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Abstract

Many models of within-host malaria infection dynamics have been formulated
since the pioneering work of Anderson et al. in 1989. Biologically, the goal of these
models is to understand what governs the severity of infections, the patterns of
infectiousness, and the variation thereof across individual hosts. Mathematically,
these models are based on dynamical systems, with standard approaches ranging
from K-compartments ordinary differential equations (ODEs) to delay differential
equations (DDEs), to capture the relatively constant duration of replication and
bursting once a parasite infects a host red blood cell. Using malariatherapy data,
which offers fine-scale resolution on the dynamics of infection across a number of in-
dividual hosts, we compare the fit and robustness of one of these standard approaches
(K-compartments ODEs) with a partial differential equations (PDEs) model, which
explicitly tracks the ”age” of an infected cell. We found that a PDE model out-
performs the K-compartments ODEs, in terms of robustness in representing the
observed gametocyte dynamics where the number K of repeated compartments for
the goodness-of-fit is quite variable across individuals. While both models per-
form quite similarly in terms of goodness-of-fit for gametocyte production when the
initial production of gametocytes is very slow, the K-compartments ODEs model
particularly overestimate parasite densities early on in infections. Moreover, while
a particular number K of repeated compartments in the ODE model is useful to
slow down the initial production of gametocytes, the predicted parasitemia is quite
unrealistic when K ≥ 2. Finally, the PDE model highlights a strong qualitative
connection between the density of transmissible parasite stages (i.e., gametocytes)
and the density of host-damaging (and asexually-replicating) parasite stages, which
is difficult to capture by the K-compartments ODEs model. This finding provides
a simple tool for predicting which hosts are most infectious to mosquitoes —vectors
of Plasmodium parasites— which is a crucial component of global efforts to control
and eliminate malaria.
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1 Introduction

Malaria has always been a public health problem and, since the discovery of malaria
parasites in human blood by Charles Laveran in 1880, remains so despite more than 100
years of research. Malaria continues to have a significant impact on the world with over
400,000 deaths alone each year [54]. It is a vector-borne disease caused by five plasmodial
species: Plasmodium falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, with
P. falciparum being the most pathogenic species infecting humans [35].

The malaria parasite has a complex life cycle involving sexual reproduction occurring
in the insect vector [2] and two stages of infection within a human (or animal host), a
liver stage [24] and blood stage [6]. Human infection starts by the bite of an infected
mosquito, which injects the sporozoite form of Plasmodium during a blood meal. The
sporozoites enter the host peripheral circulation, and rapidly transit to the liver where
they infect liver cells (hepatocytes) [24]. The parasite replicates within the liver cell before
rupturing to release extracellular parasite forms (merozoites), into the host circulation,
where they may invade red blood cells (RBCs) to initiate blood stage infection [43]. Then
follows a series of cycles of replication, rupture, and re-invasion of the RBC. Some asexual
parasite forms commit to an alternative developmental pathway and become sexual forms
(gametocytes) [47]. Gametocytes can be taken up by mosquitoes during a blood meal
where they undergo a cycle of sexual development to produce sporozoites [2], which
completes the parasite life cycle.

The classical model of within-host parasite multiplication in malaria infections was
formulated by Anderson el al. [4]. This model tracks uninfected red blood cells (RBCs),
parasitized RBCs (pRBCs) and merozoites. The pioneer work of Anderson el al. [4],
has been further developed in several directions including in particular immune response,
see for instance [1, 25, 28–30, 36, 44, 45] for human malaria infection. We also mention
discrete-time models such as in [18]. Those models use an exponential process to describe
the rate of rupture of pRBCs and, as a consequence, then fail to capture realistic lifetimes
of the pRBCs on short time scales [49]. One reason for this is that they are essentially
Markovian, i.e. ’memoryless’, a RBC that has been parasitized for 40 hours has the
same probability of producing merozoites as e.g. a RBC parasitized less than a hour ago.
Moreover, those models are treating some processes that are likely to be kinda continuous
as occurring only in a narrow window (e.g., the development of parasites within RBCs
and the rupture of pRBC followed by the merozoites release phenomenon).

To correct this issue, some models of malaria infection include K-compartments ordi-
nary differential equations (ODEs) representing a progression through a parasite’s devel-
opmental cycle, e.g. [25, 32, 48, 55], or delay differential equations (DDEs) to capture the
time pRBCs take to mature before producing new merozoites, e.g. [11, 30, 34, 40]. Other
approaches are the use of partial differential equations (PDEs) to track the age-structure
of the pRBC population [5, 16, 17, 35]. It is shown in [23] that DDEs perform better
than the ODEs in representing the dynamics of red blood cells during malaria infection.

TheK-compartments ODEs model can be interpreted as the application of the method
of stages (or the ”linear chain trick”) to the life cycle of pRBC, e.g. see [22, 31, 32] and
references therein. One problem with the K-compartments ODEs model is how to decide
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upon the number of repeated compartments to capture the realistic dynamics of the
pRBCs [26]. Determining the distribution of mean waiting times across compartments
for the ODE model is also an issue. If the compartments can be considered equivalent to
the developmental stages of pRBCs, then parasites might not spend equal time in each
stage.

We first introduce both mathematical models (PDE and K-compartments ODEs) and
define the model’s parameters and outputs. Next, using gametocyte production as a proxy
variable of infectiousness, we compared the model outputs from a PDE stage-structured
formulation to those from classical K-compartments ODEs. Furthermore, the output of
both mathematical models is used to qualitatively recover the time course of parasitemia,
defined as the proportion of all infected RBCs among the total number of RBCs. Finally,
the PDE model is used to highlight a strong qualitative connection between gametocyte
density and parasitemia, which is difficult to capture by the K-compartments ODEs
model.

2 Material and method

2.1 Data and methodology

Our analysis is based on data collected from malariatherapy taken in [21]. Malaria inoc-
ulation was a recommended treatment for neurosyphilis between 1940 and 1963. We also
refer to [12] for a review paper on malariatherapy and the knowledge gained in the under-
standing of malaria infection. The data we shall use consist in daily records of gametocyte
density for twelve patients. Although malariatherapy has been dismissed for obvious eth-
ical reasons, the advantages to use such data are multiple. Indeed, patients are naive to
malaria infection and the dynamics are not perturbed by anti-malarial treatments. Let us
notice that such data have been widely used in the literature and in particular to estimate
mathematical model parameters. We refer to [21] and the references therein.

The method we shall develop consists in devising a mathematical model to describe
the intra-host development of the infection and fitting the model to the available data.
The output of the mathematical model will allow us to access various quantities related
to the time course of the infection, including parasitemia.

2.2 Mathematical model

As discussed above, we now present the mathematical model we shall use to recover
parasitemia for twelve patients from observed time courses of gametocyte density. We
shall describe the within-host malaria infection coupled with red blood cells (RBCs)
production as well as immune effectors. Fig. 1 presents the flow diagram of the model
considered in this note. Our model is divided into four parts: (i) uninfected RBC (uRBCs)
dynamics; (ii) changes in parasite stage or parasite maturity; (iii) Gametocyte production
and dynamics and (iv) immune response dynamics.

For uRBCs dynamics, we divide cells into three age classes: reticulocyte (young),
mature and senescent. All three ages are vulnerable to P. falciparum infection. This
can be different for other species of Plasmodium. Although we focus in this work on the
case of P. falciparum, the model described below could be applied to study other species
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Figure 1: (S1) The RBC development chain, (S2) the parasite development chain. TD=
average duration (± one standard deviation) spent in an RBC age class given in [42],
Λ0 is the RBC production rate from the marrow source. In our model, the parameter
1/µr→m (resp. 1/µm→s, 1/µs→d) is the time spent in RBC reticulocyte (resp. mature,
senescent) class. A continuous parameter a denotes the time since the concerned RBC is
parasitized: ring stage (0 < a < 26 hours), trophozoite (26 < a < 38 hours) and schizont
(38 < a < 48 hours). In the case of P. falciparum infection, one has (γr = γm = γs = 1)
while for P. vivax one has (γr = 1, γm = γs = 0) and for P. malariae (γr = γm = 0,
γs = 1) [46].
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such as P. vivax or P. malariae, which have specific RBC-age preferences [46]. Such age-
structured dynamics for uRBC are well known in the literature, see for instance [41]. For
the parasites, we consider stage-structured dynamics for their development within pRBC.
Here the stage is a continuous variable representing the time since the concerned RBC is
parasitized. Such a continuous stage structure will allow us to track the development of
parasites within RBCs, but also to have a refined description of the pRBC rupture and of
the merozoites release phenomenon. We also emphasize that such a model easily allows for
inclusion of anti-malarial treatments acting on only some parasite developmental stages.

Uninfected RBC dynamics. We denote by Rr(t), Rm(t) and Rs(t) respectively the
density of reticulocytes, mature RBCs and senescent RBCs at time t.

In the absence of malaria parasites, the evolution of circulating red blood cells is
assumed to follow a discrete age maturation system of ordinary differential equations
that take the form 

dRr(t)
dt = Λ0 − µr→mRr(t),

dRm(t)
dt = µr→mRr(t)− µm→sRm(t),

dRs(t)
dt = µm→sRm(t)− µs→dRs(t).

(1)

The parameters 1/µr→m, 1/µm→s and 1/µs→d respectively denote the average duration
of RBCs in the reticulocyte, mature and senescent age classes while Λ0 represents the
normal value of the RBC production from marrow source (i.e. the production rate of
RBC). System (1) can also be found in [41].

The parameters of this system are selected from [29, 41] (see Table 1) so that in the
absence of parasites, the equilibrium age distribution is given by

(R∗r ;R
∗
m;R∗s) = (62.50; 4853; 83.30)× 106 cell/ml. (2)

This leads to the homeostatic equilibrium concentration of RBC (R∗r +R∗m +R∗s) around
4.99× 109 cells/ml which is in the range expected for humans.

Parasite dynamics with stage-structured formulation (PDE model). Here we
consider the interaction between free merozoites together with the circulating RBCs. We,
respectively, denote by m(t), p(t, a) and G(t) the density of merozoites, parasitized RBC,
and mature gametocytes at time t. The variable a denotes the time since the concerned
RBC is parasitized (i.e.

∫ a2
a1
p(t, a)da corresponds to the density of pRBC at time t which

are infected since the time a1 < a < a2). The system we shall consider reads as:

p(t, 0) = βm(t)
∑

j=r,m,s

γjRj(t),

∂tp(t, a) + ∂ap(t, a) = − (µ(a) + d0) p(t, a),

ṁ(t) = (1− αG)
∫∞

0
rµ(a)p(t, a)da− µmm(t)− βm(t)

∑
j=r,m,s

γjRj(t),

Ġ(t) = αG
∫∞

0
rµ(a)p(t, a)da− µGG(t).

(3)

We briefly sketch the interpretation of the parameters arising in (3). Parameters d0,
µm and µG, respectively, denote the natural death rates for uRBC, for free merozoites and
for mature gametocytes. Function µ(a) denotes the additional death rate of pRBC due to
the parasites at stage a and leading to the rupture. The rupture of pRBC at stage a results
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in the release of an average number r of merozoites into the blood stream, so that pRBC
then produce, at stage a, merozoites at rate rµ(a). Together with this description, the
quantity

∫∞
0
rµ(a)p(t, a)da corresponds to the number of merozoites produced by pRBC

at time t. The parameter β describes the contact rate between uRBC and free merozoites.
Parameters γk with k = r,m, s describe the age preference of parasites’ targets. Here
we shall be concerned in P. falciparum infection that does not have any preference for
RBC so that γr = γm = γs = 1. However when considering P. vivax infection one has
γr = 1 and γm = γs = 0, so that target RBCs mostly consist in reticulocyltes while
when P. malariae infection is concerned then target RBCs are mostly senescent cells,
that is γr = γm = 0 and γs = 1 [46]. The parameter αG represents the proportion of
merozoites from a bursting asexual schizonts that will enter the gametocyte compartment,
i.e., are “committed” to the gametocyte developmental pathway. For simplicity, we have
ignored the age structure of gameteocytes and considerG as capturing mature, measurable
gametocytes.

Parasite dynamics with K-compartments ODEs formulation (ODE model).
For the ODE model formulation, we consider K stages for the pRBC before rupture and
set p = (p1, p2, p3, · · · , pK), such that pj(t) denotes the concentration of pRBC at time t.
Then, setting ż = dz

dt the ODE model writes

ṗ1(t) = βm(t)
∑

j=r,m,s

γjRj(t)− (µ1 + d1) p1(t),

ṗ2(t) = µ1p1(t)− (µ2 + d2) p1(t),
...

ṗK(t) = µK−1pK−1(t)− (µK + dK) pK(t),

ṁ(t) = (1− αG)rµKpK(t)− µmm(t)− βm(t)
∑

j=r,m,s

γjRj(t),

Ġ(t) = αGrµKpK(t)− µGG(t),

(4)

wherein 1/µi the duration of the i-stage and di the death rate of pRBC. The number
of stages K is variable and other parameters and state variables are the same as for the
PDE model.

The immune responses. Following [18], here we consider two immune responses (IRs)
controlling the growth of the parasite population: (i) an innate IR SI(t) at time t repre-
senting the effect of the pro-inflammatory cytokine cascade and (ii) an adaptive IR SA(t)
at time t. The effect of the innate IR is a function of the present parasite (merozoite)
density that takes the form

SI(t) =
m(t)

m(t) + S∗I
, (5)

where S∗I is the critical parasite density at which the current multiplication factor is
reduced by 50%.

The adaptive IR is a function of the cumulative parasite density; this function is
determined by two host-specific parameters and one constant: (1) S∗A is the critical cu-
mulative parasite density at which the current multiplication factor is reduced by 50%;
(2) ∆0 = 16 days is the average delay required by adaptive IR to become effective [18],
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i.e., for time t before ∆0 the cumulative density is set to zero (the adaptive IR has no
effect and SA(t) = 0 for t ≤ ∆0) and (3) ∆1 = 8 days is the delay that determines the
last term in the cumulative density for times t ≥ ∆0, i.e.,

SA(t) =



∫ t
∆0
m(s)ds∫ t

∆0
m(s)ds+ S∗A

, ∆0 ≤ t < ∆0 + ∆1;

∫∆0+∆1

∆0
m(s)ds∫∆0+∆1

∆0
m(s)ds+ S∗A

, t ≥ ∆0 + ∆1.

(6)

Thus, including these two IR effects, the dynamics of asexual parasite concentration
m(t) should be replaced in Models (3) and (4) respectively by:

ṁ(t) = (1−αG)

∫ ∞
0

rµ(a)p(t, a)da−

µm + β
∑

j=r,m,s

γjRj(t) + SA(t)

m(t)−SI(t), (7)

and

ṁ(t) = (1− αG)rµKpK(t)−

µm + β
∑

j=r,m,s

γjRj(t) + SA(t)

m(t)− SI(t). (8)

Initial conditions. For both PDE and ODE models, the initial RBCs are assumed to
be at their homeostatic equilibrium distribution in the absence of parasites given by (2),
i.e., Rr(0) = R∗r ; Rm(0) = R∗m; Rs(0) = R∗s . The above models are also assumed to
be free of pRBCs at the initial time, and the initial density of malaria parasites is such
that m(0) = m0, with m0 a positive constant. These initial conditions are summarized
in Table 2.

Parasitemia. The output of both mathematical models can be used to recover the
time course of parasitemia, defined as the proportion of all infected RBC among the total
number of RBC. Using the notation of the model, the parasitemia at time t, denoted by
P (t) is calculated as follows

P (t) =

∫∞
0
p(t, a)da∫∞

0
p(t, a)da+

∑
j=r,m,s

Rj(t)︸ ︷︷ ︸
PDE model

or

∑K
l=1 pl(t)∑K

l=1 pl(t) +
∑

j=r,m,s

Rj(t)︸ ︷︷ ︸
ODE model

. (9)

3 Results

3.1 Development of parasites within RBCs and rupture of pRBCs

An important characteristic of P. falciparum is the development of parasites within RBCs.
The parasite within a RBC then takes an average of 48 hours to mature and release free
merozoites.
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With a sequential progression throughK stages of parasite maturity before the rupture
of the pRBC, the ODE model quantifies the average parasite’s development period by

1

µ1
+ · · ·+ 1

µK
= 48 hours, (10)

where 1/µi is the waiting time across the i-stage of maturity. Indeed, the probability of the
pRBC of being in the i-stage after a hours of infection is then given by Di(a) = P(τi > a),
where τi denotes the duration within the i-th compartment. One assumption of the
K-compartments ODE model is that variables τi,s are independents and exponentially
distributed with parameter µi (i.e. Di(a) = e−µia, without taking into account other

mechanisms such as natural mortality), such that (10) is satisfied. Thus,
∑K
i=1 E[τi] =∑K

i=1 1/µi = 48 hours.
With the PDE model, the development of parasites within RBCs is characterized by

the rupture function µ(a), which takes the form

µ(a) =

{
0 if a < 48 hours,

µ if a ≥ 48 hours,

where a is the age of the pRBC and µ is a positive parameter. With such formulation,
the overall average development period is ≈ 48 hours as for the ODE model. Indeed, let
D(a) = exp

(
−
∫ a

0
µ(σ)dσ

)
the probability that a pRBC remains parasitized after a hours

(without taking into account other mechanisms such as the natural mortality). Then, the
average parasite’s development period is∫ ∞

0

D(a)da = 48 +
1

µ
.

Here we fix, for e.g. µ = 10, such that
∫∞

0
D(a)da = 48 +

1

µ
≈ 48. The value of µ is

therefore not strictly significant as soon as the last approximation holds.
Consequently, the PDE model formulation allows to continuously track the devel-

opment of parasites within RBCs and then to have a refined description of the pRBC
rupture followed by the merozoites release phenomenon. By contrast, besides the issue of
determining the maturation probability {Di}i=1,··· ,K , such a continuous process is quite
difficult to capture with the ODE model with K repeated stages (Fig. 2A).

One option for defining the maturation probability {Di}i=1,··· ,K can be obtained
through a ”linear chain trick” formulation. Indeed, by assuming that the duration of
each repeated compartments is the same (i.e., µi = µ0, for all i = 1, · · · ,K), by (10),
we then have Di(a) = e−aK/48, for all i = 1, · · · ,K. The total duration before rupture

becomes TK =
∑K
i=1Di. Here Di,s are independent and identically distributed with

exponential law of parameter µ0 = K/48. Hence, TK follows a Gamma distribution
Γ(K,µ−1

0 ) = Γ
(
K, 48

K

)
. We recover that the mean value of TK is 48h and also that its

variance is given by var(TK) = 482/K. The latter quantity tends to 0 as K →∞ meaning
that TK → 48 as K →∞. As a consequence of the above computations, when K is very
large the probability that a pRBC remains parasitized after a hours, is approximately
given by P(TK ≥ a) ≈ 1 if a ≤ 48 else 0, that is close to D(a) when µ is large.

However, the main problem with such formulation is that the maturation probability
Di,s will be very low as K increases (Fig. 2B-D). As a consequence, this will lead to a
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Figure 2: Probability of the pRBC of being in a given stage since parasitation. (A) The
maturation probability {Di}i=1,··· ,K is for the ODE model, while the continuous function
D if for the PDE model with different values of µ. (B)-(D) With a constant duration of
each repeated compartments for K = 1, 2 and 6.

wide underestimation of the development of the overall parasite dynamics (see Appendix
A for details).

3.2 Within-host reproduction number

The basic reproduction number, usually denoted as R0, is defined as the total number
of parasites arising from one newly pRBC introduced into an uninfected host. It can be
used to study the spread of the malaria parasite in an uninfected host, and the parasite
will spread if R0 > 1. The R0 of the K-compartments ODEs and PDE models write

R0 =



β

µm + β
∑

j=r,m,s

R∗j
(1− αG)r

∏K
i=1

µi
µi + di

( ∑
j=r,m,s

R∗j

)
, ODE

β

µm + β
∑

j=r,m,s

R∗j
(1− αG)r

µ

µ+ d0
e−48×d0

( ∑
j=r,m,s

R∗j

)
, PDE.

(11)

We refer to [17, 32] for details on the derivation of (11).
While the probability for merozoites production for each infection cycle is always 1

for the ODE model, such probability is µ
µ+d0

for the PDE model. One reason for this is
that the K-compartments ODEs model is essentially Markovian, i.e. ’memoryless’. With
the K-compartments ODEs model, a RBC that has been parasitized for 40 hours has the
same probability of producing merozoites as e.g. a RBC parasitized less than a hour ago.
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However, parameter µ can then be chosen such that these probabilities are close to unity.
For instance, for the PDE model, µ

µ+d0
≈ 1 as soon as µ is sufficiently large compared

to d0. Therefore, with the value of µ = 10 introduced in the previous section, we have
µ

µ+d0
≈ 0.99.

Finally, one of the main differences between the R0 expressions of both models is the
probability at which pRBCs survive the 48 hours of the parasite’s development period for
each infection cycle. While such probability is quantified by the term e−48×d0 for the PDE
model (11), it is

∏K
i=1

µi

µi+di
for the ODE model (11). However, in some configurations

of parameters µi,s and for K sufficiently large we can have
∏K
i=1

µi

µi+di
≈ e−48×d0 . For

instance, by assuming that the duration of each repeated compartments is the same for
the ODE model (i.e., µi = µ0, for all i = 1, · · · ,K), equality (10) gives K/µ0 = 48 such
that

K∏
i=1

µi
µi + di

= (1 + d0/µ0)
−K

= exp

[
−K ln

(
1 +

48d0

K

)]
≈ exp(−48d0) if K � 1.

3.3 Fitting the model parameters with data

The model presented above is solved numerically by using finite volume numerical schemes
(implemented with the MatLab Programming Language). The model is then fitted to the
data for the time course of gametocytes of the patients. To fit our model, let us observe
that most of the parameters are estimated from the literature [4, 21, 29, 41, 42]. Table 1
provides the values we shall use for the fixed parameters. Only three parameters need to
be estimated from the data, these are: the proportion of parasitized cells that produce
asexual merozoites (αG), the merozoite initial density (m0), and the duration of sexual
stage (1/µG). These parameters are adjusted from the data for each patient by using a
least square method. Basically, we find the values which minimize the difference between
the ODE model prediction gametocyte density and the observed data by using MatLab
nonlinear least-squares solver lsqcurvefit. Those optimal parameters for the ODE model
are then used to run the PDE model. The superposition of the data and gametocyte
density output of the mathematical models are presented in Fig. 3, while the estimated
parameter values for each patient are given in Table S1.

3.4 Comparison of ODE and PDE model outputs

We have presented two modelling frameworks to properly model the within-host infec-
tion of malaria. Within this context, we compare a classical model based on ordinary
differential equations (ODE) with a model based on partial differential equations (PDE).
Our first observation is on the parameterisation of both models. More precisely, a good
description of the rupture of pRBC requires at least one additional parameter K for the
repeated compartments, see (3) versus (4). Such parameter K is necessary to capture the
delay in the production or quantification of gametocytes imposed by the development of
parasites within RBCs for each infection cycle. This delay in gametocytes production is
nicely highlighted by the PDE model formulation (Fig. 3). Trough a ”linear chain trick”
formulation, it is then possible to find the number K of repeated compartments such
that the ODE model can slow down the production dynamics of gametocytes. Indeed, by
assuming that the duration of each repeated compartments is the same, we can find K
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such that both models perform quite similarly in terms of goodness-of-fit for gametocyte
production when the initial production of gametocytes is very slow and hard to find with
early sampling, as a consequence of low infection densities and small fractions of pRBCs
making gametocytes (Fig. 3, Patient-G299, S1050). However, when the initial parasites
load m0 is relatively high, the PDE model outperforms the K-compartments ODEs which
overestimate parasite densities (Fig. 3, Patient-G161, G104). Importantly, the number
of compartments for the goodness-of-fit of the ODE model is quite variable across indi-
viduals such that the K-compartments ODEs model is definitely less robust compared to
the PDE model (Fig. 3). Indeed, while a few number of compartments are necessary for
the goodness-of-fit in some configurations (e.g., K = 6 for patient G-104, Fig. 3), more
compartments are necessary for other configurations (e.g., K = 16 for patient G-299, Fig.
S1).

According to the infection dynamics, our comparative results show that the PDE
model and the K-compartments ODE model (only with K = 1) reproduced, at least
qualitatively, the true dynamics of malaria infection parasitemia. Indeed, although we
do not have parasitemia real data for patients considered here, but in a qualitative com-
parison to some studies (e.g., [13]), the dynamics of both models (with K = 1 for the
K-compartments ODE) seem to mimic qualitatively the parasitemia dynamics (Fig. 4).
However, the PDE model parasitemia prediction is generally overestimated by the ODE
model predictions (Fig. 4). Moreover, when K ≥ 2, the K-compartments ODE model
fails in reproducing realistic parasitemia which is indeed widely underestimated (Fig. 4).
As stated previously, one reason for such underestimated parasitemia is that the matura-
tion probabilities Di,s are very low as K increases (Fig. 2B-D). Finally, even though the
K-compartments ODE model (with K = 1) qualitatively mimics better realistic dynam-
ics of the malaria infection (including at least the gametocyte and parasitemia dynamics
as proxy), this latter model is nevertheless outperformed by the PDE model, particularly
early on in infections, where ODE wildly overestimate parasite densities.

3.5 Relationship between parasitemia and gametocyte density

Our mathematical model has been fitted to the available data for each patient under
consideration, which consists of gametocyte densities over time. We now use the output
of this mathematical model to recover the time course of parasitemia, defined as the
proportion of all infected RBC among the total number of RBC, see (9). The time course
of parasitemia, P (t), computed from our model are presented in Fig. 5 for each patient
together with the fitted gametocyte trajectories. As is observed for each patient, the
relationship between these curves exhibits two different regimes. During some period of
time [2, T0], the two curves are increasing with rather similar shape up to a time shift
(of length 2 days). This means that, in this increasing regime, the gametocyte density at
time t depends on the parasitemia at time t−2, a delay which reflects the life cycle of the
parasites inside the RBCs. After this period of increasing parasitemia and gametocyte
density, namely after time T0, both curves are decreasing and the shapes seem to depend
upon the specific patient considered. To make these comments more quantitative, we
introduce the following formula from an estimation of the gametocyte density G(t) from
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Figure 3: Comparison with data and mathematical model output for gametocyte density
for patients G161, G104, S1050 and G299. Comparison for other patients is provided by
Figure S1.
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Figure 4: The time course of parasitemia (in percentage) for patients G161, G104, S1050
and G299. Other patients are provided by Figure S2.

13



Figure 5: The time course of parasitemia (in percentage) and gametocyte density com-
puted from the PDE model for patients G161, G104, S1050 and G299. Other patients
are provided by Figure S3.
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the parasitemia P (t):

G(t) =

{
k1P (t− 2)θ1 if 2 ≤ t ≤ T0 days,

k2P (t)θ2 if T0 ≤ t ≤ 30,
(12)

where k1, k2, θ1 and T0 are four positive parameters while θ2 is a negative parameter. Let
us mention that this 2 days delay between gametocyte density and parasitemia should
not to be confused, for example, with the time to distinguish the mature gametocytes via
microscopy. Such time is more longer than 2 days and can be well captured by the PDE
model in most cases, or by the K-compartments ODE model in some configurations (Fig.
3). While there is a precise biological relationship between parasitemia and gametocytes
density at some point in the future, here we seek a robust statistical relationship and so
the delay need not match with, e.g., gametocyte maturation time.

To determine the unknown parameters k1, k2, θ1, θ2 and the changing time T0 for each
patient, we perform a least square analysis. More specifically, we adjust these parameters
through a logarithmic scale, that is, through the following formula

log10G(t) =

{
log10 k1 + θ1 log10 P (t− 2) if 2 ≤ t ≤ T0,

log10 k2 + θ2 log10 P (t) if T0 < t ≤ 30.

To be more precise, our analysis couples the estimate for the time parameter T0, at which
the above formula is changing formulation, together with two linear regressions on each
part of the graph. We find that parameters k1, k2, θ1 and T0 are remarkably robust
with respect to individuals while θ2 depends upon each individual. The results of this
analysis as well as the estimated parameters are presented in Fig. S4 and summarized
by Table S2 for each patient. The quality of the fit is quantified using the coefficient of
determination R2 (for linear regression). It is computed for each patient and for the two
regimes independently. This adjustment metric is computed using the sample of points
induced by the time discretization of the partial differential equation model. For our four
cases, this coefficient of determination R2 is approximately 0.99 in the first part of the
curve and even closer to one in the second part of the graph.

Coming back to the adjusted parameters described in Table S2, one may observe that
the four parameters k1, k2, θ1 and T0 have robust values with respect to patients while the
parameter θ2 depends on the patient. Using the average values of the adjusted parameters
on the set of malariatherapy data, we derive the following clinical formula:

G(t) =

{
3.843× 107 · P (t− 2)+1.0304 if 2 < t ≤ T 0 days,

2.981× 109 · P (t)−0.0470 if T 0 ≤ t ≤ 30 days,
(13)

with T 0 = 14.5636 ± 0.0064 days. The relative error for (13) is such that
∣∣∆G
G

∣∣2 ≤
2.3884 × 10−4 + 1.0617

∣∣∆P
P

∣∣2, where
∣∣∆P
P

∣∣ is the relative error on the measurement of

parasitemia. Therefore, if
∣∣∆P
P

∣∣ ≤ 5%, then
∣∣∆G
G

∣∣ < 5.38%. From practical point of view,
notice that formula (13) can be really useful to estimate the gametocyte density from the
parasitemia measurement without necessarily using the quite ‘complex’ mathematical
model described in this note.
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4 Discussion

Many models of within-host malaria infection dynamics have been formulated since the
pioneer work of Anderson el al. [4] in 1989. These models are based on dynamical systems,
with standard approaches ranging from ordinary differential equations (ODEs), to delay
differential equations (DDEs) or partial differential equations (PDEs). Most ODE model
formulations [25, 28–30, 36, 44, 45] assume an exponential process to describe the rate of
pRBCs rupture and therefore fail to capture realistic lifetimes of the pRBCs. This issue
is somewhat corrected when the development of parasites within RBCs and rupture of
pRBCs are modeled either by a set of K-compartments ODEs [25, 32, 48, 55], or DDEs
[11, 23, 30, 34]. Other approaches are the use of PDEs to track the infection history of
a pRBC [5, 16, 17, 35]. Using gametocyte production, parasitemia (the proportion of all
infected RBC among the total number of RBC) as a proxy variables and malariatherapy
data, we found that a PDE model outperforms the K-compartments ODEs in terms of
robustness in representing the observed within-host malaria dynamics. TakingK repeated
compartments for the ODE model is useful to slow down gametocyte production due to the
delay imposed by the parasite development within a RBC, the number of K compartments
for the goodness-of-fit of the ODE model is quite variable across individuals. Furthermore,
both models perform quite similarly in terms of goodness-of-fit for gametocyte production
when the initial production of gametocytes is very slow and hard to find with early
sampling. However, when the initial parasites load is relatively high, the PDE model
outperforms the K-compartments ODEs which overestimate parasite densities during
the first days of infection, approximately the first two weeks.

While a sufficiently high number K of repeated compartments in the ODE model
is useful to slow down the initial production of gametocytes (Fig. 3), the predicted
parasitemia seems to be unrealistic when K ≥ 2 (Fig. 4). Consequently, in view of
the within-host malaria dynamics (including at least the gametocyte and parasitemia
dynamics as proxy), the K-compartements model (with K = 1) seems to give a better
result compared to cases where K ≥ 2. This is mainly due to the fact that the ODE
model with repeated K compartments imposes short parasite’s maturation within a RBC
when K increases. Conversely, the PDE model allows the parasite to completely mature
within a RBC before the pRBC’s rupture. Furthermore, there are major differences
in the parasitemia levels, but not in the gametocytes (Fig. 3 and 4), between the K-
compartments ODE and PDE model formulations. Such a difference is explained by the
fact that the parasitemia is calculated relatively to the total number of RBCs (Eq. 9),
such that underestimating the number of pRBCs will greatly impact gametocyte levels.

Not least, the PDE model highlights a strong qualitative connection between gameto-
cyte density and parasitemia which is difficult to capture by the K-compartments ODEs
model. From a practical point of view, such a relation given by (13) can be really useful to
estimate the gametocyte density from the parasitemia measurement without necessarily
using the quite ’complex’ mathematical model described in this note.

Here, immune-mediated parasite killing is only considered for merozoites. This choice
for immunity targeting merozoites, rather than parasitized red blood cells is mostly be-
cause it is a lot easier with our PDE model formulation, particularly in terms of param-
eterization. However, in some studies, e.g. [18], parasite levels are not distinguished by
merozoite and parasitized red blood cells, such that immunity is acting against merozoite
and parasitized red blood cells. Also note that, while there is evidence that the mature
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live gametocytes evade the immune response clearance pathway, immune-mediated para-
site killing of immature gametocytes has been shown in some studies [7]. Finally, taking
the best fit parameters and then altering immunity parameters between their minimum,
median, and maximum values estimated in [18] has very little impact on the model out-
puts, namely, parasitemia and gametocytes density (figures not shown). However, this
can be explain by the fact that (i) merozoites are only short lived and (ii) the relatively
short-term validation of the model presented here.

Reducing infections in mosquitoes—vectors of Plasmodium parasites—is a crucial com-
ponent of global efforts to control and eliminate malaria [3]. Because a strong correla-
tion exits between the gametocyte density within a host and infectivity of mosquitoes
[9, 14, 15, 27], progress towards this goal would be bolstered by quantifying gametocytes
and identifying highly infectious hosts [10, 52, 53]. On the other hand, parasitemia is eas-
ily quantified by light microscopy and therefore is more technically accessible, particularly
in regions where malaria is endemic. Therefore, quantifying the relationship between the
gametocyte density and parasitemia is of great interest to define more simple tools for
the prediction of mosquito infection. The results presented in this note provide one such
tool.

From a public health or population dynamics point of view, the time course of the
disease at the between-host level is strongly related to the basic reproduction number
(also denoted here by R0). At the between-host level, the R0 is defined as the number
of secondary infections from a single infected individual introduced in a fully susceptible
population. This important metric can be estimated from real data but also using math-
ematical models. The simplest (deterministic) mathematical model reads as the Ross
system of equations from which one can compute this threshold number R0 as follows:

Between-host

∥∥∥∥∥R0 = RV H0 ×RHV0 with

{
RV H0 = abdM ,

RHV0 = macdH .

Note that the above R0 is for between-host malaria dynamics and is not for the within-
host models presented here. In the above formula of R0, m represents the number of
mosquitoes per person, a denotes the mosquito biting rate, b and c denote the per
bite transmission probability respectively from mosquito to human and from human
to mosquito, while dH and dM correspond respectively to the human recovery and the
mosquito death rates. Although more ingredients can been included into the mathemati-
cal model, leading to different formulations forR0, the above expression contains the main
important parameters [38, 39, 50]. Parameters b and c serve as the link between within-
and between-host dynamics, since the transmission rates from (to) a host will depend on
the dynamics of what is happening within that host (vector). Furthermore, there is a
clear relationship between gametocyte density (G) and the transmission probability per
bite from human to mosquito (c) [8, 9, 14, 15, 20, 33, 51]. From a practical point of view,
the parameter c is difficult to estimate in a relevant way. Indeed, an efficient measurement
of c requires a good measure of the gametocyte density which is quite difficult to obtain
in practice. Indeed, while we can get either gametocytes or parasitemia from microscopy,
but with gametocytes tending to be at lower densities (sometimes orders of magnitude
lower), there is a detectability issue. Thus, a simple way to estimate the gametocyte
density will help to infer the parameter c. Thanks to formula (12) proposed here, we
then have robust relationships between parasitemia (easier to measure) and gametocyte
density, at least during the first days of infection (approximately the first two weeks).
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Overall, the proposed model for the dynamics of gametocytes is probably valid for the
first asexual wave which last approximately 40 days for each patient in this malariather-
apy dataset. This relatively short-term validation is enough for the aim of the current
study. However, for the long-term gametocyte dynamics, we need to bring more complex-
ity in the model proposed here. Indeed, the conversion probability of asexual parasites
to circulating gametocytes (αG) should be considered to vary among successive waves of
asexual parasitaemia to tackle such issue of the long-term gametocyte dynamics [21], par-
ticularly since smear-positive asymptomatic malaria infections detectable by microscopy
are an important gametocytes reservoir and often persist for months [37].

The robustness of the model proposed here, especially the formula linking parasitaemia
and gametocyte density, is only guaranteed during the first two weeks after infection. Be-
yond this time, this estimate is highly variable from one patient to another. This variabil-
ity is explained, at least in part, by the variability of the duration of sexual stage (1/µG)
which governs the decrease in gametocyte density (Table S1). One interpretation of the
variation in this parameter is that there exists variation in how well individuals clear ga-
metocytes or kill them through immune responses [19, 37]. Less variability is expected at
the beginning of infection, where the whole system is less constrained by immunity. This
is likely to be true for the malariatherapy patient data presented here, since hosts were
initially naive. However in high transmission settings, acquired immunity—particularly
in older hosts—may obscure the relationship between early gametocyte and asexual par-
asite densities our work has revealed. Furthermore, fine scale, longitudinal data could
assess the applicability of this relationship across settings and age groups, although such
data is understandably difficult to obtain.

Finally, while our work reveals a simple tool for linking aspects of the early dynamics
of malaria infections, it also offers specific suggestions for how best to mathematically
describe those infection dynamics more broadly. Both PDE and K-compartments ODE
models have been adopted to capture the subtleties of malaria parasite life cycles in blood-
stage infections [35]. Our work provides more evidence that, among those choices, PDE
models offer clear advantages.

Table 1: Fixed model parameters

Parameters Description (unit) Values References
Λ0 Production rate of RBC (RBC/h/ml) 1.73× 106 [4, 42]
1/µr→m Duration of the RBC reticulocyte stage (h) 36 [41]
1/µm→s Duration of the RBC mature stage (day) 116.5 [41]
1/µs→d Duration of the RBC senescent stage (h) 48 [41]
β Infection rate of uRBC (RBC/ml/day) 6.27× 10−10 [4]
d0 Natural death rate of uRBC (RBC.day−1) 0.00833 [4]
µm Decay rates of malaria parasites (RBC.day−1) 48 [29]
r Merozoites multiplication factor (dimensionless) 16 [4]
αG Proportion of sexual merozoites (dimensionless) 0.05 [42]
S∗I Innate IR density for 50% of parasite killing (cells.µl−1) 2,755 [18]
S∗A Adaptive IR density for 50% of parasite killing (cells.µl−1) 20.4 [18]
∆0 Delay required by adaptive IR to be effective (day) 16 [18]
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Table 2: Initial values for the model

Variables Description Initial Values
Rr(0) Population of reticulocytes RBC 62× 106 RBC.ml−1

Rm(0) Population of mature RBC 4.85× 109 RBC.ml−1

Rs(0) Population of senescent RBC 83× 106 RBC.ml−1

p(0, .) Population of pRBC for the PDE model 0 cells.ml−1

pj Population of pRBC for the ODE màdel 0 cells.ml−1

G(0) Population of mature gametocyte 0 cells.ml−1

m(0) Population of malaria parasites variable
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A Explicit estimation of the total number of pRBCs

Let us set N(t) = βm(t)
∑

j=r,m,s

γjRj(t), the number of newly pRBCs at time t. Since

p1(0) = 0, we have by System (4),
p1(t) =

∫ t

0

N(σ)e−(µ1+d1)(t−σ)dσ,

pi(t) =

∫ t

0

µi−1pi−1(σ)e−(µi+di)(t−σ)dσ, for i = 2, . . . ,K.

(A.1)

Next, assuming that the duration of each repeated compartments is the same (i.e., µi =
µ0, for all i = 1, · · · ,K), by (10), we have µi = K/48, for all i = 1, · · · ,K; and (A.1)
rewrites 

p1(t) =

∫ t

0

N(σ)e−( K
48 +d1)(t−σ)dσ,

pi(t) =

∫ t

0

µi−1pi−1(σ)e−( K
48 +di)(t−σ)dσ, for i = 2, . . . ,K.

Consequently, the total number of pRBCs
∑K
i=1 pi(t) –counted by the ODE model– at

time t will lead to a wide underestimation of the development of the overall parasite
dynamics for large values of K. That is because the maturation probability in the i-stage
after a hours of infection, Di(a) = e−( K

48 +di)a, will be very low as K and a increase. More
precisely, when RBCs natural mortality di is neglected, such probability is less than 0.4
as soon as aK/48 > 1, i.e. a > 48/K hours.

The above problem –i.e. the underestimation of the development of parasite dynamics–
does not hold with the PDE model formulation. Indeed, since p(0, ·) ≡ 0, by solving
System (3) along the characteristics, we have

p(t, a) =

{
0, for t < a,

N(t− a)e−
∫ a
0

(µ(σ)+d0)dσ, for t ≥ a,
(A.2)

Therefore, the total number of pRBCs –counted by the PDE model– at time t is given by∫ ∞
0

p(t, a)da =

∫ t

0

N(t− a)e−
∫ a
0

(µ(σ)+d0)dσda

=


∫ t

0

N(a)e−d0(t−a)da, for t < 48,∫ 48

0

N(a)e−d0(t−a)da+

∫ t−48

0

N(a)e−d0(t−a)e−µ̄(t−a−48)da, for t > 48.
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B Supplementary figures

Figure S1: Comparison with data and mathematical model output for gametocyte density
for other patients.
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Figure S2: The time evolution of parasitemia (in percentage) density for other patients.
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Figure S3: The time evolution of parasitemia (in percentage) and gametocyte density
curves computed from the PDE model for other patients.
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Figure S4: Comparison between model prediction and the linear regression based on
formula (12)
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C Supplementary tables

Table S1: Patient-specific parameters estimated from the data

G54 G221 S1050 S1204 S1300 G104
µG(×10−3) 2.27 0.4632 1.99 1.5 1.07 0.667
αG(×10−8) 13.02 1.206 1.161 1.289 13.47 13.02
m0(×107) 2.5 1 1 2.97 2.5 6

G139 G161 G305 G338 G299 S1326
µG(×10−3) 1.25 1.25 0.526 0.667 0.80 1.43
αG(×10−8) 0.134 118.57 12.84 1.321 1.1682 1.382
m0(×107) 2.5 5 0.7 2 0.05 1.1

Table S2: Estimated parameters for the shape (12)

G221 G54 S1050 S1204
log10(k1) 2.9586± 0.0037 2.9326± 0.0039 2.9520± 0.0037 2.9502± 0.0037

θ1 1.0321± 0.0028 1.0312± 0.0030 1.0315± 0.0029 1.0315± 0.0028
log10(k2) 2.9437± 0.0002 3.8802± 0.0005 2.9101± 0.0004 2.9148± 0.0003

θ2 −0.0141± 0.0004 −0.0477± 0.0005 −0.0336± 0.0005 −0.0280± 0.0003
T0(days) 14.7125± 0.0075 13.2917± 0.0083 14.4958± 0.0083 13.4666± 0.0025

S1300 G104 G139 G161
log10(k1) 2.9861± 0.0037 2.9821± 0.0041 2.8024± 0.0037 2.9272± 0.0039

θ1 1.0315± 0.0028 1.0304± 0.0031 1.0315± 0.0028 1.0312± 0.0029
log10(k2) 3.9442± 0.0003 3.9663± 0.0002 1.9360± 0.0003 4.8774± 0.0002

θ2 −0.0336± 0.0003 −0.0170± 0.0002 −0.0336± 0.0003 −0.0214± 0.0003
T0(days) 14.5375± 0.0075 13.2625± 0.0083 14.5625± 0.0083 13.3875± 0.0025

G299 G305 G338 S1326
log10(k1) 2.9712± 0.0034 2.9854± 0.0037 2.9897± 0.0041 2.9893± 0.0037

θ1 1.0301± 0.0027 1.0315± 0.0028 1.0304± 0.0031 1.0315± 0.0028
log10(k2) 2.9063± 0.0003 3.9607± 0.0001 2.9739± 0.0002 2.9474± 0.0003

θ2 −0.0203± 0.0003 −0.0188± 0.0002 −0.0170± 0.0002 −0.0336± 0.0003
T0(days) 20.0083± 0.0075 14.6917± 0.0083 14.2625± 0.0083 14.5458± 0.0025
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