

Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland

Jérémy Gauthier, Mila Pajkovic, Samuel Neuenschwander, Lauri Kaila, Sarah Schmid, Ludovic Orlando, Nadir Alvarez

▶ To cite this version:

Jérémy Gauthier, Mila Pajkovic, Samuel Neuenschwander, Lauri Kaila, Sarah Schmid, et al.. Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland. Molecular Ecology Resources, 2020, 20 (5), pp.1191-1205. 10.1111/1755-0998.13167 . hal-03030325

HAL Id: hal-03030325 https://hal.science/hal-03030325

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2 3	Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland
4 5	Jérémy Gauthier ^{1§} , Mila Pajkovic ^{2§} , Samuel Neuenschwander ³ , Lauri Kaila ^{4,} , Sarah Schmid ^{2,5} ,
6	Ludovic Orlando ^{6,7} , Nadir Alvarez ^{1,2*}
7	
8	
9	¹ Geneva Natural History Museum, 1208 Geneva, Switzerland
10	² Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
11	³ Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
12	⁴ Finnish Museum of Natural History, Zoology Unit, P.O.Box 17, FI-00014, University of Helsinki,
13	Finland
14	⁵ Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
15	⁶ Laboratoire AMIS CNRS UMR 5288, Faculté de Médecine de Purpan-37 allées Jules Guesde,
16	Bâtiment A, 31000 Toulouse, France
17	⁷ Globe Institut, Lundbeck Foundation GeoGenetics Centre, University of Copenhagen, Øster
18	Voldgade 5-7, 1350 Copenhagen, Denmark
19	
20	
21	§ These authors contributed equally to this work and are considered as joint first authors.
22	
23	
24	Corresponding author contact details : Nadir Alvarez, Geneva Natural History Museum, 1208
25	Geneva, Switzerland ; email: nadir.alvarez@ville-ge.ch.

26

27 Abstract

28 Erosion of biodiversity generated by anthropogenic activities has been studied for decades and in many areas at the species level, using taxa monitoring. In contrast, genetic erosion within species 29 has rarely been tracked, and is often studied by inferring past population dynamics from 30 31 contemporaneous estimators. An alternative to such inferences is the direct examination of past 32 genes, by analyzing museum collection specimens. While providing direct access to genetic 33 variation over time, historical DNA is usually not optimally preserved, and it is necessary to apply 34 genotyping methods based on hybridization-capture to unravel past genetic variation. In this manuscript, we apply such a method, i.e., HyRAD, to large time series of two butterfly species in 35 Finland, and present a new bioinformatic pipeline, namely PopHyRAD, that standardizes and 36 37 optimizes the analysis of HyRAD data at the within-species level. We show in the localities for 38 which the data retrieved has sufficient power to accurately examine genetic dynamics through time, 39 that genetic erosion has increased across the last hundred years, as revealed by signatures of allele extinctions and heterozygosity decreases, despite local variations. In one of the two butterflies, i.e., 40 41 *Erebia embla*, isolation by distance also increased through time, revealing the effect of greater 42 habitat fragmentation over time.

43

44 Keywords

45 Population Dynamics, HyRAD, Past Gene Frequencies, Lepidoptera, Museomics

46

47

48 Funding

This research was funded by the Swiss National Science Foundation grants PP00P3_144870 and
PP00P3_172899 awarded to Nadir Alvarez.

51 Acknowledgements

We are grateful to Christophe Dufresnes, Tomasz Suchan, Camille Pitteloud and Kimmo Saarinen for their invaluable help in the field, to Nils Arrigo for bioinformatic support, to Stéphanie Manel for advice in distance-based redundancy analysis, and to Jérôme Goudet for support during early development of the PopHyRAD pipeline and for commenting on this manuscript. We thank the Lausanne Genomic Technologies Facility (LGTF) for the sequencing service as well as two anonymous reviewers for their useful comments that led us to improve our manuscript.

58 Data accessibility statement

59 Sequence reads are archived at Zenodo : <u>http://doi.org/10.5281/zenodo.3668644</u> for *Erebia embla*

60 and http://doi.org/10.5281/zenodo.3668660 for Lycaena helle. Scripts for the whole analytic 61 process have been uploaded to Github 62 (https://github.com/JeremyLGauthier/Scripts Gauthier et.al 2019 MER). The PopHyRAD pipeline is constantly under development and improvement. Current version can be found at 63 64 https://github.com/JeremyLGauthier/PHyRAD).

65 Author contributions

NA and MP designed the study. MP and LK performed sampling. MP performed labwork. JG
analyzed the molecular data, with contributions from SN, MP, NA, LO and SS. All authors took
part in discussions concerning the analyses and result interpretations. JG and NA wrote the paper,
with contributions from all authors.

70

71 Introduction

72 An increasing number of studies reveals that a dramatic collapse of biodiversity has been on-going 73 since the early 20th century, and that decay rates have accelerated over the past 50 years (e.g. 74 (Johnson et al., 2017); (de Oliveira Roque et al., 2018). There is no doubt that this global on-going crisis of biodiversity loss is due to anthropogenic factors that have transformed the species' habitat, 75 76 and caused a decrease in population sizes, with potential long-term consequences on local or global 77 extinction. Many studies have highlighted the consequences of this extinction in terms of erosion 78 of species diversity for decades (e.g. Ceballos, Ehrlich, & Dirzo, 2017; Ehrlich, 1995), which 79 provided the basis for international reports assessing the state of biodiversity and the ecosystem 80 services it provides to society (e.g. the Intergovernmental Platform on Biodiversity and Ecosystem Services, IPBES; https://bit.ly/IPBESReport). It is, however, only recently that observations and 81 empirical approaches have shown that biomass, and by extension, population sizes have also 82 83 declined significantly over the last 50 years, especially for insects, resulting in multi-trophic 84 cascades affecting the biomass of many insectivorous species (Karp et al., 2013). In particular, Hallmann and colleagues (2017) have measured insect biomass during 27 years in 63 German 85 86 localities, and found a more-than-three-quarters decline in this short time span, which represents 87 an average 3% drop per year. Similarly, Lister & Garcia (2018) reported a decrease of more than 90% of the terrestrial arthropod biomass and 80% of that of the canopy over the last 36 years in 88 89 Puerto Rico, which has in turn strongly reduced the abundance of predator populations of lizards, 90 frogs and birds. Anthropogenic factors including land-use change (habitat destruction), climate 91 change, pesticides and fertilizers use in agriculture, chemical contamination (Whiteside & Marvin 92 Herndon, 2018), light pollution, invasion by exogenous species (Sánchez-Bayo & Wyckhuys, 93 2019; van Strien, van Swaay, van Strien-van Liempt, Poot, & WallisDeVries, 2019), and wireless 94 communication systems (Thielens et al., 2018), are strong candidates for the recognized95 insectageddon.

96 These various anthropic factors will impact the populations at different intensities ranging from reduction of their size to local extinction. The reduction of population sizes will have several 97 consequences. A reduction of effective population size (Ne) will cause a loss of the genetic 98 99 diversity, i.e. the number of alleles in the populations, thus decreasing both neutral variation and 100 adaptive potential. In addition, shrinking populations will experience increased allele extinction 101 due to inbreeding that causes allele fixation by genetic drift. In addition, inbred populations will 102 tend to accumulate deleterious alleles and such a mechanism, referred to as inbreeding depression, 103 will further decrease the average fitness of a population (Keller & Waller, 2002; Kristensen, 104 Pedersen, Vermeulen, & Loeschcke, 2010). Furthermore, the extinction dynamics will weaken the connectivity network between remaining populations and thus reduce overall gene flow. This will 105 106 increase their divergence and prevent their capacity to exchange potential adaptive alleles. The 107 combination of these mechanisms will further decrease the population persistence likelihood over 108 time (Bouzat, 2010).

109 Empirical data providing time series of abundance data and genetic diversity remain, however, 110 scarce, which limits our ability to precisely infer the recent demogenetic trajectory of most 111 populations. A variety of indirect proxies can help overcome the general lack of long-term 112 abundance data across taxa to estimate the recent demographic trajectories. For example, the 113 genetic information present in museum specimens collected across the last decades or even 114 centuries provides a unique opportunity to obtain temporal snapshots of past population genetic 115 diversity and quantify the extent and dynamics of the current biodiversity crisis (Jensen et al., 2018; 116 Meineke, Davies, Daru, & Davis, 2018; Ryan et al., 2018). It is estimated that the number of 117 museum specimens collected around the world exceeds 1 billion individuals, and covers 118 approximately 1.2 million species (Pyke & Ehrlich, 2010). The molecular diversity present in these 119 specimens can help assess population sizes through time but signatures can also help track 120 adaptation to changing environments (Hoffmann, Sgrò, & Kristensen, 2017). These approaches 121 can thus both help define conservation priorities and estimate the future resilience to ongoing 122 environmental change.

123

124 Analyzing DNA contained in Museum collections (hereafter referred to as historical DNA), is, 125 however, not devoid of difficulties owing to post-mortem decay reactions fragmenting the DNA 126 backbone and modifying the chemical nature of individual nucleotidic bases (Dabney, Meyer, & 127 Pääbo, 2013). The extensive fragmentation of historical DNA molecules precludes widely-used 128 conventional genetic analyses, such as high-density array genotyping (Decker et al., 2009) and 129 RAD-Seq (Linck, Hanna, Sellas, & Dumbacher, 2017). Over the past decade, a number of 130 alternative molecular methods have been developed to gather historical DNA data at population 131 and genome-wide scales (reviewed in Burrell, Disotell, & Bergey, 2015; Horn, 2012; Orlando, Gilbert, & Willerslev, 2015). These most often rely on the construction of next-generation 132 133 sequencing DNA libraries, and the capture of those DNA library templates annealing to short 134 synthetic nucleic acid baits spread across pre-defined loci of interest. This rationale was applied in 135 2016 to target GBS or RADseq loci, either through bench-top synthesized probes (ie, HyRAD; 136 Suchan et al., 2016), or commercially-produced synthetic GBS or RADseq oligonucleotides (Ali 137 et al., 2016; Boucher, Casazza, Szövényi, & Conti, 2016; Hoffberg et al., 2016; Sánchez Barreiro 138 et al., 2017). These methods generally improve the quality of the genotypic information retrieved 139 by increasing the overall average depth-of-coverage and reducing the fraction of loci for which no

data could be obtained (Suchan et al., 2016). The HyRAD method, which leverages standard
ddRAD protocol (Mastretta-Yanes et al., 2015) to prepare a set of DNA probes from fresh samples,
has proven especially versatile in its applications to ancient (Schmid et al., 2017) and historical
DNA (Schmid et al., 2018; Suchan et al., 2016), and for obtaining genome-wide data at the
population scale in a cost-effective manner.

145

146 The museum collections of Finland, in particular the Finnish Museum of Natural History in 147 Helsinki (Luonnontieteellinen keskusmuseo Luomus), contain approximately 22 million 148 specimens collected during the last centuries (Tegelberg, Haapala, Mononen, Pajari, & Saarenmaa, 2012). This provides a fantastic opportunity to obtain time series molecular data across a range of 149 150 species, including butterfly taxa that have declined over the past century. This is notably the case 151 of *Erebia embla*—a northern European and eastern Palearctic species found in bogs—which has 152 experienced a strong decrease in Southern Finland, following the extensive drainage of its habitat 153 (Rassi, Hyvärinen, Juslén, & Mannerkoski, 2010). The same holds true for Lycaena helle, an arctic-154 alpine Palearctic species inhabiting fresh, damp meadows, which shows a patchy distribution throughout Europe and has declined throughout most of its range, especially in Finland, where it 155 156 remains present in only two sites, Kuivaniemi Simo and Kuusamo (Heino, Poykko, & Itames, 157 1998).

In this study, we aim to examine how the genetic structures and diversities of *E. embla* and *L. helle* have been impacted by recent environmental changes and human activities, relying on HyRAD data generated from 118 and 165 museum specimens, respectively, collected across the last century as well as from extant populations. To achieve this, we developed a pipeline, namely PopHyRAD, that (1) aligns each sequence read against the probe catalog (including reference genomes when 163 available, or probe sequences provided by users), (2) identifies and controls for deamination 164 patterns (typical of historical DNA), (3) eliminates putative paralogs, PCR duplicates, low quality 165 genotypes and indels, and; (4) keeps only bi-allelic loci for downstream analyses. We then 166 investigated the spatial and temporal dynamics of genetic diversity indices as well as isolation by 167 distance in the two above mentioned butterflies, both locally and regionally.

168

169 Material and Methods

170 *Sampling*

Historical samples of *L. helle* and *E. embla* were sampled among the Lepidoptera collection of the Finnish Museum of Natural History in 2014 and 2015. Fresh samples were collected following field work in Summer 2015, by capturing flying adults with a net, sampling and storing a single leg in EtOH 95%, before releasing alive individuals. The sampling details are given in Table 1, and illustrated in Figure 2.

176

177 DNA extraction and HyRAD protocol

The HyRAD protocol was carried out according to Suchan et al. (2016). Briefly, for historical and 178 179 fresh samples, DNA was extracted from a leg using the QIAamp DNA Micro kit (Qiagen, 180 Hombrechtikon, Switzerland). The probe precursors were prepared using a double-digestion RAD 181 protocol (ddRAD) applied to six fresh samples from each focal species (Mastretta-Yanes et al., 182 2015; Peterson, Weber, Kay, Fisher, & Hoekstra, 2012). Total genomic DNA was digested with 183 the restriction enzymes SbfI and MseI, DNA adapters were ligated and the resulting library was 184 purified, size-selected with a range of 200bp to 250bp and amplified by PCR for 30 cycles. An 185 aliquot of the final library was sequenced on one lane of Illumina MiSeq 150 bp paired-end at the Lausanne Genomic Technology Facility (LGTF) in order to obtain a sequence catalog of the loci
represented in the ddRAD probes, and the rest of the library was converted into probes by removing
adapter sequences.

189 Individual Illumina DNA libraries were prepared from the fresh and museum specimens based on 190 a published protocol for degraded DNA samples (Tin, Economo, & Mikheyev, 2014). 191 Hybridization-capture and enrichment was performed as described in Schmid et al. (2017), using 192 a dual-indexing tagging, i.e., with different combinations of barcodes and indexes, allowing 193 extensive multiplexing of samples on a single sequencing lane : in L. helle, 9 and 25 indexes and 194 barcodes were used, respectively; while 10 and 25 were used in *E. embla*, respectively. For each butterfly species, the final (capture-hybridized) enriched libraries were sequenced on two lanes of 195 196 HiSeq 100 bp paired-end at the LGTF.

197

198 *popHyRAD bioinformatic pipeline*

199 The sequence pairs generated from the ddRAD probe libraries, were first cleaned and overlapping 200 reads were collapsed using AdapterRemovalv2 (Schubert, Lindgreen, & Orlando, 2016). Then 201 a first dataset reduction was performed following the first step of the dDocent pipeline (Puritz, 202 Hollenbeck, & Gold, 2014), keeping only alleles covered by at least four reads and, thus, removing 203 the vast majority of sequencing errors. We merged intra-individual loci using cd-hit-est from 204 the CD-HIT tool (Fu, Niu, Zhu, Wu, & Li, 2012) using a minimum identity threshold of 90%. This 205 step was repeated across samples to produce a combined catalog of all loci identified for a given species. Loci shared by at least half of the probe samples (i.e. three out of six) were kept to remove 206 207 uninformative specific loci. The absence of contamination in the catalog was evaluated using 208 Centrifuge (Kim, Song, Breitwieser, & Salzberg, 2016).

209 Reads from each historical sample were cleaned using Trimmomatic (Bolger, Lohse, & Usadel, 210 2014) and individually mapped on the loci catalog generated above using bwa aln (Li & Durbin, 211 2009). PCR duplicates were removed using MarkDuplicates from the Picard toolkit 212 (http://broadinstitute.github.io/picard). Nucleotide mis-incorporation patterns were investigated 213 using MapDamage2.0 (Jónsson, Ginolhac, Schubert, Johnson, & Orlando, 2013), and base 214 quality scores were rescaled according to their probability to represent a post-mortem DNA 215 deamination event in order to reduce the impact of DNA decay on downstream analyses. Finally, 216 individual genotypes were called using freeBayes (Garrison & Marth, 2012), and considered 217 for further analyses when (1) showing qualities higher than 100, (2) shared by at least 80% of the 218 samples, and (3) biallelic (Figure 1). This complete pipeline has been implemented under the name 219 PopHyRAD, with "Pop" standing for Population genetics.

Although bwa alm is the recommended tool for ancient DNA analysis (Schubert et al., 2012), we evaluated the performance of two other mapping tools, namely bwa mem (Li, 2013) and bowtie2 (Langmead & Salzberg, 2012). Similarly, we evaluated the possible impact of the genotyping method on downstream analyses using varscan (Koboldt et al., 2009).

224

225 *Population genetics analyses*

Allelic frequencies, Observed gene diversity (Hs) and Inbreeding level (FIS) were estimated using the R package hierfstat (Goudet, 2005). The frequency of fixed alleles, which is a proxy of the frequency of allele extinction, was estimated using a custom script. For these estimations only localities with more than 8 samples were kept. These estimations were performed after the samples were binned within temporal groups (or time slices). More precisely, we merged samples from each geographic location within three time slices: before 1950, between 1950 and 2000 and present samples (i.e. 2015; see details in Table 1). Additionally, we merged all samples from all locationswithin the same temporal bins to identify patterns at the whole scale of Finland.

234 Population genetic structure was investigated using a subset of SNPs, where only one SNP per 235 locus was considered so as to minimize linkage disequilibrium (i.e., to minimize redundant 236 information), as generally recommended (Falush, Stephens, & Pritchard, 2003). We used Bayesian 237 admixture analysis implemented in Structure (Pritchard, Stephens, & Donnelly, 2000) to 238 estimate admixture proportions, that is, the proportion of each individual's genome inherited from 239 each of K hypothetical source populations. We ran analyses with K from 1 to 5 with 10 independent 240 Markov chains each, using 1,000,000 steps and including 50,000 burn-in steps. We checked 241 visually the results obtained in each run to assess whether the Markov chains were convergent. The 242 most likely number of clusters was identified using Evanno's method (Evanno, Regnaut, & Goudet, 243 2005) implemented in Structure Harvester (Earl & vonHoldt, 2012). Then each sample 244 was associated to the corresponding cluster and the proportion of the samples present in each cluster 245 was drawn on the Finland map using pie charts.

246 Isolation-by-distance was tested by examining the correlation between genetic differentiation, 247 FST/1-FST, using FST estimations between population pairs performed with hierfstat (Goudet, 2005), and the log-transformed distance, as suggested by Rousset (1997). Due to the ongoing 248 249 debate in using Mantel tests for IBD examination (Diniz-Filho et al., 2013), we used a simple 250 Spearman's correlation. To corroborate the role of geographic distance as well as time in the 251 differentiation between localities by using another approach than a simple Spearman's correlation, 252 we also performed distance-based redundancy analysis (dbRDA) integrating geographic variables 253 and year of collection, in an individual-based approach, following recommendations from Laura 254 Benestan (unpublished data; https://github.com/laurabenestan/db-RDA-and-db-MEM). First, we created spatial variables using Moran Eigenvector's Maps (MEMs) implemented in adespatial
R package (Dray, Blanchet, Borcard, Guenard, & Jombart, 2016). Second, a Principal Coordinates
Analysis (PCoA) was performed on the Euclidean genetic distances based on genotypes of each
sample. Finally a global dbRDA was applied by integrating the year of collection as an additional
variable to spatial components, and an ANOVA with 1000 permutations was performed to assess
significance of each variable within the model using vegan R package (Oksanen, Kindt,
Legendre, & O'Hara, 2016).

262

263 **Results**

264 *HyRAD efficiency*

265 The HyRAD wetlab and popHyRAD bioinformatic pipeline developed for this study were 266 particularly efficient in retrieving DNA sequences of historical samples collected up to more than 267 100 years ago and stored in museum conditions. The analysis of ddRAD data used for designing 268 the probes allowed to obtain sufficient data at 3,826 loci for E. embla and 3,443 for L. helle, which 269 allowed us to undertake population genomic analyses. In addition, the identification of deamination 270 patterns at the extremities of the reads from the collection samples and not in the fresh samples 271 confirmed the endogenous nature of DNA present in these historical samples (Supplementary 272 Figure 1).

273

274 Mapping and SNPs calling comparison

We first aimed at testing whether different read alignment procedures could impact on the amount of HyRAD data retrieved. Bwa aln was able to align only a limited number of reads against the catalog of HyRAD probes, representing a mean of 11.2% (sd 6.7) across all samples This proportion was improved to 37.1% (sd 8.1) when using bwa mem (Supplementary Table 2).
Bowtie2 showed intermediate efficiency with a mean value of 18.3% (sd 7.9) across all samples.
These differences, however, decreased after quality filtering, with bwa all showing 6.9% (sd 2.0) of mapped reads, bwa mem 12.1% (sd 4.8) and bowtie2 11.0% (sd 2.8).

We also observed broad differences between methodologies aimed at calling genotypes. We counted the total number of positions covered by at least 80% of the samples and showing biallelic SNP polymorphisms. This number was maximal when combining bwa mem alignments and varscan genotype calling, representing a total of 10,116 SNPs from 1,289 loci in *E. embla* and 11,534 SNPs from 1,241 loci for *L. helle*. The number was minimal when bwa aln alignments and freebayes genotype calls were combined, which led to the identification of 2,742 SNPs from 869 loci for *E. embla* and 2,549 SNPs from 1,015 loci for *L. helle*.

289 For each of these six combinations (three mappers and two SNP callers), we applied the complete 290 pipeline and subsequently estimated genetic diversity statistics. We observed that these statistics 291 were extremely variable according to the SNP calling tool used, especially the inbreeding 292 coefficient (FIS) (Supplementary Figure 2). With varscan, a large proportion of the SNPs 293 demonstrate an inbreeding coefficient below zero with a non-normal distribution, while the normal 294 distribution obtained from freebayes is more consistent with biological expectations. 295 Therefore, we decided to utilize the conservative dataset obtained using freebayes on the 296 mapping generated by bwa aln, despite being associated with an overall smaller number of SNPs; 297 and implemented freebayes and bwa aln as the standard caller*mapper combination in the 298 PopHyRAD pipeline.

299

300 Patterns of population declines

To investigate genetic patterns associated with population size reduction, we focused our analyses on three descriptive statistics, (i) the observed gene diversity (Hs), (ii) the frequency of fixed alleles, and (iii) the inbreeding coefficient (FIS). Results are depicted in Figure 3.

304 For *E. embla*, sufficient temporal data could only be retrieved for three localities, i.e. Kuusamo, Muonio and Pelkosenniemi. These indicated reduction of the observed gene diversity (Hs) and the 305 306 frequency of fixed alleles through time. This overall reduction is, paradoxically, associated with a 307 sharp increase of the inbreeding coefficient at only one locality, i.e. Kuusamo. For L. helle, only 308 one locality, i.e. Kuusamo Liikasenvaara, was sampled at different time points. It showed a 309 dynamic diversity trend where the observed gene diversity (Hs) and the frequency of fixed alleles 310 were relatively stable between the 1920s and the 1990s, but declined after the 1990s. In contrast, 311 the inbreeding coefficient (FIS) was found to decrease between the 1920s and the 1990s and to 312 sharply increase since.

Grouping all samples within three main time slices (i.e. before 1950, between 1950 and 2000 and in 2015) increased the sample size of each locality and reinforced the observations made above (Figure 4). Indeed, we observed a decrease of the observed allelic richness (Hs) over time in both species, concomitant with an increase in the frequency of fixed alleles.

To investigate whether the patterns observed at the local level were retrieved at the global level (i.e. throughout Finland), we merged all the samples within the three time slices considered above, regardless of their geographic origin. This provided an opportunity to retrace the temporal trajectory of the Finland-wide genetic diversity present in both focal species. We found that the observed gene diversity decreased through time and that the frequency of fixed alleles increased, especially in the most recent time period (Figure 5).

323

324 *Genetic structure and isolation by distance*

325 To investigate the mechanisms that may explain the observed decrease in genetic diversity and the 326 increase in the inbreeding coefficient (FIS), we studied the spatial genetic structure of populations, 327 which only revealed a faint structuring (Figure 6). In contrast, a more marked pattern of spatial 328 structuring was retrieved in the Isolation by distance (IBD) analysis, revealing a varying correlation 329 between genetic and geographic distances over time (Figure 7). Before 1950, no correlation 330 between genetic and geographic distances was found in any of the two species investigated. 331 Between the 1950s and the 2000s, a significant correlation between genetic and geographic 332 distances was found for E. embla. The level of the correlation and the associated slope increased 333 further when considering the modern time period (year 2015), suggesting an increasing spatial 334 structuring from 1950 onwards, likely in relation with increased habitat fragmentation. No 335 significant correlation could be retrieved in L. helle in any of the two historical time periods 336 considered (this correlative analysis could not be carried out for modern times, as only two extant 337 populations are known) (Figure 7). Despite an overall low level of genetic structuring through 338 space and time (overall \mathbb{R}^2 of 0.95% and 1.52%, based on 1 temporal and 8 spatial axes, for E. *embla* and *L*. *helle*, respectively), the dbRDA approach indicated a significant impact of time (P =339 340 0.002) to explain populations differentiation, as well as a fainter effect of 3/8 spatial variables for 341 E. embla and 2/8 spatial variables for L. helle, although with respective contributions of spatial variables to the overall R^2 remaining < 0.5% (see Supplementary Table 3). 342

343

344 Discussion

345 *A direct estimation of genetic variation across the past*

The study of past population dynamics has received a lot of scholar attention in recent decades 346 347 (e.g., Bi et al., 2019; Nadachowska-Brzyska, Li, Smeds, Zhang, & Ellegren, 2015; Tallavaara, 348 Luoto, Korhonen, Järvinen, & Seppä, 2015). Those studies classically identify the most likely 349 demographic model underlying the allelic frequency spectrum measured in modern specimens 350 (Csilléry, Blum, Gaggiotti, & François, 2010; Espíndola et al., 2012; François & Durand, 2010). 351 These demographic inference approaches are, however, often limited as different models can 352 produce similar allelic frequency spectrum and summary statistics, and cannot be discriminated 353 (Lapierre, Lambert, & Achaz, 2017). In contrast, genomic data from historical specimens catch 354 evolution red-handed, and can help overcome such limitations by providing direct snapshots of the 355 past genetic diversity present in a population.

356 In this study, we collected a large sample set of two butterfly species spread across Finland, and 357 spanning the last ~120 years. This sampling provided us with an unique opportunity to quantify the 358 variation of the genetic diversity in both species at a time when their distribution drastically 359 declined (Rassi et al., 2010). We have benefited from the HyRAD genome-complexity-reduction 360 method to obtain genetic data from these valuable samples. HyRAD has been increasingly used in 361 different labs, not only to identify genetic variation in historical material (Crates et al. 2019; 362 Keighley et al. 2019; Linck et al., 2017; Linck et al. 2019; Schmid et al., 2017), but also in ancient 363 DNA (Schmid et al., 2017). Indeed, these methods based on hybridization capture allow to retrieve 364 very small quantities of degraded DNA, which often remain unquantifiable before capture 365 (Supplementary Table 1). The amount of DNA in historical samples and the ability to extract, 366 capture and sequence it depends on the history of the sample, the conditions of collection, sample 367 preparation including drying, pinning etc., and storage. Unfortunately, for most of our historical 368 samples we do not have access to such an information. However, in this study we were able to 369 perform the entire process from historical specimen subsampling to SNP calling for ca. 75% of the 370 samples analyzed from both species, thus suggesting that it is compliant with most preparation 371 histories.

372 For this study we developed a specific pipeline, PopHyRAD, to exploit to the maximum the genetic 373 information contained in samples. For now, the PopHyRAD computational pipeline released here 374 facilitates HyRAD sequence analysis at the within-species level by automating the steps underlying 375 read cleaning, trimming and merging, as well as read mapping, and probes clustering. This pipeline 376 is versatile, and can be used to analyze any type of hybridization-capture data, using either probes 377 from ddRAD or another RAD-seq protocol, or any tool able to reduce genomic complexity such as 378 selective extraction of organellar genomes or amplification of specific genes. The catalog definition 379 and the rest of the analytical workflow were so far essentially empirically explored (or a posteriori 380 chosen), considering the outputs, and thus the tools that provided the best geographic or 381 phylogenetic structure (Schmid et al., 2018). Here, we take the opportunity to test more accurately 382 the performance of aligners and SNP-callers on HyRAD data, using different tool combinations, 383 and using a realistic criterion from the point of view of population genetics, namely the FIS. These 384 results revealed large differences on the SNPs identified and on the estimation of the genetic 385 diversity and the inbreeding coefficient and suggested the bwa aln read aligner and the 386 freebayes SNP caller as the most conservative combination. The non-biologically relevant FIS 387 values obtained with other combinations are likely to be due, at least partially, to increased false 388 positive alignment rates (e.g. mis-identified paralogs) as well as to the oversplitting of loci, i.e a 389 locus separated in two loci in the catalog. This type of difference has already been highlighted in analyses of standard RAD-Seq data (Shafer et al., 2017) and calls for caution in downstream 390 391 analyses. An analysis based on data simulation is outside the scope of this study but would likely 392 clarify the specificity and sensitivity of the different aligners and SNP-callers, and help each user

393 to refine the most appropriate parameters for their analyses and model species.

394

395 *Genetic diversity decline in butterfly populations across Finland*

396 The HyRAD data gathered in this study supported an overall erosion of genetic diversity at the 397 country-wide level of Finland in both species (see Figure 5). Despite interpretation of genetic 398 diversity variation should be tempered due to our relatively reduced sampling size per locality and 399 temporal bin, one should keep in mind that in the context of museomics, our sampling remains 400 substantial. This pattern of genetic diversity reduction parallels those found by similar studies on 401 butterflies in Northern Europe (Fountain et al., 2016; Ugelvig, Nielsen, Boomsma, & Nash, 2011) 402 but also more broadly in other taxa (Dufresnes et al., 2018; Schmid et al., 2018). Our data also 403 uncovered strong regional differences, with at least one locality (i.e. Kuusamo) showing a local 404 increase in diversity at a given time point, potentially following migration linked to the persistence 405 of their habitat in these specific localities (Habel, Meyer, & Schmitt, 2014) playing a role of refuge 406 for individuals from other populations carrying genetic diversity (Craioveanu, Sitar, & Rákosy, 407 2014). However, estimations on recent samples (i.e., collected in 2015) still show a decline in 408 genetic diversity in this particular locality. The overall erosion of the genetic diversity, both locally 409 and country-wide, is expected given that most Finnish populations of these two butterflies have 410 gone extinct through the 20th century, as a result of a drastic reduction in habitat availability, with 411 the remaining populations not allowing to maintain genetic diversity to levels that once existed in 412 an area of \sim 340,000 km², a century, or even a few decades ago.

The second striking result of this study is the increase in IBD over time, at least in one of the twospecies. Indeed, in *E. embla*, when considering time slices that divide the timeframe of collected

415 specimens in three periods, only the two last ones (i.e, 1950 - 2000, and 2015) are associated with 416 a significant IBD, with an increasing slope as we reach contemporaneous times. The effect of time 417 was also retrieved in the dbRDA approach, although due to the fact this analysis is individual-418 based, it was less representative of genetic variation per deme through space and time, thus 419 explaining the low R² retrieved in the overall model.

420 Our main result of an overall increase in the slope of the isolation by distance pattern is likely the 421 consequence of an increase in fragmentation, revealing a reduced number of migrants among 422 demes, and thus an increase in the differentiation of populations, essentially due—given the short 423 timespan involved—to drift. This signature might be also found in L. helle, even if our sampling 424 does not allow the estimation of IBD for the most recent period (i.e., only two populations are still 425 extant today). This transition from a virtually countrywide panmictic system to a more marked 426 structuring in space is indicative of the fact that despite acknowledged dispersal capabilities of 427 these butterflies in Finland (Habel, Finger, Schmitt, & Nève, 2011), generally related to a 428 colonization-edge syndrome characteristic of populations found at the northern edge of a species' 429 distribution (Duplouy, Wong, Corander, Lehtonen, & Hanski, 2017), the fragmentation of habitats 430 has led to a decrease in these exchanges, and thus to local differentiation.

Through their impact on biodiversity, human activities are accelerating the extinction of populations and the differentiation of those that persist. This could be catalyzing lineage divergence, except that habitat destruction is an ongoing process, potentially hampered by geopolitical, but potentially ubiquitous, decisions. Our study of two species of butterflies in Finland indicates that not all species might respond identically to this fragmentation, and that comparative studies, involving a larger number of species represented by fresh but also historical specimens, are needed to understand how life history traits influence the species' population response to

- 438 anthropogenic habitat disturbance and destruction. With the application of both the wetlab HyRAD
- 439 protocol to historical and fresh specimens, and the PopHyRAD bioinformatic pipeline as described
- 440 in this study, access to both past and extant genetic diversity should allow a better understanding
- 441 and anticipation of the neutral response of populations to drastic habitat loss.

442

443 **References**

- 444 Ali, O. A., O'Rourke, S. M., Amish, S. J., Meek, M. H., Luikart, G., Jeffres, C., & Miller, M. R.
- 445 (2016). RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping.
- 446 *Genetics*, 202, 389–400.
- 447 Bi, K., Linderoth, T., Singhal, S., Vanderpool, D., Patton, J. L., Nielsen, R., Moritz, C., Good, J.
- M. (2019). Temporal genomic contrasts reveal rapid evolutionary responses in an alpine
 mammal during recent climate change. *PLoS Genetics*, *15*, e1008119.
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
 sequence data. *Bioinformatics*, *30*, 2114–2120.
- 452 Boucher, F. C., Casazza, G., Szövényi, P., & Conti, E. (2016). Sequence capture using RAD
- 453 probes clarifies phylogenetic relationships and species boundaries in *Primula* sect. *Auricula*.
 454 *Molecular Phylogenetics and Evolution*, 104, 60–72.
- 455 Bouzat, J. L. (2010). Conservation genetics of population bottlenecks: the role of chance,
- 456 selection, and history. *Conservation Genetics*, *11*, 463–478.
- Burrell, A. S., Disotell, T. R., & Bergey, C. M. (2015). The use of museum specimens with highthroughput DNA sequencers. *Journal of Human Evolution*, *79*, 35–44.
- 459 Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth
- 460 mass extinction signaled by vertebrate population losses and declines. *Proceedings of the*
- 461 *National Academy of Sciences of the United States of America*, *114*, E6089–E6096.
- 462 Craioveanu, C., Sitar, C., & Rákosy, L. (2014). Mobility, behaviour and phenology of the Violet
- 463 Copper Lycaena helle in North-Western Romania. In Jewels in the mist. A synopsis on the
- 464 *endangered Violet Copper butterfly* Lycaena helle. Pensoft, Sofia-Moscow, p 91-105.
- 465 Crates, R., Olah, G., Adamski, M., Aitken, N., Banks, S., Ingwersen, D., RanjardI, L., Rayner, L.,

466	Stojanovic, D., Suchan, T., von Takach Dukai, B., & Heinsohn, R. (2019) Genomic impact
467	of severe population decline in a nomadic songbird. PLoS ONE, 14, e0223953.
468	Csilléry, K., Blum, M. G. B., Gaggiotti, O. E., & François, O. (2010). Approximate Bayesian
469	Computation (ABC) in practice. Trends in Ecology & Evolution, 25, 410–418.
470	Dabney, J., Meyer, M., & Pääbo, S. (2013). Ancient DNA damage. Cold Spring Harbor
471	Perspectives in Biology, 5.
472	Decker, J. E., Pires, J. C., Conant, G. C., McKay, S. D., Heaton, M. P., Chen, K., Cooper, A.,
473	Vilkki, J., Seabury, C. M., Caetano, A. R., Johnson, G. S., Brenneman, R. A., Hanotte, O.,
474	Eggert, L. S., Wiener, P., Kim, JJ., Kim, KS., Sonstegard, T. S., VanTassell, C. P.,
475	Neibergs, H. L., McEwan, J. C., Brauning, R., Coutinho, L. L., Babar, M. E., Wilson, G. A.,
476	McClure, M. C., Rolf, M. M., Kim, J., Schnabel, R. D., & Taylor, J. F. (2009). Resolving
477	the evolution of extant and extinct ruminants with high-throughput phylogenomics.
478	Proceedings of the National Academy of Sciences of the United States of America, 106,
479	18644–18649.
480	de Oliveira Roque, F., Menezes, J. F. S., Northfield, T., Ochoa-Quintero, J. M., Campbell, M. J.,
481	& Laurance, W. F. (2018). Warning signals of biodiversity collapse across gradients of
482	tropical forest loss. Scientific Reports, 8, 1622.
483	Dray, S., Blanchet, G., Borcard, D., Guenard, G., & Jombart, T. (2016). adespatial: Multivariate
484	multiscale spatial analysis. R Package Version 0.0.3.

- 485 Dufresnes, C., Mazepa, G., Rodrigues, N., Brelsford, A., Litvinchuk, S. N., Sermier, R.,
- 486 Lavanchy, G., Betto-Colliard, C., Blaser, O., Borzée, A., Cavoto, E., Fabre, G., Ghali, K.,
- 487 Grossen, C., Horn, A., Leuenberger, J., Phillips, B. C., Saunders, P. A., Savary, R.,
- 488 Maddalena, T., Stöck, M., Dubey, S., Canestrelli, D., & Jeffries, D. L. (2018). Genomic

- 489 evidence for cryptic speciation in tree frogs from the Apennine peninsula, with description
- 490 of *Hyla perrini* sp. nov. *Frontiers in Ecology and Evolution*, *6*, 144.
- 491 Duplouy, A., Wong, S. C., Corander, J., Lehtonen, R., & Hanski, I. (2017). Genetic effects on
 492 life-history traits in the Glanville fritillary butterfly. *PeerJ*, 5, e3371.
- 493 Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for
- visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics Resources*, *4*, 359–361.
- Ehrlich, P. R. (1995). The scale of human enterprise and biodiversity loss. *Extinction Rates* (H.
 Lawton and R. M. May, eds.). Oxford Univ, pp. 214–226.
- 498 Espíndola, A., Pellissier, L., Maiorano, L., Hordijk, W., Guisan, A., & Alvarez, N. (2012).
- 499 Predicting present and future intra-specific genetic structure through niche hindcasting
 500 across 24 millennia. *Ecology Letters*, 15, 649–657.
- Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals
 using the software STRUCTURE: a simulation study. *Molecular Ecology*, *14*, 2611–2620.
- 503 Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using
- multilocus genotype data: linked loci and correlated allele frequencies. *Genetics*, *164*, 1567–
 1587.
- 506 Fountain, T., Nieminen, M., Sirén, J., Wong, S. C., Lehtonen, R., & Hanski, I. (2016).
- 507 Predictable allele frequency changes due to habitat fragmentation in the Glanville fritillary
- 508 butterfly. *Proceedings of the National Academy of Sciences of the United States of America*,
- 509 *113*, 2678–2683.
- 510 François, O., & Durand, E. (2010). Spatially explicit Bayesian clustering models in population
- 511 genetics. *Molecular Ecology Resources*, *10*, 773–784.

- Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the nextgeneration sequencing data. *Bioinformatics*, *28*, 3150–3152.
- 514 Garrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing.
- 515 *Arxiv preprint*. Retrieved from http://arxiv.org/abs/1207.3907
- 516 Goudet, J. (2005). Hierfstat, a package for R to compute and test hierarchical F-statistics.
- 517 *Molecular Ecology Notes*, *5*, 184–186.
- 518 Habel, J. C., Finger, A., Schmitt, T., & Neve, G. (2011). Changing over time: 15 years of
- 519 isolation influence the population genetic structure of the endangered butterfly *Lycaena*
- 520 *helle. Journal of Zoological Systematics and Evolutionary Research*, *36*, 125–135.
- 521 Habel, J. C., Finger, A., Schmitt, T., & Nève, G. (2011). Survival of the endangered butterfly
- *Lycaena helle* in a fragmented environment: Genetic analyses over 15 years. *Journal of Zoological Systematics and Evolutionary Research*, 49, 25–31.
- Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W.,
- 525 Müller, A., Sumser, H., Hörren, T., Goulson, D., & de Kroon, H. (2017). More than 75
- percent decline over 27 years in total flying insect biomass in protected areas. *PloS One*, *12*,
 e0185809.
- Heino, J., Poykko, H., & Itames, J. (1998). Occurrence, biology and conservation possibilities of
 Lycaena helle in the area of Koillismaa, eastern Finland. *Baptria*, *Helsinki*, 23:163-168.
- 530 Hoffberg, S. L., Kieran, T. J., Catchen, J. M., Devault, A., Faircloth, B. C., Mauricio, R., &
- 531 Glenn, T. C. (2016). RADcap: sequence capture of dual-digest RADseq libraries with
- 532 identifiable duplicates and reduced missing data. *Molecular Ecology Resources*, *16*, 1264–
 533 1278.
- 534 Hoffmann, A. A., Sgrò, C. M., & Kristensen, T. N. (2017). Revisiting Adaptive Potential,

- 535 Population Size, and Conservation. *Trends in Ecology & Evolution*, *32*, 506–517.
- Horn, S. (2012). Target enrichment via DNA hybridization capture. *Methods in Molecular Biology*, *840*, 177–188.
- Jensen, E. L., Edwards, D. L., Garrick, R. C., Miller, J. M., Gibbs, J. P., Cayot, L. J., Tapia, W.,
- 539 Caccone, A., & Russello, M. A. (2018). Population genomics through time provides insights
- 540 into the consequences of decline and rapid demographic recovery through head-starting in a
- 541 Galapagos giant tortoise. *Evolutionary Applications*, *11*, 1811–1821.
- 542 Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., &
- 543 Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the
- 544 Anthropocene. *Science*, *356*, 270–275.
- 545 Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F., & Orlando, L. (2013).
- 546 mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters.
 547 *Bioinformatics*, 29, 1682–1684.
- 548 Karp, D. S., Mendenhall, C. D., Sandí, R. F., Chaumont, N., Ehrlich, P. R., Hadly, E. A., &
- 549 Daily, G. C. (2013). Forest bolsters bird abundance, pest control and coffee yield. *Ecology*550 *Letters*, *16*, 1339–1347.
- 551 Keighley, M. V., Heinsohn, R., Langmore, N. E., Murphy, S. A., & Peñalba, J. V. (2019).
- 552 Genomic population structure aligns with vocal dialects in Palm Cockatoos (*Probosciger*
- *aterrimus*); evidence for refugial late-Quaternary distribution? *Emu-Austral Ornithology*,
 119, 24-37.
- Keller, L. F., & Waller, D. M. (2002). Inbreeding effects in wild populations. *Trends in Ecology & Evolution*, 17, 230–241.
- 557 Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive

558	classification of	of metagenomic s	sequences. Genome	Research, 26,	1721–1729.
		•			

- 559 Koboldt, D. C., Chen, K., Wylie, T., Larson, D. E., McLellan, M. D., Mardis, E. R., Weinstock,
- 560 G. M., Wilson, R. K, & Ding, L. (2009). VarScan: variant detection in massively parallel
- sequencing of individual and pooled samples. *Bioinformatics*, 25, 2283–2285.
- 562 Kristensen, T. N., Pedersen, K. S., Vermeulen, C. J., & Loeschcke, V. (2010). Research on
 563 inbreeding in the "omic" era. *Trends in Ecology & Evolution*, 25, 44–52.
- Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature Methods*, 9, 357–359.
- 566 Lapierre, M., Lambert, A., & Achaz, G. (2017). Accuracy of Demographic Inferences from the
- 567 Site Frequency Spectrum: The Case of the Yoruba Population. *Genetics*, 206, 439–449.
- Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

569 *Arxiv Preprint*. Retrieved from http://arxiv.org/abs/1303.3997

570 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler

transform. *Bioinformatics*, 25, 1754–1760.

- 572 Linck, E. B., Hanna, Z. R., Sellas, A., & Dumbacher, J. P. (2017). Evaluating hybridization
- 573 capture with RAD probes as a tool for museum genomics with historical bird specimens.
- *Ecology and Evolution*, *7*, 4755–4767.
- 575 Linck, E. B., Freeman, B. G., & Dumbacher, J. P. (2019). Speciation with gene flow across an
 576 elevational gradient in New Guinea kingfishers. *bioRxiv*, 589044.
- 577 Lister, B. C., & Garcia, A. (2018). Climate-driven declines in arthropod abundance restructure a
- 578 rainforest food web. *Proceedings of the National Academy of Sciences of the United States*
- 579 *of America*, *115*, E10397–E10406.
- 580 Mastretta-Yanes, A., Arrigo, N., Alvarez, N., Jorgensen, T. H., Piñero, D., & Emerson, B. C.

- 581 (2015). Restriction site-associated DNA sequencing, genotyping error estimation and de
- novo assembly optimization for population genetic inference. *Molecular Ecology Resources*, *15*, 28–41.
- 584 Meineke, E. K., Davies, T. J., Daru, B. H., & Davis, C. C. (2018). Biological collections for
- understanding biodiversity in the Anthropocene. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, *374*, 20170386.
- 587 Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G., & Ellegren, H. (2015). Temporal
- 588 Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences.
- 589 *Current Biology*, *25*, 1375–1380.
- 590 Oksanen, J., Kindt, R., Legendre, P., & O'Hara, B. (2016). The vegan package. R package
 591 version 2.4-1.
- 592 Orlando, L., Gilbert, M. T. P., & Willerslev, E. (2015). Reconstructing ancient genomes and
 593 epigenomes. *Nature Reviews. Genetics*, *16*, 395–408.
- 594 Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest
- RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and
 non-model species. *PloS One*, *7*, e37135.
- 597 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using
 598 multilocus genotype data. *Genetics*, 155, 945–959.
- Puritz, J. B., Hollenbeck, C. M., & Gold, J. R. (2014). dDocent: a RADseq, variant-calling
 pipeline designed for population genomics of non-model organisms. *PeerJ*, *2*, e431.
- 601 Pyke, G. H., & Ehrlich, P. R. (2010). Biological collections and ecological/environmental
- research: a review, some observations and a look to the future. *Biological Reviews of the*
- 603 *Cambridge Philosophical Society*, 85, 247–266.

604	Rassi, P., Hyvärinen, E., Juslén, A., & Mannerkoski, I. (2010). The 2010 Red List of Finnish
605	Species. Ministry of the Environment. Finnish Environment Institute, Helsinki.
606	Ryan, S. F., Deines, J. M., Scriber, J. M., Pfrender, M. E., Jones, S. E., Emrich, S. J., &
607	Hellmann, J. J. (2018). Climate-mediated hybrid zone movement revealed with genomics,
608	museum collection, and simulation modeling. Proceedings of the National Academy of
609	Sciences of the United States of America, 115, E2284–E2291.
610	Sánchez Barreiro, F., Vieira, F. G., Martin, M. D., Haile, J., Gilbert, M. T. P., & Wales, N.
611	(2017). Characterizing restriction enzyme-associated loci in historic ragweed (Ambrosia
612	artemisiifolia) voucher specimens using custom-designed RNA probes. Molecular Ecology
613	<i>Resources 17, 209–220.</i>
614	Sánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A
615	review of its drivers. Biological Conservation, 232, 8-27.
616	Schmid, S., Genevest, R., Gobet, E., Suchan, T., Sperisen, C., Tinner, W., & Alvarez, N. (2017).
617	HyRAD-X, a versatile method combining exome capture and RAD sequencing to extract
618	genomic information from ancient DNA. Methods in Ecology and Evolution / British
619	Ecological Society, 8, 1374–1388.
620	Schmid, S., Neuenschwander, S., Pitteloud, C., Heckel, G., Pajkovic, M., Arlettaz, R., & Alvarez,
621	N. (2018). Spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus

- revealed by museum genomics. *Ecology and Evolution*, *8*, 1480–1495.
- 623 Schubert, M., Ginolhac, A., Lindgreen, S., Thompson, J. F., Al-Rasheid, K. A. S., Willerslev, E.,
- 624 Krogh, A., & Orlando, L. (2012). Improving ancient DNA read mapping against modern
- 625 reference genomes. *BMC Genomics*, *13*, 178.
- 626 Schubert, M., Lindgreen, S., & Orlando, L. (2016). AdapterRemoval v2: rapid adapter trimming,

627	identification, and read	l merging. BMC Research	h Notes, 9, 88.
-----	--------------------------	-------------------------	-----------------

- 628 Shafer, A. B. A., Peart, C. R., Tusso, S., Maayan, I., Brelsford, A., Wheat, C. W., & Wolf, J. B.
- 629 W. (2017). Bioinformatic processing of RAD-seq data dramatically impacts downstream
- 630 population genetic inference. *Methods in Ecology and Evolution / British Ecological*
- 631 *Society*, *8*, 907–917.
- 632 Suchan, T., Pitteloud, C., Gerasimova, N. S., Kostikova, A., Schmid, S., Arrigo, N., Pajkovic, M.,
- 633 Ronikier, M., & Alvarez, N. (2016). Hybridization Capture Using RAD Probes (hyRAD), a
- 634 New Tool for Performing Genomic Analyses on Collection Specimens. *PloS One*, *11*,
- 635 e0151651.
- Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., & Seppä, H. (2015). Human population
 dynamics in Europe over the Last Glacial Maximum. *Proceedings of the National Academy*of Sciences of the United States of America, 112, 8232–8237.
- Tegelberg, R., Haapala, J., Mononen, T., Pajari, M., & Saarenmaa, H. (2012). The development
 of a digitising service centre for natural history collections. *ZooKeys*, 209, 75–86.
- 641 Thielens, A., Bell, D., Mortimore, D. B., Greco, M. K., Martens, L., & Joseph, W. (2018).
- 642 Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz.
- 643 *Scientific Reports*, *8*, 3924.
- Tin, M. M.-Y., Economo, E. P., & Mikheyev, A. S. (2014). Sequencing degraded DNA from
- 645 non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun
 646 phylogenetics. *PloS One*, *9*, e96793.
- 647 Ugelvig, L. V., Nielsen, P. S., Boomsma, J. J., & Nash, D. R. (2011). Reconstructing eight
- 648 decades of genetic variation in an isolated Danish population of the large blue butterfly
- 649 Maculinea arion. *BMC Evolutionary Biology*, *11*, 201.

- 650 van Strien, A. J., van Swaay, C. A. M., van Strien-van Liempt, W. T. F. H., Poot, M. J. M., &
- 651 WallisDeVries, M. F. (2019). Over a century of data reveal more than 80% decline in
- butterflies in the Netherlands. *Biological Conservation*, 234, 116–122.
- 653 Whiteside, M., & Marvin Herndon, J. (2018). Previously Unacknowledged Potential Factors in
- 654 Catastrophic Bee and Insect Die-off Arising from Coal Fly Ash Geoengineering. *Asian*
- 655 *Journal of Biology*, *6*, 1–13.

Figure captions: 2,742 SNPs from 869 loci for *E. embla* and 2,549

Figure 1. Schematic PopHyRAD pipeline including the creation of the catalog from probes and thetreatment of samples.

659

Figure 2. a,c Pictures of the two focal species, *Lycaena helle* and *Erebia embla*. b,d Maps of
Finland with the sampling localities. The different colors indicate whether the samples considered
were historical, with a distinction before and after 1950, or modern (year 2015).

663

Figure 3. Observed gene diversity (Hs), frequency of fixed alleles and inbreeding coefficient (FIS)
estimated for each locality and years. For each point the number indicates the number of samples.
Vertical lines represent the standard error across all SNPs (2,742 for *Erebia embla* and 2,549 for *Lycaena helle*). Localities sampled at different time points are linked by a line of corresponding
color.

669

Figure 4. Observed gene diversity (Hs) and frequency of fixed alleles over time, i.e., before 1950,
between 1950 and 2000, and 2015, and for each locality. Vertical lines represent the standard error
across all SNPs (2,742 for *Erebia embla* and 2,549 for *Lycaena helle*). Localities sampled at
different time slices are linked by a line of identical color.

Figure 5. Observed gene diversity (Hs) and frequency of fixed alleles have been estimated by time
slices, before 1950, between 1950 and 2000 and 2015, all over Finland by merging samples.
Vertical lines represent the standard error across all SNPs (2,742 for *Erebia embla* and 2,549 for *Lycaena helle*).

679

Figure 6. Population structure of all sampled localities according to the three studied periods. The
 pie charts indicate the proportion of samples associated with each lineage as identified by
 STRUCTURE with K=2.

683

Figure 7. Isolation by distance was investigated for each time slice by computing the correlation between the genetic differentiation between populations (FsT/1-FsT) and the log-transformed geographic distance (log(distance)). Correlations were tested using Spearman's rank correlation, and coefficient of determination, intercept and slopes using a linear model are shown.

Erebia embla	Locality	Latitude	Longitude	Year	Ν	Lycaena helle	Locality	Latitude	Longitude	Year	Ν
	Haminalahti	62 8534641	27 5326783	1909	12		Kuusamo Liikasenvaara	65 9645637	29 1883283	1928	10
	Pirkkala	61.4654497	23.6456252	1909	1		Paanaiarvi	66.4555006	28.9798017	1934	1
	Pirkkala	61.4654497	23.6456252	1925	2		Paanajarvi	66.4555006	28.9798017	1935	6
	Pirkkala	61.4654497	23.6456252	1930	5		Ivalo	68.6588185	27.5348114	1937	13
before	Pernio	60.2050782	23.1235771	1932	1		Mikkeli	61.6877956	27.2726569	1938	3
1950	Portom	62.7100207	21.6163442	1937	13		Harmoinen	61.4852477	25.1409736	1940	8
	Muonio	67.9593397	23.6774037	1938	13		Kannus	63.9007773	23.9170363	1940	5
	Nurmes	63.5422079	29.1410100	1941	6		Nurmes	63.5422079	29.1410100	1941	13
	Pernio	60.2050782	23.1235771	1944	2		Ruovesi	61.9856303	24.0703481	1941	13
	Pirkkala	61.4654497	23.6456252	1945	2		Mikkeli	61.6877956	27.2726569	1942	9
	Jakobstad Pietarsaari	63.6666709	22.7000229	1947	1		Haapavesi	64.1378737	25.3658176	1946	5
	Pelkosenniemi	67.1095969	27.5118116	1947	9		Pelkosenniemi	67.1095969	27.5118116	1947	12
	Jakobstad Pietarsaari	63.6666709	22.7000229	1949	4		Paltamo	64.4068668	27.8335512	1949	10
	Jakobstad Pietarsaari	63.6666709	22.7000229	1951	2		Kuusamo Liikasenvaara	65.9645637	29.1883283	1955	1
	Jakobstad Pietarsaari	63.6666709	22.7000229	1953	6		Tohmajarvi	62.2259448	30.3335512	1957	1
	Kuusamo	65.9645637	29.1883283	1955	8		Tohmajarvi	62.2259448	30.3335512	1958	5
	Tyrvanto	61.1546112	24.3283168	1959	1		Kuopio	62.8241424	27.5945615	1959	4
	Karttula	62.8952013	26.9723784	1963	4		Kuusamo Liikasenvaara	65.9645637	29.1883283	1959	1
between	Ikaalinen	61.7701493	23.0633777	1965	5		Kuopio	62.8241424	27.5945615	1960	4
1950	Ikaalinen	61.7701493	23.0633777	1969	5		Tohmajarvi	62.2259448	30.3335512	1960	4
and 2000	Tuulos	61.1181656	24.8337064	1970	2		Kuusamo Liikasenvaara	65.9645637	29.1883283	1962	2
	Tuulos	61.1181656	24.8337064	1973	2		Kuopio	62.8241424	27.5945615	1964	1
	Tuulos	61.1181656	24.8337064	1975	1		Kuusamo Liikasenvaara	65.9645637	29.1883283	1975	3
	Kuusamo	65.9645637	29.1883283	1977	4		Kuivaniemi Simo	65.6040217	25.2038392	1980	6
	Mikkeli	61.6877956	27.2726569	1979	2		Kuusamo Liikasenvaara	65.9645637	29.1883283	1985	12
	Kuusamo	65.9645637	29.1883283	1980	1		Kuusamo Liikasenvaara	65.9645637	29.1883283	1991	13
	Kuusamo	65.9645637	29.1883283	1981	3						
	Mikkeli	61.6877956	27.2726569	1983	1	. <u></u>					
	Ivalo	68.6588185	27.5348114	2015	5		Kuivaniemi Simo	65.6040217	25.2038392	2015	9
	Kuusamo	65.9645637	29.1883283	2015	9		Kuusamo Liikasenvaara	65.9645637	29.1883283	2015	23
2015	Muonio	67.9593397	23.6774037	2015	9						
	Oulu	65.0118734	25.4716809	2015	12						
	Pelkosenniemi	67.1095969	27.5118116	2015	8						
	Rovaniemi	66.4976214	25.7192101	2015	11						

Table 1. Sample information comprising locality name, approximate GPS positions, year of collection and number of samples. The three time slices used for the analyses have been separated.

Supplementary material

Supplementary Table 1. For each sample, detailed information including year of sampling, and thus the age of the sample, the DNA concentration measured after the extraction, the DNA concentration after capture, the number of sequenced reads, the percentage of mapped reads and finally the number of called SNPs.

Supplementary Table 2. Number of reads and mapping percentages before and after cleaning for all samples and for the three mapping tools tested.

Supplementary Table 3. Results of the dbRDA analysis for *Erebia embla* and *Lycaena helle*. R^2 values are given for the overall model as well as for each of the 8 spatial and 1 temporal variable. Respective *P* values are also indicated.

Supplementary Figure 1. Deamination patterns in historical (top) and fresh (bottom) samples.

Supplementary Figure 2. Comparison of FIS distribution between the SNPs obtained from the three mapping tools and the two SNP-calling tools.

Erebia embla

Lycaena helle

C.

Figure 1

Year

Year

Figure 4

J

Between 1950 and 2000

2015

Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland

Jérémy Gauthier^{1§}, Mila Pajkovic^{2§}, Samuel Neuenschwander³, Lauri Kaila⁴, Sarah Schmid^{2,5}, Ludovic Orlando^{6,7}, Nadir Alvarez^{1,2*}

¹ Geneva Natural History Museum, 1208 Geneva, Switzerland

- ² Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- ³ Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland

⁴ Finnish Museum of Natural History, Zoology Unit, P.O.Box 17, FI-00014, University of Helsinki, Finland

⁵ Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland

⁶ Laboratoire AMIS CNRS UMR 5288, Faculté de Médecine de Purpan-37 allées Jules Guesde, Bâtiment A, 31000 Toulouse, France

⁷ Globe Institut, Lundbeck Foundation GeoGenetics Centre, University of Copenhagen, Øster Voldgade 5-7, 1350
 Copenhagen, Denmark

§ These authors contributed equally to this work and are considered as joint first authors.

SUPPORTING INFORMATION

Supplementary Table 1

•	•		•				
Sample	Year	Concentration	Concentration of final individual libraries (ng/ul)	Fold change	# clean reads (R1+R2)	% mapped reads	# filtered SNP
E1_1	1941	2,42	9,06	3,74	6274098	6,59	2708
E1_10 F1_11	1955 1955		20,40		4912742 4867924	7,81	2624
E1_12	1955				5600550	6,98	2713
E1_13 E1_14	1955 1955		16,90 13,30		4995844 3845782	6,97 8,17	2603 2694
E1_15 E1_16	1955 1955		20,00		6019518 4524970	7,56 7.87	2652 2647
E1_17	1955		25,80		6240728	6,69	2660
E1_18 E1_19	1981 1981	2,30	15,90 22,20	6,91	4052028 6363462	8,32 6,98	2521 2691
E1_2	1941		2,00		5958694	6,88	2673
E1_20 E1_23	1981		19,20		2358164	8,94	2443
E1_24 E1_3	1941 1941	5,36	11,50	2,15	2898804	9,04	2554
E1_4	1941		5,86		4460490	7,37	2515
E1_7 E2_1	1941 1977		20,40 14,80		4031012 2843360	6,79 7,29	2520 2633
E2_10	1947		12,70		2273482	8,15	2451
E2_11	1947		9,10		1982636	7,02	2556
E2_13 E2_14	1947 1938	1,36	9,48 6,42	4,72	1868244 1085620	7,54 8,27	2320 2369
E2_15	1938		15,00		3138372	7,29	2494
E2_16	1938		9,54		1908792	9,32	2500
E2_17 E2_18	1938		9,22		1622480	8,08	2382
E2_19 F2_2	1938 1977		6,80 11.10		1348634 2243018	8,12 7.06	2417 2501
E2_20	1938		7,54		1326580	7,81	2029
E2_23 E2_24	1977 1947	4,46 1,59	10,30 3,84	2,31 2,42	1917306 633876	7,57 8,93	2418 2080
E2_3	1977	4.05	8,84	2.55	1522732	8,12	2188
E2_4 E2_5	1947	4,00	14,40	3,35	2652342	7,40	2621
E2_6 F2_7	1947 1947		9,98 9.98		2140374 2292774	7,53	2382
E3_1	1938		6,08		3312352	9,17	2611
E3_10 E3_11	1983 1953	1,34			4043060 1095756	7,89 9,08	2518 2164
E3_12	1953		8,34		3019946	7,29	2655
E3_14	1953				1962472	8,65	2512
E3_15 E3 16	1953 1953				2764178 1331806	8,37 10,01	2444 2204
E3_17	1951				153588	8,62	1007
E3_18 E3_19	1949 1949				2465348 2282456	8,26 8,36	2458 2541
E3_2	1938				3053450	7,25	2472
E3_23	1949				1807054	8,44	2365
E3_24 E3_25	1951 1979	0.80	9.42	11.83	2826202 3235218	7,51 6.36	2543 2286
E3_3	1938	-,	-,)	3602164	8,12	2479
E3_4 E3_5	1938 1938				3656306 1442824	7,69 9,49	2444 2252
E3_6	1938				2165366	9,08	2182
E4_1	1947		6,94		7153656	6,02	2708
E4_10 E4_11	1909 1909		0,62		52204 5022302	9,69 7.23	523 2582
E4_12	1909		0,96		318170	10,28	1735
E4_13 E4_14	1909 1909		1,14 2,10		63704 779010	10,87 9,44	2105
E4_15	1909	0.59	0,74	2 60	175078	10,60	881
E4_10 E4_17	1963	0,56	20,20	3,00	8718416	4,68	2683
E4_18 E4_19	1963 1969		15,50 13.80		1582634 5021072	7,31 5.50	2047 2567
E4_2	1909	1,04	2,36	2,27	1108648	8,45	1961
E4_20 E4_23	1969 1969		13,80 13,50		1464438 4326408	6,03 5,12	1758 2397
E4_24	1969	2.14	20,00	2.60	5721668	5,16	2536
E4_23	1909	3,14	3,02	2,03	4643934	7,44	2389
E4_4 E4_5	1909 1909		4,28 3.28		986004 800208	9,13 9.01	1647 1912
E4_6	1909		6,42		2503388	7,60	2122
E4_/ E5_1	1969		5,96		4652616	7,29	2671
E5_10 E5_11	1944 1944		10.10		5503658 5214270	7,37	2639 2686
E5_12	1937				2514184	8,06	2559
E5_13 E5_14	1937				4522138	7,81	2464
E5_15 E5_16	1937 1937				4308886 3941046	7,51	2548 2596
E5_17	1937				2877568	8,76	2441
E5_18 E5_19	1937 1937				956952 1087554	10,24 11,13	1923 2096
E5_2	1965 1927				2447904	7,96	2375
E5_24	1932	3,36	14,20	4,23	3604268	8,61	2446
E5_3 E5_4	1965 1965				3513424 4060266	7,58 7,31	2433 2525
E5_5	1965		7 2 2		4409522	7,53	2654
E6_1	1937		1,32		1430436	7,49	2395
E6_10 E6_11	1925 1930				3/51650 4070974	7,09 6,65	2524 2641
E6_12	1925				4793404	6,45	2690
E6_14	1945				3488684	6,93	2647
E6_15 E6 16	1945 1909	4,24			58630 3746084	9,01 7,05	619 2609
E6_17	1973		15,70		1692992	9,08	2090
Е6_19 Е6_2	1975 1937				4945946	7,35 6,97	2625
E6_20 E6_23	1973 1970	3.18			4021688 1528378	7,79 9.17	2504 2268
E6_24	1959	17,60			3325858	7,60	2509
E6_3 E6_4	1937 1937		27,80 17,00		3964948 2484022	7,23 7,31	2514 2066
E6_5	1930				3766494	7,26	2647
E6_7	1930		25,00		3611308	7,48	2626
EF1_1 EF1 10	2015 2015				239362 1270630	12,12 8,11	1985 2027
EF1_11	2015				1733706	7,24	2329
EF1_12 EF1_13	2015 2015				1652880	6,46	1879
EF1_14 EF1_15	2015 2015		4.20		3027234	6,32	2535 2168
EF1_16	2015		4,20		397526	9,67	1913
EF1_17 EF1 18	2015 2015				2128270 1550866	6,99 7.07	2326 2083
EF1_19	2015		2.54		59824	15,90	1455
EF1_2 EF1_20	2015 2015		2,64		38606	8,66 10,51	770
EF1_3 EF1_4	2015 2015				5913768 1166920	6,52 8.54	2596 1977
EF1_5	2015				2465244	7,65	2612
EF1_6 EF1 7	2015 2015				63106 1195596	10,40 8,17	804 2355
EF2_1	2015				2674570	6,19 7 10	2566
EF2_10 EF2_11	2015				226252	7,19	1561
EF2_12 EF2_13	2015 2015				5594718 4211932	5,32 5.29	2669 2467
EF2_14	2015				2414746	6,00	2456
EF2_15	2015				3/39156	5,50	2351

Supplementary Table 1 (continued)

Sample	Year	Concentration (ng/ul) in 50ul	Concentration of final individual libraries (ng/uL)	Fold change	# clean reads (R1+R2)	% mapped reads after cleaning	# filtered SNP
EF2_16 EF2_17	2015				82812 3159958	12,13	1281
EF2_18	2015				3595612	4,51	2138
EF2_19 EF2_2	2015 2015				2241176 898840	6,78 6,60	2468 2069
EF2_20	2015				2489030	6,14	2362
EF2_3 EF2_4	2015				4092346	6,20	2519
EF2_5 EF2_6	2015				2676260 1408612	6,31 6.34	2542 2018
EF2_7	2015		7,98		680116	7,35	2083
EF3_10	2015		10,40		2877954	6,08	2388
EF3_11 EF3_12	2015 2015				1152450 7075988	5,89 5,28	2019 2717
EF3_13	2015				2281572	5,92	2222
EF3_15	2015				3547252	5,41	2388
EF3_16 EF3_17	2015 2015				295012 2800858	8,50 5,15	1758 2168
EF3_18 FF3_19	2015				693276 4260710	6,51 5.41	1718 2614
EF3_2	2015		9,32		3216122	6,18	2613
EF3_20 EF3_3	2015		13,40		5284192	5,74	2616
EF3_4 EF3_5	2015 2015		9,56 15.70		2405280 5045496	5,88 5.85	2217 2672
EF3_6	2015		10,10		3056964	5,80	2446
LI 3_7	2015		7,00		2133742	0,78	2320
H1_1 H1_10	1946 1940				1841358 3527668	7,32 6,44	2140 2090
H1_11 H1_12	1940 1940	1.69			6430464 4951236	5,98 5.11	2421
H1_13	1940	1,00			7472816	5,05	2214
H1_14 H1_15	1940				108/9/86	5,60	2527
H1_16 H1 17	1940 1937	0,11			10018622 8406572	6,12 5,29	2487 2292
H1_18 H1_19	1937	0,16			3984438 7256516	5,31	1900
H1_19	1946	0,10			58542	15,43	1164
H1_20 H1_23	1937 1937	0,18 0,67			3279158 16222420	5,67	1924 2527
H1_24 H1_3	1937 1946				5822132 516538	6,63 9.09	2075 1080
H1_5	1946				1213738	8,40	1810
H1_6 H1_7	1946				5433392 1613156	ь,79 7,36	2128
H2_1 H2_10	1937 1940				2999432 173216	2,59 4,87	1963 729
H2_11 H2_12	1940				1156346	3,39	1538
H2_13	1940	2,32			2772200	2,37	1433
H2_14 H2_15	1940 1980				3830620 1127098	2,70 2,83	2158 961
H2_16 H2_17	1980 1980				4434852 4960868	2,31	1780 1654
H2_18	1980				5202584	1,99	1657
H2_19 H2_2	1980 1937				31646	14,72	891
H2_20 H2_23	1980 1960				4900596 9277828	2,17 9,49	1785 2469
H2_24 H2_3	1960	0.12			2430908	2,91	1250
H2_4	1937	0,11			1126308	3,31	1083
H2_5 H2_6	1937 1937				61370 1297016	8,82 3,09	858 1130
H2_7 H3_1	1937 1959	0.72			1680592 4215206	3,31	1777
H3_10	1991	-,			5078962	6,23	2458
H3_11 H3_12	1985 1991				3728212 4577536	6,85	2393 2496
H3_13 H3_14	1991 1985				2163706 4516954	7,63	2015 2489
H3_15	1985				4640896	6,76	2362
H3_18 H3_17	1985				47564 4289172	6,13	2344
H3_18 H3_19	1975 1991				4151678 2214108	7,10 6,02	2321 2161
H3_2 H3_20	1959 1985				3363096 3834762	6,20 6.58	2355 2397
H3_23	1975	0,56			11479794	11,87	2506
H3_24 H3_25	1985				1226276	3,49	1699
H3_3 H3_4	1964 1959				3618722 5376922	6,81 6,13	2180 2420
H3_5 H3_6	1960 1959				2067214 2009604	6,98	2074
H3_7	1960	0.57			4064222	6,54	2459
H4_1 H4_10	1928	0,57			3548298 5552482	5,84 6,40	2346
H4_11 H4_12	1991 1991				5733808 7167150	5,92 5,93	2483 2520
H4_13 H4_14	1991				4776204	5,64	2354
H4_15	1991				5328548	5,99	2379
H4_18 H4_17	1991				4627788	6,04	2373
H4_18 H4_19	1991 1991				4769868 5945332	6,09 5,92	2416 2503
H4_2 H4_20	1985 1928				3105138 2468690	5,19 5.72	2274 1985
H4_23	1928	0.10			11653212	8,35	2525
H4_24	1928	0,16			4395294	5,03	2299
H4_3 H4_4	1985 1985	0,67			4022/60 5517244	6,68	2321 2402
H4_5 H4 6	1985 1975				4391746 4046232	6,34 6,89	2406 2257
H4_7	1985				6356752	6,44	2502
H5_1 H5_10	1928 1942				5298886 5081914	5,71 7,78	2352 2411
H5_11 H5_12	1938 1942				4703488 3043574	7,37 5,46	2442 2407
H5_13 H5_14	1942 1942				6538038 6684662	7,39	2459 2523
H5_15	1942				5420298	7,92	2413
H5_16 H5_17	1942	0,47			5952828 4179616	6,47	2483
H5_18 H5_19	1942 1938				1411660 2480920	5,55 7,20	1650 2310
H5_2 H5_20	1928 1938				1653414 1116284	5,57 6.59	2014 1773
H5_23	1942				18271766	9,60	2544
H5_24 H5_25	1941 1941				5591/24 7765956	7,02 5,16	2259
H5_3 H5_4	1928 1928				3291736 4695248	5,74 5,93	2076 2362
H5_5	1928				5711234	5,98	2444
H5_7	1962				4597664	7,03	2504
нь_1 H6_10	1941 1941				3678322	6,45 5,96	2161 2129
H6_11 H6_12	1941 1941				4835974 2923382	6,31 5,57	2349 2269
H6_13 H6_14	1941 1934				2946738 5013760	5,57	1779 2509
H6_15	1935				2432634	5,75	1711
нь_16 H6_17	1935				2305636 4257362	8,47 7,87	2333
H6_18 H6_19	1935 1935				3861956 2455440	7,52 6,03	2280 2269
H6_2	1941 1935				4958876 3754426	5,73	2397 2290
H6_23	1949				15888874	10,79	2539

Supplementary Table 1 (continued)

Sample	Vear	Concentration	Concentration of final	Fold change	# clean reads	% mapped reads	# filtered SNP
Sumple	rear	(ng/ul) in 50ul	individual libraries (ng/uL)	r old chunge	(R1+R2)	after cleaning	w intered site
H6 24	1949				2432588	6.97	1945
H6 25	1949				2458392	5.69	2291
H6 3	1941	0.57			5215798	6.52	2298
H6_4	1941	-,			3308266	6.08	2085
H6 5	1941				4806846	5.52	2375
H6_6	1941				3440968	5,52	2165
LIG_0	10/1				2269294	5,70	2163
LT 1	1040				2200304	6.75	22255
H7 10	1047				2712669	6.22	2201
117_10	1047				3712008	0,22	2214
LT 12	1047				4295012	6.41	2472
H7_12	1947				4265912	6,41	24/5
117_13	1047	0.09			3513134	6,03	2107
17_14	1947	0,98			3322378	0,57	2432
17_15	1947				2914606	0,57	2017
H7_10	1947				5124776	5,64	2422
H/_1/	1947				3146916	6,75	2109
H7_18	1947				3667748	6,94	2187
H7_19	1947				3516984	6,57	2404
H7_2	1949				2566484	6,12	2245
H7_20	1947				2620428	6,36	2162
H7_23	1947				15278012	11,05	2529
H7_24	1941				690894	6,99	1213
H7_25	1941				541886	8,31	1581
H7_3	1949				4162812	5,83	2259
H7_4	1949				4348734	6,75	2296
H7_5	1949				2620972	7,37	2148
H7_6	1949				2578934	6,70	2058
H7_7	1949				2863004	6,98	2345
H8_1	1941				713192	6,01	1730
H8_10	1941				3824422	6,66	2266
H8_11	1941				3818800	6,70	2339
H8_12	1941				3643828	6,25	2427
H8_13	1941				2970156	6,63	1973
H8_14	1960				4685686	6,89	2499
H8_15	1958				6608828	6,09	2436
H8_16	1958				1559348	8,68	2110
H8_17	1958				5784810	6,57	2413
H8_18	1958				6324854	6,75	2423
H8_19	1960				2900834	6,94	2326
H8_2	1941				3886454	5,80	2345
H8_20	1958				3762006	6,85	2284
H8_23	1957				16152434	10,99	2532
H8_24	1960				1491276	6,04	1450
H8_25	1960				1957834	6,33	2074
H8 3	1941				4273384	6,90	2280
H8 4	1941				4453366	6,75	2325
H8 5	1941				3598844	7,01	2288
H8 6	1941				3726878	6.09	2152
H8 7	1941				3620186	6,45	2437
HF1 1	2015		0.77		468886	8.21	1770
HF1 10	2015				5898566	3.98	2185
HF1 11	2015				68276	18.75	1167
HF1 12	2015				8475212	4.16	2502
HF1 13	2015				5826816	4.47	2302
HF1 14	2015				3273376	5.74	2389
HE1 15	2015		7.82		6774896	4.27	2291
HE1_16	2015		-)==		3104514	6.99	2307
HF1 17	2015				9943940	4,07	2459
HF1 18	2015				48134	9,13	703
HF1 2	2015				4103496	4.81	2317
HF1 3	2015				3295688	3.40	1866
HF1 4	2015				14383772	4.26	2488
HE1 5	2015				1089206	5.95	1928
HE1 6	2015				9825776	4 94	2447
HE1 7	2015				3998344	6 37	24497
LE2 1	2015				264924	9.40	1709
HF2_1	2015				1407522	5,40	1609
HE2_10	2015				639522	5,79	1036
LE2 12	2013				2405022	0,65 E 10	2201
HF2_12	2015				2490028	5,18	1655
HE2_13	2015		8 OG		21/6510	0,15	2405
nr2_14	2015		6,00		17140010	5,54	2405
HF2_15	2015				1/14208	5,22	1805
HF2_16	2015				3154778	6,35	2339
HF2_17	2015				2372966	5,50	2069
HF2_18	2015				2735676	5,88	2176
HF2_2	2015				1376192	5,90	2026
HF2_3	2015				5349778	5,81	2402
HF2_4	2015				2454848	6,26	2151
HF2_5	2015				2491360	5,67	2279
HF2_6	2015				1754070	5,69	1969
HF2_7	2015				538050	7,67	1836

Supplementary Table 2

		supplementary	Table Z				
Sample	#_reads	bwa_aln_%mapping bwa_aln_%r	mapping_after_cleanir	ng bwa_mem_%mapping	bwa_mem_%mapping_after_cleanii	ng bowttie2_%mapping	bowtie2_%mapping_after_cleaning
E1_1 E1_10	6274098 4912742	10,11 11.59	6,59 7.81	37,37	9,60 10.58	17,54	11,01 12,63
E1_10	4867924	11,41	7,91	36,63	10,64	18,57	12,61
E1_12	5600550	10,45	6,98	37,40	10,27	17,46	11,04
E1_13 E1 14	4995844 3845782	10,29	8,17	37,68 37,90	10,73	17,73	11,60
E1_15	6019518	11,11	7,56	38,45	10,06	18,61	12,12
E1_16	4524970	11,24	7,87	38,00	11,31	18,64	12,57
E1 18	4052028	10,29	8,32	37,54	9,70	17,49	13,38
E1_19	6363462	10,57	6,98	37,64	9,67	18,17	11,53
E1_2	5958694	10,65	6,88 7.67	38,84 37 86	9,81	18,36	11,42
E1_20	2358164	11,85	8,94	36,18	13,91	19,22	14,58
E1_24	2898804	12,30	9,04	34,76	12,25	19,20	14,07
E1_3 F1_4	4985722 4460490	11,51 10.64	7,09 7.37	41,14	10,60 11.14	19,93 18.10	11,94 12.29
E1_7	4031012	10,91	6,79	36,81	10,72	18,37	11,39
E2_1	2843360	9,53	7,29	33,92	12,98	16,14	12,52
E2_10 E2_11	1843272	10,56	8,15 8.08	35,87	14,72	17,07	13,04
E2_12	1982636	9,37	7,02	34,42	15,09	15,44	11,39
E2_13	1868244	9,56	7,54	33,82	15,32	15,78	12,42
E2_14 E2_15	3138372	9,77	8,27 7,29	34,50 36,82	18,15	16,80	12,38
E2_16	1908792	11,95	9,32	35,81	15,33	18,84	15,02
E2_17 E2_19	2198776	10,33	8,08 7,82	35,66	14,53	17,49	13,95
E2_18 E2_19	1348634	10,19	8,12	36,73	17,71	17,44	14,07
E2_2	2243018	8,98	7,06	33,21	14,21	15,32	12,10
E2_20 E2_23	1326580 1917306	9,92 9.68	7,81 7.57	36,18 33.16	17,48 14.89	17,00 15.95	13,62 12,54
E2_24	633876	11,02	8,93	34,95	21,04	17,80	14,80
E2_3	1522732	10,12	8,12	36,77	17,32	17,27	14,00
⊑∠_4 E2 5	∠a08914 2652342	9,75	7,40 7,51	36,25 35,86	13,85	16,30	12,15 12,46
E2_6	2140374	9,53	7,53	36,02	15,33	16,30	12,79
E2_7	2292774	10,18	7,89 9.17	36,76	15,29	16,63	12,38
E3_10	4043060	11,22	7,89	42,14 37,52	11,85	21,02 18,54	14,39
E3_11	1095756	11,99	9,08	40,88	19,67	20,29	15,66
E3_12 E3_13	3019946 1855404	10,26 11.33	7,29 8.44	36,72 38.63	13,07 15.83	17,19 19.10	11,89 14.39
E3_14	1962472	11,63	8,65	38,51	15,79	19,24	14,44
E3_15	2764178	11,48	8,37	38,78	13,80	19,40	14,08
E3_10 E3_17	153588	10,02	8,62	40,62 30,32	23,71	16,07	13,90
E3_18	2465348	11,03	8,26	37,09	14,16	18,42	13,79
E3_19 E3 2	2282456 3053450	11,22 10.32	8,36 7.25	35,85 31.88	14,34 11.36	18,05 16.30	13,35 11.49
E3_20	2638836	11,20	8,37	35,93	13,59	18,14	13,51
E3_23	1807054	11,03	8,44	36,69	15,57	18,50	14,21
E3_24 E3_25	2826202 3235218	10,64 12.22	7,51 6.36	38,11 38.07	13,49 11.32	18,36 19.68	12,91 10.27
E3_3	3602164	11,69	8,12	40,38	12,45	19,61	13,29
E3_4	3656306	10,98	7,69	34,49	11,22	17,73	12,40
E3_5 E3_6	1442824 2165366	12,03	9,49 9,08	39,62 39,39	17,31 15,08	20,40	15,49
E3_7	2940532	10,96	7,60	38,47	13,46	18,67	12,87
E4_1	7153656	9,92	6,02 9,69	36,72	8,63	17,03	9,68
2.4_10 E4_11	5022302	11,98	7,23	36,38	20,38	19,02	14,59
E4_12	318170	15,44	10,28	36,64	20,92	22,25	14,15
E4_13 F4_14	63704 779010	12,60 12,88	10,87 9.44	29,43 33 71	23,50 17 68	17,68	15,18 13,97
E4_15	175078	12,93	10,60	35,11	24,70	19,73	16,30
E4_16	1359650	11,39	8,33	34,20	15,80	17,70	12,97
E4_17 F4 18	8718416	9,84 10.70	4,68 7.31	37,02	7,66	16,69 17 10	7,37
E4_19	5021072	10,35	5,50	33,55	8,82	16,65	8,61
E4_2	1108648	11,27	8,45	32,95	15,94	17,63	13,46
⊑4_20 E4 23	1464438 4326408	9,76 10,15	6,03 5,12	34,25 33.04	13,99 8.81	16,33 16.31	10,09 7.96
E4_24	5721668	10,21	5,16	34,08	8,15	16,82	8,23
E4_25	4305210	10,53	5,62 7.44	33,39	9,32	16,64	8,67
L+_3 E4_4	986004	11,99	9,13	38,35	18,55	19,55	12,2**
E4_5	800208	12,29	9,01	37,62	18,95	19,67	14,52
E4_6 E4 7	2503388 3614076	11,34 11.18	7,60 7.29	38,98 39.05	13,18 11.59	19,26 19.16	12,80
E5_1	4652616	10,39	7,09	35,55	10,56	17,41	11,63
E5_10	5503658	11,15	7,37	38,38	10,20	18,82	12,04
65_11 E5_12	5214270 2514184	10,98	7,39 8,06	37,39 39,13	10,34	18,45 19,41	12,10
E5_13	3439540	11,98	8,28	39,83	12,43	20,24	13,88
E5_14	4522138	11,59	7,81	38,18	10,97	19,38	12,82
E5_16	3941046	12,03	8,39	38,57	11,67	19,98	13,79
E5_17	2877568	11,76	8,76	36,55	13,03	19,19	14,35
E5_18	956952 1087554	12,64	10,24 11.13	37,47 35.54	19,29 17.91	20,08	16,61 17.23
E5_2	2447904	10,66	7,96	31,66	12,57	16,78	12,79
E5_23	2547098	12,06	8,74	38,64	13,86	20,30	14,77
E5_24 E5_3	3004268 3513424	10,40	8,01 7,58	35,06	11,39 11,73	18,96	13,51 12,43
E5_4	4060266	10,43	7,31	34,71	11,04	17,34	12,08
E5_5	4409522	11,03	7,53	36,23	10,84	18,24	12,26
сэ_6 Еб 1	2092478 1430436	10,00	7,49	30,28 34,88	15,27	16,95	12,04
E6_10	3751650	9,67	7,09	34,91	11,44	16,62	12,18
E6_11	4070974	9,38	6,65 6.45	35,22	10,90	16,31	11,40
E6_13	3015066	9,39	6,97	34,45	11,99	16,37	12,24
E6_14	3488684	9,45	6,93	34,22	11,70	16,12	11,79
E6_15 E6_16	58630 3746084	9,33 9,59	9,01 7.05	34,12 33.67	31,26 11.03	15,98 16.39	15,52
E6_17	1692992	11,10	9,08	31,69	14,50	17,32	14,68
E6_18	0	na	na	na	na	na	na
E6_19 E6 2	3694326 4945046	9,71 9.83	7,35 6.97	30,50	10,67	15,79	12,08
E6_20	4021688	10,46	7,79	33,64	11,05	17,26	13,00
E6_23	1528378	11,46	9,17	28,76	13,88	16,85	14,07
E6_24 E6 3	3325858 3964948	10,26 9.92	7,60 7.23	33,80 37.63	11,71 11.75	16,68 17.45	12,15
E6_4	2484022	10,13	7,31	35,88	12,87	17,35	12,80
E6_5	3766494	9,99	7,26	36,92	11,72	17,39	12,62
E6_6 E6 7	4115920 3611308	10,01 10.25	7,28 7.48	35,95 36.24	11,12 11.83	17,18	12,41 13.12
EF1_1	239362	19,20	12,12	46,85	25,75	27,44	16,96
EF1_10	1270630	11,72	8,11	44,24	18,18	18,25	11,17
EF1_11	1862364	10,55	7,79	42,51 41,13	15,94	17,59	10,18
EF1_13	1652880	10,48	6,46	42,64	15,50	16,94	9,34
EF1 14	3027234	11,31	6,32	43,64	12,32	18,07	8.98

Supplementary Table 2 (continued)

Sample	#_reads	bwa_aln_%mapping	bwa_aln_%mapping_after_cleaning	bwa_mem_%mapping by	va_mem_%mapping_after_cleaning	bowttie2_%mapping	bowtie2_%mapping_after_cleaning_
EF1_15	2298388	9,98	6,70	40,73	14,47	16,22	9,74
EF1_16 FF1_17	397526 2128270	12,43 10.24	9,67 6,99	42,99 41.08	26,50 15,20	19,10 16,20	14,17 9.62
EF1_18	1550866	10,86	7,07	43,67	16,58	18,21	11,14
EF1_19 EF1_2	59824 1088524	24,90 11.75	15,90 8.66	49,93 42,23	33,03 19.30	32,10 18.80	20,02 12.92
EF1_20	38606	13,78	10,51	39,65	29,18	20,84	14,98
EF1_3 EF1_4	5913768 1166920	10,37 11,66	6,52 8,54	39,86 41,59	9,89 18,32	15,91 18,35	8,27 12,48
EF1_5	2465244	11,57	7,65	42,86	14,52	17,69	9,94
EF1_6 EF1 7	63106 1195596	11,77 11,47	10,40 8,17	40,10 42,20	33,21 19,02	18,77	16,21 10,74
EF2_1	2674570	9,22	6,19	33,40	12,35	14,82	9,43
EF2_10 EF2_11	1521018 226252	9,68	7,19 7,81	36,17 34,47	16,18 24,02	16,05 15,81	11,52 12,20
EF2_12	5594718	9,39	5,32	35,51	8,97	15,25	7,82
EF2_13 EF2_14	4211932 2414746	8,70 9,56	5,29 6,00	35,20 35,33	10,30 12,44	14,35 16,00	7,87 9,92
EF2_15	3739156	9,10	5,50	34,90	10,48	14,84	8,28
EF2_16 EF2_17	82812 3159958	14,14 9,65	12,13 5,77	37,39 36,45	30,04 11,44	20,62	17,84 8,68
EF2_18	3595612	8,74	4,51	35,75	9,77	14,83	7,28
EF2_19 EF2_2	2241176 898840	8,73	6,60	36,37	13,41 17,54	16,70	10,80
EF2_20	2489030	9,68	6,14	36,07	12,43	16,28	10,02
EF2_3 EF2_4	3757564 4092346	9,29 9,08	6,72	33,63 34,58	11,50 11,08	15,14 15,04	10,40 9,75
EF2_5	2676260	9,61	6,31	36,02	12,68	15,62	9,60
EF2_6 EF2_7	1408612 680116	9,14 9.77	6,34 7.35	35,85 35.04	15,40 19.49	15,47	10,47
EF3_1	3229342	8,81	5,96	33,77	11,95	14,27	8,96
EF3_10 EF3_11	2877954 1152450	9,66 8,71	6,08 5,89	36,93 33,47	12,37 15,45	15,97 14,45	9,39 9,62
EF3_12	7075988	9,16	5,28	35,63	8,73	14,69	7,27
EF3_13 EF3_14	2281572 3936410	8,76 9,38	5,92 5,85	34,52 35,21	13,19 10,75	14,72 15,66	9,51 9,27
EF3_15	3547252	8,58	5,41	33,40	10,80	14,25	8,58
EF3_16 FF3_17	295012 2800858	10,40	8,50 5.15	36,69 33.43	25,10 11.44	16,28 14.06	12,96 8.40
EF3_18	693276	8,53	6,51	33,25	17,98	14,68	11,13
EF3_19 FF3_2	4260710	8,81 9.01	5,41	34,40 34.47	10,31	14,35 14.58	7,99
EF3_20	2373064	8,79	5,74	34,21	12,65	14,74	9,20
EF3_3 FF3_4	5284192 2405280	9,43 8.77	5,74	36,83 34,34	10,04	15,48 14.48	8,43 9.17
EF3_5	5045496	9,62	5,85	36,65	10,17	15,66	8,61
EF3_6 EF3_7	3056964 2195742	9,00 9.81	5,80 6,78	35,72 36.35	12,24 14.09	15,10 16.07	9,10 10.58
H1_1	1841358	10,94	7,32	34,60	11,55	17,88	11,85
H1_10 H1_11	3527668 6430464	10,08	6,44 5.98	33,53 36,75	8,74 7.19	16,84 18,30	10,57 9.78
H1_12	4951236	8,54	5,11	28,60	6,89	14,32	8,23
H1_13 H1 14	7472816 10879786	9,46	5,05	34,17 36.15	6,16 6.08	16,48 17.70	8,25 9.00
H1_15	11252344	9,94	5,17	34,69	5,39	16,87	8,05
H1_16 H1_17	10018622 8406572	10,88	6,12 5,29	39,13 30,72	6,50 5.70	19,47 15.10	9,90 8.18
H1_18	3984438	8,19	5,31	26,99	7,11	13,40	8,45
H1_19 H1_2	7256516 58542	10,92 24.19	5,67 15.43	37,37 48.33	6,42 26.61	19,25 33.17	9,18 19.15
H1_20	3279158	9,82	5,67	35,25	8,52	17,43	9,77
H1_23 H1_24	16222420 5822132	50,30	10,62	73,80 39,69	2,82	63,26 21.16	3,66
H1_3	516538	11,19	9,09	31,88	15,83	17,62	14,53
H1_5 H1 6	1213738 3433392	11,23 10,25	8,40 6,79	33,74 34,86	13,17 9,32	18,21 17,61	13,57 11,38
H1_7	1613156	10,39	7,36	31,88	11,75	16,82	11,83
H2_1 H2_10	2999432 173216	3,87 5,55	2,59 4,87	20,45 22,94	7,25 17,00	7,53 9,99	5,02 8,86
H2_11	1156346	4,71	3,39	22,55	10,58	9,11	6,57
H2_12 H2_13	2772200	3,31	2,89	19,65	7,15	6,53	4,82 4,67
H2_14	3830620	4,03	2,70	19,98	6,61	7,64	5,05
H2_15 H2_16	4434852	3,28	2,85	17,66	5,75	6,33	4,41
H2_17	4960868	3,05	2,11	17,66	5,44	6,12	4,19
H2_18 H2_19	6177164	3,06	2,05	17,68	5,09	6,02	3,90
H2_2	31646	20,23	14,72	39,04	24,75	26,99	17,76
H2_23	9277828	41,15	9,49	61,78	3,03	52,26	2,99
H2_24	2430908	3,93	2,91	18,40	7,26	7,32	5,50
H2_3 H2_4	1126308	4,55	3,31	23,54 23,68	10,77	9,21	6,86
H2_5	61370	11,18	8,82	30,60	22,84	17,28	13,23
H2_7	1680592	4,68	3,31	21,48	9,02	8,70	6,15
H3_1 H3_10	4215206	9,10 9.51	5,97	33,15 37 71	9,06 9.60	15,90 16.88	10,26
H3_11	3728212	10,35	6,85	37,12	10,24	18,01	11,72
H3_12	4577536	10,00 11 30	6,25 7 63	37,01	9,26 11 86	17,67	10,71
H3_14	4516954	11,22	7,05	38,99	9,60	19,56	11,87
H3_15	4640896	10,22	6,76	38,32	9,68	18,48	11,88
H3_10 H3_17	4289172	9,29	6,13	35,56	9,44	16,61	10,77
H3_18	4151678	10,72	7,10	37,69	9,76	18,73	12,13
H3_19 H3_2	3363096	9,31	6,20	33,65	9,87	16,09	10,71
H3_20	3834762	9,61	6,58	35,48	10,14	16,93	11,44
H3_23 H3_24	1595036	9,07	6,86	32,42	12,91	15,59	11,93
H3_25	1226276	5,24	3,49	22,84	10,62	9,04	5,92
H3_4	5376922	9,64	6,13	38,00	9,20	17,48	10,72
H3_5	2067214	9,42 8.06	6,98 5 55	30,28	11,14	15,42	11,46
H3_7	4064222	11,07	6,54	39,40	9,87	19,38	11,24
H4_1	3548298	8,65	5,84	31,27	9,11	15,11	10,18
H4_11	5733808	9,18	5,92	35,78	8,64	16,47	10,22
H4_12	7167150	9,15	5,93	33,76	7,76	15,97	9,95
H4_14	5244092	9,18	5,61	34,91	8,89	15,73	9,17
H4_15	5328548	9,09	5,99	35,46	8,77	16,34	10,34
H4_17	4627788	8,97	6,04	36,06	9,67	16,31	10,61
H4_18	4769868	9,05	6,09	35,02	9,37	15,92	10,30
H4_2	3105138	7,60	5,19	30,45	9,56	13,72	9,40
H4_20	2468690	8,19 55.07	5,72 8 35	28,86	9,65 2 95	14,10	9,89 3.43
H4_24	1338108	7,50	5,57	27,12	11,46	12,86	9,64
H4_25 H4 3	4395294 4622760	7,95	5,03	32,93 35.79	8,55 9.19	14,67 16.85	9,00 11.05
					· · ·		

Supplementary Table 2 (continued)

Sample	#_reads	bwa_aln_%mapping	g bwa_aln_%mapping_after_cleani	ng bwa_mem_%mapping bw	a_mem_%mapping_after_cleaning	g bowttie2_%mapping b	owtie2_%mapping_after_cleaning_
H4_4	5517244	10,59	6,68	40,23	9,15	19,29	11,67
H4_5 H4 6	4391746 4046232	9,53 9,46	6,34 6,89	35,42 31,87	9,17 9,24	16,84 16,03	10,89 11,57
H4_7	6356752	9,74	6,44	33,82	7,92	16,76	10,77
H5_1 H5_10	3298886 5081914	9,02 12.06	5,71	32,83	9,72	15,39 21.08	9,74
H5_11	4703488	12,02	7,37	41,11	9,77	20,85	12,44
H5_12 H5_13	3043574 6538038	9,18 11.77	5,46	33,08 42.46	10,13	15,39 21.14	9,16 12.60
H5_14	6684662	10,71	6,63	38,64	8,58	18,84	11,05
H5_15	5420298	12,40	7,92	43,06	9,61	22,08	13,45
H5_17	4179616	9,50	6,47	34,82	9,64	16,84	11,37
H5_18	1411660	7,65	5,55	28,90	11,92	13,37	9,84
H5_19 H5_2	1653414	8,16	5,57	30,43	11,55	14,11	9,80
H5_20	1116284	9,13	6,59	31,82	13,82	15,44	11,46
H5_23	3591724	10,00	7,02	35,40	10,25	17,38	12,11
H5_25	7765956	8,80	5,16	35,81	7,22	16,21	8,97
H5_4	4695248	9,53	5,93	36,53	9,10	17,00	10,22
H5_5	5711234	9,98	5,98	37,39	8,31	17,90	10,32
H5_6 H5 7	7341442 4597664	11,29	7,01	42,06	8,63	20,34	11,79
H6_1	2422322	10,01	6,45	32,99	10,15	16,45	10,48
H6_10 H6 11	3678322 4835974	9,16 10,24	5,96	33,76 35,17	9,10 8,12	16,09 17,58	10,35 10,43
H6_12	2923382	9,44	5,57	31,94	8,84	15,76	9,04
H6_13 H6 14	2946738 5013760	8,12 11.21	5,57	28,11 38.81	8,74 9.16	13,40 19.50	9,15 11.82
H6_15	2432634	9,53	5,75	34,61	9,82	16,63	10,01
H6_16 H6_17	2305636 4257362	12,09	8,47	41,51 40.84	12,80	21,18 20.94	14,62
H6_18	3861956	11,04	7,52	38,80	10,12	19,62	12,98
H6_19	2455440	8,93	6,03	32,87	10,72	15,40	10,32
H6_20	3754426	10,64	6,32	40,35	10,28	19,27	11,46
H6_23	15888874	48,68	10,79	73,42	3,31	61,76	4,47
H6_24 H6_25	2452588	8,36	5,69	34,94	11,67	15,10	10,09
H6_3	5215798	10,37	6,52	37,77	8,51	18,32	11,01
H6_4 H6_5	4806846	9,38	5,52	37,18	8,54	15,82	9,78
H6_6	3440968	8,97	5,76	34,58	9,48	15,81	9,99
H6_7 H7 1	2268384 2317186	9,61	6,75	33,37 41,47	10,21 12,09	16,29	9,93
H7_10	3712668	9,43	6,22	39,79	10,40	17,55	11,26
H7_11 H7_12	3212386 4285912	10,28	6,44	41,08 42.10	10,80 9.84	18,61 19.30	11,27
H7_13	3319194	10,19	6,63	42,87	11,07	19,04	12,02
H7_14 H7_15	3522578	10,33	6,37	40,40	10,33	18,52	11,02
H7_16	5124778	9,31	5,84	40,18	9,04	17,58	10,49
H7_17	3146916	10,21	6,75	40,06	10,57	18,80	12,14
H7_18 H7_19	3516984	10,39	6,57	42,01	10,59	19,18	11,67
H7_2	2566484	9,54	6,12	39,02	11,40	17,51	11,22
H7_20 H7_23	2620428 15278012	9,95 55,33	6,36	41,49 79,97	2,67	18,87	3,10
H7_24	690894	9,02	6,99	35,96	17,41	16,34	13,06
H7_25 H7_3	541886 4162812	11,19 9.47	8,31	39,56	19,37	19,38	14,68
H7_4	4348734	11,16	6,75	46,25	10,18	20,87	11,94
H7_5 H7_6	2620972 2578934	11,21	7,37	41,79 43.65	11,43 11,78	20,06	12,94
H7_7	2863004	11,03	6,98	42,85	11,52	20,05	12,35
H8_1 H8_10	713192	9,77 10.27	6,01	29,69 37 38	12,94	15,40	9,17 11.45
H8_11	3818800	10,49	6,70	35,21	9,15	17,97	11,14
H8_12 H8_13	3643828	10,28	6,25	34,60	9,09	17,27	10,20
H8_14	4685686	11,32	6,89	40,08	9,35	19,76	11,43
H8_15	6608828	9,99	6,09	38,64	8,21	17,81	10,20
H8_17	5784810	11,21	6,57	42,41	8,74	20,45	11,32
H8_18	6324854	11,29	6,75	42,77	8,55	20,72	11,52
H8_19 H8_2	3886454	9,49	5,80	35,83	9,11	16,79	10,06
H8_20	3762006	10,83	6,85	38,28	9,70	18,79	11,69
H8_23	1491276	52,48 8,84	6,04	31,36	11,40	15,12	10,36
H8_25	1957834	9,00	6,33	32,99	11,69	15,82	11,07
H8_4	4453366	10,95	6,75	39,09	9,19	19,32	11,32
H8_5	3598844	10,73	7,01	37,04	9,76	18,50	11,71
H8_6 H8_7	3726878 3620186	9,68 10,52	6,09 6,45	37,37 37,46	9,56 9,74	17,72 18,21	10,87
HF1_1	468886	17,15	8,21	44,20	17,05	24,68	11,06
HF1_10 HF1_11	5898566 68276	10,07 39,02	3,98 18,75	42,58 68,09	7,58 19,91	17,76 53,80	6,70 16,91
HF1_12	8475212	9,61	4,16	39,02	6,47	16,75	6,64
HF1_13 HF1_14	5826816 3273376	9,35 10.56	4,47	39,70 38,23	7,86 9,91	16,10 17,31	7,15 8.76
HF1_15	6774896	9,51	4,27	40,27	7,36	16,92	7,18
HF1_16 HF1_17	3104514 9943940	11,53 10.05	6,99 4.07	42,69	11,54	19,95 17,94	11,81
HF1_18	48134	13,09	9,13	40,08	25,42	20,25	13,70
HF1_2	4103496	8,98 8 27	4,81	36,56	8,70	15,47	7,97
HF1_4	14383772	10,50	4,26	44,34	5,94	18,76	6,86
HF1_5	1089206	9,71	5,95	37,51	14,65	16,32	9,93
HF1_7	3998344	11,34	6,37	42,36	10,11	19,20	10,21
HF2_1	364834	14,88	8,40	42,86	21,67	21,34	11,24
HF2_10 HF2_11	638522	9,55 11,67	6,83	41,33 40,73	18,16	18,23	9,77
HF2_12	2496028	9,90	5,18	38,90	11,37	16,26	8,16
HF2_13 HF2_14	1195648 3146516	9,51 10.14	6,13 5.54	40,15 40.95	15,95 11.08	15,98 17.06	10,07 8.77
HF2_15	1714208	9,11	5,22	39,69	13,44	15,54	8,62
HF2_16 HF2_17	3154778 2372966	10,66 9.56	6,35 5.50	43,33 40.97	11,67 12.79	18,35 16.34	10,47 9.04
HF2_18	2735676	10,26	5,88	42,68	12,34	17,53	9,56
HF2_2 HF2 2	1376192 5349779	10,05	5,90 5.81	38,88	14,33	16,22 17.88	9,14
HF2_4	2454848	10,39	6,26	43,13	13,34	17,68	10,12
HF2_5 HF2_6	2491360 1754070	9,69 8 74	5,67	41,10 38.67	12,63 14 25	16,36 15 35	9,09 9.77
HF2_7	538050	13,29	7,67	43,21	19,34	20,21	11,12
	mean	11 10	6 0/	27.02	17 11	18 20	11.02
	sd	6,73	1,98	8,08	4,82	7,92	2,80

Erebia embla

Lycaena helle

	Adjusted R ²	Anova P value		Adjusted R ²	Anova P value
Year	0.0096691685	0.002**	Year	6.020e ⁻⁰³	0.002**
MEM1	0.0044102882	0.04*	MEM	l 1.895e ⁻⁰³	
MEM2	0.0005274334		MEM2	2 1.387e ⁻⁰³	0.022*
MEM3	0.0026585175		MEM	3 1.550e ⁻⁰³	
MEM4	0.0019595386	0.002**	MEM4	1 2.422e ⁻⁰⁵	
MEM5	0.0010806029	0.026*	MEMS	5 1.998e ⁻⁰⁴	
MEM6	0.0007008614		MEM	5 1.365e ⁻⁰³	0.044*
MEM7	-0.0005027576		MEM	7 3.792e ⁻⁰⁴	
MEM8	0.0003807166		MEM8	3 -9.290e ⁻⁰⁴	
all	0.01522548	0.001***	all	0.009318473	0.001***

Supplementary Figure 1

Erebia embla

0.00

Lycaena helle

Fresh samples

0.4

0.3

0.2

0.4

0.3

0.2

0.1

0.08

0.06

0.04

0.02

0.0

Inbreeding coefficient (FIS)