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Abstract

Many models of within-host malaria infection dynamics have been formulated
since the pioneering work of Anderson et al. in 1989. Biologically, the goal of these
models is to understand what governs the severity of infections, the patterns of infec-
tiousness, and the variation thereof across individual hosts. Mathematically, these
models are based on dynamical systems, with standard approaches ranging from K-
compartments ordinary differential equations (ODEs) to delay differential equations
(DDEs), in order to capture the relatively constant duration of replication and burst-
ing once a parasite infects a host red blood cell. Using malariatherapy data, which
offers fine-scale resolution on the dynamics of infection across a number of individ-
ual hosts, we compare the fit of one of these standard approaches (K-compartments
ODEs) with a partial differential equations (PDEs) model, which explicitly tracks
the ”age” of an infected cell. We find that the PDE model outperforms the K-
compartments ODEs, particularly early on in infections, where ODEs wildly over-
estimate parasite densities. Further, the PDE model highlights a strong qualitative
connection between the density of transmissible parasite stages (i.e., gametocytes)
and the density of host-damaging (and asexually-replicating) parasite stages, which
is difficult to capture by the K-compartments ODEs model. This finding provides
a simple tool for predicting which hosts are most infectious to mosquitoes —vectors
of Plasmodium parasites— which is a crucial component of global efforts to control
and eliminate malaria.

Key words. Within-host model, malaria, gametocytemia, parasitemia, infectious-
ness
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1 Introduction

Malaria has always been a public health problem and, since the discovery of malaria
parasites in human blood by Charles Laveran in 1880, remains so despite more than 100
years of research. Malaria continues to have a significant impact on the world with over
400,000 deaths alone each year [47]. It is a vector-borne disease caused by five plasmodial
species: Plasmodium falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, with
P. falciparum being the most pathogenic species infecting humans [29].

The malaria parasite has a complex life cycle involving sexual reproduction occurring
in the insect vector [1] and two stages of infection within a human (or animal host), a
liver stage [20] and blood stage [5]. Human infection starts by the bite of an infected
mosquito, which injects the sporozoite form of Plasmodium during a blood meal. The
sporozoites enter the host peripheral circulation, and rapidly transit to the liver where
they infect liver cells (hepatocytes) [20]. The parasite replicates within the liver cell before
rupturing to release extracellular parasite forms (merozoites), into the host circulation,
where they may invade red blood cells (RBCs) to initiate blood stage infection [36]. Then
follows a series of cycles of replication, rupture, and re-invasion of the RBC. Some asexual
parasite forms commit to an alternative developmental pathway and become sexual forms
(gametocytes) [40]. Gametocytes can be taken up by mosquitoes during a blood meal
where they undergo a cycle of sexual development to produce sporozoites [1], which
completes the parasite life cycle.

The classical model of within-host parasite multiplication in malaria infections was
formulated by Anderson el al. [3]. This model tracks uninfected red blood cells (RBCs),
parasitized RBCs (pRBCs) and merozoites. The pioneer work of Anderson el al. [3],
has been further developed in several directions including in particular immune response
[21, 23–25, 30, 37, 38]. Those models use an exponential process to describe the rate
of rupture of pRBCs and, as a consequence, then fail to capture realistic lifetimes of
the pRBCs [42]. To correct this issue, some models of malaria infection included K-
compartments ordinary differential equations (ODEs) representing a progression through
a parasite’s developmental cycle [21, 26, 41, 48], or delay differential equations (DDEs)
to capture the time pRBCs take to mature before producing new merozoites [9, 25, 28].
Other approaches are the use of partial differential equations (PDEs) to track the age-
structure of the pRBC population [4, 13, 14, 29]. It is shown in [19] that DDEs perform
better than the ODEs in representing the dynamics of red blood cells during malaria
infection.

In this work, using gametocyte production as a proxy variable of infectiousness, we
compared model outputs from a PDE stage-structured formulation to those from classical
K-compartments ODEs. Using malariatherapy data of gametocyte densities over time,
we found the PDE model performed best in representing the observed dynamics. Further,
the PDE model highlights a strong qualitative connection between gametocyte density
and parasitemia. However, we will shown that this strong connection is difficult to capture
by the K-compartments ODEs model.
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2 Material and method

2.1 Data and methodology

Our analysis is based on data collected from malariatherapy taken in [18]. Indeed malaria
inoculation was a recommended treatment for neurosyphilis between 1940 and 1963. We
also refer to [10] for a review paper on malariatherapy and the knowledge gained in the
understanding of malaria infection. The data we shall use consist in daily records of
gametocyte density for twelve patients. Although malariatherapy has been dismissed
for obvious ethical reasons, the advantages to use such data are multiple. Indeed pa-
tients are naive to malaria infection and the dynamics are not perturbed by anti-malarial
treatments. Let us notice that such data have been widely used in the literature and in
particular to estimate mathematical model parameters. We refer to [18] and the references
therein.

The method we shall develop consists in devising a mathematical model to describe
the intra-host development of the infection and fitting the model to the available data.
The output of the mathematical model will allow us to access various quantities related
to the time course of the infection, including parasitemia.

2.2 Mathematical model

As discussed above, we now present the mathematical model we shall use to recover
parasitemia for twelve patients from observed time courses of gametocyte density. We
shall describe the within-host malaria infection coupled with red blood cells (RBCs)
production as well as immune effectors. Fig. 1 presents the flow diagram of the model
considered in this note. Our model is divided into four parts: (i) uninfected RBC (uRBCs)
dynamics; (ii) changes in parasite stage or parasite maturity; (iii) Gametocyte production
and dynamics and (iv) immune response dynamics.

For uRBCs dynamics, we divide cells into three age classes: reticulocyte (young),
mature and senescent. All three ages are vulnerable to P. falciparum infection. This
can be different for other species of Plasmodium. Although we focus in this work on the
case of P. falciparum, the model described below could be applied to study other species
such as P. vivax or P. malariae, which have specific RBC-age preferences [39]. Such age-
structured dynamics for uRBC are well known in the literature, see for instance [34]. For
the parasites, we consider stage-structured dynamics for their development within pRBC.
Here the stage is a continuous variable representing the time since the concerned RBC
is parasitized. Such a continuous stage structure will allow us to track the maturity of
sequestrated parasites, but also to have a refined description of the pRBC rupture and of
the merozoites release phenomenon. We also emphasize that such a model easily allows for
inclusion of anti-malarial treatments acting on only some parasite developmental stages.

Uninfected RBC dynamics. We denote by Rr(t), Rm(t) and Rs(t) respectively the
density of reticulocytes, mature RBCs and senescent RBCs at time t.

In the absence of malaria parasites, the evolution of circulating red blood cells is
assumed to follow a discrete age maturation system of ordinary differential equations
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Figure 1: (S1) The RBC development chain, (S2) the parasite development chain. TD=
average duration (± one standard deviation) spent in an RBC age class given in [35],
Λ0 is the RBC production rate from the marrow source. In our model, the parameter
1/µr→m (resp. 1/µm→s, 1/µs→d) is the time spent in RBC reticulocyte (resp. mature,
senescent) class. A continuous parameter a denotes the time since the concerned RBC is
parasitized: ring stage (0 < a < 26 hours), trophozoite (26 < a < 38 hours) and schizont
(38 < a < 48 hours). In the case of P. falciparum infection, one has (γr = γm = γs = 1)
while for P. vivax one has (γr = 1, γm = γs = 0) and for P. malariae (γr = γm = 0,
γs = 1) [39].
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that take the form 
dRr(t)
dt = Λ0 − µr→mRr(t),

dRm(t)
dt = µr→mRr(t)− µm→sRm(t),

dRs(t)
dt = µm→sRm(t)− µs→dRs(t).

(1)

The parameters 1/µr→m, 1/µm→s and 1/µs→d respectively denote the duration of RBCs
in the reticulocyte, mature and senescent age classes while Λ0 represents the normal value
of the RBC production from marrow source (i.e. the production rate of RBC). System
(1) can also be found in [34].

The parameters of this system are selected from [24, 34] (see Table 1) so that in the
absence of parasites, the equilibrium age distribution is given by

(R∗r ;R
∗
m;R∗s) = (62.50; 4853; 83.30)× 106 cell/ml. (2)

This leads to the homeostatic equilibrium concentration of RBC (R∗r +R∗m +R∗s) around
4.99× 109 cells/ml which is in the range expected for humans.

Parasite dynamics with stage-structured formulation (PDE model). Here we
consider the interaction between free merozoites together with the circulating RBCs. We
respectively denote by m(t), p(t, a) and G(t) the density of merozoites, parasitized RBC,
and mature gametocytes at time t. The variable a denotes the time since the concerned
RBC is parasitized (i.e.

∫ a2
a1
p(t, a)da corresponds to the density of pRBC at time t which

are infected since the time a1 < a < a2). The system we shall consider reads as:

p(t, 0) = βm(t)
∑

j=r,m,s

γjRj(t),

∂tp(t, a) + ∂ap(t, a) = − (µ(a) + d0) p(t, a),

ṁ(t) = (1− αG)
∫∞

0
rµ(a)p(t, a)da− µmm(t)− βm(t)

∑
j=r,m,s

γjRj(t),

Ġ(t) = αG
∫∞

0
rµ(a)p(t, a)da− µGG(t).

(3)

We briefly sketch the interpretation of the parameters arising in (3). Parameters d0,
µm and µG, respectively, denote the natural death rates for uRBC, for free merozoites and
for mature gametocytes. Function µ(a) denotes the additional death rate of pRBC due
to the parasites at stage a and leading to the rupture. The rupture of pRBC at stage a
results in the release of an average number r of merozoites into the blood stream, so that
pRBC then produce, at stage a, merozoites at rate rµ(a). Together with this description,
the quantity

∫∞
0
rµ(a)p(t, a)da corresponds to the number of merozoites produced by

pRBC at time t. The parameter β describes the contact rate between uRBC and free
merozoites. Here the rupture function µ(a) is taken of the form

µ(a) =

{
0 if a < 48h,

µ if a ≥ 48h.

Note that the probability D(a) = exp
(
−
∫ a

0
µ(σ)dσ

)
, that a pRBC remains parasitized

after a hours of infection, takes the form D(a) = 1, for a ≤ 48h and D(a) = e−(a−48)µ,
for a > 48h. Therefore, after 48h (the average RBC sequestration period), D decreases

5



exponentially fast. Here, we fix µ = 7, and the value of µ is not strictly significant as
soon as the fast decay of D appears after 48h.

Parameters γk with k = r,m, s describe the age preference of parasites’ targets. Here
we shall be concerned in P. falciparum infection that do not have any preference for
RBC so that γr = γm = γs = 1. However when considering P. vivax infection one has
γr = 1 and γm = γs = 0, so that target RBCs mostly consist in reticulocyltes while when
P. malariae infection is concerned then target RBCs are mostly senescent cells, that is
γr = γm = 0 and γs = 1 [39]. The parameter αG represents the proportion of merozoites
from a bursting asexual schizonts that will enter the gametocyte compartment, i.e., are
“committed” to the gametocyte developmental pathway.

Parasite dynamics with K-compartments ODEs formulation (ODE model).
For the ODE model formulation, we consider K stages for the pRBC before rupture and
set p = (p1, p2, p3, · · · , pK), such that pj(t) denotes the concentration of pRBC at time t.
Then, setting ż = dz

dt the ODE model writes

ṗ1(t) = βm(t)
∑

j=r,m,s

γjRj(t)− (µ1 + d1) p1(t),

ṗ2(t) = µ1p1(t)− (µ2 + d2) p1(t),
...

ṗK(t) = µK−1pK−1(t)− (µK + dK) pK(t),

ṁ(t) = (1− αG)rµKpK(t)− µmm(t)− βm(t)
∑

j=r,m,s

γjRj(t),

Ġ(t) = αGrµKpK(t)− µGG(t),

(4)

wherein 1/µi and di are the duration of the i-stage and the death rate of pRBC respec-
tively. The average RBC sequestration period for the K-compartments ODEs model is
similar to the PDE model and writes 1

µ1
+ · · ·+ 1

µK
= 48h. Other parameters and state

variables are the same as for the PDE model.

The immune responses. Following [15], here we consider two immune responses (IRs)
controlling the growth of the parasite population: (i) an innate IR SI(t) at time t repre-
senting the effect of the pro-inflammatory cytokine cascade and (ii) an adaptive IR SA(t)
at time t. The effect of the innate IR is a function of the present parasite (merozoite)
density that takes the form

SI(t) =
m(t)

m(t) + S∗I
, (5)

where S∗I is the critical parasite density at which the current multiplication factor is
reduced by 50%.

The adaptive IR is a function of the cumulative parasite density; this function is
determined by two host-specific parameters and one constant: (1) S∗A is the critical cu-
mulative parasite density at which the current multiplication factor is reduced by 50%;
(2) ∆0 = 16 days is the average delay required by adaptive IR to become effective [15],
i.e., for time t before ∆0 the cumulative density is set to zero (the adaptive IR has no
effect and SA(t) = 0 for t ≤ ∆0) and (3) ∆1 = 8 days is the delay that determines the
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last term in the cumulative density for times t ≥ ∆0, i.e.,

SA(t) =



∫ t
∆0
m(s)ds∫ t

∆0
m(s)ds+ S∗A

, ∆0 ≤ t < ∆0 + ∆1;

∫∆0+∆1

∆0
m(s)ds∫∆0+∆1

∆0
m(s)ds+ S∗A

, t ≥ ∆0 + ∆1.

(6)

Thus, including these two IR effects, the dynamics of asexual parasite concentration
m(t) should be replaced in Models (3) and (4) respectively by:

ṁ(t) = (1−αG)

∫ ∞
0

rµ(a)p(t, a)da−

µm + β
∑

j=r,m,s

γjRj(t) + SA(t)

m(t)−SI(t), (7)

and

ṁ(t) = (1− αG)rµKpK(t)−

µm + β
∑

j=r,m,s

γjRj(t) + SA(t)

m(t)− SI(t). (8)

Initial conditions For both PDE and ODE models, the initial RBCs are assumed to
be at their homeostatic equilibrium distribution in the absence of parasites given by (2),
i.e., Rr(0) = R∗r ; Rm(0) = R∗m; Rs(0) = R∗s . Above models are also assumed to be free
of pRBCs at the initial time, and the initial density of malaria parasites is such that
m(0) = m0, with m0 a positive constant. Theses initial conditions are summarized in
Table 2.

3 Results

3.1 Fitting the model parameters with data

The model presented above is fitted with the data for the time course of gametocytes of
the patients. To fit our model, let us observe that most of the parameters are known
from the literature [3, 18, 24, 34, 35]. Table 1 provides the values we shall use for the
fixed parameters. Only three parameters need to be estimated from the data, these are:
the proportion of asexual merozoites (αG), the merozoite initial density (m0), and the
duration of sexual stage (1/µG). These parameters are adjusted from the data for each
patient by using a least square method. Basically, we find the values which minimize the
difference between the ODE model prediction gametocyte density and observed data by
using MatLab nonlinear least-squares solver lsqcurvefit. Those optimal parameters for
the EDO model are then used to run the PDE model. The superposition of the data and
gametocyte density output of the mathematical models are presented in Fig. 2, while the
estimated parameter values for each patient are given in Table S1.

3.2 Comparison of ODE and PDE model outputs

We have presented two modelling frameworks to properly model the within-host infec-
tion of malaria. Within this context, we compare a classical model based on ordinary
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Figure 2: Comparison with data and mathematical model output for gametocyte density
for patients G221, G54, S1050 and G299. Comparison for other patients is provided by
Figure S1.

differential equations (ODE) with a model based on partial differential equations (PDE).
Our first observation is on the parametrisation of both models. More precisely, a good
description of the rupture of pRBC required at least three additional parameters and
equations for the ODE model compared to PDE model; see (3) versus (4). According to
the infection dynamics, our comparative results show that the PDE model fitted better
the true dynamics of malaria infection, compared to the ODE model (Fig. 2). Indeed, for
the initial phase of infection (approximately the first two weeks), the ODE model captures
less well the delay imposed by the parasite sequestration by RBC. This sequestration pe-
riod, about 48 hours for each cycle of infection by P. falciparum, is better highlight by
the PDE model formulation (Fig. 2). Further, the goodness-of-fit of the PDE model
relatively to ODE is increased when the initial parasites load m0 is relatively high (Fig.
2, Patient-G221, G54, S1050). Next, the initial growth phase of both models seems more
similar when the initial production of gametocytes is very slow and hard to find with
early sampling, as a consequence of low infection densities and small fractions of pRBCs
making gametocytes (Fig. 2, Patient-G299). Finally, this first wave of gametocytes de-
velopment is then followed by decreasing densities for which the PDE model prediction
is overall more realistic than the ODE model.

3.3 Relationship between parasitemia and gametocyte density

Our mathematical model has been fitted with the available data for each patient under
consideration, which consists of gametocyte densities over time. We now use the output
of this mathematical model to recover the time course of the parasitemia, defined as the
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Figure 3: The time course of parasitemia and gametocyte density computed from the
PDE model for patients G221, G54, S1050 and G299. Other patients are provided by
Figure S2.

proportion of all infected RBC among the total number of RBC. Using the notation of
the model, the parasitemia at time t, denoted by P (t) can be calculated as follows

P (t) =

∫∞
0
p(t, a)da∫∞

0
p(t, a)da+ (Rr(t) +Rm(t) +Rs(t))

.

The time course of parasitemia, P (t), computed from our model are presented in Fig.
3 for each patient together with the fitted gametocyte trajectories. As is observed for
each patient, the relationship between these curves exhibits two different regimes. During
some period of time [2, T0], the two curves are increasing with rather similar shape up to a
time shift (of length 2 days). This means that, in this increasing regime, the gametocyte
density at time t depends on the parasitemia at time t− 2, a delay which reflects the life
cycle of the parasites inside the RBCs. After this period of increasing parasitemia and
gametocyte density, namely after time T0, both curves are decreasing and the shapes seem
to depend upon the specific patient considered. In order to make these comments more
quantitative, we introduce the following formula from an estimation of the gametocyte
density G(t) from the parasitemia P (t):

G(t) =

{
k1P (t− 2)θ1 if 2 ≤ t ≤ T0 days,

k2P (t)θ2 if T0 ≤ t ≤ 30,
(9)

where k1, k2, θ1 and T0 are four positive parameters while θ2 is negative parameter.
In order to determine the unknown parameters k1, k2, θ1, θ2 and the changing time

T0 for each patient, we perform a least square analysis. More specifically we adjust these
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parameters through a logarithmic scale, that is through the following formula

log10G(t) =

{
log10 k1 + θ1 log10 P (t− 2) if 2 ≤ t ≤ T0,

log10 k2 + θ2 log10 P (t) if T0 < t ≤ 30.

To be more precise, our analysis couples the estimate for the time parameter T0, at which
the above formula is changing formulation, together with two linear regressions on each
part of the graph. We find that parameters k1, k2, θ1 and T0 are remarkably robust with
respect to individuals while θ2 depends upon each individual. The results of this analysis
as well as the estimated parameters are presented in Fig. S3 and summarized by Table S2
for each patient. The quality of the fit is quantified using the coefficient of determination
R2 (for the linear regressions). It is computed for each patient and for the two regimes
independently. This adjustment metric is computed using the sample of points induced
by the time discretization of the partial differential equation model. For our four cases,
this coefficient of determination R2 is approximately 0.99 in the first part of the curve
and even closer to one in the second part of the graph.

Coming back to the adjusted parameters described in Table S2, one may observe that
four parameters k1, k2, θ1 and T0 have robust values with respect to patients while the
parameter θ2 depends on the patient. Using average values of adjusted parameters on
the set of malariatherapy data, we derive the following clinical formula:

G(t) =

{
3.843× 107 · P (t− 2)+1.0304 if 2 < t ≤ T 0 days,

2.981× 109 · P (t)−0.0470 if T 0 ≤ t ≤ 30 days,
(10)

with T 0 = 14.5636 ± 0.0064 days. The relative error for (10) is such that
∣∣∆G
G

∣∣2 ≤
2.3884 × 10−4 + 1.0617

∣∣∆P
P

∣∣2, where
∣∣∆P
P

∣∣ is the relative error on the measurement of

parasitemia. Therefore, if
∣∣∆P
P

∣∣ ≤ 5%, then
∣∣∆G
G

∣∣ < 5.38%. From practical point of view,
notice that formula (10) can be really useful to estimate the gametocyte density from
the parasitemia measurement without necessarily use the quite ‘complex’ mathematical
model described in this note.

4 Discussion

Many models of within-host malaria infection dynamics have been formulated since the
pioneer work of Anderson el al. [3] in 1989. These models are based on dynamical systems,
with standard approaches ranging from ordinary differential equations (ODEs), to delay
differential equations (DDEs) or partial differential equations (PDEs). Most ODE model
formulations [21, 23–25, 30, 37, 38] assume an exponential process to describe the rate of
pRBCs rupture and therefore fail to capture realistic lifetimes of the pRBCs. This issue
is somewhat corrected when pRBC sequestraion and rupture is modeled either by a set of
K-compartments ODEs [21, 26, 41, 48], or DDEs [9, 19, 25, 28]. Other approaches are the
use of PDEs to track the infection history of a pRBC [4, 13, 14, 29]. Using gametocyte
production as a proxy variable and malariatherapy data, we found that a PDE model
outperforms the K-compartments ODEs. Further, the PDE model highlights a strong
qualitative connection between gametocyte density and parasitemia which is difficult to
capture by the K-compartments ODEs model.

10



Reducing infections in mosquitoes—vectors of Plasmodium parasites—is a crucial com-
ponent of global efforts to control and eliminate malaria [2]. Because a strong correla-
tion exits between the gametocyte density within a host and infectivity to mosquitoes
[7, 11, 12, 22], progress towards this goal would be bolstered by quantifying gametocytes
and identifying highly infectious hosts [8, 45, 46]. On the other hand, parasitemia is easily
quantified by light microscopy and therefore is more technically accessible, particularly
in regions where malaria is endemic. So, quantifying the relationship between the ga-
metocyte density and parasitemia is of great interest to define more simple tools for the
prediction of mosquito infection. The results presented in this note provide one such tool.

From a public health or population dynamics point of view, the time course of dis-
ease within a host is strongly related to the so-called basic reproduction number, denoted
by R0. The R0 is defined as the number of secondary infection from a single infected
individual introduced in a fully susceptible population. This important metric can be es-
timated from real data but also using mathematical models. The simplest (deterministic)
mathematical model reads as the Ross system of equations from which one can compute
this threshold number R0 as follows:

R0 = RV H0 ×RHV0 with

{
RV H0 = abdM ,

RHV0 = macdH .

In the above formula, m represents the number of mosquitoes per person, a denotes the
mosquito biting rate, b and c denote the per bite transmission probability respectively
from mosquito to human and from human to mosquito, while dH and dM correspond
respectively to the human recovery and the mosquito death rates. Although more ingredi-
ents can been included into the mathematical model, leading to different formulations for
R0, the above expression contains the main important parameters [32, 33, 43]. Parameters
b and c serve as the link between within- and between-host dynamics, since transmission
rates from (to) a host will depend on the dynamics of what is happening within that host
(vector). Further, there is a clear relationship between gametocyte density (G) and the
transmission probability per bite from human to mosquito (c) [6, 7, 11, 12, 17, 27, 44].
From a practical point of view, the parameter c is difficult to estimate in a relevant way.
Indeed, an efficient measurement of c requires a good measure of the gametocyte density
which is quite difficult to obtain in practice. So, a simple way to estimate the gametocyte
density will help to infer the parameter c. Thanks to formula (9) proposed here, we then
have a robust relationships between the parasitemia (easier to measure) and gametocyte
density, at least during the first days of infections (approximately the first two weeks).

Overall, the proposed model for the dynamics of gametocytes is certainly valid for
the first asexual wave which last approximately 40 days for each patient in this malar-
iatherapy dataset. This relative short term validation is enough for the aim of the current
study. However, for the longterm gametocyte dynamics, we need to bring more complex-
ity in the model proposed here. Indeed, the conversion probability of asexual parasites
to circulating gametocytes (αG) should be considered to vary among successive waves of
asexual parasitaemia to tackle such issue of the longterm gametocyte dynamics [18], par-
ticularly since smear-positive asymptomatic malaria infections detectable by microscopy
are an important gametocytes reservoir and often persist for months [31].

The robustness of the model proposed here, especially the formula linking parasitaemia
and gametocyte density, is only guaranteed during the first two weeks after infection. Be-
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yond this time, this estimate is highly variable from one patient to another. This variabil-
ity is explained, at least in part, by the variability of the duration of sexual stage (1/µG)
which governs the decrease in gametocyte density (Table S1). One interpretation of the
variation in this parameter is that there exists variation in how well individuals clear ga-
metocytes or kill them through immune responses [16, 31]. Less variability is expected at
the beginning of infections, where the whole system is less constrained by immunity. This
is likely to be true for the malariatherapy patient data presented here, since hosts were
initially naive. However in high transmission settings, acquired immunity—particularly
in older hosts—may obscure the relationship between early gametocyte and asexual par-
asite densities our work has revealed. Further fine scale, longitudinal data could assess
the applicability of this relationship across settings and age groups, although such data
is understandably difficult to obtain.

Finally, while our work reveals a simple tool for linking aspects of the early dynamics
of malaria infections, it also offers specific suggestions for how best to mathematically
describe those infection dynamics more broadly. Both PDE and K-compartments ODE
models have been adopted to capture some the subtleties of malaria parasite life cycles in
blood-stage infections [29]. Our work provides more evidence that, among those choices,
PDE models offer clear advantages.

Table 1: Fixed model parameters

Parameters Description Values References
Λ0 Production rate of RBC 1.73× 106 RBC/h/ml [3, 35]
1/µr→m Duration of the RBC reticulocyte stage 36 h [34]
1/µm→s Duration of the RBC mature stage 116.5 days [34]
1/µs→d Duration of the RBC senescent stage 48 h [34]
β Infection rate of uRBC 6.27× 10−10 RBC/ml/day [3]
d0 Natural death rate of uRBC 0.00833 RBC .day−1 [3]
µm Decay rates of malaria parasites 48 RBC.day−1 [24]
αG Proportion of asexual merozoites 0.05 [35]
S∗I Innate IR density that gives 50% of parasite killing 2,755 cells.µl−1 [15]
S∗A Adaptive IR density that gives 50% of parasite killing 20.4 cells.µl−1 [15]
∆0 Delay required by adaptive IR to be effective 16 days [15]

Table 2: Initial values for the model

Variables Description Initial Values
Rr(0) Population of reticulocytes RBC 62× 106 RBC.ml−1

Rm(0) Population of mature RBC 4.85× 109 RBC.ml−1

Rs(0) Population of senescent RBC 83× 106 RBC.ml−1

p(0, .) Population of pRBC for the PDE model 0 cells.ml−1

pj Population of pRBC for the ODE màdel 0 cells.ml−1

G(0) Population of mature gametocyte 0 cells.ml−1

m(0) Population of malaria parasites variable
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A Supplementary figures

Figure S1: Comparison with data and mathematical model output for gametocyte density
for other patients.
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Figure S2: The time evolution parasitemia and gametocyte density curves computed from
the PDE model for other patients.
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Figure S3: Comparison between model prediction and the linear regression based on
formula (9)
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B Supplementary tables

Table S1: Patient-specific parameters estimated from the data

G54 G221 S1050 S1204 S1300 G104
µG(×10−3) 2.27 0.4632 1.99 1.5 1.07 0.667
αG(×10−8) 13.02 1.206 1.161 1.289 13.47 13.02
m0(×107) 2.5 1 1 2.97 2.5 6

G139 G161 G305 G338 G299 S1326
µG(×10−3) 1.25 1.25 0.526 0.667 0.80 1.43
αG(×10−8) 0.134 118.57 12.84 1.321 1.1682 1.382
m0(×107) 2.5 5 0.7 2 0.05 1.1

Table S2: Estimated parameters for the shape (9)

G221 G54 S1050 S1204
log10(k1) 2.9586± 0.0037 2.9326± 0.0039 2.9520± 0.0037 2.9502± 0.0037

θ1 1.0321± 0.0028 1.0312± 0.0030 1.0315± 0.0029 1.0315± 0.0028
log10(k2) 2.9437± 0.0002 3.8802± 0.0005 2.9101± 0.0004 2.9148± 0.0003

θ2 −0.0141± 0.0004 −0.0477± 0.0005 −0.0336± 0.0005 −0.0280± 0.0003
T0(days) 14.7125± 0.0075 13.2917± 0.0083 14.4958± 0.0083 13.4666± 0.0025

S1300 G104 G139 G161
log10(k1) 2.9861± 0.0037 2.9821± 0.0041 2.8024± 0.0037 2.9272± 0.0039

θ1 1.0315± 0.0028 1.0304± 0.0031 1.0315± 0.0028 1.0312± 0.0029
log10(k2) 3.9442± 0.0003 3.9663± 0.0002 1.9360± 0.0003 4.8774± 0.0002

θ2 −0.0336± 0.0003 −0.0170± 0.0002 −0.0336± 0.0003 −0.0214± 0.0003
T0(days) 14.5375± 0.0075 13.2625± 0.0083 14.5625± 0.0083 13.3875± 0.0025

G299 G305 G338 S1326
log10(k1) 2.9712± 0.0034 2.9854± 0.0037 2.9897± 0.0041 2.9893± 0.0037

θ1 1.0301± 0.0027 1.0315± 0.0028 1.0304± 0.0031 1.0315± 0.0028
log10(k2) 2.9063± 0.0003 3.9607± 0.0001 2.9739± 0.0002 2.9474± 0.0003

θ2 −0.0203± 0.0003 −0.0188± 0.0002 −0.0170± 0.0002 −0.0336± 0.0003
T0(days) 20.0083± 0.0075 14.6917± 0.0083 14.2625± 0.0083 14.5458± 0.0025
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