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ABSTRACT
Manual sleep stages scoring is time-consuming, complex and requires specific medical knowledge.
Automatic sleep stages classification, usually based on supervised methods of machine learning, is the
object of researchers interest. However, it remains challenging because of the high variability among
patients which is not considered with such algorithms. This paper presents a method to extract patient-
dependent qualitative features from electrophysiological signals, preceding a supervised machine
learning classifier. Instead of using fixed thresholds, the developed method called "Self-Adaptative
Thresholding Using Descriptors" (SATUD), proposes an unsupervised self-adjusting thresholding.
Thresholds are automatically adjusted to maximize both the similarity within a same sleep stage and
the dissimilarity between different ones. This method is evaluated using manual sleep stages scor-
ing from 60 patients with various pathologies to ensure high variability. The SATUD shows a better
adaptation to the patient specificities, compared with two other thresholding methods implemented
in this study. Indeed, the number of 30-seconds recording segments respecting all their sleep stage
properties increased by more than 80% with the use of the SATUD, compared to other thresholding
techniques. It was also proved robust to noise and sweat artifacts. The SATUD thereby provides
patient-dependent qualitative features which can be used for automatic sleep stages scoring using a
machine learning method. This last point was presented in the companion paper.

1. Introduction
Sleep-related disorders nearly affect the third of the pop-

ulation and are increasingly recognized as real public health
problems [1]. The need of sleep diagnosis has then increased
during the last few years [2, 3].
Gold-standard procedure for sleep diagnosis consists of elec-
trophysiological and respiratory signals recording with the
use of a polysomnograph. With all those signals, medical
staffmanually scores both sleep events and sleep stages. Sleep
events, as apneas and hypopneas, are detected through res-
piratory signals. On the other hand, sleep stages are scored
based on the electrophysiological signals. Among them, elec-
troencephalograms (EEG), electrooculograms (EOG) and elec-
tromyograms (EMG) are used for the measurement of cere-
bral, ocular andmuscular activities, respectively. Sleep scor-
ing consists on the classification of wakefulness, stage N1
and stage N2 (both light sleep), stage N3 (deep sleep) and
REM sleep (Rapid Eye Movement, also called R stage or
paradoxical sleep: stage with active brain but reduced mus-
cle tone) in 30-second sections, also called epochs. Besides
being a time-consuming task, sleep scoring requires specific
medical knowledge. A manual of recommendations pub-
lished by theAmericanAcademy of SleepMedicine (AASM)
in 2007 [4] describes the temporal and spectral contents of
each sleep stage, as well as sleep patterns that can be rec-
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ognized by the scorer and the possible transitions from one
sleep stage to another.

There was a growing number of automatic sleep scor-
ing algorithms developed those last few years, spread out
into three categories: deep learning [5, 6], machine learn-
ing [7–13] and hybrid approaches [14–16]. Despite the in-
creasing number of models based on artificial intelligence
(AI), only a few are routinely employed by sleep specialists.
Several reasons for that have been identified and detailed in
the companion paper [REF] and in [17]. One of them is the
lack of transparency of the developed approaches. Indeed,
deep learning approaches, which often reach the best scores,
are opaque and their lack of transparency raises skepticism
among physicians. With opaque approaches, medical prac-
titioners must accept to loose their control upon the task that
is realized by the algorithm. It could prevent them to prop-
erly react when dealing with an unusual pathology (that was
not necessarily represented when training the model). For
this reason, some researchers attempt to improve the inter-
pretability of their models [18], and provide some concrete
elements for the practitioner to relate to. Hybrid approaches
[14–16] were then designed to overcome several identified
limitations, including the lack of transparency of the imple-
mented method.

The present article is the second part of a two-part pa-
per. In the companion paper [REF], a novel hybrid approach
replicating the steps of a manual scoring was developed and
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presented. This hybrid system is composed of several func-
tions, including one dedicated to features extraction, neces-
sary for classification. Called SATUD, this features extractor
will be fully detailed in the following section, since it is the
core of the present paper. Extracted features describe each
epoch. They are qualitative and represent concrete elements
mentioned in the AASM guidelines. However, the extrac-
tion of such features can be problematic for classification
if not correctly carried out. Indeed, there is a strong vari-
ability within subjects. This variability is one of the major
difficulties encountered by sleep specialists while manually
scoring sleep. To score sleep stages appropriately, medical
practitioners generally need to get familiar with the record-
ing specificities. To do so, they start with a quick visualiza-
tion of the entire recording, before doing the scoring. How-
ever, amongst the many automatic scoring algorithms de-
veloped the last few years [5–16], only a few were adapted
to the variability between subjects [14–16]. Furthermore,
adaptation to each recording specificities implies having a
sufficient number of recordings from patients with various
pathologies, which is rarely the case.

This study presents the Self-Adaptative ThresholdingUs-
ingDescriptors (SATUD)method. Developed for the extrac-
tion of subject-dependent features, the SATUD reduces the
impact of subjects variability. Features values are adjusted to
each patient, as sleep specialists naturally do when scoring
sleep. The SATUD principle is explained in the following
section, and its ability to correctly adjust thresholds is then
evaluated and compared with other thresholding methods.

2. Material and method
In this section, the data used for the implementation of

the SATUD is first presented (2.1). The chosen approach is
then detailed in Section 2.2.
2.1. Data

Patients with various sleep pathologies underwent one-
night polysomnography (PSG) in Angers sleep laboratory
(UniversityHospital, INSERMUMR1063, Angers, FRANCE).
PSG is a sleep diagnostic device acquiring electrophysiolog-
ical signals, respiratory signals, body movements and posi-
tion. Recordings were part of the "Institut de Recherche en
Santé Respiratoire des Pays de la Loire" [IRSR] sleep co-
hort. Approval was obtained from the University of Angers
ethics committee and from the "Comité Consultative sur le
Traitement de l’Information en matière de Recherche dans
le domaine de la Santé" [CCTIRS] (07.207bis). All patients
included in the IRSR sleep cohort have given their written in-
formed consent. Recordings were anonymous. Sleep stages
and events were recorded and scored following the AASM
recommendations [4] using CID102L8D polysomnographs.
Besides those standard polysomnographic signals, tracheal
soundswere recorded using a PneaVoX® device for enhanced
ventilatory events recognition [19]. A total of 60 anonymous
patients recordingswas scored by sleep specialists (three sleep
specialists were involved in the study, but each recordingwas

scored by a single scorer). In this study, the automatic algo-
rithm only employed EEG, EOG and EMG signals used by
physicians to score sleep stages. The sequence of wake, N1,
N2, N3 and REM sleep in epochs of 30 seconds is called
hypnogram and constitutes our reference.

2.2. Method
The hypothesis made in this paper is that concrete fea-

tures can help overcome themodel lack of transparency. Qual-
itative (ordinal) features allow close translation of medical
knowledge (AASM recommendations). Their estimation re-
quires the discretization of quantitative features. For exam-
ple, the quantitative feature amplitudeEEG1 is discretized
into qualitative features as amplitudeEEGHigh and ampli-
tudeEEGLow, employing a certain number of thresholds need-
ing to be estimated. For this example, the problem is to know
the threshold for which we can consider having a low or high
EEG amplitude. The SATUD algorithm aims to adjust those
thresholds automatically, for each recording. The integra-
tion of the SATUD in the sleep staging system implemented
in this study is schematized in Figure 1. The architecture is
composed of several main functions: F1, F2, F3 and F3.A.
A detailed example can be found in Appendix A.
2.2.1. SYSTEM

The proposed system aims to provide a set of patient-
specific qualitative features. As described in Figure 1, it was
composed of three main functions (F1, F2, F3). For appli-
cations concerning sleep staging, the system inputs were:

• a priori knowledge giving information about sleep
scoring through AASM manual. For example, this
manual indicates that N3 sleep stage can be recog-
nized using low-frequency (0.5-2Hz) high-amplitude
(> 75�V ) EEG frontal waves. A high proportion of
those waves called ‘Slow wave activity’, indicates N3;

• electrophysiological signals obtained from the recorded
polysomnographies, andmore precisely three electroen-
cephalograms (EEG), two electrooculograms (EOG)
and the chin electromyogram (EMG).

2.2.2. F1 - Sleep stages description
F1 aims to build one list of properties for each sleep

stage. The a priori knowledge from AASM manual (as de-
tailed in SYSTEM) was the input of the first function F1. In
order to build the list, we carefully studied the AASM man-
ual for all sleep stages, and translated subsequently into lists
of properties which represent time and frequency informa-
tion used to differentiate sleep stages. The upper part of the
Figure 2 shows an example of two properties that were used
to describe sleep stage N3. The lists of properties associated
with each sleep stage are essential for the SATUD proper
functioning, as they replace labelled data.

1Note the signals were recorded with a bit-depth of at least 8 bits.
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Figure 1: Functional architecture composed of three main functions (F1, F2 and F3). Medical knowledge from the AASM manual
and electrophysiological signals are used as inputs. The output is a set of qualitative features with less vulnerability to patients
specificities.
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Figure 2: Simplified example illustrating the links between
sleep stage N3 properties (defined in F1), quantitative features
(defined in F2) and qualitative features (defined in F3).

2.2.3. F2 - Features extraction
F2 aims to extract the quantitative features correspond-

ing to the properties identified in function F1. Using the
electrophysiological channels split into epochs, 13 quanti-
tative features were extracted. Those quantitative features
are listed in the 1st column of Table 1. Those quantitative
features can reflect temporal or spectral content, but also a
combination of both temporal and spectral content. They
were identified in the AASM guidelines as being required
for sleep scoring. In the middle part of Figure 2 are pre-
sented two quantitative features identified thanks to the pre-
vious properties.

2.2.4. F3 - SATUD
The SATUD aims to deduce patient-specific information

from quantitative features using specific knowledge. It de-
creases subjects variability with the estimation of patient-
specific thresholds. Thresholds were applied on the 13 quan-
titative features obtained in F2 to generate 41 qualitative fea-
tures. The qualitative features and the associated number of
thresholds were chosen in agreement with the properties de-
scribed in F1. To do so, for each quantitative feature from
F2, and depending on the properties fromF1 (which translate
the AASM guidelines), the appropriate qualitative features
were extracted2. Those qualitative features are listed in the
3rd column of Table 1.
Different ways of defining initial thresholds were tested. In
this application, initial thresholds were chosen using a sta-
tistical approach (percentiles). Thresholds values were then
adjusted in order to minimize the cost function described in
F3.A. To do so, several meta-heuristics were tested: global
search algorithms such as simulated annealing [20] and ge-
netic algorithms [21, 22] and also local algorithms such as
gradient descent methods [23, 24]. For our application, the
use of local search algorithms alone was ineffective due to
the number of thresholds to adjust. We thus chose to use
a global search algorithm to initialize the search zone, but
still combined it with a final local search algorithm for bet-
ter precision. As indicated in the pseudo-code reported in
Appendix B, the method chosen for this study was the com-
bination of simulated annealing followed by a gradient de-
scent.
As there is a high variability between subjects, optimal thresh-
olds values could be very different from one patient to an-
other. Thresholds adaptation to each patient is explained in
the following section.

2Only qualitative features which correspond to sleep stages properties
described in the AASM guidelines were computed, even if the number of
thresholds allowed the estimation of more features. For example, 2 thresh-
olds (Low→Mid andMid→High) can generate 6 qualitative features: low,
low or mid, mid, mid or high, high and low or mid or high. However, the
study of the AASM guidelines rarely indicates there is a need for all those
features. Only few of them can be sufficient to translate the guidelines.
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Table 1
List of the 41 qualitative features extracted for sleep scor-
ing, depending on the 13 quantitative features extracted in F2
(ranging from EEG amplitude to Substracted EOG instability)
and the number of associated thresholds.

Quantitative features Tha Qualitative features used Nb

EEG amplitude 2 Low | Low or Mid
| Mid or High | High 4

EEG instability 1 No | Yes 2

Slow wave activity quantity 2 Low | Low or Mid | High 3

Alpha waves quantity 2 Low | Low or Mid | Mid
| Mid or High | High 5

Beta waves quantity 2 Low | Mid | Mid or High 3

Delta waves quantity 2 Low | Mid or High 2

Theta waves quantity 2 Low | Low or Mid | Mid
or High 3

Chin level 2 Low | Low or Mid | Mid
or High | High 4

Chin instability 2 Low | Low or Mid | Mid
or High | High 4

Summed EOG level 2 Low | Low or Mid | Mid
or High 3

Summed EOG instability 2 Low | Low or Mid | Mid
or High 3

Substracted EOG level 2 Low | Mid or High 2

Substracted EOG instability 2 Low | Mid or High | High 3

Total 41
a Number of Thresholds employed.
b Number of qualitative features used for each quantitative feature.

2.2.5. F3.A - Cost estimation
The final cost was defined as a weighted sum of the costs

associated to each class (sleep stage in this study):

finalCost =
L
∑

c=1
wc × costc (1)

where L is the number of classes, and wc and costc are theweight and cost associated to the ctℎ class respectively. Weights
are optional. In our application, they have been chosen to
promote sleep stages that are difficult to identify or demote
the ones that occur rarely (N1 sleep stage only represents ap-
proximately 5% of the night).
costc was defined as:

costc =
1

conc(RP1, RP2, ..., RPN) × std(antiScorec)
(2)

with:
antiScorec =

N
∑

i=1
vi × RPi (3)

where N is the number of properties of class c, RPi is a bi-nary variable representing the respect of the itℎ property of
class c (as explained hereafter), and vi is the weight associ-ated to the itℎ property of class c. This time, weights have
been chosen to better translate the AASM guidelines. In-
deed, some properties are clearly indicated as being more

important for sleep staging.
The cost function is minimized for each recording individ-
ually. Defined as above, it is equivalent to i) maximize the
similarity between the epochs of a same sleep stage of the
same patient, hereinafter referred to as intra-class similarity
and ii) maximize the differences between the epochs belong-
ing to different sleep stages of the same patient, hereinafter
referred to as inter-class dissimilarity.
i) maximize intra-class similarity: intra-class similarity is

optimized by maximizing conc(RP1, RP2, ..., RPN). This
term represents the concordance between the respect of
the properties used to describe class c. The respect of a
property is assessed using the corresponding qualitative
feature. For our application, the concordance between the
respect of the properties was estimated using the Fleiss’
Kappa [25]. This is a statistical measure used to assess
the reliability of agreement between several categorical
vectors. Indeed, we can consider that when a patient is in
a specific sleep stage, most of the properties related to this
sleep stage are respected. When the sleep stage changes,
a certain number of those properties will no longer be re-
spected. If we focus on the properties related to a particu-
lar sleep stage, the transitions to and from this sleep stage
will be highlighted by a simultaneous change of the re-
spect of its properties. Those simultaneous changes can
be evaluated by assessing its properties respects interde-
pendency. Therefore, a high interdependency will indi-
cate a general concordance between thresholds. Thresh-
olds were adjusted unsupervisingly, until they agreed and
confirmed each other, leading to a higher concordance
measure (Fleiss’ Kappa). This is illustrated in Figure 3.
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Figure 3: Simplified example of the properties respects be-
haviour before and after thresholds adjustment. Class c is
described by only two properties (P1 and P2). The interde-
pendency between properties respect RP1 and RP2 increases
when thresholds are being adjusted.

In this example, that has a length of 26 epochs, class c pres-
ence is unknown for thresholds adjustment (unsupervised
functioning). The better the thresholds are, the more prop-
erties are respected (RP1 and RP2) when and only when the
patient is in class c. Before thresholds adjustment, 18 epochs
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among the 26 were in concordance with each other (high-
lighted areas). This number increased from 18 to 23 after
thresholds adjustment, leading to a better Fleiss’ Kappa.
ii) maximize inter-class dissimilarity: inter-class dissimi-

larity is optimized by maximizing std(antiScorec). The
anti-score function is defined as a weighted sum of the
no-respect of a class properties (Equation 3). Weights are
optional. For our application, they were empirically cho-
sen to translate the degree of importance according to the
AASM manual.
std(antiScorec) represents the fluctuation (using standarddeviation value) of class c anti-score function. The anti-
score function of a particular sleep stage varies from 0,
when all the properties associated to this sleep stage are
respected, to 1 when none of the properties are respected.
When thresholds are being adjusted, the anti-score values
are getting closer to its limits (0 when in the sleep stage
and 1 when in another sleep stage), with fewer values in
between. Consequently, the anti-score standard deviation
on the entire recording increases. This is illustrated in Fig-
ure 4, which pursues the example presented in Figure 3.

Yes

Time

C
la

ss
 c

a
n

ti
-s

co
re

C
la

ss
 c

p
re

se
n

ce

(u
n

k
n

o
w

n
)

C
la

ss
 c

a
n

ti
-s

co
re

No

t

t

1 epoch

After thresholds adjustment

Before thresholds adjustment

RP1 and RP2

antiScore    = v1 × RP1+ v2 × RP2 with weights v1 = 1⁄3 and v2 = 2⁄3c

RP1 and RP2

RP1 and RP2

1

0

1

0

RP1

RP2

RP1

RP2

Yes

No

Yes

No

C
la

ss
 c

p
ro

p
e

rt
ie

s

re
sp

e
c

ts

t

t

Properties respects interdependency

Di'erences with ideal anti-score values

Yes

No

Yes

No

C
la

ss
 c

p
ro

p
e

rt
ie

s

re
sp

e
c

ts

t

t

RP1 and RP2

RP1 and RP2

RP1 and RP2

RP1 and RP2

RP1 and RP2

Figure 4: Simplified example of the anti-score behaviour before
and after thresholds adjustment. Class c is described by only
two properties (P1 and P2). The anti-score is a weighted sum
of the respect of each property (RP1 and RP2). Its standard
deviation value increases when thresholds are being adjusted.

In this example, the anti-score standard deviation increased
from 0.41 to 0.47 with thresholds adjustment.

To summarize, the cost depends on the intra-class simi-
larity and inter-class dissimilarity, both associated with the

respect of each class properties. The respect of each class
properties are evaluated from the qualitative features val-
ues. Those values are directly related to the thresholds. For
each recording individually, and without using the manual
scoring as the reference, the thresholds are thus adjusted by
minimizing the cost. At the end of the process, the patient-
specific qualitative features are extracted (using the final thresh-
olds) and can be used for classification.

3. SATUD evaluation methods
This section is dedicated to the assessment of the SATUD

performance, which was evaluated from the totality of the 60
recordings (since the method is unsupervised). The SATUD
was employed to extract qualitative features that are under-
standable and represent concrete information from theAASM
guidelines. It was thus compared with other thresholding
methods employed the same way. The complete system re-
ported in Figure 1 was replaced by GST (General Statistical
Thresholding) and IST (Individual Statistical Thresholding)
as described thereafter.
• General Statistical Thresholding (GST): with this method,

thresholds were adjusted using statistical information of
the entire database, as percentiles (thresholds were not
patient-dependent).

• Individual Statistical Thresholding (IST): with thismethod,
thresholds were adjusted for each patient depending on
statistical information (thresholdswere patient-dependent).

Impact on the obtained qualitative features was first esti-
mated (3.1). The SATUD behaviour in presence of noise
or artifacts was then tested (3.2) and, eventually, the impact
on classification was evaluated (3.3).
3.1. SATUD impact on qualitative features

Using the lists describing each sleep stage, we quanti-
fied the agreement between each epoch qualitative features
and the properties of the associated sleep stage. For example
if there were 10 properties in the list describing sleep stage
Wake, then a Wake epoch with qualitative features respect-
ing only 5 of them had a global respect valueR of 50% with
its sleep stage properties.
Outcomes will be presented in Section 4.1.
3.2. Robustness test

To evaluate the robustness of the SATUD, we assessed
the quantity of epochs highly respecting the properties asso-
ciated to their sleep stage under several situations:
• noise amplification: white Gaussian noise was added to

all raw electrophysiological signals. Raw signals presented
a native Signal-to-Noise Ratio (SNR) of approximately
46 dB. Several SNR levels were tested, ranging from 30 dB
to 0 dB, in 10 dB intervals.

• artifacts addition: several artifact types are usually present
on electrophysiological signals. All artifacts were kept in
our recordings to evaluate our algorithm under real-life
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conditions. To further test the robustness of the method,
we added artificial artifacts to the signals. In this study,
we chose sweat artifacts, considered as the most disrup-
tive ones. Indeed, during such artifacts, both temporal and
spectral information are compromised or even lost. Ar-
tificial sweat artifacts were created using random slopes
and durations within intervals defined after visualization
of several natural sweat artifacts. A duration limit was
used to prevent an entire 30-seconds segment to be exclu-
sively composed of sweat artifacts. Natural sweat artifacts
occur more often in some sleep stages compared to oth-
ers and their quantity is generally limited [26, 27]. For
this reason, we tested the results with the addition of arti-
ficial artifacts on 0% (raw signals) to 100% of the epochs
composing recordings. Figure 5 presents natural (5a) and
artificial (5b) sweat artifacts examples.

Outcomes will be presented in Section 4.2.

0

-100

0

100

5 10 15 20 25 30

Sweat artifacts

Time (seconds)

E
E

G
 (

μ
V

)

Natural sweat artifact

(a)

-100

0

100

-100

0

100

0

0 5 10 15 20 25 30

5 10 15 20 25 30

Sweat artifacts

Time (seconds)

Time (seconds)

E
E

G
 (

μ
V

)
E

E
G

 (
μ

V
)

Simulated sweat artifact

(b)

Figure 5: Examples of EEG signals during 30-seconds epochs:
(a) an epoch with natural sweat artifacts and (b) an epoch
with added simulated sweat artifacts.

3.3. SATUD impact on classification
Patient-dependent qualitative features described in the

previous section are used for sleep stages classification. To
properly estimate the impact of the SATUD, a first simple
classification model was tested in this paper and compared
with manual sleep scoring. The implementation of an ad-
vanced classifier was presented in the companion paper [REF].
However, it is necessary to assess the SATUD efficiency by
avoiding any bias that could be linked to the use of pow-
erful classification models. The classifier described in the
current paper was built to be relatively transparent and easy
to understand. It did not required training and testing steps.
Indeed, using the adjusted thresholds, percentages of agree-
ment with each sleep stage list of properties were evaluated
for each epoch. The sleep stage with the higher agreement
rate between the properties and its patient-dependent qual-
itative features was the chosen one. In the current paper,

results were simply expressed in term of accuracy rate with
the manual scoring, named Acc:

Acc = TP + TN
TP + TN + FP + FN

where TP, FN, FP and TN represent the number of true pos-
itives, false negatives, false positives and true negatives, re-
spectively.
Outcomes will be presented in Section 4.3.

4. Results
The SATUDperformancewas estimated through the qual-

itative features generated (see Section 4.1) and compared
with the two other thresholding methods: GST and IST. Ro-
bustness to noise or artifacts tests results were then reported
in Section 4.2. The impact on classification were evaluated
in Section 4.3.
4.1. SATUD impact on qualitative features

Figure 6 shows the number of epochs that respect at least
0% to 100% of their sleep stage properties, according to the
thresholdingmethod used. Of course, all epochs respected at
least 0% of their sleep stage properties whatever the method
used. With the SATUD, the number of epochs respecting at
least 60% to 100% of the properties associated with its sleep
stage were higher than with GST and IST. It means that qual-
itative features obtained with the SATUD better respect the
properties expected for their sleep stage. There were indeed
relative increases of 81% ( 8135−45064506 ) and 89% ( 8135−43064306 )
of the number of epochs that perfectly respect the proper-
ties associated with their sleep stage when using the SATUD
compared to GST and IST, respectively.
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Figure 6: Evolution of the number of epochs respecting at
least 0% (the total number of epochs is obtained) to 100%
of the properties associated to their sleep stage, depending on
the method used.

When focusing on epochs that highly (60% < R ≤ 80%)
or almost perfectly (R > 80%) respect the properties as-
sociated with their sleep stage, we compared the different
methods depending on each sleep stage. Figure 7 shows the
impact of the SATUD on those epochs compared to GST
and IST. When comparing the SATUD with GST and IST,
we registered improvements for sleep stages W, N2, N3 and
REM sleep but not for N1 sleep stage.
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Figure 7: For each sleep stage, quantity of epochs highly
(60% < R ≤ 80%) or almost perfectly (R > 80%) respect-
ing the properties associated with their sleep stage, according
to the method used.

4.2. Robustness test
Robustness tests described in Section 3.2were conducted

on GST, IST and the SATUD methods.
We first studied noise and sweat artifacts impact on qualita-
tive features. The quantity of epochs that almost perfectly
respect the properties associated with their sleep stage (R >
80%) were evaluated. Results were compared for different
levels of noise and artifacts for GST, IST and the SATUD
(Figure 8). The SATUD behaviour to noise was globally
similar than GST and IST, but with higher scores. Almost no
N1 and N3 epochs respected almost perfectly the N1 and N3
properties. The quantity of epochs that almost perfectly re-
spect the properties associated with their sleep stage dropped
from a SNR level of 10 dB for all sleep stages except for
Wake, where it remained quite constant with GST and IST,
and slowly decreased for the SATUD.
Considering the addition of artificial sweat artifacts, the use
of the SATUD once again positively impacts the respect of
sleep stages with their properties. However this time, it be-
haved differently than GST and IST. For those last ones, ar-
tifacts had a very small impact, with a slight increase for
Wake and N2 epochs and a progressive decrease for REM
sleep. Using the SATUD, N2 and N3 epochs underwent an
improvement whereas adding sweat artifacts until they are
applied on 30% - 40% of the recording epochs. Afterwards,
it decreased progressively.
The SATUD obtained better results than GST and IST in
terms of quantity of epochs respecting almost perfectly prop-
erties associated with their sleep stage. While remaining
superior, its behaviour in noise and artifact situations was
globally similar to GST and IST thresholding methods.

Table 2
Accuracy rate with the manual scoring according to the differ-
ent thresholding methods while testing robustnes.

SATUD IST GST
Robustness to noise test results

Raw signals 55% 46% 45%

30 dB SNR 55% 46% 45%

20 dB SNR 54% 46% 45%

10 dB SNR 44% 34% 34%

00 dB SNR 43% 32% 33%

Robustness to sweat artifacts test results

Raw signals 55% 46% 45%

20% 55% 45% 41%

40% 55% 45% 37%

60% 54% 44% 36%

80% 54% 44% 35%

100% 54% 44% 33%

4.3. SATUD impact on classification
Classification global accuracy rates were estimated for

all three methods. For raw signals, the SATUD obtained the
best agreement with the reference with Acc = 55%, versus
Acc = 45% and Acc = 46% for GST and IST respectively
(Table 2). Confusion matrices are shown in Figure 9. The
SATUD confusion matrix (Figure 9a) registered significant
improvements for sleep stages N2 and N3, if compared to
IST and GST (Figure 9b and Figure 9c). Results for dif-
ferent levels of noise and artifacts are reported in Table 2.
The SATUD obtained the best results for all levels of signals
degradation. For IST and the SATUD, sweat artifacts did
not have an important impact on the classification scores.

5. Discussion
Themethod developed in our study, called SATUD (Self-

Adaptative ThresholdingUsingDescriptors algorithm), aims
to facilitate data-dependent features obtainment to be used
for classification. It automatically and unsupervisingly ad-
just thresholds byminimizing a cost function. The cost func-
tion was determined based on mathematical reasoning and
translation of the expert knowledge. For our application, the
SATUDwas employed to reduce the impact of subjects vari-
ability before automatic sleep staging. It reproduces the first
screening done by experts when manually scoring sleep.

This pre-processing step proved its value since the SATUD
showed an improvement of epoch agreement with the prop-
erties associatedwith their sleep stage, compared to two other
thresholding methods. Compared to GST (General Statisti-
cal Thresholding) and IST (Individual Statistical Threshold-
ing), the quantity of epochs almost perfectly respecting their
sleep stage properties increased from less than 3000 to more
than 7300 epochs with the use of the SATUD for sleep stage
N2. This stage had the best classification improvement. We
can consider that the SATUD highlighted this sleep stage,
probably because it represents almost 50% of a night. On
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Figure 8: Evolution of the number of epochs with an almost perfect agreement (R > 80%) with the properties associated to their
sleep stage for: (a) the SATUD thresholding tested with increasing noise, (b) the SATUD thresholding tested with increasing
number of artifacts, (c) IST thresholding tested with increasing noise, (d) IST thresholding tested with increasing number of
artifacts, (e) GST thresholding tested with increasing noise and (f) GST thresholding tested with increasing number of artifacts.

the opposite, and for all methods, N1 was the sleep stage
with the worst results. This could be explained by the fact
that N1 is a transitional stage that occurs during only 5% of
the night. This limitation does not have a significant impact
on the classification performance because N1 appears to be
rare, and N1 errors are common in literature, even within
manual scorers [28]. The primary classification tool tested

also showed higher results for the SATUD thanGST and IST.
Improvements were more important for the N3 sleep stage.
The proposed method also showed a good performance re-
garding noise and artifacts. The SATUD was not sensitive
to additional white noise until the SNR level of 10 dB was
reached. Note that this is an important noise level that would
be difficult to reach using sensors as used in polysomnog-

J. Vanbuis et al.: Preprint submitted to Elsevier Page 8 of 12



User-friendly sleep scoring Part II: the SATUD system for patient-dependent features extraction

0

10

20

30

40

50

60

70

80

90

100

Predicted label

T
ru

e
 l

a
b

e
l

14

48

28

21

12

25

8

1

1

1

2

2

1

2

21

21

38

5

1

3

4

25

84

60

72

W REM N1 N2 N3

W

REM

N1

N2

N3

SATUD

(a)

W REM N1 N2 N3

W

REM

N1

N2

N3

Predicted label

T
ru

e
 l

a
b

e
l

21

55

41

40

17

29

18

8

2

4

5

6

1

1

10

9

25

5

0

1

1

9

46

80

64

IST

(b)
Predicted label

W REM N1 N2 N3

W

REM

N1

N2

N3

T
ru

e
 l

a
b

e
l

21

54

40

44

14

58

23

17

8

4

10

11

9

1

0

10

10

26

8

0

1

2

8

39

81

GST

(c)

Figure 9: Classification agreement rate (percentage) between the predicted and true labels for: (a) the SATUD thresholding
method, (b) IST thresholding method and (c) GST thresholding method.

raphy. Moreover such noise would also make the manual
scoring a lot more complicated, leading to a probable inval-
idation of the recording. Artificial sweat artifacts did not
have an important impact on the SATUD and IST classifi-
cation agreement rate. Regarding the SATUD, they how-
ever tended to increase the number of epochs almost per-
fectly respecting the properties associated with their sleep
stage for sleep stages N2 and N3, until a limit around 30%-
40%. It could be explained by the fact that one property
of those sleep stages is the high amplitude, more often re-
spected with the addition of sweat artifacts. Also, the num-
ber of Wake epochs almost perfectly respecting Wake prop-
erties increases with sweat artifacts when using the SATUD.
The reason would be that agitated wake can make saturation
appear on signals, like in presence of sweat artifacts.
The proposed method showed its efficiency, especially since
the database used is composed of many patients with various
pathologies.

Based on medical knowledge, this method was built to
contribute to the development of a user-friendly sleep stag-
ing system. As discussed in the companion paper [REF],
very few sleep staging systems are considered by physicians
because of several limitations. One of them is the lack of
transparency of models, often considered as black boxes.
To overcome this limitation, a methodology replicating the
manual scoring process was implemented in the companion
paper [REF]. To give the medical practitioner concrete el-
ements to relate to, qualitative features were chosen as the
input of the classifier. However, such features can be prob-
lematic if not adjusted to each patient. The SATUD was de-
signed to extract patient-dependent qualitative features, with-
out the need of previous partial scoring by a sleep specialist.
The SATUD method is potentially transposable to other ap-
plications. It however requires a good knowledge of the spe-
cific field, with the identification of a maximum of rules de-
scribing each class. Those numerous rules are key points for
the SATUD functioning, enabling the use without the need
of knowledge on the classification output. For this reason,
this algorithm can run under real time conditions.

6. Conclusion
This paper presents an approach to extract features from

a dataset. This approach, called SATUD, is at the core of
the companion paper [REF], devoted to an automatic sleep
staging for polysomnographic recordings.

The SATUD method was the outcome of an approach
combining mathematical reasoning and medical knowledge.
Compared to other thresholdingmethod, the SATUDallowed
a better generalization of features depending on each sleep
stage. The performance proved that resulting features are
significantly in agreementwith the expected sleep stage prop-
erties. A straightforward classification model was also de-
veloped (to test the SATUDwithout being biased by the abil-
ities of a complex classifier). Reported results were better
for the SATUD, compared to the other thresholding meth-
ods. This performance, obtained on 60 patients with various
sleep pathologies, confirmed that this approach is suitable
for sleep staging. Tests with noise and artifacts showed this
algorithm had a sufficient robustness for the application.

The companion paper [REF] presented an entire and user-
friendly classification model based on the extracted features.
A detailed analysis of obtained classification impact on each
patient diagnostic is also worthy of investigation.
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A. Simplified example of the SATUD
employment
This appendix presents a simplified version of the use of

the SATUD for sleep stage classification. We thus consider
only two patients, Patient1 and Patient2 and we admit they
had a similar night. For a better understanding, we merged
sleep stages N1, N2 and N3 into the so-called NREM sleep.
We also considered in this appendix that wakewas only com-
posed of calm wake with eyes closed. The simplified hypno-
gram is represented in Figure A.1.

Wake

NREM

REM

11p.m. 1a.m. 3a.m. 5a.m. 7a.m.

Figure A.1: Simplified hypnogram presenting the nights of
patients Patient1 and Patient2.

The goal is then to retrieve the hypnogram using each pa-
tient signals, knowing that there is a variability between each
patient. A highly simplified version of sleep stages descrip-
tion (F1) is presented in Table A.1. For this example, only
three properties were used to describe wake, REM sleep and
NREM sleep.

Table A.1
Simplified sleep stage description.

Alpha waves Rapid eye movements EEG amplitude
Wakea High Low Low
REM Mid Mid or High Mid
NREM Low Low High
a Only wake with eyes closed was considered for this example.

Properties respects interdependancy
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Figure A.2: Example of properties respects for each sleep stage, when thresholds are perfectly adjusted. Using Table A.1, we understand
that even with perfectly adjusted thresholds, there is not always 100% interdependency between properties respects. This is due to the
possibility of some properties to be respected in different sleep stages.

The SATUD aims to estimate the thresholds following the
properties indicated in Table A.1. Then, a classification tool
will be able to rebuild the hypnogram. For both Patient1 and
Patient2, thresholds have to be adjusted untilH - L - L↔Wake,
M-MH -M↔REM and L - L -H↔NREM.

If thresholds are well adjusted, each patient properties
will be respected, as in Figure A.2. Because of the rapid eye
movements that is Low during wake but also during NREM,
we can see that the properties respects interdependency is
not at 100% for Wake and NREM sleep.
If thresholds are not correctly settled, and for example the
rapid eyemovements threshold is too high, the property rapid
eye movements is Mid or High associated to REM sleep will
never be respected. The result on the properties respects in-
terdependency of REM sleep would then be deteriorated, as
shown in Figure A.3a. For each sleep stage, the properties
respects interdependency has to be maximized to find the
best thresholds. However thresholds that are too far from
correct values (highly erroneous) can generate a situation
where the properties respects interdependencywould bemax-
imum as in Figure A.3b. To prevent this situation, fluctua-
tion has been considered. Indeed, we can assume that all
sleep stages will appear during a whole night. To estimated
fluctuation, anti-scores were created using a weighted sum
of the disrespect of each property.
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Properties respects interdependancy
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Figure A.3: Example of properties respects for REM sleep: (a) when the threshold associated with rapid eye movements is settled
too high and (b) when all thresholds are highly erroneous.

Here are this example anti-scores:
antiScoreWake = 0.4 × alphaH

+ 0.4 × rapEyeMovL

+ 0.2 × EEGampL

(A.4)

antiScoreREM = 0.3 × alphaM

+ 0.4 × rapEyeMovMH

+ 0.3 × EEGampM

(A.5)

antiScoreNREM = 0.3 × alphaL

+ 0.4 × rapEyeMovL

+ 0.3 × EEGampH

(A.6)

The behaviour of REM sleep anti-score in different scenar-
ios presented in Figure A.2 and Figure A.3 is shown in Fig-
ure A.4. We can see that anti-score fluctuation is higher
when thresholds are well adjusted, and null when thresholds
are highly erroneous. For each sleep stage, the anti-score
fluctuation has to be maximized to find the best thresholds.
In order to maximize properties respects interdependency
and anti-score fluctuation for each sleep stage, costs have
been evaluated as:
costWake =

1
conc(alphaH, rapEyeMovL,EEGampL)

× 1
std(antiScoreWake)

(A.7)

costREM = 1
conc(alphaM, rapEyeMovMH,EEGampM)

× 1
std(antiScoreREM)

(A.8)

costNREM = 1
conc(alphaL, rapEyeMovL,EEGampH)

× 1
std(antiScoreNREM)

(A.9)

1

0

1

0

1

0

0.4

antiScore        for adjusted thresholdsREM

antiScore        for highly erroneous thresholdsREM

antiScore        for wrong thresholdsREM

Figure A.4: REM sleep antiScore behaviour when thresholds
are well adjusted, when the threshold associated with rapid
eye movements is settled too high and when all thresholds are
highly erroneous.

In this example, the total cost could have been defined as:
finalCost = 0.35 × costWake + 0.35 × costREM

+ 0.3 × costNREM

(A.10)

In this example, the weight associated to wake and REM
sleep are higher than the weight associated to NREM sleep.
Indeed, we estimated that wake and REM sleep were more
complicated to detect and decided to bring them more em-
phasis. Equation A.10 was then minimized using several
global and local search algorithms as explained in F3.

B. Pseudo-code of the SATUD
The SATUD pseudo-code is presented in Algorithm B.1.

It uses here a global search algorithm (l.3-7) followed by a
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local search algorithm (l.8-12). ‘FinalCost’ function is eval-
uated as described in Equation 1, with weights wc definedempirically.

Data:
quantFeat: quantitative features
propLists: properties lists associated to each class

Result:
thresholds: patient-dependent thresholds adjusted with the
SATUD
qualFeat: qualitative features

1 Function SATUD(quantFeat, propLists):
2 thresholds ← Stats(quantFeat)
3 while global stopping criterion∗ not respected do
4 thresholds ← thresholds + changes∗
5 qualFeat ← Thresholding(quantFeat, thresholds)
6 cost ← FinalCost(propLists, qualFeat)
7 end
8 while local stopping criterion† not respected do
9 thresholds ← thresholds + changes†

10 qualFeat ← Thresholding(quantFeat, thresholds)
11 cost ← FinalCost(propLists, qualFeat)
12 end
13 return thresholds and qualFeat

∗ Depends on the global search algorithm used.
† Depends on the local search algorithm used.
Algorithm B.1: Pseudo-code of the SATUD.

References
[1] J. B. Croft, CDC’s Public Health Surveillance of Sleep Health, 2017.
[2] P. E. Peppard, T. Young, J. H. Barnet, M. Palta, E. W. Hagen, K. M.

Hla, Increased Prevalence of Sleep-Disordered Breathing in Adults,
American Journal of Epidemiology 177 (2013) 1006–1014. doi:10.
1093/aje/kws342.

[3] K. A. Franklin, E. Lindberg, Obstructive sleep apnea is a com-
mon disorder in the population- a review on the epidemiology of
sleep apnea, Journal of Thoracic Disease 7 (2015) 1311–1322.
doi:10.3978/j.issn.2072-1439.2015.06.11.

[4] R. B. Berry, R. Brooks, C. E. Gamaldo, S. M. Harding, R. M. lloyd,
S. F. Quan, M. M. Troester, B. V. Vaughn, The AASM Manual for
the Scoring of Sleep and Associated Events: Rules, Terminology and
Technical Specifications, number 2.4 in American Academy of Sleep
Medicine, Darien IL, 2017.

[5] S. Biswal, H. Sun, B. Goparaju, M. B.Westover, J. Sun,M. T. Bianchi,
Expert-level sleep scoring with deep neural networks, Journal of
the AmericanMedical Informatics Association 25 (2018) 1643–1650.
doi:10.1093/jamia/ocy131.

[6] L. Zhang, D. Fabbri, R. Upender, D. Kent, Automated sleep stage
scoring of the Sleep Heart Health Study using deep neural networks,
Sleep 42 (2019). doi:10.1093/sleep/zsz159.

[7] S. Enshaeifar, S. Kouchaki, C. C. Took, S. Sanei, Quaternion Singu-
lar Spectrum Analysis of Electroencephalogram With Application in
Sleep Analysis, IEEE Transactions on Neural Systems and Rehabili-
tation Engineering 24 (2016) 57–67. doi:10.1109/TNSRE.2015.2465177.

[8] T. Lajnef, S. Chaibi, P. Ruby, P.-E. Aguera, J.-B. Eichenlaub,
M. Samet, A. Kachouri, K. Jerbi, Learning machines and sleeping
brains: Automatic sleep stage classification using decision-tree multi-
class support vector machines, Journal of Neuroscience Methods 250
(2015) 94–105. doi:10.1016/j.jneumeth.2015.01.022.

[9] S. Mahvash Mohammadi, S. Kouchaki, M. Ghavami, S. Sanei, Im-
proving time-frequency domain sleep EEG classification via singular
spectrum analysis, Journal of Neuroscience Methods 273 (2016) 96–
106. doi:10.1016/j.jneumeth.2016.08.008.

[10] S. Charbonnier, L. Zoubek, S. Lesecq, F. Chapotot, Self-evaluated
automatic classifier as a decision-support tool for sleep/wake staging,
Computers in Biology andMedicine 41 (2011) 380–389. doi:10.1016/
j.compbiomed.2011.04.001.

[11] G. Garcia-Molina, F. Abtahi, M. Lagares-Lemos, Automated NREM
sleep staging using the Electro-oculogram: A pilot study, in: En-
gineering in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE, IEEE, 2012, pp. 2255–2258.
URL: http://ieeexplore.ieee.org/abstract/document/6346411/.

[12] L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, H. Dickhaus, Au-
tomated sleep stage identification system based on time-frequency
analysis of a single EEG channel and random forest classifier, Com-
puter Methods and Programs in Biomedicine 108 (2012) 10–19.
doi:10.1016/j.cmpb.2011.11.005.

[13] M. Zokaeinikoo, Automatic Sleep Stages Classification, Ph.D. thesis,
2016.

[14] A. Ugon, Fusion Symbolique et Données Polysomnographiques,
Ph.D. thesis, 2015.

[15] C. Chen, An e-health system for personalized automatic sleep stages
classification, Ph.D. thesis, Université Pierre et Marie Curie - Paris
VI, 2016.

[16] C. Chen, A. Ugon, C. Sun, W. Chen, C. Philippe, A. Pinna, Towards a
Hybrid Expert System Based on Sleep Event’s Threshold Dependen-
cies for Automated Personalized Sleep Staging by Combining Sym-
bolic Fusion and Differential Evolution Algorithm, IEEE Access 7
(2019) 1775–1792. doi:10.1109/ACCESS.2018.2887082.

[17] L. Fiorillo, A. Puiatti, M. Papandrea, P.-L. Ratti, P. Favaro, C. Roth,
P. Bargiotas, C. L. Bassetti, F. D. Faraci, Automated sleep scoring: A
review of the latest approaches, Sleep Medicine Reviews 48 (2019).
doi:10.1016/j.smrv.2019.07.007.

[18] F. Doshi-Velez, B. Kim, Towards A Rigorous Science of Inter-
pretable Machine Learning, arXiv:1702.08608 [cs, stat] (2017).
ArXiv: 1702.08608.

[19] T. Penzel, A. Sabil, The use of tracheal sounds for the diagnosis
of sleep apnoea, Breathe 13 (2017) e37–e45. doi:10.1183/20734735.
008817.

[20] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated
Annealing, Science 220 (1983) 671–680. doi:10.1126/science.220.
4598.671.

[21] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, MIT Press, 1992. Google-Books-ID: 5EgGaBkwvWcC.

[22] D. E. Goldberg, J. H. Holland, Genetic Algorithms and Ma-
chine Learning, Machine Learning 3 (1988) 95–99. doi:10.1023/A:
1022602019183.

[23] R. H. Byrd, M. E. Hribar, J. Nocedal, An Interior Point Algorithm for
Large-Scale Nonlinear Programming, SIAM Journal on Optimization
9 (1999) 877–900. doi:10.1137/S1052623497325107.

[24] R. Waltz, J. Morales, J. Nocedal, D. Orban, An interior algorithm
for nonlinear optimization that combines line search and trust region
steps, Mathematical Programming 107 (2006) 391–408. doi:10.1007/
s10107-004-0560-5.

[25] J. L. Fleiss, Measuring nominal scale agreement among many raters.,
Psychological Bulletin 76 (1971) 378–382. doi:10.1037/h0031619.

[26] E. S. Arnardottir, B. Thorleifsdottir, E. Svanborg, I. Olafsson, T. Gis-
lason, Sleep-related sweating in obstructive sleep apnoea: association
with sleep stages and blood pressure, Journal of Sleep Research 19
(2010) 122–130. doi:10.1111/j.1365-2869.2009.00743.x.

[27] R. Broughton, R. Poiré, C. Tassinari, The electrodermogram
(Tarchanoff effect) during sleep, Electroencephalography and Clini-
cal Neurophysiology 18 (1965) 691–708. doi:10.1016/0013-4694(65)
90113-6.

[28] R. S. Rosenberg, S. Van Hout, The American Academy of Sleep
Medicine Inter-scorer Reliability Program: Sleep Stage Scoring,
Journal of Clinical Sleep Medicine (2013). doi:10.5664/jcsm.2350.

J. Vanbuis et al.: Preprint submitted to Elsevier Page 12 of 12




