhoff migration (KM) [7] algorithms to detect and

localize sources or reflectors in a homogeneous or weakly heterogeneous medium. We adapt them to the situation of
interest for us, namely the localization of such sources or reflectors in a random flow. In RT migration [39], N fixed
sensors located at rr, 1 ≤ r ≤ N, are used to localize a source (passive imaging case) or a reflector (active imaging
case) at some unknown location r? in the actual (unknown) random flow by back-propagating in a fictitious flow of
known characteristics the pressure fields recorded by the sensors.

2.2.1. Passive imaging
Let us first consider the case of a quiescent homogeneous medium that is a flow with v0 = 0 and a constant speed

of sound c0. The Fourier transform and its inverse are defined by:

p̂(r, ω) =

∫
R

eiωt p(r, t) dt , p(r, t) =
1

2π

∫
R

e−iωt p̂(r, ω) dω . (9)
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The time-harmonic Green’s function Ĝ0(r, r′, ω) solves the wave equation (5) for v0 = 0 in the Fourier domain–the
Helmholtz equation with point source at r′:

ω2

c2
0

Ĝ0 + ∆ Ĝ0 = −δ(r − r′) , (10)

together with the Sommerfeld radiation condition at infinity |r| → +∞:(
r̂ · ∇ − i

ω

c0

)
Ĝ0(r, r′, ω) = O

(
1
|r|2

)
, (11)

where r̂ := r
|r| ; that is, Ĝ0(r, r′, ω) ∝ ei ωc0

|r| at infinity. It satisfies the reciprocity property Ĝ0(r, r′, ω) = Ĝ0(r′, r, ω)
everywhere, and since the ambient medium has a constant speed of sound:

Ĝ0(r, r′, ω) = Ĝ0(|r − r′|, ω) =
ei ωc0

|r−r′ |

4π|r − r′|
. (12)

Passive imaging is aimed at localizing a source in a quiescent heterogeneous medium of which the actual speed of
sound c0(r) is instead variable and imperfectly known. One starts by recording at the N sensors the pressure fields
emitted by the source F(r, t) = f (t)δ(r − r?). This yields the dataset {p(rr, t); 1 ≤ r ≤ N} (or its Fourier transforms
{ p̂(rr, ω); 1 ≤ r ≤ N}) constituted by the pressure fields recorded by the sensors located at rr, 1 ≤ r ≤ N. They are
subsequently time reversed, which amounts of taking the conjugates of their Fourier transforms, and back propagated
in a fictitious domain of which Green’s function is known, namely Ĝ0(d, ω). The RT imaging function IRT(rS ) is
ultimately formed by stacking all the data:

IRT(rS ) =
1

2π

N∑
r=1

∫
R
Ĝ0(|rS − rr |, ω) p̂(rr, ω) dω . (13)

Because the amplitude factor plays no role when one tries to localize sources (or reflectors), the KM function [7] for
passive imaging, considering Ĝ0(d, ω) ∝ ei ωd

c0 and replacing the Green’s function by this phase term in Eq. (13) above,
reads:

IKM(rS ) =
1

2π

N∑
r=1

∫
R

ei ωc0
|rS−rr | p̂(rr, ω) dω

=

N∑
r=1

p
(
rr,
|rS − rr |

c0

)
,

(14)

so that the source location can be estimated by:

r̂so = arg max
rS ∈S
IKM(rS ) in some search region S .

The range resolution of KM is c0/B, where B is the source frequency bandwidth. It corresponds to the minimum
distance between two sources (or reflectors in the active imaging setting) the image can identify in the range direction.
The cross-range resolution is rc = λ0L/a (Rayleigh resolution formula for the minimum distance between two sources
or reflectors in the cross-range direction), where a is the aperture of the sensor array, λ0 is the source central wave-
length, and L is the distance from the source to the array (range); see Fig. 1 for the typical configuration of imaging
sources or reflectors in a two-dimensional quiescent heterogeneous medium with random speed of sound considered
in [10]. KM is known to work poorly when the medium is scattering, because the echoes of the sources or reflectors
recorded at the array have random time shifts and a lot of delay spread–the coda–induced by the scatterers. However
it is very robust with respect to additive measurement noise.

A technique very similar to KM is delay-and-sum (DAS) beamforming, which is commonly used in aeroacoustics.
DAS beamforming forms an image by summing the signals received at the array and weighting them by weights
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(a) Numerical setup (b) Sample of the speed of sound

Figure 1: Typical imaging configuration in a quiescent heterogeneous medium with random speed of sound, after [10]. Dimensions are given in
units of the central wavelength λ0 of the sources. (a) The locations of the sources (passive imaging) or reflectors (active imaging) to be imaged
are shown by dots • and the locations of the transducers are shown by crosses ×. In active imaging the central transducer is used as a source. (b)
Typical realization of the random speed of sound c0(r) with average c = 3000 m/s.

depending on the search point rS ∈ S , and delaying the arrivals times from the search region S for all receivers. That
is, let wr be a such a real-valued weighting function centered about the receiver rr, the DAS beamforming function
for passive imaging reads:

IDAS(rS ) =

N∑
r=1

wr(rS )p
(
rr,
|rS − rr |

c0

)
. (15)

For example, the weight function wr(rS ) = 4π|rS − rr | compensates for the amplitude decay of the signals which
has been ignored in the KM imaging function (14). Adaptive weights which depend on the signal statistics can also
be considered [26]. The connections between KM, DAS beamforming and CINT, and their resolution properties are
discussed in details in [15]. In particular, KM and DAS beamforming have similar poor performances in random
media.

Now in view of the results (6) and (8), it is proposed to modify the foregoing KM imaging function (14) to include
the Doppler factor γD(rr, rS ,M) of Eq. (7) which compensates for the shift of the arrival time between the source and
the receiver induced by the flow. The compensated KM imaging function (14) then reads:

IKM(rS ) =

N∑
r=1

p
(
rr, γD(rr, rS ,M)

|rS − rr |

c0

)
, (16)

where one observes that γD(rr, rS , 0) = 1 and the imaging function (14) for a quiescent medium is recovered. Since the
amplitudes are disregarded, this modified imaging function is aimed at localizing either monopole or dipole sources.
Note also that the same Doppler compensation factor has been considered recently in [17, 24] for imaging small fast
moving objects revolving around the Earth at low orbits.

2.2.2. Active imaging
In active imaging, the network of sensors is used for detecting reflectors. One or several sensors rs, 1 ≤ s ≤ Ns,

transmit signals which are recorded after a round trip to the reflectors. In this context the dataset {p(rr, t; rs); 1 ≤ r ≤
Nr, 1 ≤ s ≤ Ns} (or its Fourier transforms {p̂(rr, ω; rs); 1 ≤ r ≤ Nr, 1 ≤ s ≤ Ns}) is constituted by the pressure fields
recorded by the sensors located at rr, 1 ≤ r ≤ Nr, when the sensors located at rs, 1 ≤ s ≤ Ns, act as active sources one
after the other one. The KM function in active imaging is written:

IKM(rR) =

Nr∑
r=1

Ns∑
s=1

p
(
rr,
|rs − rR|

c0
+
|rR − rr |

c0
; rs

)
, (17)
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and:
r̂ref = arg max

rR∈S
IKM(rR) in some search region S (18)

is the estimated position of the reflector.
The DAS beamforming function for active imaging reads:

IDAS(rR) =

Nr∑
r=1

Ns∑
s=1

wrs(rR)p
(
rr,
|rs − rR|

c0
+
|rR − rr |

c0
; rs

)
. (19)

For example, the weight function wrs(rR) = 4π|rs−rR|×4π|rR−rr | compensates for the amplitude decay of the signals
which has been ignored in the KM imaging function (17). Again, KM, DAS beamforming and CINT are compared in
[15].

As for passive imaging, the foregoing KM imaging function (17) is modified to include Doppler compensation
factors γD(rs, rR,M) and γD(rR, rr,M) when the ambient medium moves at an average velocity v0 , 0. In active
imaging the KM imaging function (17) now reads:

IKM(rR) =

Nr∑
r=1

Ns∑
s=1

p
(
rr, γD(rs, rR,M)

|rs − rR|

c0
+ γD(rR, rr,M)

|rR − rr |

c0
; rs

)
. (20)

The first γD compensates for the time shift induced by the flow, for the travel from the source to the reflector. The
second γD compensates for this shift for the travel from the reflector to the receiver.

2.3. Coherent interferometric (CINT) imaging

Coherent interferometric imaging (CINT) [9, 10, 11, 12, 13, 15, 16, 14] of sources or reflectors uses finite-aperture
arrays alike to localize in a cluttered medium a source (passive imaging) or a reflector (active imaging). It consists in
back propagating selected empirical correlations of the pressure fields, rather than the pressure fields themselves, in
a fictitious medium in order to alleviate the statistical instability of KM with clutter. Indeed, forming the correlations
enables to partially cancel the incoherent random phase shifts of the signals and thus enhance statistical stability. We
refer to Fig. 1 for a typical configuration in two dimensions, with a linear array A = [− a

2 ,
a
2 ] × {0} of N sensors and a

target (source or reflector) that is at the position (0, L), where L is the distance (range) from the array.

2.3.1. Passive CINT imaging
The empirical cross-correlation of the recorded pressure fields at the sensors rq and rr, 1 ≤ q, r ≤ N, reads in the

Fourier domain:
CF(rq, rr, ω, ω

′) = p̂(rq, ω) p̂(rr, ω′) . (21)

Then these empirical cross-correlations are back-propagated in a fictitious (e.g. homogeneous) medium, of which
Green’s function is again Ĝ0(d, ω) ∝ ei ωd

c0 . Besides, the cross-correlations are computed locally in frequency and
space and not over the whole frequency range and for all pairs of sensors. The CINT function for passive imaging in
a quiescent medium reads [10]:

ICINT(rS ; Ωd, Xd) =

N∑
q, r = 1

|rq − rr | ≤ Xd

∫∫
|ω−ω′ |≤Ωd

CF(rq, rr, ω, ω
′) e−i ωc0

|rq−rS |+i ω
′

c0
|rr−rS | dωdω′ , (22)

such that the source location can be estimated by:

r̂so = arg max
rS ∈S
ICINT(rS ; Ωd, Xd) in some search region S .

The range resolution of CINT is c0/Ωd (the usual range resolution formula with the effective bandwidth Ωd < B where
B is the source bandwidth), and its cross-range resolution is λ0L/Xd (the Rayleigh resolution formula with an effective
array diameter Xd < a) [10, 11]. Ideally the frequency window Ωd is chosen as the decoherence frequency Ωc, i.e.
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the frequency gap beyond which the frequency components of the recorded pressure fields are no longer correlated.
Likewise, the spatial window Xd is ideally chosen as the decoherence length Xc, i.e. the sensor gap beyond which the
recorded pressure fields are no longer correlated. The decoherence parameters Ωc and Xc depend on the statistical
properties of the fluctuations in the random medium, the range L, and the central frequency. Actually these parameters
are not known since the random medium is also unknown, so the CINT parameters Ωd and Xd have to be determined
from the data by the imaging process itself. Alternatively, an optimal set of parameters may be determined by the
adaptive algorithm developed in [11].

We note that the spatial cut-off induced by summing nearby receivers within the spatial window Xd roughly cor-
responds to the choice of some specific weight functions wr in the beamforming function in reception (15), selecting
sub-apertures near the receivers. However the frequency cut-off induced by integrating nearby frequencies within the
frequency window Ωd is absent in (15). As outlined in [15], it can only be implemented in the form of a quadratic
function as in the CINT function (22). It plays an important role in selecting the coherent contributions of the recorded
signals, thus making CINT imaging more effective in cluttered media. Also the window parameters Xd and Ωd are
common for all pairs of receivers, whereas the weight functions in DAS beamforming have to be estimated for each
search point rS . As such, the adaptive CINT imaging procedure outlined in [11] is based on the quality of the image
solely rather than the statistics of the signals [26].

In view of the results (6) and (8), it is proposed to modify the foregoing CINT imaging function (22) for localizing
a source to include the Doppler compensation factor (7). The compensated CINT function for passive imaging in a
moving medium then reads:

ICINT(rS ; Ωd, Xd) =

N∑
q, r = 1

|rq − rr | ≤ Xd

∫∫
|ω−ω′ |≤Ωd

CF(rq, rr, ω, ω
′) e−i ωc0

γD(rq,rS ,M)|rq−rS |+i ω
′

c0
γD(rr ,rS ,M)|rr−rS | dωdω′ . (23)

Remark: The unfiltered, full CINT function (obtained by letting Xd,Ωd → ∞) is:

IBF(rS ) =

N∑
q,r=1

∫∫
R2
CF(rq, rr, ω, ω

′) e−i ωc0
γD(rq,rS ,M)|rq−rS |+i ω

′

c0
γD(rr ,rS ,M)|rr−rS | dωdω′

= (2π)2|IKM(rS )|2 , (24)

that is, cross-correlations of all pairs of sensors and frequencies are migrated and summed up in Eq. (23). Thus the
same image as with KM (16) is formed. This shows in particular that the full migration of all cross-correlations does
not work if the medium is cluttered.

2.3.2. Active CINT imaging
CINT imaging can be used to localize reflectors alike. Among the N transducers of the array A, Ns are used as

sources located at rs, 1 ≤ s ≤ Ns, and Nr are used as receivers (sensors) located at rr, 1 ≤ r ≤ Nr (sources and receivers
may be collocated). The dataset of recorded pressure fields is denoted by {p(rr, t; rs); 1 ≤ r ≤ Nr, 1 ≤ s ≤ Ns}. The
CINT function for active imaging in a quiescent medium reads:

ICINT(rR; Ωd, Xd) =

Nr∑
r, r′ = 1

|rr − rr′ | ≤ Xd

Ns∑
s, s′ = 1

|rs − rs′ | ≤ Xd

∫∫
|ω−ω′ |≤Ωd

p̂(rr, ω; rs)p̂(rr′ , ω′; rs′ ) e−i ωc0
(|rr−rR |+|rR−rs |)+i ω

′

c0
(|rr′−rR |+|rR−rs′ |) dωdω′ , (25)

so that the reflector location can be estimated by:

r̂ref = arg max
rS ∈S
ICINT(rS ; Ωd, Xd) in some search region S .

Along the same lines as in the passive imaging case, we modify the CINT function (25) for active imaging in a
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moving medium as:

ICINT(rS ; Ωd, Xd) =

Nr∑
r, r′ = 1

|rr − rr′ | ≤ Xd

Ns∑
s, s′ = 1

|rs − rs′ | ≤ Xd

∫∫
|ω−ω′ |≤Ωd

p̂(rr, ω; rs) p̂(rr′ , ω′; rs′ )

× e−i ωc0
(γD(rr ,rS ,M)|rr−rS |+γD(rS ,rs,M)|rS−rs |) e+i ω

′

c0
(γD(rr′ ,rS ,M)|rr′−rS |+γD(rS ,rs′ ,M)|rS−rs′ |) dωdω′ . (26)

3. Imaging in a quiescent random medium

In this section the imaging algorithms outlined in Sect. 2 are first applied to the case of a quiescent random
medium. The same two-dimensional configuration as in [10, 11] and shown in Fig. 1 is considered in order to
validate the numerical solver used throughout the simulations for both quiescent and moving media. The array data
{p(rr, t); 1 ≤ r ≤ N} or {p(rr, t; rs); 1 ≤ r ≤ Nr, 1 ≤ s ≤ Ns} of recorded pressure fields is generated numerically using
the computer code SPACE [23, 34] for computational fluid dynamics (CFD) and computational aero-acoustics (CAA).
It solves the Euler equations (1) and LEE (4) written as first-order symmetric systems by the nodal discontinuous
Galerkin (DG) finite-element method [27], using flux splitting techniques and an explicit Runge-Kutta time-integration
scheme. In the typical configuration of Fig. 1 the propagation medium is considered to be infinite in all directions,
thus non-reflective, Padé boundary conditions [31] surround the computational domain for the numerical simulations.
This absorbing layer allows to limit the numerical echo induced by the boundaries of the finite-element mesh. All
computations are performed using the parallel scalar cluster of ONERA. This cluster has a total of 17,360 cores
for a peak performance of 667 Tflop/s. The post-processing of all results is done using Matlab c©. The imaging
functions are normalized and their range is [0, 1]. In addition, in order to compare the results obtained by the KM
and CINT algorithms, the CINT imaging function |ICINT| and the squared KM imaging function |IKM|

2 are formed
because |ICINT| ∝ |IKM|

2 as we have seen in (24). In Sect. 3.1 below the model setup for numerical simulations is
introduced, and in Sect. 3.2 the KM and CINT active imaging functions are tested for localizing small reflectors in
this configuration. Passive imaging functions have also been tested for localizing point sources, yielding satisfactory
results as well which are not presented here.

3.1. Model setup for numerical simulations
The setup for numerical validation is shown in Fig. 1 where dimensions are given in terms of the central wavelength

λ0. The horizontal axis is the range and the vertical axis along which the array is aligned is the cross-range. This array
contains N = 185 transducers at a distance λ0/2 from each other, with an aperture a = 92λ0. The object to be imaged
is at a range L = 90λ0 and zero cross-range, and it is either constituted by three sources (two at the forefront 6λ0
apart from each other and one in the rear at 3λ0 from the others) emitting the same signals t 7→ f (t) simultaneously
in the passive imaging configuration, or three non penetrable disks of radius λ0/2 centered at the same points with
homogeneous Neumann boundary conditions in the active imaging configuration. In this latter case, the central
transducer of the array emits the probing pulse t 7→ f (t) and all other transducers and this one are used as receivers.
The pulse is (the derivative of a Gaussian):

f (t) = −ω2
0t e−

1
2ω

2
0t2
, (27)

where ω0 = 2π f0 is the central (angular) frequency such that λ0 = c/ f0 and c is the average speed of sound. We
choose f0 = 1 kHz as in [10]. For this central frequency, the bandwidth of the signal is [0.6, 1.3] kHz. All array data
in the bandwidth [0, 1.5] kHz have been subsequently post-processed to build the KM and CINT imaging functions.

To simulate the KM and CINT imaging processes in clutter, we consider a quiescent random medium with v0 = 0,
%0 = constant, and a random speed of sound c0(r) = c(1 + σµ(r)), where c = constant is the average value, σ is
the relative standard deviation, and (µ(r), r ∈ R2) is a homogeneous (stationary), zero-mean second-order random
process. A Gaussian covariance model is chosen for that process, namely:

E {µ(r)µ(r′)} = exp

−1
2

(
|r − r′|
`c

)2 , (28)
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corresponding to smooth samples. Here E {·} stands for the mathematical expectation, and `c is the correlation length
of the random fluctuations µ of the speed of sound. These fluctuations are simulated by a random Fourier series of
the stationary process µ(r); see for example [35, 37]. A typical realization of the random speed of sound is shown in
Fig. 1 for a correlation length `c which is one-half the central wavelength λ0 for the sources, and a standard deviation
σ = 3%. The cluttered medium in Fig. 1 and subsequent simulations corresponds to an average speed of sound
c = 3000 m/s and wavelength λ0 = 3 m at the central frequency f0 = 1 kHz. The correlation length is `c = λ0/2 = 1.5
m. This is a delicate and interesting situation to deal with, since this wavelength is a priori required to image objects
of its size and the clutter in which they are embedded has also the same characteristic length.

The same mesh is used for all our DG simulations in this section and the subsequent Sect. 4 where a moving
random medium is considered. It consists in triangular and quadrangular elements with 3 and 4 vertices respectively,
and includes about 1.7 × 105 vertices and 1.8 × 105 elements. Fig. 2 shows a zoom on the mesh around the three
reflectors to be imaged in the active imaging configuration. For the central frequency f0 = 1000 Hz and the average
speed of sound c = 3000 m/s, this corresponds to about 5 to 10 nodes per wavelength in the most refined area. We use
a mixed finite element mesh with refined elements of polynomial interpolation order 2 close to the reflectors (shown in
blue on Fig. 2) and coarser elements of polynomial interpolation order 5 far from the reflectors (shown in red on Fig. 2)
to evade possible numerical instabilities for a moving random medium. In [10], a piecewise polynomial interpolation
of degree 1 on regular four-node quadrilateral elements with 30 nodes per wavelength has been considered, as well
as a mixed finite element method for spatial integration and perfectly matched layers (PML) [5] to surround the
computational domain. They also used a second-order leapfrog scheme [3, 4] for temporal integration, while we use
a second-order Runge-Kutta explicit scheme [23, 34]. Some differences will thus be observed in the resolution of the
results obtained here compared to those obtained in [10]. However, the DG method considered in this research for the
simulations allows to increase the order of the mesh and polynomial interpolation straightforwardly.

Figure 2: Mesh used for the validation of the KM and CINT imaging functions in a quiescent and moving random medium. Zoom around the three
reflectors to be imaged in the active imaging configuration. The blue elements have polynomial interpolation order 2 and the red elements have
polynomial interpolation order 5.

Numerically generated data recorded at the array are shown in Fig. 3 for the active imaging configuration (local-
ization of reflectors). The central sensor of the array is used as a source, and all the sensors of the array are used as
as receivers. In the active imaging configuration wavefronts have travelled twice the distance from the array to the
reflectors before being recorded. We clearly distinguish the echoes from the three reflectors in the homogeneous case
(Fig. 3, left). In addition, the signals are symmetric with respect to the central receiver. The effects of the heterogene-
ity of the speed of sound in the random medium are clearly visible on these time traces (Fig. 3, right). It is much more
difficult to distinguish the wavefronts and the echoes from the three reflectors since the signals are noisy. The causes
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of this noise are the multiple scattering of acoustic waves on the inhomogeneities present in the random medium.
Even if the typical amplitude of the inhomogeneities is weak (σ � 1), the range L is large with respect to λ0 and `c

and there are significant multiple scattering effects. In addition, the noise will be different from one realization of the
medium to another.

(a) Constant speed of sound (b) Random speed of sound

Figure 3: Active imaging in a quiescent medium in the configuration of Fig. 1. (a) Time traces recorded at the receivers for a constant speed of
sound c (each line plots the signal recorded by one receiver). (b) Time traces recorded at the receivers for a random speed of sound with average c
and standard deviation σ = 3%. The horizontal axis is time (in units of L/c) and the vertical axis is the array transducer location (in units of λ0).

3.2. Active imaging
We first consider the localization of three reflectors using the KM imaging function (17) and the CINT imaging

function (25) with Nr = N = 185 and Ns = 1. The search domain is a square of size 20λ0 × 20λ0 centered around
(90λ0, 0). The results obtained for the (square) KM image in a homogeneous medium with constant speed of sound are
shown in Fig. 4 for a pixel size of λ0/2. The theoretical range resolution is 2 f0/B ' 1 in pixel units, and the theoretical
cross-range resolution is 2L/a ' 2. The three reflectors are actually found in the middle of the search region and their
positions are precisely localized by the brightest pixels of the KM imaging function. This result validates both the
efficiency of KM active imaging in homogeneous media, and the ability of our code to correctly simulate acoustic
wave propagation with negligible numerical dispersion.

Figure 4: KM active imaging in a quiescent medium in the configuration of Fig. 1 with a constant speed of sound c. The reflectors to be localized
are shown by white squares. Range and cross-range dimensions are in units of λ0.

The results obtained for the (square) KM images and CINT images in a random medium are shown in Fig. 5 for two
different realizations of the random speed of sound with the same average and standard deviation. The ineffectiveness
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of the KM imaging algorithm is apparent in that we observe noisy images that are different from one realization of
the medium to another, and are thus statistically unstable. Indeed the KM algorithm back-propagates all the noise
contained in the signals recorded by the receivers in a fictitious, homogeneous ambient medium. We do not get sharp
peaks around the positions of the three reflectors as in the case of a homogeneous medium, because the random phases
present in the signals in the Fourier domain are not satisfactorily compensated by back-propagation (i.e. by the phases
of the homogeneous Green’s functions), contrarily to what is done when empirical cross-correlations instead of the
signals themselves are back-propagated. Using the CINT algorithm, we can cancel some parts of the random phases
present in the signals recorded at the receivers and arising from the multiple scattering of the acoustic waves on the
inhomogeneities of the medium. The influence of the random medium can be mitigated as can be seen on Fig. 5 where
CINT images are relatively stable and free of noise. Nevertheless the cross-range and range resolutions are slightly
altered, as expected. The peaks centered at each reflector are rather blurry here, as a result of the smoothing of images
induced by the CINT algorithm. Forming good images is based on a trade-off between the smoothing necessary to
mitigate the noise, and the blurring that it implies. This trade-off is obtained by a relevant choice of the window
parameters Ωd and Xd of the CINT imaging function (25). The choice of an optimal window frequency Ωd contributes
to enhance range resolution, while the choice of an optimal window length Xd contributes to enhance cross-range
resolution. These parameters can be determined by a statistical analysis of the data (using variograms for example),
by the adaptive algorithm of [11] which uses an optimization criterion based on the quality of the image as it is formed,
or by a proper a priori choice. Here they have been selected incrementally by tests and trials in order to obtain images
of good apparent resolutions with the least blurring. In Fig. 5 the “optimal” choice Ωd = 0.1B and Xd = 0.8a has been
used. The theoretical range and cross-range resolutions of CINT in pixel units are then 2 f0/Ωd ' 13 and 2L/Xd ' 2,
respectively. We thus consider that the actual resolution achieved in Fig. 5 validates the CINT algorithm in quiescent
media for its extension to moving media in the next Sect. 4.

4. Imaging in a moving random medium

In this section, we consider again the active imaging configuration depicted in Fig. 1 where the ambient medium is
now moving at the velocity v0 which may be either uniform, or randomly perturbed around its average uniform value.
We first assume that the speed of sound is constant in order to highlight the role of the Doppler compensation factor
(7) for the KM and CINT imaging algorithms in the moving medium. The speed of sound is also randomly perturbed
around its average value, as in the foregoing section. The range of the three reflectors is again L = 90λ0, where λ0 is
the typical wavelength of the probing signals.

4.1. Active imaging in a random medium moving at constant velocity
The ambient medium is moving at a constant velocity v0 = c × (0,M) in the cross-range upward direction with

Mach number M = 0.3 and average speed of sound c. We use the KM imaging function (20) and CINT imaging
function (26) with Nr = N = 185 and Ns = 1 to localize the three fixed reflectors in Fig. 1 (active imaging config-
uration). The central transducer of the array is again used as the single source with the emitted signal equal to (27).
Numerically generated data recorded at the array are shown in Fig. 6 for either a constant or a random speed of sound.
Because the ambient medium is now moving upward in the cross-range direction, we note that the symmetry with
respect to the transducer used as a source is lost compared to Fig. 3. We thus understand that this phenomenon has to
be compensated by a correction factor in our imaging functions. This is the role of the Doppler compensation factor
γD of Eq. (7). In Fig. 6, the echoes from the reflectors are still observable. Thus if the compensation factor is correct,
we should be able to localize each reflector at least for a constant speed of sound.

In order to highlight the role of the Doppler compensation factor, we compare in Fig. 7 the KM imaging function
(17) (without γD, left) with the KM imaging function (20) (with γD, right). The moving medium has a constant
speed of sound and the search domain is a square of size 20λ0 × 20λ0 centered around (90λ0, 0). When γD is ignored,
the positions of the three reflectors cannot be identified at all since the signals are back-propagated in a fictitious
medium at rest. Conversely, when γD is taken into account in the KM imaging function, these positions can be
identified relatively well. Nevertheless, we notice that there is a slight shift for the top reflector. There can be several
explanations: discretization errors (mesh, solver), imperfect reflections of the waves on the reflectors and/or imperfect
absorption on the edges of the computational domain, or most likely errors induced in the model by the compensation
factor γD which is only a first-order corrector. From now on, γD will be considered to form all KM and CINT images.
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(a) KM image in random medium #1 (b) KM image in random medium #2

(c) CINT image in random medium #1 (d) CINT image in random medium #2

Figure 5: Active imaging in a quiescent medium in the configuration of Fig. 1 with a random speed of sound of average c and standard deviation
σ = 3%. Comparison of KM and CINT images for two realizations of the random medium: (a) Squared KM image for the first realization of the
medium; (b) Squared KM image for the second realization of the medium; (c) CINT image for the first realization of the medium; (d) CINT image
for the second realization of the medium. The CINT parameters Ωd = 0.1B and Xd = 0.8a are used for both media. The reflectors to be localized
are shown by white squares �. Range and cross-range dimensions are in units of λ0.

Now the ambient medium moving at the constant velocity M = 0.3 in the cross-range upward direction has a
random speed of sound with average c and standard deviation σ = 3%. The KM imaging function for two realizations
of the medium is shown in Fig. 8. As in Fig. 5, we observe noisy images that differ from one realization to another. We
thus form the CINT imaging function (26) from the signals recorded by the receivers. The values of the parameters
Ωd and Xd are found by successive tests as in the previous experiments of Sect. 3. The results can be seen in Fig. 8
alike. The theoretical range and cross-range resolutions of CINT in pixel units are 2 f0/Ωd ' 16 and 2L/Xd ' 2,
respectively. We show the results obtained with two realizations of the random medium and we observe the same
behaviors as in Sect. 3: the KM algorithm is statistically unstable while the CINT algorithm is statistically stable. For
the KM function of Fig. 8 (top), we have difficulties finding the positions of the three reflectors since the image is
noisy. For the CINT function of Fig. 8 (bottom), the positions of the three reflectors appear much more clearly. The
uncertainties present on the image obtained by the KM algorithm have practically vanished. Nevertheless, we have
some blurring that comes from the smoothing induced by the CINT algorithm, as expected. These images could be
improved by the adaptive algorithm of [11] though.

4.2. Active imaging in a random medium moving at random velocity

The ambient medium is now moving at a random velocity v0 = c × (σµ1(r),M(1 + σµ2(r))) in the cross-range
upward direction with Mach number M = 0.3, average speed of sound c, and standard deviation σ = 3%. The
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(a) Constant speed of sound (b) Random speed of sound

Figure 6: Active imaging in a moving medium in the configuration of Fig. 1 with constant velocity M = 0.3 in the cross-range upward direction.
(a) Time traces recorded at the receivers for a constant speed of sound c. (b) Time traces recorded at the receivers for a random speed of sound with
average c and standard deviation σ = 3%. The horizontal axis is time (in units of L/c) and the vertical axis is the array transducer location (in units
of λ0).

(a) KM image without γD (b) KM image with γD

Figure 7: KM active imaging in a moving medium in the configuration of Fig. 1 with constant velocity M = 0.3 in the cross-range upward direction
and constant speed of sound c. Influence of the Doppler compensation factor γD: (a) KM image (17) without γD; (b) KM image (20) with γD. The
reflectors to be localized are shown by white squares �. Range and cross-range dimensions are in units of λ0.

disturbances (µ1(r), r ∈ R2) and (µ2(r), r ∈ R2) are stationary, mean-zero and independent second-order random
processes. Gaussian covariance functions (28) are chosen for both of them with identical correlation lengths. These
perturbations are simulated by random Fourier series of stationary processes [35, 37]. We note that this random
ambient velocity v0 does not necessarily solve the ambient flow equations (3) and the covariance functions of its
turbulent components do not fulfill the necessary condition stated in [2, 30, 36]. This simplified model is a first
attempt to take into account turbulent phenomena with the KM and CINT imaging algorithms. More realistic models
shall be envisaged in future works.

Numerically generated data recorded at the array are shown in Fig. 9 for either a constant or a random speed of
sound. Again, the symmetry with respect to the transducer used as a source–the central one–is lost. Compared to the
moving medium with constant velocity, we observe here echoes fairly close to the echoes in Fig. 6 but noisier. This
is induced by the velocity of the ambient medium which is now random. Thus, the waves propagating in this medium
will also be noisier. Even in the presence of this noise, we still see the different fronts representing the echoes from
the three reflectors. The role of the Doppler compensation factor γD is also highlighted in Fig. 10. Here the KM
imaging function (17) (without γD, left) and the KM imaging function (20) (with γD, right) for one realization of the
random velocity v0 of the ambient medium are shown. The compensation factor is computed for the average velocity
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(a) KM image in random medium #1 (b) KM image in random medium #2

(c) CINT image in random medium #1 (d) CINT image in random medium #2

Figure 8: Active imaging in a moving medium in the configuration of Fig. 1 with constant velocity M = 0.3 in the cross-range upward direction and
random speed of sound with average c and standard deviation σ = 3%. Comparison of KM and CINT images for two realizations of the random
medium: (a) Squared KM image for the first realization of the medium; (b) Squared KM image for the second realization of the medium; (c) CINT
image for the first realization of the medium; (d) CINT image for the second realization of the medium. The CINT parameters Ωd = B/12 and
Xd = 0.9a are used for both media. The reflectors to be localized are shown by white squares �. Range and cross-range dimensions are in units of
λ0.

c× (0,M) of the ambient medium. The search domain is again a square of size 20λ0 × 20λ0 centered around (90λ0, 0).
The KM algorithm accounting for the Doppler compensation factor works well for this configuration (constant speed
of sound) even if the ambient velocity is random.

Images obtained by the KM algorithm for two realizations of the ambient medium with random velocity and
random speed of sound are shown in Fig. 11. Again, we observe the statistical instability of the KM functions, since
the positions of the reflectors can not be determined unambiguously for any realization of the medium. We thus form
the CINT imaging function (26) from the signals recorded by the receivers. The parameters Ωd and Xd are chosen by
successive tests as in the previous experiments. The results can be seen in Fig. 11 alike. The theoretical range and
cross-range resolutions of CINT in pixel units are 2 f0/Ωd ' 15 and 2L/Xd ' 2, respectively. We show the results
obtained with two realizations of the medium and we can make the same observations as in Sect. 3. Using the KM
function (Fig. 11, top), the positions of the three reflectors can not be distinguished. On the other hand, using the
CINT function (Fig. 11, bottom), the positions of the three reflectors can be distinguished more easily. Two issues are
worth noticing though. First, a loss in resolution due to smoothing is observed. Second, slight offsets of the positions
of the reflectors (of the order of a few pixels) are observed. This phenomenon can be explained by the fact that the
Doppler compensation factor γD is a first-order correction term.
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(a) Constant speed of sound (b) Random speed of sound

Figure 9: Active imaging in a moving medium in the configuration of Fig. 1 with random velocity with average M = 0.3 in the cross-range upward
direction. (a) Time traces recorded at the receivers for a constant speed of sound c. (b) Time traces recorded at the receivers for a random speed
of sound with average c and standard deviation σ = 3%. The horizontal axis is time (in units of L/c) and the vertical axis is the array transducer
location (in units of λ0).

(a) KM image without γD (b) KM image with γD

Figure 10: KM active imaging in a moving medium in the configuration of Fig. 1 with random velocity with average M = 0.3 in the cross-range
upward direction and constant speed of sound c. Influence of the Doppler compensation factor γD: (a) KM image (17) without γD; (b) KM image
(20) with γD. The reflectors to be localized are shown by white squares �. Range and cross-range dimensions are in units of λ0.

5. Passive imaging through a synthetic turbulent jet flow

In this section we finally aim at imaging sources through a synthetic turbulent jet flow using the KM and CINT
algorithms. A sketch of the configuration considered here is shown in Fig. 12. This case study is inspired by the
experiments conducted by Candel et al. in the seventies [18, 19, 20] at the low speed open wind tunnel of the Von
Kármán institute, and more recently by Kröber et al. [32] at the Aeroacoustic Wind Tunnel Braunschweig (AWB)
facility, and by Sijtsma et al. [38] at the DNW (the German-Dutch Wind Tunnels) PLST wind tunnel. The jet
inflow boundary conditions on the left side of Fig. 12 yield two sub-domains with average ambient flow velocities
|v0| = U1 = 100 m/s and |v0| = U2 = 50 m/s, respectively, with turbulent shear layers in between. Our goal is to
image point sources lying in the first medium with an array of sensors placed in the second medium–that is, a passive
imaging configuration in the terminology used in the foregoing sections.

5.1. Synthetic jet model

The data for this generic jet configuration are synthesized numerically in two steps as follows:
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(a) KM image in random medium #1 (b) KM image in random medium #2

(c) CINT image in random medium #1 (d) CINT image in random medium #2

Figure 11: Active imaging in a moving medium in the configuration of Fig. 1 with random velocity with average M = 0.3 in the cross-range upward
direction and random speed of sound with average c and standard deviation σ = 3%. Comparison of KM and CINT images for two realizations
of the random medium: (a) Squared KM image for the first realization of the medium; (b) Squared KM image for the second realization of the
medium; (c) CINT image for the first realization of the medium; (d) CINT image for the second realization of the medium. The CINT parameters
Ωd = 0.09B and Xd = 0.9a are used for both media. The reflectors to be localized are shown by white squares �. Range and cross-range dimensions
are in units of λ0.

• First, we simulate the ambient shear flow by solving the Euler equations (1) using the DG solver SPACE [23,
34]; this is the CFD step. In order to generate turbulence, viscosity phenomenon must be present. By definition,
Euler equations are applicable to adiabatic and inviscid flows. Nevertheless, some viscosity is actually generated
by the numerical scheme. At first, we will use this numerical viscosity to simulate the turbulent shear layers.

• Second, we simulate the propagation of acoustic waves in the ambient flow obtained in the CFD step by solving
the linearized Euler equations (4) using again the DG solver SPACE [23, 34]; this is the CAA step. In a first
approximation, we will consider that the acoustic phenomena are much faster than the fluidic phenomena. As
a result, the ambient flow will be considered as ”frozen” (time independent). The flow obtained at the last time
increment of the CFD step will be used as the carrier (ambient) flow for the CAA step.

Of course the ambient flow obtained by the foregoing computation is poorly resolved and cannot be considered as a
realistic jet flow. We are actually not interested in computing precisely the turbulent structures for this jet configura-
tion. Our aim is rather to test the KM and CINT imaging algorithms in such a heterogeneous medium. The turbulent
layers as resolved by the present numerical scheme are sufficient to exhibit and discuss the main features of these
algorithms. These complex structures will play the role of the ”clutter” of the idealized experiments of Sect. 3 and
Sect. 4.
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Figure 12: Synthetic jet flow configuration: non-reflection Padé boundary conditions; jet inflow boundary condition for the central zone
with U1 = 100 m/s; jet inflow boundary condition outside the central zone with U2 = 50 m/s.

5.2. Imaging setup

A parameterization of the imaging setup for the synthetic jet flow of Fig. 12 is shown in Fig. 13. We seek to
determine the positions of three point sources of which emitted signals go through a turbulent shear layer. All sources
emit the same signal given by Eq. (27). The central frequency is here f0 = 50 kHz. The fluid studied is the air
defined by an average speed of sound c = 340 m/s at the temperature T = 20◦C. This corresponds to a wavelength
λ0 = 6.8 10−3 m. The remote array contains N = 45 sensors at a distance λ0/2 from each other (a dense array).

Figure 13: Synthetic jet flow configuration: imaging setup. a is the aperture of the sensors array, L is the distance between the central sensor and
the mid-point (Xs,Ys) of the two upper sources which are d apart from each other, and the lower source is also at the distance d from the upper
sources.
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5.3. Flow computation

The same mesh is used for both the CFD and CAA steps. It is constructed so that there are 30 elements per
wavelength λ0 (the central wavelength of the source) for a mesh size of 100λ0 × 100λ0. We thus have 3000 × 3000
elements, that is a total of 9 106 elements. The mesh is regular and constituted by four-node quadrilateral elements.
The base flow computed in the CFD step is shown in Fig. 14. As a first approximation, we will consider it as frozen
and use it as the ambient flow for testing the KM and CINT imaging algorithms. We first notice the development of
a turbulent shear layer at the interfaces between the parts of the jet having different inflow velocities. This turbulent
layer arises from the inflow velocity difference: 100 m/s for the first medium located between −10λ0 and 10λ0 along
the range axis y (the first medium), and 50 m/s elsewhere (the second medium).

Figure 14: Base flow obtained by solving the Euler equations (CFD step) using a DG finite element method for spatial discretization and a Runge-
Kutta method for time discretization for the synthetic jet configuration of Fig. 12. The figure plots the norm of the momentum |%v|.

5.4. Refraction compensation mechanism

In addition to the Doppler compensation factor γD of Eq. (7) which accounts for the convection effects, we must
consider the fact that the acoustic waves generated by the source in the first medium will travel through media possibly
with different speeds of sound; see Fig. 15. Therefore we introduce a refraction compensation mechanism in the
imaging functions introduced in Sect. 2. In this context the KM passive imaging function (16) and CINT passive
imaging function (23) take the form:

IKM(rS ) =

N∑
r=1

p
(
rr, γD1 (rS , rO,U1êx)T1 + γD2 (rO, rr,U2êx)T2

)
, (29)
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and:

ICINT(rS ; Ωd, Xd) =

N∑
q, r = 1

|rq − rr | ≤ Xd

∫∫
|ω−ω′ |≤Ωd

CF(rq, rr, ω, ω
′)

× e−iω(γD1 (rS ,rO,U1 êx)T1+γD2 (rO,rq,U2 êx)T2) eiω′(γD1 (rS ,rO′ ,U1 êx)T ′1+γD2 (rO′ ,rr ,U2 êx)T ′2) dωdω′ , (30)

respectively, where êx is the unit vector along the (horizontal) direction of the ambient flow. The Doppler compen-
sation factors γD1 and γD2 are calculated as in (7) with speeds of sound c1 and c2 for the two media. Referring to
Fig. 15 where α is the angle of the incident wave, β the angle of the refracted wave, and O is the point of the interface
between both media where the wave is refracted, then the travel times within the first and second media are T1 = a1/c1
and T2 = a2/c2, respectively, where a1 = l1/ cosα = |rS − rO| and a2 = l2/ cos β = |rO − rq|, respectively (likewise,
T ′1 = a′1/c1 and T2 = a′2/c2 with a′1 = |rS − rO′ | and a′2 = |rO′ − rr |). It is important to note that in this refraction
compensation mechanism only the phase (travel times) is significant for localizing the source, and not the amplitude.
This is the reason why no amplitude reflection/transmission coefficient is required in the imaging functions.

Figure 15: Refracted acoustic wave at the interface between two media with speeds of sound c1 and c2: α is the angle of the incident wave, β is the
angle of the refracted wave. The interface is the mean shear layer between the first and second media in Fig. 12.

5.5. Imaging of the sources
We thus aim at determining the positions of the three sources. The size of the search window is 10λ0 × 10λ0

centered around the mid-point (Xs,Ys) of the upper sources. A pixel being of size 2λ0/5, this corresponds to a window
of 25 × 25 pixels. The parameters defining the imaging setup are gathered in Tab. 1. The results obtained with the
KM and CINT imaging algorithms are shown in Fig. 16. The theoretical range and cross-range resolutions in pixel
units are 5 f0/2B ' 1 and 5L/2a ' 2 for KM, respectively, and 5 f0/2Ωd ' 4 and 5L/2Xd ' 4 for CINT. Again, we
acknowledge that the jet flow used is ideal and does not reflect reality but we obtain the desired mechanisms with the
proposed simulation. The influence of the Doppler compensation factor γD is clearly seen. Without this factor the
positions of the sources are significantly shifted, however using the proposed compensated imaging functions their
positions are recovered with a satisfactory precision. We observe that the refraction compensation mechanism does
not have any significant influence on the result. This was predictable since the speeds of sound of the two media
are identical and equal to c. Furthermore the distance between the sources and the receivers is small, which leads to
weak refraction of the waves. However in cases where strong refraction is likely to happen it is expected that this
mechanism will become of prime importance.

6. Summary and conclusions

In this paper we consider array imaging techniques for moving cluttered media extending the methods that have al-
ready been developed for quiescent cluttered media in [10, 11]. Our aim is to apply them to classical experiments in jet
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f0 Xs Ys d L a
50 kHz 12λ0 0 3λ0 20λ0 22λ0

Table 1: Imaging parameters for localization of three sources through a synthetic turbulent jet.

(a) No compensation (b) γD compensation (c) Full compensation

(d) No compensation (e) γD compensation (f) Full compensation

Figure 16: Passive imaging of three sources through a synthetic turbulent jet flow. Influence of the Doppler compensation factor γD and refraction
compensation mechanism on KM (top) and CINT (bottom) imaging functions: (a) KM image without any compensation; (b) KM image with
Doppler compensation factor γD; (c) KM image with Doppler compensation factor γD and refraction compensation mechanism. (d) CINT image
without any compensation; (e) CINT image with Doppler compensation factor γD; (f) CINT image with Doppler compensation factor γD and
refraction compensation mechanism. Ωd = 0.3B and Xd = 0.5a for all images. The source locations are shown by dots •. Range and cross-range
dimensions are in units of λ0.

flow aero-acoustics in order to localize sources through a turbulent jet, as applicable to aircraft noise characterization
for example.

After introducing a model problem and recalling the principles of two imaging algorithms for quiescent media,
namely Kirchhoff migration (KM) and Coherent Interferometry (CINT), we propose in Sect. 2 a suitable form of
these functions for moving media by introducing a Doppler compensation factor for the travel times of the array
data. Accounting for this compensation it is possible to perform imaging through a heterogeneous (random) flow by
simulating the back-propagation of the recorded signals in a fictitious moving ambient medium. This has the effect
to partially cancel out the random time (or phase in the Fourier domain) shifts that the signals have undergone when
passing through the random flow.

In Sect. 3 array imaging in quiescent homogeneous and random media is first introduced in order to validate the
numerical tools used to generate the array data by comparisons with the existing results in [10]. Active imaging
configurations are studied in order to localize reflectors by the KM and CINT imaging functions. The strength of
CINT images lies in the fact that they are statistically stable, which is not the case of KM images. The former are
however blurred compared to the latter as a result of the smoothing that must be applied in order to obtain clear images.
The trade-off between stabilization and blurring for CINT is driven by the window parameters Xd and Ωd which select
the cross correlations used in the imaging function. Their optimal values depend on the random medium and are
therefore unknown a priori. They are found here incrementally by successive tests, though an adaptive method to
determine them optimally is developed in [11]. We also note that CINT works well if significant coherence remains in
the data, so that the clutter needs not be too strong. In other words, the range L must be comparable to or smaller than
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the transport mean free path that characterizes the onset of wave diffusion, a regime where interferometric imaging
cannot work. We have observed in our numerical experiments that perturbations σ of up to about 7 to 10% could be
handled by the CINT algorithm. The latter is however much more demanding computationally than the KM algorithm.

In Sect. 4 the KM and CINT imaging algorithms are implemented and tested in the active imaging configuration
for a heterogeneous medium with random speed of sound and moving with either a uniform or a randomly perturbed
velocity. The relevance of the Doppler compensation factor is highlighted. Such correction notwithstanding, the KM
imaging function is put at fault in both situations (uniform and random velocity). The three reflectors considered in
these numerical experiments are however correctly localized by the CINT imaging function for a suitable choice of
the window parameters Xd and Ωd.

In Sect. 5 numerical tests of the KM and CINT imaging algorithms are performed to localize sources through
a synthetic turbulent jet flow computed by CFD. Doppler compensation and refraction compensation at the interface
between the jet layers, are implemented. In these experiments both the KM and CINT imaging functions yield accurate
images of the sources. Also the refraction compensation mechanism has only a marginal influence compared to the
Doppler compensation factor, which remains essential for the proper reconstruction of the images. These observations
are explained by the jet configuration considered here. The different layers have the same average speed of sound,
and the clutter induced by the sheared layers is mild. In other configurations with fully developed turbulent layers and
heterogeneous speeds of sound refraction effects may be of prime importance, and KM imaging may be less effective
than CINT imaging. Such jet configurations and other applications in moving random media should be considered in
future works.
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[30] Th. von Kármán, L. Howarth, On the statistical theory of isotropic turbulence, Proc. R. Soc. Lond. A 164 (1938) 192-215.

https://doi.org/10.1098/rspa.1938.0013. 14
[31] R. Kechroud, X. Antoine, A. Soulaimani, Numerical accuracy of a Padé-type non-reflecting boundary condition for the finite element solution
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