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Dynamics of Magnetic Islands driven by Ballooning Turbulence
N. Dubuit,1, a) O. Agullo,1 M. Muraglia,1 J. Frank,1 X. Garbet,2 and P. Maget2
1)Aix-Marseille Univ., CNRS, PIIM UMR 7345, Marseille, France
2)CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France

Magnetic island generation by remote ballooning turbulence close to the plasma edge is investigated through
�ux-driven 3D Reduced-MHD simulations. The various coupling mechanisms are investigated : mono-helicity
nonlinear coupling, multi-helicity nonlinear coupling and linear toroidal coupling. The dominant process
depends on the imposed heat �ux driving the turbulence. The remote drive happens in two successive
phases corresponding to di�erent coupling paths. While an island is remotely generated in both phases, it
is dominated by di�erent mode numbers, or harmonics, and therefore has a di�erent shape. The size of the
generated island is found to be proportional to the imposed heat �ux, without threshold. The shape of the
island in the saturated regime also depends on the imposed heat �ux, with a more distorted shape at low
power levels.

I. INTRODUCTION

In fusion devices, magnetic islands are commonly ob-
served. Their growth, which is mainly driven by neo-
classical e�ects, is important enough to strongly limit
the thermal con�nement of the plasma. Their presence
can lead to a con�nement degradation of more than 30%
in large tokamaks1 and can potentially induce disrup-
tions. Such islands are called Neoclassical Tearing Modes
(NTMs). Neoclassical e�ects however do not generate
islands ab initio but only amplify large enough islands
seeded by some other mechanisms. Although seed islands
are often generated by large scale MHD events, sawteeth
or edge localized modes, cases where their origin is not
clear are also frequent2�4. In the last decade, the seeding
of magnetic island by microturbulence has been investi-
gated mainly in 2D context5�11 or with more complete
3D descriptions12,13 with a focus on the characterization
of islands embedded and/or generated by in situ turbu-
lence. However, it has been shown that remote turbu-
lence can drive the growth of islands on low order mag-
netic surfaces14. This is important from an experimental
point of view, since islands are commonly found in the
plasma core, while turbulence is larger in the plasma edge
; however experimental work is usually focused on tur-
bulence close to the island resonant surface4,15,16. From
a fundamental point of view, remote generation has also
the bene�t to help separate the local �ow dynamics of
turbulence and that of the generated island9,11,17. More-
over, a 2D study has shown that turbulence-generated
seed islands are potentially large enough to be ampli�ed
by bootstrap current and therefore give rise to a neoclas-
sical tearing mode18 and result in a loss of con�nement
or a disruption. Ballooning modes are the prototype
of a class of instabilities that are ubiquitous the edge
of tokamaks. They are characterized by higher growth
rates than Ion Temperature Gradient (ITG) modes which
dominate in the core. A natural question is, thus, to
determine the mechanisms, and quantify their relative
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importance, from which ballooning modes could amplify
and/or seed islands in the vicinity of core low order ratio-
nal surface. Compared to the cylindrical previous work14,
here a �ux driven ballooning turbulence is included. Var-
ious e�ects could alter the island seeding. First, the cur-
vature terms include a linear poloidal coupling which nat-
urally couples mode which resonate on di�erent magnetic
surfaces and thus, potentially, couple the edge dynamics
to the core's one. Second, emphasizing that the nonlin-
ear beating of modes has been already identi�ed as part
of key mechanisms on the seeding of islands, both in 2D
and 3D cylindrical contexts and that this is linked to the
nature (including their parities) of the mode structures,
one should query this point in toroidal context. Indeed,
ballooning modes contains intrinsic poloidal asymmetries
which could weaken the coupling between modes. Third,
helical magnetic perturbations are not anymore charac-
terized by the existence of a invariant, the helical �ux,
along magnetic �ux surfaces and overlap of islands can
introduce stochasticity of the magnetic lines. Those lines
can strongly connect distant radial zones and modify the
overall dynamics. Thus, it is not obvious whether or not
ballooning turbulence can amplify remotely magnetic is-
lands and whether the mechanisms at play in previous
works6,14,19,20 remain dominant. Finally, the link be-
tween island size and the input power which alters the
pro�les and drives the turbulence, in �ux driven context,
has not been yet investigated.

The remainder of this paper is as follows. In section II
the numerical model used for simulations is described. In
section III, the seeding of magnetic islands by �ux driven
ballooning turbulence is investigated. The link between
island dynamics, seed island size and input power is ex-
plored in section IV. Finally, the section V presents the
conclusions of the paper.

II. NUMERICAL SETUP

We model the interaction of microturbulence and mag-
netic islands using a minimal 3D three-�eld reduced-
MHD model, including toroidal curvature and �ux driven
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dynamics:

∂tω + [φ, ω] = −κ1GP +∇‖J + ν∆⊥ω , (1)

∂tP + [φ, P ] = κ2Gφ+ κP2 GP + ρ2? [ψ, J ] + χ∆⊥P + SP ,
(2)

∂tψ = ∇‖(φ− P ) + ηj‖ , (3)

where φ is the electrostatic potential, ω = ∆⊥φ the vor-
ticity, P the electron pressure, ψ the magnetic �ux, J =
∆⊥ψ the current density and j‖ the current density �uc-
tuations. The operators are the Poisson's bracket [α, β] =
1
r (∂rα∂θβ−∂rβ∂θα), the gradient in the direction paral-
lel to the magnetic �eld ∇‖α = [ψ, α]− ∂zα, the perpen-
dicular Laplacian ∆⊥α = ∂2rα + 1

r∂rα + 1
r2 ∂

2
θα and the

curvature operator G = sin θ∂r + 1
r cos θ∂θ. This term is

responsible for the linear couplings m← m±1 of modes,
in particular the coupling of interchange modes which be-
come a global ballooning eigenmode (see for example Ref.
21 and references therein). The �eld decomposition for
any �eld f is f =

∑
m,n fm,n(r, t) exp(i(mθ−nϕ)) where

ϕ = z/R0 and R0 is the major radius ; m and n denote
respectively the poloidal and toroidal wave number of a
mode fm,n(r, t). The pressure pro�le is fueled by a source
term SP and nonlinear relaxation phenomena are thus
present in the dynamics. Boundary conditions for pres-
sure and electric potential are �at (Neumann) on the in-
side boundary and �xed-value (Dirichlet) on the outside,
allowing heat �ux to escape the system from the outside
boundary only. This model includes both current driven
and ballooning (pressure driven) instabilities. Because of
the presence of some small heat di�usion χ∆⊥P , the heat
can be transported even in the absence of turbulence. In
particular, when the source amplitude is low enough, this
maintains the pressure gradient close to the instability
threshold. Quasi steady-state or small-amplitude limit
cycle behavior of the most unstable modes, or intermit-
tent turbulence, are then observed as expected22. The
�xed-�ux nature of the model therefore allows studying
the dynamics close to the instability threshold. It may be
noted that the initial equilibrium does not remain an ex-
act equilibrium of the evolution equations as the pressure
pro�le changes. An axisymmetric perturbation therefore
spontaneously develops to maintain force balance. How-
ever, this perturbation only a�ects n = 0 modes and has
a slow evolution ; it is therefore of little in�uence on the
mechanisms described in this paper.
Equations (1-3) are normalized using a magnetic shear

length L⊥, the Alfvén speed vA and the Alfvén time
τA = L⊥/vA. The resistive parameters are η = 10−4,
ν = 3.10−5 and χ = 10−5. The normalized hybrid �uid
Larmor radius is set to ρ2? = 2.10−4. The free curvature
parameter is κ1 = 0.5; κ2 = ρ2?κ1 is imposed by energy
conservation. We also set κP2 = κ2. Those values are
typical of edge tokamak plasmas such as JT60U, except
for the resistivity, and are similar to the ones used in a
previous work where cylindrical geometry and �xed gra-
dient turbulence were considered instead14. The resolu-
tion is Nx = 192, Ny = 192, Nz = 96 and the simulation
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FIG. 1: (a) Pro�le of safety factor (black), normalized
steady-state pro�le of pressure (red) and associated

pressure source (orange). The q = 2 surface lies in the
�at pressure region.

(b) Corresponding poloidal map of vorticity in
steady-state. The q = 2 resonant surface is indicated by

the dashed line.

domain spans values of the safety factor 1.8 < q < 3.3
typical of the outer part of the plasma core where both
ballooning-stable and -unstable regions are expected.

By localizing the source term SP between the low order
resonant surfaces q = 2 and q = 2.5, we ensure that
the system evolves towards a steady-state pressure pro�le
that is stable (�at) in the inner zone and unstable in the
outer zone, as shown on Fig. 1a. Unless otherwise noted,
the heat source is a narrow radial Gaussian located at
r/a = 0.9, corresponding to q = qSP

= 2.21, therefore
outside the q = 2 resonant surface. Because of the chosen
Neumann boundary conditions, the radial integral of the
source de�nes the steady-state �ux injected in the system
and, as long as the source is narrow enough, it is the only
remaining relevant parameter. In the remainder of this
paper, SP = 1 will denote a source whose integral is 10−7

in the normalized units described above.
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Since there is no other source, there is no steady-state
gradient inside r/a = 0.9 and no small scale turbulence
in this region, except for some very limited turbulence
spreading. In this paper we focus on the nonlinear drive
of an island with q = 2 helicity, located where the steady
state pressure pro�le induced by the source is �at, see
Fig. 1a. Let us emphasize that the magnetic equilib-
rium, as well as the initial and steady-state pro�les (the
latter being controlled by the source), are chosen such
that the (2, 1) mode is always linearly stable and is there-
fore not directly driven by either a classical tearing nor
an interchange mode. The pressure pro�le is controlled
by the imposed source; as can be veri�ed in Fig. 1b, the
position of the pressure source allows �ne control of tur-
bulent and stable regions in the nonlinear steady-state
without any unwanted gradient induced by the turbulent
heat transport. The map of vorticity shows that the tur-
bulence develops in the edge and that neither instability
nor signi�cant �uctuations are present in the core region,
Fig. 1b. It can be seen on this �gure that turbulence
spreading into the stable zone is present but limited to
r/a & 0.8, this remains true even for the highest source
case considered in this work.

Neoclassical e�ects (bootstrap current perturbation)
are not included in order to study seed island generation
independently from NTM ampli�cation18,23,24. Let us re-
call that neoclassical ampli�cation will occur if the seeded
island exceeds a critical size which depends among others
on the pressure pro�le �attening. In our model, pressure
pro�le perturbations therefore do not directly drive cur-
rent pro�le perturbations. Moreover, the �at pressure
pro�le in the core part of the simulations precludes pres-
sure �attening around the q = 2 surface. This means
that the islands described in the remainder of this paper
are to be considered as possible seed islands for NTM
generation, not as �nal saturated NTM islands. More-
over, the perturbation of the current pro�le is negligible
in the simulations reported in this paper ; in particular,
it has no signi�cant e�ect on tearing mode growth rates.

In Fig.2 the linear growth rate of the unstable global
ballooning modes are shown as a function of the toroidal
mode number, for the asymptotic stationnary steady-
state pro�les corresponding to two values of the source
parameter SP . Those growth rates are computed from
the mean pro�le in the nonlinear statistical steady-state.
It shows, �rst that no mode n = 1 is unstable (note that
since qmin > 1 the mode (m,n) = (1, 1) is nowhere res-
onant). In particular, the tearing mode (m,n) = (2, 1),
with rational surface q = 2 in the core zone, is linearly
stable (very small negative growth rate, of the order of
−10−3τA) for all source amplitudes, �g. 2. For all source
amplitudes also, the most unstable mode is a global bal-
looning mode n ' 7 mainly located in the edge pressure
gradient zone, thus with m/n > qSp

≈ 2.21. In Fig. 3
(left), we show the ballooning structure of the potential
for n = 7. We observe it is dominated by the m ' 16
mode (thus q =2.28).

The instability and transport properties of this model
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FIG. 2: Growth rates of unstable global modes,
calculated from linear simulations using the

steady-state pressure pro�les of smallest (SP = 1) and
highest (SP = 6) pressure source cases.
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(left). Steady-state pressure source, and growth rate of
the most unstable mode, as a function of the average
steady-state pressure gradient (right). The dashed line

is a square root �t with o�set.

are shown in Fig. 3 (right). The growth rate of the most
unstable mode (purple triangles) is proportional to the
square root of the pressure gradient after a threshold,
γ ∝
√
∇P −∇Pthreshold (dashed line �t), which is unsur-

prising for an interchange-like instability25. The relation
between the source (corresponding to the turbulent �ux)
and the steady-state pressure gradient is however linear
(above the threshold) ; the model exhibits limited sti�-
ness. The tiny o�set between the �source threshold� and
the instability threshold corresponds to the collisional
transport imposed by the di�usivity χ: below the insta-
bility threshold, there is no turbulent �ux and the small
pressure source feeds the di�usive �ux.

III. GENERATION OF REMOTELY DRIVEN MAGNETIC
ISLANDS

Here we focus on the mechanisms behind the remote
generation of magnetic islands by edge turbulence. As de-
tailed in section II, a �ux-driven model including toroidal
curvature is used.
The main mechanisms observed in the edge region

in cylindrical �xed-gradient simulations14 remain valid.
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FIG. 4: Mode energy evolution of relevant modes
described in Sec. III. The grey background indicates
exponential growth, corresponding to either linear or

quasilinear behaviour.

The generation of an island can be broken down in sev-
eral phases. They are most visible in the low source case
SP = 1, where pro�le evolution is slow enough. Let us
thus describe the mechanisms for this case. EK(m,n),
EM (m,n) and EP (m,n) will denote respectively the ki-
netic (electric), magnetic and thermal energies of the
mode (m,n), integrated over the whole radial domain.
The time traces are shown in �gure 4.

First, the pressure gradient crosses the instability
threshold around t ∼ 6000τA (see Fig. 4, top left).
The most unstable mode starts growing; it is the mode
(m,n) = (15, 6), with an average growth rate γ6 =
γ15,6 = 3.4 10−3τ−1A . This value is in fact somewhat
lower than the result of the linear simulation with the
�nal pro�le, since the pro�le is still slowly building up.
The growth rate itself is actually slowly growing in time
during this linear phase. In �gure 4 (upper left) the time
evolution of this mode is shown.

Second, still in the edge zone, a short quasilinear phase
follows starting around t ∼ 14000τA, where nonlinear
couplings drive other modes with added growth rates ;
in this case, the coupling with the mode (10, 4) (γ10,4 '
0.003) leads to growth of the (5, 2) mode with γnl

5,2 =

6.7 10−3τ−1A ' γ15,6 + γ10,4 (�gure 4, upper right). All
this happens locally on (or close to) the resonant surfaces
of the unstable, small-scale modes. Note that the growth
of the (5, 2) mode on the q = 2.5 surface is not due to
tearing instability : as shown on Fig. 2 (SP = 1) the
n = 2 mode is linearly stable ; moreover, the (5, 2) mode
energy shown on �gure 4 upper right is decreasing until
the onset of the nonlinear coupling.

The overall nonlinear dynamics tends to generate mul-

tiple magnetic islands in the turbulent zone, even though
the nature of the instability is interchange. What it im-
plies with respect to mode parity deserves discussion. In-
deed, it is well known that tearing-like modes are charac-
terized by a dominant even/odd/odd parity of ψ, φ and
P �elds respectively ; the interchange parity is the op-
posite for all �elds. However, it has been shown before
that the nonlinear coupling of modes on the same res-
onant surface (mono-helicity situation) preserve parity,
according to the following rule6,26,27:

� [Interchange, Interchange]→Tearing

� [Tearing, Tearing]→Tearing

� [Interchange, Tearing]→Interchange

The parity changes because the radial derivatives in the
Poisson brackets invert parity. In our case, the most lin-
early unstable mode is a (15, 6) interchange-parity mode :
its coupling with a (10, 4) interchange parity mode (lin-
early unstable as well) generates a (5, 2) tearing parity
mode (island). This parity conservation mechanism is
linked to the structure of the nonlinear dynamical equa-
tions, and not to the geometry of the numerical model :
in particular, in a toroidal con�guration, while the cur-
vature terms linearly couple m and m+ 1 modes (chang-
ing independent interchange modes into global ballooning
modes), the parity of their (m,n) components remains
the same as interchange modes ; and the nonlinear cou-
pling terms are the same as in a cylindrical con�gura-
tion : the parity picture described here remains valid in
toroidal geometry. In the nonlinear steady-state, a �par-
ity cascade� saturation determines the average parity of
modes28. One should keep in mind though, that those
parity rules are only exact in a 2D mono-helicity context,
where all three modes in the nonlinear coupling share the
same resonant surface. However, in the 3D multi-helicity
situation described here, nonlinear coupling usually oc-
curs with modes located on di�erent resonant surfaces.
The shift between the resonant surfaces of the modes
involved in the coupling breaks the parity conservation
properties, and results in an overlap of interchange and
tearing parities. Nevertheless, for most of the signi�cant
couplings, the distance between resonant surfaces has to
be low compared to the mode radial width, and the cou-
pling mechanism is close to the mono-helicity one. There-
fore, one can expect in all cases a signi�cant tearing-
parity component in medium-scale modes, which is easily
con�rmed by an inspection of a Poincaré section during
this phase. Conversely, the linearly unstable small-scale
modes such as (m,n) = (15, 6) remain of mostly inter-
change parity at all times. At the end of this phase,
the turbulent zone exhibits various islands with di�erent
helicities.
In a third phase, as can be observed in Fig. 4, due

to the toroidal linear coupling, the (5, 2) mode drives
immediately the (4, 2) mode, which is resonant on the
q = 2 surface. Their mode structures are shown in Fig.
5. We observe that the (5,2) mode structure does not
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FIG. 5: Radial structure of the electric potential of the
modes (4, 2) and (5, 2) during quasilinear phase
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signi�cantly cross the q = 2 region while the (4,2) mode
structure is signi�cant in the vicinity of both q = 2.5
and q = 2 surfaces. This indicates, �rst, that the (4, 2)
mode is driven mostly on the resonant surface of the (5, 2)
mode, in the turbulent region, and not on q = 2 through
a radial extension of the (5, 2) mode. Second, as it has
a broad extension which crosses the resonant q = 2 sur-
face, this perturbation produces a signi�cant island with
m = 4 on the q = 2 surface. This extension comes from
the fact that although the amplitude of a mode far from
its resonant surface tends to be weakened by the parallel
di�usion, this e�ect cancels at the resonance. Thus, the
linear toroidal coupling, which does not exist in cylin-
drical cases, acts as an accelerator of the growth of the
magnetic perturbations on the lowest order rational sur-
face q = 2: the growth occurs immediately in the quasi-
linear phase while in cylindrical geometry the process is
much longer because it depends on less e�cient nonlinear
couplings.

Finally, a nonlinear phase follows (17000τA . t .
30000τA), during which the various nonlinear mode cou-
plings that involve less unstable modes slowly drive the
low-n modes. This �lls the whole spectrum, until a sta-
tistical steady-state is reached. This results on the q = 2
surface in an additional perturbation, mostly an n = 1
mode, which induces a slow growth of the island.

Unlike higher order m/n = 2 helical modes, it should
be noted that the generation of the fundamental (2, 1)
mode happens purely through nonlinear coupling, both,
remote and resonant (local); the linear toroidal coupling
from the distant (3, 1) mode is negligible. This has been
tested in steady-state regime by �rst damping arti�cially
the (2, 1) mode only ; when stopping the arti�cial damp-
ing the (2, 1) mode recovers as fast with (3, 1) mode ar-
ti�cially damped as with (3, 1) mode untouched.

The dynamics described above (early linear coupling
of medium-scale modes driving harmonics on the q = 2
resonant surface, followed by nonlinear coupling driving

the fundamental mode) di�er signi�cantly from what can
be observed in comparable cylindrical simulations14. In-
deed, in cylindrical simulations the generation of modes
on the q = 2 surface depends only on nonlinear coupling.
A 2-step process has been observed in that case as well,
where in the 1st nonlinear phase a (5,2) mode extends
to the q = 2 rational surface, and in the 2nd nonlin-
ear phase the (2,1) mode is dominant. The absence of
toroidal coupling inhibits the generation of a signi�cant
(4, 2) island. However it is important to stress that a
(5,2) mode extension to the q = 2 surface can not gener-
ate a signi�cant island either, because it is not resonant.
Although a m = 5 separatrix would seem to appear in
contour plots of the 2-dimensionnal helical �ux χq=2, it
does not generate a 3D island structure since the pertur-
bation of the mode averages to zero over a single poloidal
turn. Indeed, inspection of Poincaré maps around q = 2
show that it is dominated, in the early phase, by a m = 4
island of negligible width.
The �nal steady-state of the island in toroidal and

cylindrical simulations is compared in Fig.6. The av-
erage, minimum and maximum magnetic energy over the
last 8000τA of the three modes described above are shown
for comparable cylindrical (left) and toroidal (center and
right) simulations. By comparable we mean same q pro-
�le and similar growth rates. Although the amplitude of
the (5, 2) mode is similar in both cases, the (4, 2) mode
is negligible in the cylindrical simulation while it can be
dominant on the q = 2 surface in the toroidal simulations.
The signi�cant presence of harmonics of the (2, 1) mode
in toroidal simulations leads to a distorted island shape
(Fig. 8) and complex dynamics which are described in
sec. IVC. While at higher power in toroidal simula-
tions the fundamental mode is dominant (right), the 1st
harmonic is always signi�cant in steady-state in contrast
with cylindrical simulations. The high level of harmonics,
in addition to bicoherence analysis of the medium-scale
modes29, might be used as an experimental signature to
detect turbulence-driven magnetic islands. In particular,
depending on the transport induced by such islands, the
associated pro�le �attening may be detectable with mi-
crowave measurements such as re�ectometry or electron
cyclotron emission30.

IV. q = 2 ISLAND DYNAMICS

A. Island size dynamics

In Fig.7 are drawn the time evolution of the island size
based on the computation of the maximal radial extent
of the separatrices from the helical magnetic �ux

χ(r) = −
ˆ r

rs

(1− q

qs
)Bθdr

+

m/n=qs∑
m

ψm,n(r, t) exp(i(mθ − nφ))
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In this graph the maximal radial extent of the islands
reach up to 10% of the simulation box. They are of the
same order of magnitude as the ones observed in cylin-
drical geometry. It can be seen however that, as in the
3D cylindrical case, the island width dynamics is much
more �uctuating than in the single helicity case.
All modes of suitable parity that are resonant on a

given magnetic surface contribute to the width of the
magnetic island on that surface. On inspection of Fig. 7,
one observes that as discussed in section III, due to the
linear toroidal coupling an island appears on the q = 2
surface immediately after the growth of the (5, 2) mode
around t ' 20000τA ; this island is produced by the (4, 2)
mode. The (2, 1) mode itself grows later ( t ' 30000τA)
due to nonlinear triad interactions. In the �nal steady-
state, the size of the islands in the turbulent edge (q =
2.5) and stable core zones (q = 2) is of the same order of
magnitude, even though the magnetic energy of the (5, 2)
mode is much higher. Moreover, with higher pressure
source level the q = 2 island gets comparatively stronger
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FIG. 8: Magnetic island on the q = 2 surface, at the
end of the simulation

than the q = 2.5 both in terms of size and energetic
content. This is discussed in Sec. IVC

B. In�uence of the input power on the island size

The turbulence is the mediator tapping the free energy
from the pressure gradient and driving the linearly stable
q = 2 magnetic island. This is in contrast with the case
where a current-driven instability occurs in a turbulent
medium: the tearing is then unstable, and in addition
to the direct nonlinear drive, the turbulence might accel-
erate its growth by easing reconnection through anoma-
lous resistivity. In that latter case, turbulence is not the
free energy source. Therefore, a major question concern-
ing turbulence-generated magnetic islands is the depen-
dence of the island size on the turbulence level. Previ-
ous work6,14 using 2D mono-helicity and 3D cylindrical
models have shown the saturated island size to be a lin-
ear function of the quasilinear anomalous heat di�usivity
estimate DQL =

∑γk>0
k

γ
k

k2y
, surprisingly not canceling

in the limit of a vanishing DQL (low turbulence level).
On the other hand, recent work with a linearly unstable

tearing mode have shown the presence of a �nite thresh-
old in the island size for the acceleration of island growth
by turbulence8,10 ; in other words, small islands (below
some threshold) are stabilized by the presence of turbu-
lence. If this result is also valid in the case of a linearly
stable tearing mode, this suggests that no island would
be present at all for low, but �nite, turbulence levels.
Therefore, the parametric dependence of the nonlinearly
generated island size at low turbulence levels should be
addressed. Here we use �ux-driven simulations, where
the steady-state heat �ux corresponds to the integral of
the source through energy conservation, and is thus an
input parameter, as already discussed at the end of sec-
tion II.
We �nd that the island size is proportional to the input

power source (Fig. 9a). For the highest source simula-
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tions, the proportionality breaks down because the is-
land starts to be limited by the radial domain size, even
though the island separatrix remains far from the domain
boundary. Using the above quasilinear estimate, com-
puted from linear simulations using (nonlinear) steady-
state pro�les, doesn't recover the behavior from previous
works (Fig. 9b). Indeed, the island size evolution ap-
pears to be parabolic in DQL. This is a consequence of
the growth rate behavior of interchange-like instability
being proportional to

√
∇P , the most unstable modes

being the same n ' 7 for all cases, and the source (�ux)
being proportional to the gradient (Fig. 3, right).
The main reason for this discrepancy with previous

work is that previous cylindrical simulations were run
without any pressure source maintaining the initial pro-
�le (except at domain boundaries), allowing the pressure
pro�le to relax signi�cantly in the strongly turbulent sim-
ulations. This was checked to be not signi�cantly alter-
ing the stability of the inner zone encompassing the q = 2
surface. However, the relaxed pressure pro�le has led to
lower e�ective turbulence energy input through the linear
terms for high �ux cases than accounted for on the ba-
sis of linear simulations using the initial pro�le, leading
to an overestimate of the turbulence level for the strong
turbulence case. This is evidenced in �g. 10, using the
same parameters as in work by Poyé and co-authors14,
and in particular scanning turbulence level through ρ?
instead of pressure source as well. With the addition of
a pressure source maintaining the initial pressure pro�le,
we �nd that the island size is indeed proportional to the
turbulence level, as in toroidal simulations.

C. In�uence of the input power in the island structure

The dynamics detailed in Sec. III is observed for all
values of input pressure source amplitude, albeit with
slightly varying mode numbers. However, when reach-
ing steady-state, the island is made of a superposition
of various mode numbers in variable proportion. Indeed,
depending on the input power (or pressure source), the
dominant mode at saturation on the q = 2 surface de-
creases from (m = 6, n = 3) at low pressure source to
(m = 2, n = 1) at high pressure source. This is readily
visible in Fig. 8.
In an extreme case for simulations with a very low pres-

sure source (SP . 0.5), a limit cycle establishes where,
when crossing the instability threshold, a perturbation
consisting of a limited number of modes grows, �attens
locally the density pro�le, and disappears. This pertur-
bation is made of a single high n global mode (and its
toroidal harmonics); n = 2 and n = 1 modes do not ap-
pear signi�cantly. Therefore, the negligibly small mag-
netic island on the q = 2 surface is made of a single high
n mode, generated by linear toroidal coupling.
For a slightly higher pressure source (Figure 11, SP =

1), described in Sec. III, the growth of the pressure pro�le
is fast enough that all possible modes have a non vanish-
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FIG. 9: Island size on q = 2surface, as a function of
input power (a), and as a function of a quasilinear

estimate of the turbulent heat di�usivity DQL(b). The
black errorbars correspond to the standard deviation

during the last 5000 τA of the simulation ; the grey bars
represent the min/max values.

ing amplitude ; both the n = 3 and n = 2 perturbation
dominate the nonlinear saturation regime. This produces
oscillating dynamics between n = 3 and n = 2 domi-
nance. Further increasing the pressure source (SP = 1.5)
leads to a n = 2 dominated quiescent regime, then oscil-
lations between n = 3, n = 2 and n = 1 (SP = 2), and
n = 1 dominated regime (3 < SP < 6). In other words,
the �nal island is dominated by harmonics at low pres-
sure source, and by the fundamental for higher pressure
source. Intermediate values lead to oscillating regimes.

One might wonder if this dynamics is speci�c to the
presence and nature of an underlying small scale tur-
bulence. To answer this question, the same simulations
have been run with a slightly altered safety factor pro�le,
such that in all cases the most linearly unstable mode is
the medium-scale (7, 3) mode with tearing parity. Note
that this mode is destabilized only if a pressure gradi-
ent is present. It is located in the outer turbulent zone;
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FIG. 10: Island size on q = 2surface, as a function of
quasilinear estimate of the turbulence level, without
(left) and with (right) a source maintaining the initial
pressure pro�le. Those simulations are performed in
cylindrical geometry, with parameters matching

previous work14.

the inner zone including q = 2 surface is still linearly
stable for all modes. This altered setup allows to keep
the main characteristics of the quasilinear and nonlin-
ear phases (presence of medium-scale mode(s) of tearing
parity) while o�ering distinct advantages. First, we can
ignore the intricacies of the linear phase, such as the na-
ture of the instability, the duration of the linear growth
of various modes from initial conditions, the evolution
of the pressure pro�le, etc. Second, it shunts the early
nonlinear phase, ensuring independence from the details
of the nonlinear process leading to medium-scale modes.
The results, shown in Fig. 12, show more clearly the
same behavior with increasing heat source: single unsta-
ble (7, 3) mode linearly driving (6, 3) through toroidal
coupling (SP = 1), oscillating regime between n = 3 and
n = 2 islands (SP = 1.5− 2), quiescent n = 2 dominated
island (SP = 3), oscillations between n = 2 and n = 1
islands (SP = 4), and �nally n = 1 dominated island
(SP = 6).

The fact that we can recover those results without any
small-scale turbulence indicates �rst that the direct cou-
pling from small-scale modes is not a required mechanism
for the remote generation of large-scale magnetic islands,
and second that the coupling mechanism described here
is very robust : it does not depend on the origin of the
medium-scale modes.

We observe that the growing phase of the (2, 1) mode
is exponential (see �g. 4, bottom right) whatever the
amplitude of the source. More accurately, it consists of
two successive exponential phases. First, an early phase
where the characteristic growth rate γNL2,1 is of the order
of the most unstable mode's linear growth rate γ? (Fig.
13, triangles). It appears in Fig. 4 as the almost sta-
tionary phase between 104τA < t < 2.104τA, and as an
exponential growth for all other higher source cases. It
is closer to γ? for low instability cases, since in this case
the second most unstable mode has a signi�cantly lower
growth rate than the most unstable mode (see �g. 2), and
conversely is closer to 2γ? for more unstable cases. This
quasilinear phase lasts until the saturation of the most
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FIG. 11: Magnetic energy of modes resonant on the
q = 2 surface, for increasing values of pressure source

SP .

unstable mode ; at this point the (2, 1) mode amplitude is
still very small compared its �nal saturation value as dis-
cussed in section III. This �rst phase is therefore of lim-
ited experimental relevance concerning the (2, 1) mode.
Then, a slower growth brings the mode to its �nal ampli-
tude. This second phase exhibits signi�cant �uctuations,
due to the turbulent nature of the energy source, but
still appears to be exponential ; however the associated
growth rate is much lower (γNL ' 2.9 10−3τ−1A for the
case discussed in Sec. III with low source SP = 1; with an
asymptotic value of γNL ' 6.5 10−3τ−1A for higher pres-
sure sources) and seems approximately independent on
either the source �ux or the most unstable mode growth
rate (Fig. 13, stars). This growth rate is also signi�cantly
faster than the inverse resistive time. The reason for this
exponential behavior is unclear : since the energy for the
mode growth is extracted from a steady-state gradient
by an already saturated turbulence, its power is essen-
tially constant in time; therefore, a linear or algebraic
growth would be expected. While such an exponential
growth driven by turbulence has been observed earlier8,
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FIG. 12: Magnetic energy of modes resonant on the
q = 2 surface, for increasing values of pressure source
SP ; the most unstable mode is a tearing-like (7, 3)

mode.

this was before saturation of the turbulence (and for a
linearly unstable mode); exponential growth was there-
fore unsurprising.

The duration of this second step can be much longer
than the inverse linear growth rate of the underlying in-
stability : for example, in the case described in Sec. III,
for a linear growth rate of γ15,6 = 3.4 10−3τ−1A , this
phase has a duration of ∼ 104τA. This phase is however
much shorter at higher pressure source, because more
modes are unstable, and the turbulent spectrum there-
fore reaches steady-state in less coupling steps. More-
over, the doubling of growth rates at each triad coupling
leads to an explosive acceleration of the early nonlinear
phase with high growth rates. Since the duration of the
second phase is given by the ratio of the steady-state am-
plitude of the mode to the amplitude at the end of the
quasilinear phase, it tends to decrease when the initial
quasilinear phase is faster. A quantitative assessment of
the duration of this phase is therefore di�cult, since it
depends on the initial conditions in addition to details of
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FIG. 13: Exponential growth rate of the (2, 1) mode, in
the fast early phase (orange triangles), and in the

following slower phase (red stars)

the linear phase. A two-phase growth of n = 1 mode has
been observed experimentally before4,15; however inclu-
sion of in-situ turbulence and neoclassical e�ects would
be mandatory for a meaningful comparison ; this is left
for future work.

Let us recap the dynamics of the island on the q = 2
surface. Whatever the origin of the modes, the early
magnetic island is a small island dominated by higher
mode numbers. In the second nonlinear phase, the non-
linear couplings feed all possible modes in the system
while the most unstable mode saturates; at the end of
this phase the turbulent spectrum reaches a statistically
steady state, and the magnetic island is dominated by
its �nal steady-state mode number which depends on SP
(more harmonics at low power). The duration of this
phase can be much longer than the inverse linear growth
rate of the underlying instability ; however it is shorter
for higher pressure source.

This long-term evolution could seem to be caused by
pro�le evolution. Indeed, as the �rst unstable modes
grow, the pressure pro�le continues to slowly build up
and could progressively destabilize other modes ; more-
over, the transport associated with the nonlinear phase
leads to a complex evolution of the pressure pro�le be-
fore asymptotic steady-state is reached. One could there-
fore speculate that the dynamics presented in this paper
might be a result of the linear stability evolution con-
trolled by pressure pro�le changes (including nonlinear
coupling to the (m = 0, n = 0) mode). However, the pro-
�le evolution is not responsible for the observed dynam-
ics. In fact, the same behavior appears after an arti�cial
transient damping of all modes of a simulation except the
(m = 0, n = 0) mode ; the recovery of the turbulent spec-
trum, and the buildup of a magnetic island, follows the
same nonlinear evolution in time as the original growth.
This con�rms that the dynamics presented in this paper
are instead features of linear and nonlinear mode cou-
plings.
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V. CONCLUSION

We have analyzed the generation of tearing-stable mag-
netic islands from remote small-scale turbulence with a
�ux-driven 3D three-�eld MHD model. We �nd that
the basic mechanisms laid out in previous works, based
on the nonlinear coupling of medium-scale modes, also
appear in this context, despite numerous di�erences in
the underlying instabilities, mode couplings and trans-
port dynamics. However, the nonlinear saturated is-
land size is found to be proportional to the input power
source, with little to no minimal size. The nonlinear
generation of a magnetic island in a non-turbulent re-
gion happens in two phases. In the �rst phase, a small
magnetic island is generated due to linear toroidal cou-
pling from medium-scale turbulent modes. This phase is
absent from cylindrical simulations. This coupling hap-
pens in the turbulent zone, far from the resonant surface.
The resulting magnetic island is dominated by medium
scale modes (typically n=2 to n=4 in our simulations).
Then, in the 2nd phase, as the turbulent spectrum slowly
evolves and reaches steady-state with respect to largest
scale modes, the magnetic island grows further and ends
up being dominated by a lower mode number. This sec-
ond phase can take a signi�cant time (a few orders of
magnitude more than the inverse growth rate of turbu-
lent modes) for low sources, but is signi�cantly faster for
a high-source case. This long duration makes it possi-
bly accessible to experimental observation. The remote
generation of the magnetic island in this phase happens
through nonlinear mode coupling. The dominant mode
number in the statistical steady-state regime decreases
with increased imposed turbulent �ux. Depending on
the dynamics of the generation of magnetic islands in an
already turbulent plasma, the evolution of the dominant
mode number might be used as an experimental signa-
ture of turbulence-driven magnetic islands.
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