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Abstract

1 - In landscape genetics, habitat connectivity and population genetic structure have been
analysed using graph-theoretic approaches to understand how landscape features influence
demography (i.e. dispersal and population size).

2 - Despite substantial advances in enhancing both genetic and landscape graph use, a soft-
ware tool bringing together a large range of construction and analysis parameters for these
two types of graphs was lacking in the landscape genetic toolbox. Moreover, although these
two types of graphs appear complementary for answering landscape genetic questions, meth-
ods for comparing them have not been forthcoming.

3 - We have developed an R package to improve and encourage the use of these graphs. It
includes functions for converting and importing genetic data and for genetic distance com-
puting. It also implements time-efficient geodesic and cost-distance calculations from spatial
data. A large range of parameters can be used to create genetic and landscape graphs from
these data, including several graph pruning methods. We made available to R users the
command-line facilitaties of Graphab software to easily model landscape graphs in R. The
package functions perform preliminary analysis to adapt methodological choices to research
questions. Landscape and genetic graphs created can be analysed with node-level metrics
as well as link-level and modularity analyses. Users can compare and visualise these graphs
and export them to shapefiles to facilitate interpretation and subsequent analyses.

4 - graph4lg contributes to expanding landscape and genetic graph potential for analysing
ecological connectivity while encouraging further investigations on methodological implica-
tions related to these tools.

1 - En génétique du paysage, la connectivité des habitats et la structure génétique des
populations ont été analysées a ’aide d’approches basées sur la théorie des graphes pour
comprendre comment les éléments du paysage influencent la démographie (i.e. la taille des
populations et la dispersion).

2 - Bien que des progres conséquents aient amélioré 1'utilisation des graphes génétiques et
paysagers, un outil informatique réunissant une large gamme de parameétres de construction
et d’analyse de ces deux types de graphes faisait défaut parmi les outils de la génétique du
paysage. Par ailleurs, malgré 'intérét potentiel de la complémentarité de ces deux types de
graphes pour répondre aux questions de génétique du paysage, des méthodes permettant de
les comparer n’ont pas encore été proposées.

3 - Nous avons développé un package R pour améliorer et encourager 1'utilisation de ces
graphes. Il intégre des fonctions de conversion et d’import de données génétiques et de
calcul de distances génétiques. Il permet aussi de calculer des distances géodésiques et des
distances-coiit a partir de données spatiales. Une importante gamme de parametres peut étre
utilisée pour créer des graphes génétiques et paysagers a partir de ces données, parmi laquelle
on trouve plusieurs méthodes d’élagage. Nous avons rendu accessible 'utilisation du logiciel
Graphab en lignes de commande aux utilisateurs du logiciel R pour faciliter la modélisation
de graphes paysagers dans cet environnement. Les fonctions du package permettent des
analyses préliminaires ayant pour but d’adapter les choix méthodologiques aux questions
de recherche. Les graphes génétiques et paysagers créés peuvent étre analysés avec des
métriques calculées au niveau des nocuds ou avec des analyses des liens ou des modules de
ces graphes. Les utilisateurs peuvent comparer et visualiser les graphes et les exporter sous
forme de couches shapefile pour faciliter 'interprétation et les analyses ultérieures.

4 - graph4lg contribue a étendre le potentiel des graphes génétiques et paysagers pour
I’analyse de la connectivité écologique tout en encourageant de futures recherches sur les
aspects méthodologiques relatifs & ces outils.

Keywords: ecological connectivity, dispersal, graph theory, landscape genetics, R
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1 Introduction

Landscape genetic studies aim at understanding how landscape characteristics such as habi-
tat spatial distribution and matrix quality shape population genetic structure (Balkenhol et al.,
2016; Manel et al., 2003). In this recent field, new methods have been developing at a sus-
tained pace to describe landscape structure (e.g. Galpern et al. (2012)), population genetic
structure (e.g. Al-Asadi et al. (2019); Prunier et al. (2017); Shirk and Cushman (2011)) and to
bring landscape and genetic data together in multi-level analyses (Hall and Beissinger, 2014;
Wagner and Fortin, 2013). Among these methods, graph-theoretic approaches were identified
as particularly relevant (Manel and Holderegger, 2013) because they grasp interactions between
sets of habitat patches or populations in a comprehensive way (Dale and Fortin, 2010; Dale,
2017; Fortin et al., 2012).

A graph is basically a set of nodes connected by a set of links. In landscape ecology, the
use of landscape graphs dates back to the 2000s (Galpern et al., 2011; Urban and Keitt, 2001)
and has developed through the availability of free software tools such as Graphab (Foltéte et al.,
2012) or Conefor (Saura and Torne, 2009). The nodes of landscape graphs are habitat patches
and their links correspond to potential dispersal paths, e.g. identified by computing least-cost
paths across resistance surfaces. From these graphs, a large range of connectivity metrics can
be computed (Rayfield et al., 2011) and used for inference (Pereira et al., 2011) or conservation-
oriented decision making (Foltéte et al., 2014). Besides, landscape graph nodes can be par-
titioned through modularity analyses to identify management units or perform analyses at a
coarser grain (Fletcher Jr et al., 2013; Foltéte and Vuidel, 2017).

Although landscape graphs enable close investigation of habitat connectivity, their construc-
tion often relies upon expert-based opinion and combining them with biological data can im-
prove this approach (Foltéte et al., 2020). Landscape graph modelling software tools already
make possible the import of biological data (Foltéte et al., 2012) and genetic data are a relevant
candidate for such a combination (Luque et al., 2012). Thus, this approach would benefit from
being performed in a statistical software where genetic data processing and complex statistical
analyses can both be done.

Similarly, migration models theorised in population genetics (Kimura and Weiss, 1964; Wright,
1931) often rely upon topological network representations and even if these models rarely reflect
real situations (Greenbaum and Fefferman, 2017; Milligan et al., 2018), population geneticists
have developed a large range of genetic graph construction methods that can potentially fit
all the observed migration networks (Greenbaum and Fefferman, 2017). Thus, population ge-
netic structure has been frequently represented as genetic graphs in which nodes correspond
to sampled populations and links to substantial gene exchanges between them (Arnaud, 2003;
Excoffier et al., 1992).

When building a genetic graph, the construction method should always be guided by the
specific research question (Miele et al., 2019). For example, an important step in this process is
graph pruning, which consists in removing some links and should be performed differently if the
aim of the analysis is (i) to identify single generation (direct) dispersal paths (Boulanger et al.,
2020; Dyer, 2015) or (ii) to infer landscape effects on dispersal from the genetic differentia-
tion measurements between populations connected on the graph (Savary, P. et al., in correction;
Van Strien (2017)). Indeed, in the first case, paths that are not within reach of individuals given
their dispersal capacities should be removed in order to represent the dispersal network topology.
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In the second case, links corresponding to multi-generational indirect dispersal can be conserved
given that they reflect the genetic connectivity emerging over generations due to stepping-stone
dispersal (Boulanger et al., 2020; Saura et al., 2014). In both cases, several graph pruning meth-
ods can be used and must be chosen accordingly (Greenbaum and Fefferman, 2017; Van Strien,
2017). Apart from these link-level analyses, once genetic graphs have been constructed, they
can be analysed at the node- and boundary-levels (Wagner and Fortin, 2013), according to the
research question. For example, node-level metric calculations and module partitions are pos-
sible to assess genetic diversity and relative genetic differentiation at the population level (e.g.
Koen et al. (2016)) and to identify population clustering patterns (e.g. Fortuna et al. (2009)),
respectively.

Then, comparing genetic graph characteristics such as node-level indices, graph topology, link
weights and module partitions to the exact same characteristics derived from a landscape graph
could contribute to a better understanding of the effect of habitat spatial patterns on population
genetic structure. It has therefore been claimed that genetic graphs and landscape graphs should
complement each other (Foltéte and Vuidel, 2017; Galpern et al., 2011; Manel and Holderegger,
2013; Murphy et al., 2015). However, a practical tool for building, analysing and comparing
these graphs was still lacking. Accordingly, we have developed the R package graphdlg to
bridge all these gaps in the implementation of landscape and genetic graphs. It provides graph
users with a software tool facilitating their choice and implementation of graph construction and
analysis methods and builds on previous developments of R packages for landscape genetic and
graph-theoretical analyses such as igraph (Csardi and Nepusz, 2006), gstudio (Dyer, 2014) or
adegenet (Jombart, 2008).

2 Workflow

graph4lg package functions can be divided into four categories following the steps of landscape
genetic analyses:

1. The package allows for genetic and spatial input data processing in preparation for graph
construction, calculating intra-population genetic indices and inter-population genetic and
landscape distances and performing preliminary analyses through diagnostic plots.

2. It provides users with functions for building genetic graphs and analysis tools for these
graphs.

3. In parallel, some 'wrapper functions’ run command-line functionalities of Graphab software
(Foltéte et al., 2012) directly from R to construct and analyse landscape graphs.

4. Finally, genetic and landscape graphs can be compared, plotted and exported to other
formats.

This workflow is described in the following sections and depicted in Figure 1. All the package
functions are also listed in Table S1 with their dependencies on other R packages.
2.1 Input data processing
2.1.1 Genetic data

Studies of gene flow pattern and/or intensity and of landscape influence on it rely upon
neutral genetic markers which reflect genetic variation due to demographic changes and are
supposedly independent from adaptive processes (Holderegger et al., 2006). Microsatellite loci
assumed or identified as being neutral are the most frequent type of markers used in landscape
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genetics (Storfer et al., 2010). Besides, SNP markers are now becoming widespread and can
also be used to perform these analyses provided that loci under selective pressures (identified
as outliers) have been discarded (Cushman et al., 2018; Foll and Gaggiotti, 2008). Accordingly,
graph4lg functions use genetic data with 2- or 3-digit allele coding to fit the common microsatel-
lite coding. SNP data can also be used when loaded as genind object in R, because R objects
with the genind class attribute from the adegenet package (Jombart, 2008) are the input of
genetic data processing functions from graph4lg. Landscape genetic analyses performed with
graph4lg are population-based and like most applications in this field rely on the a priori delin-
eation of populations (Milligan et al., 2018; Waits and Storfer, 2015). Populations are identified
by the pop strata of genind objects and usually correspond to sampling units.

We included conversion functions (gstud_to_genind, loci_to_genind, structure_to_genind,
genepop_to_genind) to easily get genind objects from formats used in other software tools
such as gstudio (Dyer, 2014), pegas (Paradis, 2010), STRUCTURE (Pritchard et al., 2000) or
GENEPOP (Raymond, 1995). We also made possible the creation of external text files in GENEPOP
format from genind objects (genind_to_genepop) for users willing to perform analyses with
this commonly used R package and executable software.

The mat_gen_dist function computes eight different inter-population genetic distances from
genind objects (Table 1). However, ’external’ genetic distance matrices or dist objects imported
by users can be the input of the functions described in the next sections.

2.1.2 Spatial data

Two kinds of pairwise landscape distance matrices can be computed from point spatial co-
ordinates and resistance surface raster layers:

e mat_geo_dist function computes geodesic distances from point sets with either projected
or polar coordinate reference systems using Fuclidean distance or great circle distance
formulas, respectively.

e mat_cost_dist function computes pairwise cost-distance matrices from a point set, a
categorical resistance surface raster layer and a data.frame indicating the cost associated
with each cell value. This function depends on gdistance package (Van Etten, 2012), but
can also use an external .jar file which substantially reduces computation times for large
rasters (Table S2), providing R users with a time-efficient alternative to gdistance for
cost-distance computing.

2.1.3 Preliminary analyses

When the study objective is to infer landscape effects on dispersal from the relationship
between genetic and landscape distances associated with graph links, visualising a scatterplot
using complete distance matrices (scatter_dist) can be a first step before graph construc-
tion. Isolation by distance patterns due to limited dispersal are common in population genetics
(Wright, 1943). However, if the studied species has low dispersal capacities or after a decrease in
landscape connectivity, the increase of genetic differentiation with distance is only observed at
a small scale, which tends to expand over time (Slatkin, 1993). In that case, drift will be more
important than migration as a driver of genetic differentiation between populations separated by
large distances. This results in a non-linear relationship between landscape and genetic distances
exhibiting a plateau beyond a given landscape distance threshold (Hanfling and Weetman, 2006;
Hutchison and Templeton, 1999). Conversely, a linear relationship is expected when equilibrium
is established at the scale of the study area. Because migration-drift equilibrium is a pre-requisite
for genetic differentiation to reflect landscape effects on dispersal, inference ignoring it may be
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biased (Bradbury and Bentzen, 2007; Van Strien et al., 2015). Genetic graph pruning method
determines population pairs included in the inference and should therefore be chosen after con-
sideration of the scale at which populations verify this equilibrium. Similarly, genetic distances
based on fixation indices require equilibrium assumptions to be confirmed so that derived infer-
ences are reliable (Neigel, 2002; Whitlock and Mccauley, 1999).

Van Strien et al. (2015) estimated the threshold distance between population pairs maxi-
mizing the correlation between genetic differentiation and landscape distance. This distance
of maximum correlation (DMC) can be viewed as an estimate of the scale at which popu-
lations verify migration-drift equilibrium, i.e. their neighborhood size (Addicott et al., 1987;
Kierepka et al., 2020). It is computed by the dist_max_corr function (Figure 2A), which can
help choosing among pruning methods (cf. section 2.2.1).

When the objective is to recover direct dispersal paths by taking into account landscape
resistance and maximum dispersal capacities of the study species, it is important to know how
species dispersal distances expressed in geodesic distance units convert into cost-distance values,
especially if geodesic distance thresholds are used to prune the graphs. To that purpose, the
convert_cd function performs a linear or log-log linear regression of cost-distance values against
geodesic distance values (Tournant et al., 2013).

2.2 Genetic graph construction and analysis
2.2.1 Genetic graph construction

The graph4lg package implements a wide range of pruning methods for constructing genetic
graphs. Some of these methods can equally apply to landscape graphs. First, graphs can be
pruned by removing the links between populations separated by genetic or landscape distances
above or below a specified threshold value (gen_graph_thr). Such an approach can be efficient
for identifying direct dispersal paths provided maximum dispersal distance is known. It has also
been used to select population pairs to include in the inference of landscape effects on dispersal
(Angelone et al., 2011; Keller et al., 2013). In that case, the distance threshold can be the DMC
if a clear plateau is identified in the IBD pattern.

Second, when the study species is assumed to have stepping stone dispersal or when migration-
drift equilibrium establishes at short distance, graphs can be pruned depending on topological
constraints (gen_graph_topo), thereby constructing minimum spanning trees, planar graphs,
k-nearest-neighbour graphs and Gabriel graphs (Arnaud, 2003; Bunn et al., 2000; Keller et al.,
2013; Naujokaitis-Lewis et al., 2013). The topological constraints can be applied to matrices of
landscape distances as well as genetic distances. Similarly, the edge-thinning method, linked to
percolation theory, identifies the distance threshold above which graph thresholding breaks the
graph into more than one connected component (Urban and Keitt, 2001; Rozenfeld et al., 2008)
and creates a thresholded graph using this threshold.

Finally, the gen_graph_indep function creates genetic graphs directly from genetic data
stored in genind objects, in the same way as the popgraph function from the popgraph pack-
age. This approach prunes graphs by conserving links between populations that are dependent
on each other based on the covariance of their allelic frequencies, after having looked at the
covariance with allelic frequencies from all the other populations. This use of the conditional
independence principle (Whittaker, 2009) is supposed to conserve links between populations di-
rectly exchanging migrants through single generation dispersal events (Dyer and Nason, 2004).
This function expands the original popgraph function by implementing p-value adjustments
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(Benjamini and Hochberg, 1995; Holm, 1979), among other options compared by Savary et al.
(in correction).

2.2.2 Genetic graph analyses

Once genetic graphs have been created, the compute_node_metric function computes graph-
theoretic metrics such as the degree, closeness and betweenness centrality indices, which identify
keystone hubs of genetic connectivity (Cross et al., 2018). It also computes the average and sum
of the inverse genetic distance weighting the links. Koen et al. (2016) showed that these relative
genetic differentiation indices can be good proxies of connectivity. Apart from these metrics de-
pending on graph topology, population-level genetic diversity indices such as allelic richness and
heterozygosity rates can be computed with the pop_gen_index function from genind objects.
All these metrics can be added as node attributes with the add_nodes_attr function.

Link weights are used to partition nodes into modules (compute_graph_modul) and iden-
tify population clusters possibly delineated by sharp dispersal limitations (Fortuna et al., 2009;
Garroway et al., 2008). We implement several modularity algorithms: fast greedy (Clauset et al.,
2004), louvain (Blondel et al., 2008), optimal (Brandes et al., 2008) and walktrap (Pons and Latapy,
2006) from the igraph package. Link weights can also be exported into data frames for subse-
quent link-level analyses using the graph_to_df function.

2.3 Landscape graph construction and analysis

The graph4lg package integrates the graph construction and analysis options of Graphab
software (Foltéte et al., 2012) by implementing its command-line functionalities. Thus, both the
package documentation and Graphab software manual can be of substantial help for users.

First, the graphab_project function creates a Graphab project from a categorical raster
layer. It defines habitat patches as contiguous cells with a given cell value and creates a di-
rectory containing this project in the user’s machine. Then, the least cost paths between these
habitat patches are computed (graphab_link). Once the Graphab project and link set have
been created, users can create complete, thresholded or planar graphs (graphab_graph). A large
range of connectivity metrics can be computed at the graph or node levels (graphab_metric).
Delta-metrics can also be computed, e.g. for prioritisation analyses. These metrics have been
extensively tested and compared in the literature (Baranyi et al., 2011; Rayfield et al., 2011).

Users can either import planar graphs created in Graphab as igraph objects (graphab_to_igraph)
in order to compute metrics in R, or only import link weights or node-level metrics computed
with Graphab (get_graphab_metric, get_graphab_linkset). In cases when users want to re-
late punctual field observations to connectivity metrics, they can get the metrics of the nearest
habitat patches from a set of points (graphab_pointset). Finally, users can partition habitat
patches through modularity analyses in Graphab (graphab_modul).

2.4 Landscape and genetic graph comparisons

Although landscape and genetic graphs have each been repeatedly used, their direct compar-
ison has rarely been performed (Draheim et al., 2016; Schoville et al., 2018). To facilitate the
interpretation of their respective topology and the formulation and test of hypotheses regarding
their similarities, the plot_graph_lg function allows users to visualise the topology and connec-
tivity of the created graphs (Figure 2D). It maps graphs in a spatially-explicit way or implements
an attraction-repulsion algorithm based on link weights (Fruchterman and Reingold, 1991) to
assess whether nodes cluster together independently from their spatial locations. Node metrics,
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link weights and module partitioning can also be visualised with this function. Moreover, the
link weight distribution can be plotted as a histogram (plot_hist_w)(Fig. 2C) and the pruning
intensity can be visualised by representing population pairs in a different color on the scatter
plot relating genetic distance with landscape distance (scatter_dist_g).

To test the formulated hypotheses, when landscape and genetic graphs share the same nodes,
the correlation between population- or patch-based indices can be assessed (graph_node_compar)
in order to understand the relationship between i) landscape attributes (habitat surface area or
connectivity) and ii) genetic attributes (genetic differentiation or local diversity).

Similarly, the graph_topo_compar function compares the topologies of two graphs (link-
based analysis) by creating a contingency table (based on the presence/absence of correspond-
ing links in both graphs) and computing indices commonly used to assess classifications (e.g.
Matthews’ correlation coefficient, false discovery rate, accuracy). The congruence of two graph
topologies can be visualised by plotting them on the same map while colouring their links to indi-
cate whether they occur in both graphs or just one of them (graph_plot_compar). Mismatches
between genetic and landscape graph topology can provide insights regarding the realised con-
nectivity in the study area or the modelisation method itself.

Finally, quantifying how many node pairs classified in the same module in one graph are also
classified together in the modules created from another graph indicates us how far these graphs
reflect the same real-world situation. This boundary-based analysis is made possible by the
graph_modul_compar function which computes the Adjusted Rand Index (Hubert and Arabie,
1985) to compare partitions.

3 Export facilities and included data

The graphs can be exported to shapefile layers for integration into a GIS (graph_to_shp) and
analyses involving other types of geographical data. Included genetic and spatial data can be
used to discover the functionalities of the package. We included a data set created from simula-
tions with cDPOP(Landguth and Cushman, 2010) on a simulated landscape (data_simul_genind).
It consists of 1500 individuals from 50 populations genotyped at 20 microsatellite loci. This
dataset exhibits a typical type-IV pattern of IBD and was used to create Figure 2 and the
tutorial presenting the package.

4 Limits and conclusion

Landscape and genetic graphs have great potential for analysing ecological connectivity and
we do not claim to have compiled an exhaustive set of graph construction and analysis meth-
ods. Other pruning methods have been developing (Brooks, 2006; Greenbaum et al., 2016;
Kininmonth et al., 2010; Milligan, prep; Peterson et al., 2018) and could be expanded to di-
rected graphs for example. Besides, a large range of local metrics inspired from the metapopula-
tion theory have been developed for landscape graphs and could similarly inspire genetic graph
local metrics. Graph-based analyses could also benefit from significance testing approaches
through permutations to enhance their robustness. Finally, although Graphab software can ef-
ficiently handle very large spatial data sets (Foltéte et al., 2012), genetic graph modelling can
involve higher computational costs, thereby limiting this approach to smaller spatial and genetic
datasets. Further development of the package could introduce improvements.
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Our first goal in developing graph4lg is to bring together and make accessible a large range
of methods currently used in landscape genetics for constructing and analysing graphs. We hope
this package will foster the use of genetic and landscape graphs as well as further investigation
regarding theoretical as well as methodological aspects.
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8 Tables and figures

Genetic distance Description Eq. Depend. Ref.

Fgr Fixation index Yes diveRsity Weir and Cockerham
(1984)

Linearised Fgr Linearised fixation index Yes diveRsity Rousset (1997)

G’st Standardised fixation index Yes diveRsity Hedrick (2005)

Djost Standardised fixation index Yes diveRsity Jost (2008)

Dpsg 1 - proportion of shared alleles No None Bowcock et al.
(1994), implemen-
tation of MSA
software  formula
(Dieringer and Schlétterer,
2003)

Fuclidean genetic Computed from allelic frequen- No None Excoffier et al.

distance cies differences (1992)

Weighted Eu- Computed from allelic frequen- No None Fortuna et al.

clidean genetic cies differences giving more (2009);

distance weights to rare alleles Greenbaum et al.
(2016)

PCA-derived Eu- Inter-population distance in the No None Inspired by the

clidean genetic space defined by the princi- distances computed

distance pal components obtained from a by  Paschou et al.
PCA of the allelic frequencies ta- (2014) and
ble Shirk et al. (2017)

popgraph-derived Inter-population distance in the No None Dyer and Nason

genetic distance

space created after a PCA of the
allelic frequencies table

(2004)

Table 1: Inter-population genetic distances computed with the mat_gen_dist function. The ’Eq.’ column
indicates whether the genetic distance implies that migration-drift equilibrium assumptions are made. The
"Depend.” column indicates the R packages on which the function depends for each genetic distance.
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Figure 2: Diagnosis plots (A, B) and genetic graph analysis plots (C, D) produced with the datasets
data_simul_genind and pts_pop_simul obtained after a simulation on cDPOP(Landguth and Cushman, 2010).
A) Identification of the distance of maximum correlation (DMC) (Van Strien et al., 2015) with the
dist_max_corr function. Here, the DMC corresponds to the dashed vertical line on plots A and B. B) Scatter
plot produced with the scatter_dist_g function representing the relationship between genetic distance (Dpg)
and cost-distance. The grey shaded region around the smoothed line corresponds to the 95 % confidence interval
of the smoothing function. The black dots represent population pairs connected in the Gabriel graph. C)
Histogram of the genetic distances separating the population pairs connected in the Gabriel graph produced
with the plot_w_hist function. D) Gabriel graph mapped with the plot_graph_lg function. Link width is
inversely proportional to the genetic distances weighting the links. Node size is proportional to the connectivity
metric Flux derived from the corresponding landscape graph. Node color indicates the module to which pertains
every node after a modularity analysis using compute_graph_modul.
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