
HAL Id: hal-03030238
https://hal.science/hal-03030238

Submitted on 29 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Enhancing B2B supply chain traceability using smart
contracts and IoT

Mohamed Ahmed, Chantal Taconet, Mohamed Ould, Sophie Chabridon,
Amel Bouzeghoub

To cite this version:
Mohamed Ahmed, Chantal Taconet, Mohamed Ould, Sophie Chabridon, Amel Bouzeghoub. Enhanc-
ing B2B supply chain traceability using smart contracts and IoT. HICL 2020: Hamburg International
Conference of Logistics, Sep 2020, Hamburg, Germany. pp.559-589. �hal-03030238�

https://hal.science/hal-03030238
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Published in: Data science and innovation in supply chain management
Wolfgang Kersten, Thorsten Blecker and Christian M. Ringle (Eds.)

ISBN: 978-3-753123-46-2 , September 2020, epubli

Mohamed Ahmed, Chantal Taconet, Mohamed Ould, Sophie
Chabridon, and Amel Bouzeghoub

Enhancing B2B supply chain
traceability using smart
contracts and IoT

Proceedings of the Hamburg International Conference of Logistics (HICL) – 29

CC-BY-SA4.0

First received: 11. Mar 2020 Revised: 2. Jun 2020 Accepted: 12 Aug 2020

Enhancing B2B supply chain traceability using

smart contracts and IoT

Mohamed Ahmed 1, Chantal Taconet 2, Mohamed Ould 3, Sophie Chabridon 2,

and Amel Bouzeghoub 2

1 – ALIS – Institut Polytechnique de Paris

2 – Institut Polytechnique de Paris

3 – ALIS

Purpose: The management of B2B supply chains that involve many stakeholders re-

quires traceability processes. Those processes need to be secured. Furthermore,

quality traceability data has to be transparently shared among the stakeholders. In

order to improve the traceability process, we propose to enhance blockchain based

traceability architectures with the capability to detect and record well-qualified inci-

dents.

Methodology: To achieve this goal, we propose a generic smart contract for B2B

traceability data management, including transport constraints such as temperature,

delay and allowing automatic incident detection and recording. We propose an ar-

chitecture where data are collected by connected objects and verified and qualified

before being sent to the smart contract. This proposition has been validated with

medical equipment transport use cases.

Findings: As results, the proposed generic template contract can be used in various

traceability use cases, well qualified incidents are transparently shared among

stakeholders, and secured, qualified and verified traceability data can be used in

case of claims or litigation and can facilitate also the automation of invoicing pro-

cess.

Originality: The originality of this work arises from the automated B2B traceability

management system based on qualified IoT data, contractual milestones and pro-

cess coded in a generic smart contract, and also from the fact that traceability related

data and incidents are verified and qualified in order to increase the integrated data

quality.

560 Mohamed Ahmed et al.

1 Introduction

The collection and management of traceability data and the agreement on

its management rules are today major challenges for the B2B supply chain.

According to Van Dorp (2002), ISO defines the traceability as: "the ability to

trace the history, application or location of an entity by means of recorded

identification". Consequently, the traceability requires to store and share

securely the data and the process related to an entity among all its stake-

holders.

The supply chain with all its stakeholders was among the firsts use cases of

the blockchain technology outside the cryptocurrency’s domain, as this

technology responds to the issues of securing data sharing between stake-

holders. The usage of the blockchain in the supply chain helps to meet key

supply chain management objectives such as cost, quality, speed, depend-

ability, risk reduction, sustainability and flexibility as stated by Kshetri

(2018).

The emergence of the blockchain has facilitated the development of smart

contracts. According to Szabo (1997), smart contract designates the hard

coding of all contract clauses in a hardware or software in order to be exe-

cuted automatically in a secured and distributed environment. In the end

of 2013, Ethereum comes with an integrated framework for smart contract

development Buterin (2014). Since, it has become a standard in blockchain

implementations to integrate the support of smart contracts.

Traceability solutions are proposed in many articles using the blockchain.

However, many of these proposals stop at the first level of use of the block-

chain, using it just as a storage medium, and thus, they do not take ad-

Enhancing B2B supply chain traceability using smart contracts and IoT 561

vantage from the automation possibilities offered by smart contracts to im-

plement distributed, secure and reliable process of contractual milestones

and incidents management.

Additionally, many solutions of the state of the art propose to use premis-

sionless blockchains in a private network (as in Lin et al. (2019), Wester-

kamp et al. (2018) and Hasan et al. (2019)), but these blockchains are not

adapted to the B2B supply chain context. All stakeholders are well identi-

fied in the B2B supply chain and there is a certain level of trust established

by contracts between them. The needs, in this specific context, are more to

share securely and reliably data and processing rules among those stake-

holders and manage different access levels to the shared data and process.

The combination of the IoT with blockchain traceability-based systems

provides those systems with auto collected and real time field data. In the

state of the art, some works propose to set up blockchains at the level of

the IoT network as in Hinckeldeyn & Jochen (2018), but the blockchain with

its resources needs is not adapted to the IoT network level which is re-

source limited. Some other works propose to integrate in the blockchain

raw data captured and transmitted by the various connected objects of the

supply chain without any IoT data qualification process as in Hasan et al.

(2019). Those above cited two propositions are not adequate, and there is

a need to provide the blockchain traceability-based systems with only rel-

evant IoT data without outlier or redundant data.

Automation possibilities of smart contracts and the IoT auto data collection

capabilities open new opportunities for enhancing the traceability with se-

cured, transparent, reliable and shared rules and data. The traceability en-

hancing brings questions about incidents management. The incidents are

elements of the daily life in the supply chain and the lack of secured and

562 Mohamed Ahmed et al.

transparent process for their management affects seriously the data qual-

ity of traceability systems.

The contributions of this work to enhance B2B supply chain traceability are

the proposition of a generic smart contract to handle contractual mile-

stones, IoT data, incidents creation and qualification rules. The genericity

of the proposed smart contract means that it can be deployed across the

majority of B2B supply chain contexts without needs for new development

efforts. We propose also to use IoT data qualification servers to automati-

cally qualify the IoT data, collected from connected objects or provided by

the traceability process stakeholders, before its integration in the smart

contract, in order to reduce the amount of data to be stored in the underly-

ing blockchain. A stakeholder's confirmation process is also proposed in

the smart contract for some elements such as incidents to confirm the

stakeholder's involvement in those elements and their agreement on their

related data.

The rest of the paper is organized as follows: in Section 2 we study the

works related to supply chain traceability using smart contracts and IoT. In

Section 3 we present the architecture of the proposed B2B supply chain

traceability solution. Section 4 presents an evaluation of the proposed so-

lution. Finally, we conclude in Section 5 and present some future works.

Enhancing B2B supply chain traceability using smart contracts and IoT 563

2 Related works

The usage of smart contract combined with IoT in the supply chain is a re-

cent research trend, and several solutions have been proposed using those

technologies. As state Rejeb et al. (2019), the combination of smart con-

tracts and IoT could enhance the transparency, the confidence, the effi-

ciency and the traceability of the supply chain. In this paper, we focus on

the traceability enhancing and we analyze literature concerning the works

that use smart contracts to tackle the supply chain traceability problem.

We studied the related works according to five traceability enhancing re-

quirements. Firstly, the usage of the IoT technology (R1) which is essential

to accelerate and automate the field data collection and incidents detec-

tion. Secondly, the genericity (R2) of the proposed smart contract in term

of logic and manipulated entities, such as milestones, transport conditions

and incidents. This means that the proposed smart contract could be ap-

plied in another supply chain traceability context without needs for further

development efforts. Thirdly, the usage of contractual milestones (R3) be-

tween stakeholders, which are essentials for B2B traceability. Fourthly, the

integration of an IoT data qualification module (R4), which is necessary for

submitting into the smart contract only relevant IoT data, and conse-

quently alleviate the underlying blockchain data amount. Finally, the sup-

port of traceability incidents management (R5), for example the auto de-

tection and qualification of non-compliance with contractual milestones

dates or transport conditions, which are essentials for B2B supply chain

traceability systems.

Some of the related works try to resolve the supply chain traceability issues

using only smart contracts without IoT as in Lin et al. (2019), Westerkampet

564 Mohamed Ahmed et al.

al. (2018), Cui et al. (2019), Yong et al. (2020), Salah et al. (2019) and Helo &

Hao (2019). Yong et al. (2020) proposed a traceability solution for the vac-

cine supply chain, allowing to detect vaccine expiration which is an incident

related to the vaccine lifecycle management rather than the supply chain

process. Chang et al. (2019) tried to reengineer theoretically the tracking

process and proposed to introduce control points for B2B scenarios by

modifying the data structure without giving more detail on how to do that.

The lack of use of IoT affect the automation and the data collection capa-

bilities of those solutions.

Other related works take advantage of the combination of smart contract

and IoT to resolve traceability problems as in Bumblauskas et al. (2020).

Wen et al. (2019) proposed a privacy compliant traceability solution, but

with a limited number of stakeholder roles that does not cover all the pos-

sible roles in the supply chain such as the broker role for example. The ship-

ment management system in Hasan et al. (2019) handles only some limited

package status and transport conditions that could not cover all different

contexts specific needs in terms of status and transport conditions. In the

model of architecture for Food Supply Chain (FSC) traceability proposed by

Casino et al. (2019), the IoT data are stored only locally and a reference to

the locally stored data is used in blockchain, but there is no reference in

their work to an IoT data qualification process.

All the aforementioned smart contracts have been developed for some spe-

cifics supply chain contexts and are not generic to be used in other con-

texts. Also, their proposed solution lacks methods to qualify IoT Data before

its integration in the smart contract. That impacts the performance be-

cause of the huge amount of data generated by the IoT and that need to be

Enhancing B2B supply chain traceability using smart contracts and IoT 565

stored in the underlying blockchain. The incidents management also is an

important part of the traceability process that has not been or not well

treated in those related works.

Table 1 summarizes the studied works and how they meet the studied five

requirements:

Table 1: Related works comparison

Related work
IoT

(R1)

Genericity

(R2)

Contrac-

tual

Mile-

stones

(R3)

IoT data

Qualifica-

tion (R4)

Incidents

Manage-

ment (R5)

Lin et al.

(2019), Wes-

terkamp et

al. (2018), Cui

et al. (2019),

Yong et al.

(2020), Salah

et al. (2019)

and Helo &

Hao (2019)

N/A N/A N/A N/A N/A

Chang et al.

(2019)
N/A N/A

B2B con-

trol

points

N/A N/A

566 Mohamed Ahmed et al.

Related work
IoT

(R1)

Genericity

(R2)

Contrac-

tual

Mile-

stones

(R3)

IoT data

Qualifica-

tion (R4)

Incidents

Manage-

ment (R5)

Casino et al.

(2019) and

Bumblauskas

et al. (2020)

Ful-

filled
N/A N/A N/A N/A

Wen et al.

(2019)

Ful-

filled

Generic

smart con-

tract (with-

out

transport

conditions)

N/A N/A N/A

Hasan et al.

(2019)

Ful-

filled

Smart con-

tract with

hard coded

shipment

status and

transport

conditions

N/A N/A N/A

Enhancing B2B supply chain traceability using smart contracts and IoT 567

Related work
IoT

(R1)

Genericity

(R2)

Contrac-

tual

Mile-

stones

(R3)

IoT data

Qualifica-

tion (R4)

Incidents

Manage-

ment (R5)

This work
Ful-

filled

Generic

smart con-

tract with

generic

transport

conditions

Contrac-

tual mile-

stones

manage-

ment

IoT data

qualifica-

tion pro-

cess

Incidents

auto detec-

tion and

qualifica-

tion in the

smart con-

tract

568 Mohamed Ahmed et al.

3 Architecture of the proposed B2B traceability
solution

As depicted in Figure 3, we propose a novel architecture that meet all the

requirements defined in the related works section.

The proposed B2B traceability solution is comprised of two main parts: the

generic smart contract and the server responsible of IoT data qualification.

The smart contract is responsible of the contractual milestones and the in-

cidents detection and management process. The IoT data qualification

server is responsible of the qualification of the collected IoT data based on

the constraints defined by the smart contract data and the IoT tag specifi-

cations.

As a relevant illustrative application, we choose some scenarios from the

medical cold chain. These use cases involve generally B2B stakeholders

and have specific requirements such as specific temperature transport con-

ditions in case of transport of medical temperature-sensible products. For

those reasons, they are relevant use cases for our proposed traceability so-

lution.

In the next subsections, we present the medical cold chain use case and the

selected illustrative scenarios, the generic traceability smart contract and

the IoT data qualification process.

3.1 Medical cold chain use cases

The medical equipment cold chain is handled by specific transport means.

Some of the medical equipments, like perishable medical diagnostic kits

Enhancing B2B supply chain traceability using smart contracts and IoT 569

used in blood tests, need to be transported under elevated transport con-

ditions with a temperature between a minimum of +2 and a maximum of +8

Celsius degrees. Shipper generally use data loggers to collect the tempera-

ture during the transport operation data and those data loggers are re-

turned to the shipper after the end of the transport operation to control if

there has been any incident related to the temperature excursion.

Furthermore, the transport conditions and milestones data are made avail-

able by carrier through EDI or web services. In existing traceability systems,

all those data are collected in a central traceability system and can then be

accessed by all stakeholders.

This scenario with current systems presents several challenges that are not

handled by most of traditional traceability systems. For example, the inci-

dent declaration is delayed due to the post-control of the transport condi-

tion respect after the end of the transport operation using the returned

data logger. Also, the central traceability system hosted by one of the stake-

holders or an external actor, without guaranties on the security and the re-

liability of data available in this system.

For this work, we present three implemented scenarios that show the ge-

nericity of our smart contract and how it handles different types of inci-

dents. Those scenarios involve three main stakeholders: a shipper, a carrier

and a consignee. In all these scenarios, connected IoT tags (Figure 2) ac-

company the shipments and collect automatically in near real time the

shipment temperature and position.

The first scenario is about the transport of Cytomegalovirus (CMV) test Kit,

used to diagnostic human CMV infections. This test kit needs to be trans-

ported under strict temperature condition of [+2°C,+8°C]. In this scenario

570 Mohamed Ahmed et al.

we focus on the incidents related to the non-compliance with the tempera-

ture transport condition enshrined in the shipment transport conditions.

The second scenario is about the transport of Thyroid Stimulating Hor-

mone (TSH) test Kit, used as a diagnostic test for common condition of thy-

roid hormone deficiency. In this scenario we focus on incident related to

the non-compliance with delivery date concluded for the shipment delivery

milestone.

The last scenario is about the transport of Automatic immunohematology

analyzer, and in this scenario, we focus on incident related to the damaging

of transported material either at origin or during placement in the aircraft.

3.2 The smart contract

The smart contract proposed in this work handles the logic, the traceability

rules and the incidents management in a generic way. In order to do that,

we used generic entities (See Figure 1) and methods without any reference

to a specific B2B traceability context, such as specifics stakeholders, mile-

stones, transport condition or incidents. Therefore, this smart contract

could be used in the majority of the B2B supply chain traceability contexts

without needs for further modifications of its entities or methods. Addition-

ally, the incidents automatically detected by this smart contract are well

organized by their non-compliance origins (transport conditions or mile-

stones) and their stakeholders also are well identified. This organization

gives a clear view of those incidents and simplifies their management pro-

cess.

Enhancing B2B supply chain traceability using smart contracts and IoT 571

The main methods of the proposed smart contracts are createShipment,

updateMilestone, addIoTEvent, createIncident and confirmIncident.

The createShipment method is called by the initiator of the shipment to cre-

ate a new shipment. It takes as argument a description of the shipment to

be created with all its related elements: description, milestones, transport

conditions and stakeholders. The method initializes the shipment mile-

stones with empty incidents list, verifies that the initiator organization is

not in the waiting for confirmation stakeholders list, if that’s the case re-

move it and initiates the shipment status. It gives as output the created

shipment.

The updateMilestone is called by the concerned milestone stakeholders to

update the milestone actual date and location. It takes as argument the

Figure 1: Entity class diagram

572 Mohamed Ahmed et al.

milestone to be updated and gives as output the updated milestone, see

Algorithm 1. If necessary, it creates a milestone date compliance incident.

Algorithm 1: Update milestone

Input: An existing shipment id and an existing milestone related to the

given shipment

Begin

 if The update requestor company is in the shipment stakeholders list

and also in the milestone stakeholders then

 Retrieve and update the given milestone actual date and location us-

ing the milestone code

 if The milestone actual date is after the milestone negotiated date

then

 Create a milestone non-compliance incident involving all the mile-

stone stakeholders

 end if

 else

 Throw error: unauthorized update

 end if

End

Output: Updated milestone

The addIoTEvent is called by the IoT data qualification server when an IoT

event (ShipmentConditionValue) is received and is eligible to be sent to the

smart contract. It takes as argument the qualified IoT event and gives as

output the updated shipment, see Algorithm 2. It may also generate a

transport conditions compliance incident.

Enhancing B2B supply chain traceability using smart contracts and IoT 573

Algorithm 2: Add IoT event

Input: An existing shipment id and an IoT event related to an existing

transport condition of the given shipment

Begin

 if The update requestor company is in the shipment stakeholders list

and also in the transport condition stakeholders then

 Retrieve the concerned transport condition using its code and add

the event to

 the transport condition events

 if The event value is not compliant with the fixed transport condition

ranges then

 Create a transport condition non-compliance incident involving

all the transport condition stakeholders

 end if

 else

 Throw error: unauthorized update

 end if

End

Output: Updated shipment

The createIncident method is called by the shipment stakeholders to report

manually other types of incidents that are not directly related to the mile-

stone’s dates or the transport conditions respect. For examples a damaged

material incident. It takes as arguments the shipment's id and the incident

to be created and gives as output the updated shipment.

574 Mohamed Ahmed et al.

The confirmIncident method is called by shipment stakeholders to confirm

that they are effectively involved in the given incident. It takes as argu-

ments the shipment id and the id of the incident to be confirmed, and gives

as output the updated shipment, see Algorithm 3.

Algorithm 3: Confirm incident

Input: An existing shipment id and an existing incident id related to the

given shipment

Begin

 if The confirm requestor company is in the shipment stakeholders list

and also in the given incident stakeholders then

 Retrieve the concerned incident and remove the requestor company

from the list

 of the incident waited for confirmation stakeholders

 else

 Throw error: unauthorized update

 end if

End

Output: Updated shipment

As instantiation examples of our generic smart contract, we use the above

presented three scenarios. For all those scenarios, the stakeholders will be

the shipper, the carrier and the consignee. Those stakeholders agree on the

following basic milestones list: Pickup (involving the shipper and the car-

rier), Departure (carrier), Arrival (carrier) and Delivery (carrier and con-

signee). The shipper calls the smart contract method createShipment to

create a shipment.

Enhancing B2B supply chain traceability using smart contracts and IoT 575

In the first scenario, we only have a temperature transport condition with a

minimum of +2°C and a maximum of +8°C, which results in the following

transport condition instance: («TEMP (code)», «Temperature (label)», «2

(min)», «8 (max)», «the shipper and the carrier as temperature transport

condition stakeholders»). When an out-temperature range value (10 for ex-

ample) is received by the smart contract, it creates automatically an inci-

dent related to the temperature transport condition with the following in-

formation: («incident auto generated id (id)», «Non-compliance with Tem-

perature transport condition [2,8], the received value was 10 (Label)», «the

received Temperature date (Creation date)», «the shipper and the carrier as

incident stakeholders (the incident stakeholders are the same as the

transport condition stakeholders)»).

In the second scenario, we have a delivery date of 12/03/2020 at 13h00 for

the shipment delivery milestone, which results in the following milestone

instance: («DLV (code)», «Delivery (Label)», «12/03/2020 at 13h00 (negoti-

ated date)», «the carrier and the consignee (delivery milestone stakehold-

ers)»). When the smart contract receives an actual date which is after the

negotiated date (12/03/2020 at 16h00 for example), it automatically creates

an incident related to the delivery milestone with the following infor-

mation: («incident auto generated id (id)», «Non-compliance with Delivery

milestone negotiated date 12/03/2020 at 13h00, the received actual date

was 12/03/2020 at 16h00 (Label)», «The received milestone actual date

(Creation date)», «the shipper and the carrier as incident stakeholders (the

incident stakeholders are the same as the milestone stakeholders)»).

In the last scenario, the incident related to the damaging of transported

material is reported manually. For example, the shipper calls the smart con-

tract method createIncident and gives all the incident related information,

576 Mohamed Ahmed et al.

for example: (« Damaging of transported material (Label)», «The formal

date of the incident (Creation date)», «the carrier as incident stakeholders

(the incident stakeholders designated by the shipper)»).

The above presented smart contract, in contrast to the existing smart con-

tracts in the state of the art, is more adapted to the B2B traceability context,

with its integrated milestones, IoT data and incident management. The ge-

nericity of this smart contract allows its deployment in various B2B tracea-

bility context without needs of further development efforts.

3.3 The IoT Data collection and qualification

The architecture of our traceability solution is designed to automatically

detect traceability incidents by the smart contract based on the data col-

lected by the IoT. Due to the encryption and the replication of blockchain

data, the blockchain is not a good storage support for huge data amount.

The data generated by the connected objects is not directly integrated into

the smart contract. An IoT data server is used to improve the IoT data qual-

ity and send to the smart contract only qualified IoT data, see Figure 2.

We consider the following approaches for enhancing IoT data quality: out-

lier detection, data cleaning and data deduplication as stated by Karkouch

et al. (2016). Other aspects of the IoT data qualification such as interpola-

tion and data integration need to be considered in future work.

Enhancing B2B supply chain traceability using smart contracts and IoT 577

In this work, we consider as outlier data, every value that is outside the

ranges of the possible values defined by the sensor's specifications. The

outlier data are not sent to the smart contract. The data cleaning is per-

formed through the comparison of the format of the received IoT data with

the expected data format and the verification of the IoT data date which

should be valid and not a future date.

The IoT data deduplication is performed by an IoT data filter used to reduce

the number of IoT events sent to the smart contract. This filter takes as ar-

gument the IoT event to qualify, the last received IoT event and the ship-

ment. It gives as output the list of events sent to the smart contract, see

Algorithm 4.

Figure 2: IoT Data qualification process

578 Mohamed Ahmed et al.

Algorithm 4: IoT Data Filter

Input: An existing shipment id or shipment tag number and a new IoT

event value

Begin

Retrieve the correspondent transport condition ranges and the shipment

IoT data timeout interval

 if The shipment IoT data timeout interval is not elapsed then

 if The new IoT event value is in the ranges AND the last sent value to

the smart contract was outside the ranges OR the new IoT event value is

outside the ranges

 AND the last sent value to the smart contract was in the ranges then

 send the new IoT event value to the smart contract

 send also the previous received value to the smart contract, if it

has not been already sent

 end if

 else

 send the new IoT event value to the smart contract

 end if

End

Output: Events sent to the smart contract

Enhancing B2B supply chain traceability using smart contracts and IoT 579

4 Implementation, Test and Evaluation

In this section we present an implementation of the smart contract pro-

posed in this work. Some performance tests and results are also presented,

in order to prove the ability of the proposed architecture to be deployed in

real live production scenarios. Finally, we evaluate the proposed architec-

ture based on performance test results.

4.1 Implementation

The proposed smart contract has been implemented using Hyperledger

Fabric Java Chaincode. Hyperledger Fabric is a permissioned blockchain

implementation designed for enterprise purposes. It presents many ad-

vantages in comparison with the other permissioned blockchain imple-

mentations, among them : a parametrized consensus protocol, a node ar-

chitecture based on the notion of organization to establish a trust model

more adapted to the enterprise context and the support of Go, Javascript

and Java for smart contracts writing.

For the development and the deployment of our smart contract, we have

used the following software versions:

580 Mohamed Ahmed et al.

Table 2: Test software versions

Software Version

Hyperledger Fabric Docker Images Tag 1.4.6

Hyperledger Fabric Java Chaincode 1.4.3

Hyperledger Fabric Gateway Java 1.4.1

Docker 19.03.6

Java 1.8.0

For deployment purpose, we implemented a simplified Hyperledger Fabric

architecture (Figure 3) with three stakeholders interacting with the block-

chain: a shipper, a carrier and a consignee. In this architecture, the IoT data

Figure 3: Global architecture of the solution

Enhancing B2B supply chain traceability using smart contracts and IoT 581

sent by the shipment IoT tag or by the carrier is qualified in local IoT Data

Servers before its integration in the smart contract.

The stakeholders have been created as independent Hyperledger Fabric or-

ganizations. Each organization has the following components: Certificate

Authority, responsible of the organization user certificates management;

Tow peers, with a local CouchDB database for each peer. One of the two

peers is designated as the endorser peer, which is responsible of the correct

execution of the smart contract on the organization side.

All the endorsers peers are connected to a channel called « my-channel ».

The transaction order is handled by one ordering service node, see Figure

4.

4.2 Test and evaluation

The objective of this subsection is to test the performance of the proposed

smart contract and the IoT data qualification module, in order to show that

Figure 4: Detailed architecture of the Test Hyperledger Fabric Network

582 Mohamed Ahmed et al.

they can be used in a real live traceability system. It’s not a subsection

about the Hyperledger Fabric performance which has been already treated

by Androulaki et al. (2018) and Yuan et al. (2020). For our smart contract

POC, the performance tests objective is to prove that the response time of

the main smart contract methods is tolerable. In order to evaluate the re-

sponse time tolerance, we defined a user tolerable response time of maxi-

mum 3 seconds, based on the work of Zhou et al. (2016).

Regarding the IoT qualification module, the tests objective is to prove that

this module helps to reduce considerably the amount of IoT data to be sent

to the smart contract.

For the test purpose, one machine has been used, and all the architecture

components have been deployed on this machine using Docker. The test

machine has the following characteristics:

Table 3: Test machine characteristics

Characteristic Details

OS Ubuntu 18.04.4 desktop amd64

CPU 1 CPU Intel(R) Core™ i7-8565U

RAM 8G

Virtual Disk 50G

We set the Hyperledger Fabric block creation timeout to 1 second and the

maximum number of transactions per block to 15. This means that after the

reception of a new transaction, the system will trigger the block creation

Enhancing B2B supply chain traceability using smart contracts and IoT 583

either after a time wait of 1 second or after a total number of 15 new trans-

actions is reached. In this POC, we use the Raft consensus algorithm (On-

garo & Ousterhout (2014)), with a unique ordering service node.

The createShipment, updateMilestone and addIoTEvent, the three main

methods of the smart contract have been tested using three batches of

shipments. A first batch of 500 shipments, a second batch of 1000 ship-

ments, and a last batch of 2000 shipments. The average response time of

the three methods was around 1.4 seconds. It's a good result for the POC

regarding the single machine used to deploy all the architecture compo-

nents. However, further tests are needed to confirm the performance of this

architecture in a real distributed environment with network constraints

and more stakeholders, since those elements could impact the architecture

performance.

The proposed IoT Data Qualification module has also been tested 1000

times using a series of 1000 randomly generated temperature values. The

shipment IoT data interval was set to 60 minutes and there was a timeslot

of 3 minutes between every two values of the temperature series. Those pa-

rameters have been chosen from a specific context of shipment IoT tag that

use Sigfox technology to send a message of 3 temperatures values every 10

minutes. This gives around 1000 temperature values received for 2 days of

IoT data collection.

As result of those tests, the percentage of retained IoT data to be sent to the

smart contract by the IoT data qualification server, depends on the test se-

ries values. For normal series with only in-ranges temperatures, and abnor-

mal series with only out-ranges temperatures, this percentage is equal to

the IoT values timeslot divided by IoT update interval defined in the ship-

ment, which gives 5% in our test case (3/60). In case of a mixed series, the

584 Mohamed Ahmed et al.

percentage of retained IoT data depends on the IoT values timeslot, the IoT

update interval defined in the shipment and the number of out-ranges tem-

peratures. For our test case, with a series of around 36% of out-ranges val-

ues, the percentage of retained IoT data was around 31%.

The proposed IoT data qualification method allows getting into the smart

contract only the pertinent IoT data for the traceability management and

reduce considerably the number of IoT events to be stored in the underly-

ing blockchain. However, many other aspects of the data quality have not

been covered in this work such as the heterogeneity of sources (for example

shipper IoT data vs carrier IoT data) and need to be considered in future

work.

Enhancing B2B supply chain traceability using smart contracts and IoT 585

5 Conclusion and future work

In this paper, in order to enhance B2B supply chain traceability, we have

proposed, implemented and tested a generic smart contract for B2B trace-

ability. This smart contract handles contractual milestones, IoT data and

the auto detection and qualification of traceability incidents. We developed

also a solution for the qualification of IoT data before its integration in the

smart contract.

The architecture proposed in this paper could be enhanced by future work

on the data to be stored outside the blockchain (off-chain data), for exam-

ple by using IPFS technology (Benet (2014)) to share and synchronize off-

chain data and to store traceability attachments files, in a distributed archi-

tecture. Also, other aspects of the IoT data quality such as the handling of

imperfect data, the data integration and interpolation, need to be consid-

ered in future work. Additionally, we have proposed some manual confir-

mation methods in this work. The impacts of those methods on the tracea-

bility process automation should be studied versus the trust that those

methods add to shipment, milestones and incidents data.

Furthermore, this work has some managerial implication such as the need

to subscribe the negotiated milestones in the stakeholder's service con-

tract, the approval of connected objects to be used for data collection,

some data manual confirmation process and the management by excep-

tion through a clear vision of elements that are non-compliant with the

stakeholders concluded service contract.

586 Mohamed Ahmed et al.

Finally, the research on the use of smart contracts and the Internet of

Things (IoT) suffers from several limitations out of the scoop of this work,

among them: the difficulty of deploying blockchain based solutions, the

maturity of blockchain technology, and the securing of IoT data collection

and processing.

Enhancing B2B supply chain traceability using smart contracts and IoT 587

References

Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,

Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C.,

Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C.,

Vukolic, M., Cocco, S. W. & Yellick, J. (2018), Hyperledger Fabric: A Distributed

Operating System for Permissioned Blockchains, pp. 1–15. arXiv: 1801.10228.

URL: http://arxiv.org/abs/1801.10228

Benet, J. (2014), ‘IPFS - Content Addressed, Versioned, P2P File System’, arXiv e-

prints p. arXiv:1407.3561.

Bumblauskas, D., Mann, A., Dugan, B. & Rittmer, J. (2020), ‘A blockchain use case in

food distribution: Do you know where your food has been?’, International Jour-

nal of Information Management 52, 102008.

URL: http://www.sciencedirect.com/science/article/pii/S026840121930461X.

Buterin, V. (2014), ‘Ethereum: A next-generation smart contract and decentralized

application platform’. Accessed: 2020-04-28.

URL: https://github.com/ethereum/wiki/wiki/White-Paper

Casino, F., Kanakaris, V., Dasaklis, T. K., Moschuris, S. & Rachaniotis, N. P. (2019),

‘Modeling food supply chain traceability based on blockchain technology’, IFAC-

PapersOnLine 52(13), 2728 – 2733. 9th IFAC Conference on Manufacturing Mod-

elling, Management and Control MIM 2019.

URL: http://www.sciencedirect.com/science/article/pii/S2405896319316088

Chang, S. E., Chen, Y.-C. & Lu, M.-F. (2019), ‘Supply chain re-engineering using block-

chain technology: A case of smart contract based tracking process’, Technologi-

cal Forecasting and Social Change 144, 1 – 11. URL:

http://www.sciencedirect.com/science/article/pii/S0040162518305547

Cui, P., Dixon, J., Guin, U. & Dimase, D. (2019), ‘A blockchain-based framework for

supply chain provenance’, IEEE Access 7, 157113–157125. Hasan, H., AlHa-

dhrami, E., AlDhaheri, A., Salah, K. & Jayaraman, R. (2019), ‘Smart contract-

based approach for efficient shipment management’, Computers&Industrial En-

gineering 136, 149 – 159.

URL: http://www.sciencedirect.com/science/article/pii/S0360835219304140

http://arxiv.org/abs/1801.10228
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.sciencedirect.com/science/article/pii/S2405896319316088

588 Mohamed Ahmed et al.

Helo, P. & Hao, Y. (2019), ‘Blockchains in operations and supply chains: A model and

reference implementation’, Computers & Industrial Engineering 136, 242–251.

Hinckeldeyn, J. & Jochen, K. (2018), (short paper) developing a smart storage

container for a blockchain-based supply chain application, in ‘2018 Crypto Val-

ley Conference on Blockchain Technology (CVCBT)’, pp. 97–100.

Karkouch, A., Mousannif, H., Al Moatassime, H. & Noël, T. (2016), ‘Data quality in in-

ternet of things: A state-of-the-art survey’, Journal of Network and Computer

Applications.

Kshetri, N. (2018), ‘1 blockchain’s roles in meeting key supply chain management

objectives’, International Journal of Information Management 39, 80.

URL: http://search.proquest.com/docview/2059164679/

Lin, Q., Wang, H., Pei, X. & Wang, J. (2019), ‘Food safety traceability system based on

blockchain and epcis’, IEEE Access 7, 20698–20707.

Ongaro, D. & Ousterhout, J. (2014), In search of an understandable consensus algo-

rithm, in ‘2014 USENIX Annual Technical Conference (USENIX ATC 14)’, USENIX-

Association, Philadelphia, PA, pp. 305–319. URL:

https://www.usenix.org/conference/atc14/technicalsessions/presentation/on-

garo

Rejeb, A., Keogh, J. & Treiblmaier, H. (2019), ‘Leveraging the internet of things and

blockchain technology in supply chain management’, Future Internet 11,

https://www.mdpi.com/1999–5903/11/7/161.

Salah, K., Nizamuddin, N., Jayaraman, R. & Omar, M. (2019), ‘Blockchain-based soy-

bean traceability in agricultural supply chain’, IEEE Access 7, 73295–73305.

Sigfox technology (n.d.). URL: https://www.sigfox.com/en/what-sigfox/technology

Szabo, N. (1997), ‘Formalizing and securing relationships on public networks’, First

Monday 2(9). URL: https://ojphi.org/ojs/index.php/fm/article/view/548

Van Dorp, K. (2002), ‘Tracking and tracing: a structure for development and contem-

porary practices’, Logistics Information Management 15(1), 24–33.

URL: https://doi.org/10.1108/09576050210412648

Enhancing B2B supply chain traceability using smart contracts and IoT 589

Wen, Q., Gao, Y., Chen, Z. & Wu, D. (2019), A blockchain-based data sharing scheme

in the supply chain by iiot, in ‘2019 IEEE International Conference on Industrial

Cyber Physical Systems (ICPS)’, pp. 695–700.

Westerkamp, M., Victor, F. & Küpper, A. (2018), Blockchain-based supply chain

traceability: Token recipes model manufacturing processes, in ‘2018 IEEE Inter-

national Conference on Internet of Things (iThings) and IEEE Green Computing

and Communications (GreenCom) and IEEE Cyber, Physical and Social Compu-

ting (CPSCom) and IEEE Smart Data (SmartData)’, pp. 1595–1602.

Yong, B., Shen, J., Liu, X., Li, F., Chen, H. & Zhou, Q. (2020), ‘An intelligent block-

chainbased system for safe vaccine supply and supervision’, International Jour-

nal of Information Management 52.

Yuan, P., Zheng, K., Xiong, X., Zhang, K. & Lei, L. (2020), ‘Performance modeling and

analysis of a hyperledger-based system using gspn’, Computer Communica-

tions 153, 117 – 124.

URL: http://www.sciencedirect.com/science/article/pii/S0140366419306474

Zhou, R., Shao, S., Li, W. & Zhou, L. (2016), How to define the user’s tolerance of re-

sponse time in using mobile applications, in ‘2016 IEEE International Confer-

ence on Industrial Engineering and Engineering Management (IEEM)’, pp. 281–

285.

http://www.sciencedirect.com/science/article/pii/S0140366419306474

