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Fig. S1 Red curve indicates the temperature and the gas atmosphere protocol used for the LDH

thermal decomposition (1)
conventional activation pro
purpose.’

oxidative and (2) reductive step. The black curve represents the
cess of a pre-calcined sample (at 500 °C) under H, for comparison
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Fig. S2 Evolution of products during calcination of LDH precursor under air.
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Fig. S3 XRD patterns of the as-synthetized NiCu LDH sample.
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Fig. S4 Evolution of O, H, and CO, during the oxidative and reductive steps of thermal
decomposition of the NiCu LDH precursor.



Evaluation of the number of components in the XAS data set by Principal Component
Analysis and MCR-ALS analysis performed on the data set recorded during calcination and
activation of the bimetallic catalyst precursor.

Methods used for estimation of the most appropriate number of components for a data set
are based on Principal Component Analysis (PCA)® using the Singular Value Decomposition
algorithm. The methodology is detailed in . Two plots are used for this purpose: the Scree plot
which displays the eigenvalue associated to each principal component in descending order
versus the number of components and the Score Trajectory plot as a function of the number
of spectra contained in the data set. The number of components required to explain most of
the variance of the data set is estimated with the Scree plot considering the slope break
between the straight line formed by the first components and the asymptotic line passing
through the other components of lower eigenvalues. The Scree plot can be used regardless the
structure of the matrix D. For process-like data where data were ordered in time, temperature
..., trajectories along the reaction coordinates are expected for the scores of the components
which are significant.

Scree Plot in log scale

0] 5 10 15
Component Number

Fig. S5 PCA evaluation of the number of components explaining most of the variance
contained in the data set (D) recorded during the activation of the bimetallic LDH precursor at
the Ni K edge and presented in Figure 1a using the logarithm-scale representation of the Scree
plot. The break slope is found between the third component and the fourth ones suggesting
that 3 components are required to the explain most of the variance contained in the matrix D.
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Fig. S6 Results of the minimization by MCR-ALS of the XAS data recorded at the Ni Kedge for
the 2-stepped activation of the bimetallic LDH-precursor and presented in Figure 1a.
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Fig. S7 (a) EXAFS spectra and (b) Fourier Transforms of the EXAFS spectra of the 3 components
extracted by MCR-ALS analysis of the Ni K edge Quick-EXAFS data presented in Figure 1a.
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Fig. S8 PCA evaluation of the number of components explaining most of the variance
contained in the data set recorded during the activation of the bimetallic LDH precursor at the
Cu K edge and presented in Figure 1b.
a) Logarithm-scale representation of the Scree plot. The break slope is found between the
third component and the fourth ones suggesting that 3 components are required to the
explain most of the variance contained in the matrix D.
b) Representations of the Scores for the first 6 components determined by SVD as a function of
the number of spectra contained in the matrix D. Smooth trajectories for the first 3
components are observed but the 4™ one could be also significant.

For the data recorded at the Cu K edge, the Scree plot or Score trajectory plot show unclear

transit point.
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Fig. S9 (a) Cu K edge XAS data recorded during the calcination of the NiCu-LDH-precursors by
heating the sample under air from RT (deep blue curves) to 500 °C (deep red curves). (b)
Representations of the Scores for the first 6 components determined by SVD as a function of
the number of spectra contained in the matrix D. Smooth and noise-less trajectories for the
first 3 components are unambiguously observed.
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Fig. $10 Comparison of the Cu K edge XANES spectra extracted by MCR-ALS for the 2" and 3™
components isolated during the calcination of the NiCu-LDH precursor by heating the sample
under air from RT to 500 °C with experimental spectra recorded for a solution of the CuCl;*
complex * and for the atacamite Cu(OH);Cl species. The solution of the the CuCl;* complex was
prepared by dissolving anhydrous CuCl into HCI (pH = 1) solution in the presence of NaCl (3 M
ionic strength).’ The comparison of the XANES spectrum of the 2™ component with the one of
CuCl;” indicates the formation of a monovalent Cu species surrounded by chlorine ligands. The
shape of the XANES spectrum of the 3™ component and the position of the rising edge is very
similar to the one measured for the atacamite reference, evidencing the formation of a
divalent Cu species with local order close to the one presented by atacamite.®

Table S1. Best fitted EXAFS parameters. N: coordination number, R: atomic distance from the
absorbing atom, ¢’ square of the Debye-Waller factor. R; measures the relative misfit of the
theory with respect to the experimental spectrum. So>= 0.775 and E, = 8981 eV.

N R (A) 0’ (107 A% Rs (%)

NiCu-Cp2 Cu-Cl 2.0+0.3 2.17+0.02 85+1.2 0.01354

* k-range =3.4-9.7 A'R-range =1.0-2.3 A
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Fig. S11 Simulation of the Cu K edge EXAFS spectrum extracted by MCR-ALS for the 2™
component isolated during the calcination of the NiCu-LDH precursor by heating the sample
under air from RT to 500 °C. (a) EXAFS spectra and (b) corresponding FT. The structural

parameters so-obtained are gathered in Table S1. The Cu-Cl distance is compatible with the
formation of the CuCl,” complex.’”
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Fig. S12 PCA evaluation of the number of components necessary to explain most of the
variance contained in the matrix D obtained by the concatenation of the XAS data recorded at
the Cu Kedge during the calcination (spectra from 1 to 600) and those recorded during the 2-
stepped activation of the bimetallic LDH-precursors (spectra 601 to 950).
a) Logarithm-scale representation of the Scree plot. The break slope is found between the
fourth component and the fifth ones suggesting that 4 components are required to the explain
most of the variance contained in the matrix D.
b) Representations of the Scores for the first 6 components determined by SVD as a function of
the number of spectra contained in the matrix D. Smooth trajectories for the first 4
components are observed.
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Fig. S13 Results of the minimization by MCR-ALS of the matrix obtained by the concatenation
of the XAS data recorded at the Cu Kedge during the calcination (spectra from 1 to 600) and
those recorded during the 2-stepped activation of the bimetallic LDH-precursors (spectra 601
to 950).
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Fig. S14 (a) EXAFS spectra and (b) Fourier Transforms of the EXAFS spectra of the 4
components extracted by MCR-ALS analysis of the matrix obtained by the concatenation of the
XAS data recorded at the Cu Kedge during the calcination and those recorded during the 2-
stepped activation of the bimetallic LDH-precursors.



205-0,/30s-H,  205-0,/40 s-H, 15 5-0,/40 s-H,

9 9
| 2]
6r A ‘ ﬁ
)= | H /\,‘(\ ‘\ w‘\ \/\ /\ (\{//”
1| %K/MWV\/
T 2F
L o] 50 100 150 200 250 300 350 40‘0 450 i 0 50 100 150 200 250
40 5-0,/20 s-H, 10 5-0,/40 s-H,
10F = A NN A A A
9 / /H‘/“\‘/\/’ //\/\/\/ |
gl /m\/\\, I \/ ~f \'\/ \/ | \/ | i =
i // LA LI |
T N e \ TV Y W/”’“
o H20 \ 4r rF NN N , h
. 0000000
MN\MMM
10 50 100 150 250 300" o 5‘0 100 150 260 250
305-0,/30 s-H,
9 T
(I o s B
RTE
7\”"( | ““\J“‘ “‘\‘ \
"l || ‘( \J \
’ ([ | | |
:\WM/ | M/
| / v\
10 50 100 150 200 250
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diamond for different pulse sequences.
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Fig. S16 3D evolution of the Cu K edge XANES spectra recorded for the Cugy s activated catalyst
under the pulse sequence 30 s-0,/30 s-H,. 10 successive quick-XAS spectra were merged in the
pulse treatment leading to 5s of time resolution.
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Fig. S17 (a) PCA evaluation of the number of components necessary to explain most of the
variance contained in the matrix of Cu K edge quick-XAS spectra recorded during the 30 s-
0,/30 s-H, pulse sequence for the Cuys activated catalyst (time resolution 5s). Pulsed
trajectories of the Scores plot for the first 3 components are observed. (b) Concentration
profiles obtained for the Cu K edge data recorded under 30 s-0,/30 s-H, pulse sequence and
(c) zoom over 200 s. The time resolution for the data reported in (b) and (c) is 1s (dealing with
a merge of 2 successive spectra).
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Fig. S19 (a) TEM and (b-c) HRTEM images of the spent Niy4Cug; catalyst.
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Fig. S20 Example of decconvolution of a Raman spectrum of the carbon deposits formed on
the surface of the catalysts after the reaction. Lorentzian function was used for fitting D and G
lines whereas Gaussian function was used for fitting R1 and R2 lines. The position of the R1
and R2 lines were fixed to 1278 and 1500 cm™, respectivelly, whereas the position of the two
Lorentzian lines, the amplitude and width (FHWM) of the four lines were allowed to vary
during the least square fitting.
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Fig. S21 Comparison of the total area of carbonaceous species (sum of areas of D, G, R1 and R2
lines) measured during the first ESR with the change of the level of raw XAS absorbance at
8300 eV measured simultaneously with Raman. The inset displays the raw XAS spectra



measured upon TOS (time is increasing from the blue to the red spectra) from which is
determined the red curve. Raman probe depth is related to the penetration depth of the laser
which is typically of a few microns. When the thickness of the carbon layer is larger than the
laser penetration depth, invariance of the total area of carbonaceous species (sum of area of
D, G, R1 and R2 bands) is observed as presented in Fig. S21. This figure in comparison with
ethanol conversion for the first ESR treatment shown in Fig. 6a evidences that 4 steps
characterize the coke formation during the first ESR reaction: i) for t < 18 min, no coke deposits
are formed and ethanol conversion is stable, ii) for 18 min <t < 53 min, a rapid increase of
total area is observed with little impact on conversion, iii) for 58 min <t < 113 min, the area
starts to be stabilized with a slight increase of 13% observed between 113 and 58 minutes,
conversion of ethanol decreases from 98 % to 92 %, iv) for 118 min <t < 180 min, the area is
stable but conversion of ethanol still decreases because coke is still produced. The formation
of coke is evident from the increase of the raw XAS spectra measured upon TOS (inset of the
figure, time is increasing from the blue to the red spectra) indicating that the transmission of
the sample decreases due to carbon deposits at the surface of the support. In particular, the
raw XAS absorbance (red curve — vy, right) measured at 8300 eV in the time period where
nearly no more evolution of the total area of Raman lines is observed is the complementary
evidence of coke formation.
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Fig. S22 Raman spectra simultaneously measured during the regeneration under 5% O,/He of
the spent catalyst after the first ESR reaction.
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Fig. S23 Deconvolution of the difference spectrum obtained by substracting the spectra

presented in Figure 12 which were recorded at the end of the second ESR reaction and at the
end of the regeneration. The deconvolution was carried out with 3 lines: two Lorentzian (D and
G) lines and one Gaussian line (R1). Position, amplitude and width were allowed to vary.

Table S2. Parameters used for the deconvolution of the experimental Raman spectra reported
in Fig. 12 and Fig. S21. Lorentzian function was used for fitting the D and G lines whereas
Gaussian function was used for fitting R1 and R2 lines. The percentage of a given line is
obtained by calculating the ratio between the area of this line over the cumulative area of the
four lines. The D/G ratio is the ratio between the relative percentage of the D and G lines.

R1 D R2 G D/G
Sample Center % Center % Center % Center %

cm™ cm™ cm™ cm™

End of ESR1 1278 20.1 1333.1 423 1500 8.2 15858 29.5 143
+0.5 +0.3

End of - - 1342.8 60.0 1500 34 15841 36.6 1.64
Regeneration +0.6 +09

End of ESR2 1278 9.7 13339 5538 1519 4.7 15846 29.8 1.87
+0.5 0.5

Difference 1200.3 15.1 13246 60.5 - - 1581.3 24.4 2.48

spect. (Fig. S22) 7.6 +0.6 +0.8
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