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Abstract. Particulate concentrations of the 14 Rare Earth El-
ements (PREE), yttrium, and 232-thorium were measured in
200 samples collected in the epipelagic (ca. 0-200 m) and
mesopelagic (ca. 200-1500 m) zones of the North Atlantic
during the GEOVIDE cruise (May/June 2014, R/V Pourquoi
Pas?, GEOTRACES GAO1), providing the most detailed
snapshot of the PREE distribution in the North Atlantic so
far. Concentrations of particulate cerium (PCe) varied be-
tween 0.2 and 16 pmol L™!, while particulate neodymium
(PNd) concentrations ranged between 0.1 and 6.1 pmol L™
Particulate ytterbium (PYb) concentrations ranged between
0.01 and 0.50 pmol L~!. In addition, this study showed that
PREE distributions were also controlled by the biological
production in the upper sunlit ocean and by remineraliza-
tion processes in the mesopelagic area. Low surface concen-
trations combined with normalized PREE patterns display-
ing a negative Ce anomaly and HREE enrichments pointed
to freshly formed biogenic particles imprinting the seawa-
ter signature. A significant relationship between biogenic sil-
ica (BSi) and PHREE was also observed in the Labrador
and Irminger seas, due to the occurrence of strong diatom
blooms at the sampling time. In order to identify dissolved-
particulate processes independent of the ionic radius, we
used PHo/PY ratios and showed that absorption processes
were predominant in the upper ocean, while adsorption pro-
cesses dominated at deeper depths.

This study highlighted different lithogenic fractions of
PREE and dispersion depending on the shelf: off the Iberian
margin, up to 100% of the PREE were determined to

have a lithogenic origin. This lithogenic input spread west-
ward along an intermediate nepheloid layer (INL), following
isopycnals up to 1700 km away from the margin. In contrast,
along the Greenland and Newfoundland margins, the circula-
tion maintained lithogenic inputs of PREE along the coasts.

1 Introduction

Particles and water mass circulation are the main vectors in
transferring chemical species from the surface to the deep
ocean (Gehlen et al., 2006; Kwon et al., 2009; Lam and Mar-
chal, 2015; Ohnemus and Lam, 2015). Particles are abun-
dant in the upper ocean (up to 1000 ug L~!), where dust in-
puts or important blooms occur and their concentrations de-
crease with depth in the subsurface and deep ocean (5 to
60 ug L~! on average; McCave and Hall, 2002; Stemmann
et al., 2002). Particles are usually divided in two classes:
large sinking particles that dominate the vertical flux, and
small particles that are in suspension in the water column.
These small suspended particles represent over 80 % of the
total particle mass (Lam et al., 2015, and references therein).
In addition, their higher surface to volume ratios make sus-
pended particles the main drivers of dissolved-particulate ex-
changes (Crecelius, 1980; Trull and Armand, 2001). Ele-
ments are up to 1000 times more concentrated in particles
than in the dissolved phase (Lam et al., 2015), and among
them trace metals are especially enriched in particles. For ex-
ample, in the subpolar North Atlantic, particulate iron (PFe)
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concentrations can reach 50 nmol L~!, while dissolved Fe
concentrations do not exceed 2.5nmol L~! (Tonnard et al.,
2020). As the size spectrum between the particulate and dis-
solved phases is continuous, the separation between the two
pools is truly operational, based on the porosity of the filters
used to discriminate the two phases, usually 0.4 um (Plan-
quette and Sherrell, 2012). Concentrations may then depend
on the choice of this limit.

In the ocean, three main sources of particles are distin-
guishable (Fowler and Knauer, 1986; Jeandel et al., 2015;
Lam et al., 2015, and references therein). The first one
is lithogenic, with inputs from the rivers, dust deposits,
ice melting, hydrothermalism and resuspension of deposited
sediments. The second is biogenic and related to the produc-
tion of fresh organic matter by photosynthetic activity fol-
lowed by zooplankton grazing and the following food web
activity. The last one results from authigenic processes such
as the precipitation and formation of red clays, oxides, and
hydroxides. All these sources and processes lead to a very
heterogeneous pool in time, space, and composition, evolv-
ing throughout their stay in the ocean and controlling the
density of particles and consequently their fate in the water
column. Then, exchanges between the particulate and dis-
solved phases determine the chemistry of seawater and the
residence time of the chemical species in the ocean (Jeandel
et al., 2015; Jeandel and Oelkers, 2015; Turekian, 1977).

Oceanic tracers such as Rare Earth Elements (REE) are
adapted to the study of these exchanges (Jeandel et al., 1995;
Kuss et al., 2001; Tachikawa et al., 1999b). Rare Earth Ele-
ments form a homogenous family characterized by a gradual
filling of the 4f orbital as their atomic number increases. Ex-
cept for cerium (Ce), their external orbital comprises three
electrons, rendering their chemical properties relatively sim-
ilar. However, the increasing weight concomitant with an in-
creasing atomic number and the decreasing ionic radius gen-
erates slight differences between the light and heavy REE
behaviors (LREE and HREE, respectively). In seawater REE
are mostly complexed by carbonates, this complexation in-
creasing with the atomic number: 86 % of lanthanum (La,
the first REE of the series) is found as carbonates complexes,
while this proportion is 99 % of lutetium (Lu, the last REE
of the series; Schijf et al., 2015). Thus, the REE will re-
act differently in the water column depending on various
physical and geochemical processes, such as aggregation—
disaggregation, dissolution, complexation, sorption, mineral-
ization, and scavenging. These processes will lead to a frac-
tionation along the REE series. Consequently, measuring the
distribution of REE between the solid and dissolved phases
can help trace and quantify these processes.

Documenting these exchanges in the subarctic North At-
lantic using REE among other tracers was one of the goals
of the GEOVIDE cruise (2014, GAO1 GEOTRACES cruise;
Fig. 1). The North Atlantic is a key region of the global
ocean, as it is the most important oceanic sink of anthro-
pogenic CO;, (Khatiwala et al., 2013), and it is (i) a ma-
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Figure 1. Map of the studied area (subpolar North Atlantic, SPNA),
including schematized circulation features, adapted from Garcia-
Ibéfiez et al. (2015). Bathymetry is plotted in color with interval
boundaries at 100 m, 1000 m, and every 1000 m below 1000 m. Red
and green arrows represent the main surface currents; pink and
orange arrows represent currents at intermediate depths; blue and
purple arrows represent the deep currents. Diamonds indicate sta-
tion locations in three distinct areas (grey squares): the North At-
lantic Subtropical province (NAST), the North Atlantic Drift Re-
gion (NADR), and the Arctic region (ARCT). The approximate lo-
cations of the subarctic front (SAF; black bar crossing station no.
26) and the formation site of the Labrador Sea Water (LSW form.)
are also indicated. The section used in ODV figures is symbolized
by the thick grey line. From Lemaitre et al. (2018b).

jor place of deep water formation, mainly by convection,
which drives the Atlantic Meridional Overturning Circula-
tion (AMOC), and (ii) a productive area, representing up
to 18 % of the global oceanic primary production (Sanders
et al., 2014). The GEOVIDE section investigated stations
close to the Iberian, Greenland, and Canadian coasts and
crossed areas of contrasted surface productivity. This cruise
was part of the GEOTRACES program, which aims to doc-
ument trace elements cycles in the ocean by a better under-
standing of their sources and sinks, including their export by
particles (Henderson et al., 2007). Constraining the drivers
of the particle—solution exchanges is thus an important issue
in this area.

In this context, we present the first basin-scale section of
PREE concentrations and fractionation patterns in suspended
particles collected in the subpolar North Atlantic (SPNA),
along the GEOVIDE section, from the surface to 1500 m
depth. In the following, we specifically discuss processes af-
fecting the PREE distribution, such as lithogenic inputs from
the margins, influence of biological activity, and the role of
ionic radius in their fate in the water column.

https://doi.org/10.5194/bg-17-5539-2020
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2 Methods

2.1 Study area: hydrographical and biogeochemical
context

Samples were collected in the epipelagic and mesopelagic
zones (0—-1500 m) during the GEOVIDE cruise (16 May to
30 June 2014, R/V Pourquoi Pas?) along the transect pre-
sented in Fig. 1. This figure also presents the main surface
currents, as described in detail in Zunino et al. (2017) and
Garcia-Ibaiiez et al. (2018), together with the three main bio-
geochemical provinces identified by Longhurst (1995) and
described in detail by Lemaitre et al. (2018b): the subtropi-
cal North Atlantic (NAST), North Atlantic drift (NADR), and
Arctic (ARCT) regions. The locations of the stations where
suspended particles were sampled (Fig. 1) were chosen to be
representative of the diversity of water masses (Fig. 2) and
biogeochemical provinces (Sarthou et al., 2018). Warm and
salty waters coming from the tropical Atlantic are advected
towards the Arctic by the North Atlantic Current (NAC; see
Table 1 for the abbreviation list). In response to air—sea ex-
changes and mixing with polar waters, surface waters be-
come colder and fresher, but more importantly, denser. Thus,
they tend to mix with underlying waters, particularly during
convection events triggered by storms. In the Nordic Seas
(between 65 and 80° N), the water column can be ventilated
down to the bottom, while convection never exceeds 2000 m
in the subpolar gyre. The freshly formed deep water then
returns southwards mainly through western boundary cur-
rents (Daniault et al., 2016; Garcia-Ibanez et al., 2015, 2018;
Zunino et al., 2017).

At the southeastern end of the section, the NAST province
is characterized by warm and salty waters (Garcia-Ibafiez et
al., 2018; Longhurst, 1995; Reygondeau et al., 2018; Zunino
et al., 2017). This province is depleted in nutrients despite
being under the influence of continental inputs and was sam-
pled during the declining stage of the cyanobacteria bloom
(Lemaitre et al., 2018b). Station nos. 1 and 13 were sampled
in the NAST. The North Atlantic Drift Region (NADR) is
located between the NAST and the Reykjanes Ridge, with
higher nutrient concentrations than in the NAST (Longhurst,
1995). A strong bloom of coccolithophorids, with a max-
imum intensity in the Icelandic basin, was occurring dur-
ing the sampling time, and was associated with the high-
est primary production rate determined during the GEO-
VIDE cruise (1740 molC m~2d~!, station no. 26, Fonseca-
Batista et al., 2019) and with high carbon export (up to
80molC m~2d~!, station no. 32, Lemaitre et al., 2018b).
Four open ocean stations were sampled in this province:
within the southern branch of the NAC (station nos. 21 and
32), at the Subpolar Front (station no. 26), and above the
Reykjanes Ridge (station no. 38).

West of the Reykjanes Ridge, the Irminger and Labrador
seas (Fig. 1) located in the Arctic region (ARCT) were
nutrient-replete. Large blooms of diatoms occurred in this
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Table 1. List of regions and water masses with their acronyms in-
vestigated in this study.

Regions
SPNA Subpolar North Atlantic
NAST North Atlantic Subtropical
NADR North Atlantic drift
ARCT Arctic

Water masses

ENACW  East North Atlantic Central Water
MW Mediterranean Water
SAIW Subarctic Intermediate Water
SPMW Subpolar Mode Water
Ir'SPMW  Irminger Subpolar Mode Water
LSW Labrador Sea Water

Currents
NAC North Atlantic Current
ERRC East Reykjanes Ridge Current

IC Irminger Current
EGIC East Greenland Irminger Current
EGCC East Greenland Coastal Current

area, with a maximum of primary production at the end
of May, 3 weeks before the GEOVIDE sampling in the
Labrador Sea and 1 month before the sampling in the
Irminger Sea (Lemaitre et al., 2018b). The western part of
the ARCT region is under the influence of the Newfound-
land margin. In this province, station no. 44 was sampled in
the middle of the gyre, station no. 51 in the East Greenland
Coastal Current (EGCC), and station no. 53 on the Green-
land shelf. In the Labrador Sea, station no. 64 was influenced
by the West Greenland Current (following the EGCC after
it crossed Cape Farewell), while station no. 69 was located
within the formation area of LSW, where strong convection
events occurred the winter before GEOVIDE (Garcia-Ibéiiez
et al., 2018; de Jong and de Steur, 2016). Westward, sta-
tion no. 77 was located close to the Newfoundland margin
(ca. 300 km).

2.2 Sampling at sea

Suspended particles were collected with 12 L Niskin bottles
mounted on a standard rosette, and samples were dedicated
to the concentration analyses of particulate barium in excess
(Bayg, biogenic Ba), dissolved and particulate REE (includ-
ing Nd isotopic composition), and yttrium (often integrated
to REE as a chemical analog, named YREE in such a case)
as well as ancillary parameter analyses, including particulate
232-thorium (*3?Th). The description of the sampling and
filtration methods for water collected with this rosette fol-
lows that of Lemaitre et al. (2018b). Sampling bottles were
shaken three times as recommended in the GEOTRACES
cookbook (https://geotracesold.sedoo.fr/Cookbook.pdf, last
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Figure 2. (a) Vertical profiles of particulate [Ce] concentrations superimposed on salinity (S) measured by CTD at every GEOVIDE station
(Lherminier and Sarthou, 2017); in white, the prevailing water masses characterized by a multi-parametric (OMP) analysis: the Mediterranean
Water (MW), the Subarctic Intermediate Water, the East North Atlantic Central Water (ENACW), the Subpolar Mode Water (SPMW), the
Irminger Subpolar Mode Water (Ir'SPMW), and the LSW (Garcia-Ibéfiez et al., 2018). For station no. 53, profiles are shifted to the bottom
at a lower scale because of the shallow depth of the station. This map and the following were created with the software Ocean Data View
(Schlitzer, 2016). (b) Particulate [Ce] concentrations interpolated with the DIVA gridding function of Ocean Data View along the section

defined in Fig. 1, with a zoom on the first 200 m in the upper panel.

access: 10 August 2020), to avoid the loss of particles by
sticking to the walls or settling at the bottom of the bot-
tle. Then, 4-8 L of seawater were filtered offline using clean
slightly air-pressurized containers (Perspex®). Suspended
particles were collected onto polycarbonate filters of 0.4 um
porosity (Nuclepore®, 47mm or 90 mm of diameter). Af-
ter sample filtration, the filter was rinsed with <5mL of
ultra-pure water (Milli-Q; 18.2 M2 cm) to remove most of
sea salts. Finally, filters were carefully removed using plas-
tic tweezers, were dried under a laminar flow hood at ambient
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temperature, and then were stored in clean Petri dishes. Sam-
ples were handled in line in order to avoid contamination.

Ba, 232Th, yttrium Y, and PREE digestion procedures were
performed on the same sample, and the resulting solution was
shared between analysts. 232Th and Ba (but not Y) were first
measured at the Royal Museum for Central Africa (Tervuren,
Belgium), and then Ba, 232Th, Y, and PREE were later ana-
lyzed at LEGOS (Toulouse, France; this work). Details of
this procedure are described in Sect. 2.3.1.

A clean sampling system was also deployed at the same
stations to collect suspended particles dedicated to the anal-

https://doi.org/10.5194/bg-17-5539-2020
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ysis of trace metals prone to contamination like iron (Fe) or
zinc (Zn). It was composed of a clean rosette equipped with
12 L GO-FLO bottles. Suspended particulate samples were
collected on paired polyethersulfone and mixed ester cellu-
lose filters of 0.45 and 5 pm porosity, respectively. The sam-
ple digestion and the subsequent analytical work were con-
ducted in LEMAR, Brest (Gourain et al., 2019). The diges-
tion procedure was slightly different than the procedure used
on filters collected with the standard rosette (see Sect. 2.3.2).
Ba and Y were also measured on these “clean samples” to-
gether with other trace metals, in Brest.

2.3 Sample preparation and analysis
2.3.1 Leaching procedure and analysis for the PYREE

Polycarbonate filters mounted on the Perspex® filtration
units were first cut into two parts using a ceramic blade. One
half was archived, while the other half was placed in a clean
Teflon vial (Savillex®). The filter was then digested at Ter-
vuren with a strong acid solution made of 1.5 mL HCIL, 1 mL
HNO; and 0.5 mL HF, all concentrated (Merck® Suprapur
Grades) (Lemaitre et al., 2018b). Vials were left on hot
plates at 90 °C overnight. After this, the filter was fully di-
gested, and the solution was then evaporated until near dry-
ness. Finally, 13 mL of 0.32 mol L~' HNO3 (Merck® Supra-
pur Grades) were added in the Savillex® vials and the leach-
ing solutions were transferred into clean polypropylene tubes
(VWRT™). Then, Y, Ba, 232Th, and REE concentrations were
measured using 2mL of these archive solutions. Only a
few samples required an additional dilution by a factor be-
tween 1.3 and 1.5 using HNO3 0.32mol L~! (prepared from
Merck® nitric acid 65 %, EMSURE® distilled twice at LE-
GOS to get the purest product), because the archive solution
volume was below 2 mL, which is the volume required by the
ICP-MS measurement. These aliquots were placed in clean
SmL polypropylene tubes and doped with a solution con-
taining In and Re (ca. 100 ppt of both tracers) in order to
correct matrix effects and sensitivity shifts during analysis.
Analyses were performed at the Observatoire Midi Pyrénées
(Toulouse, France) using a high-resolution inductively cou-
pled plasma mass spectrometer (SF-ICP-MS, Element XR,
Thermo Fischer Scientific®) in low-resolution mode. The
SF-ICP-MS was coupled to a desolvating nebulizer (Aridus
II, CETAC Technologies®) to minimize oxide and hydroxide
production rates and thus (hydr)oxide interferences (Aries
et al., 2000). Oxide production rates were determined at the
beginning and the end of every session using a Ce solution
(CeO <0.03 %). Other REE (hydr)oxide rates were then de-
termined using the constant proportionality factor between
them, previously determined with the same analytical config-
uration (Aries et al., 2000). Oxide-hydroxide interferences
represented 0.001 % to 1 % of the signal except for Eu (0.3 %
to 10 %). Isobaric interferences were corrected directly by
the software of the ICP-MS and thoroughly checked before
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the session. A five-point calibration curve was established us-
ing a multi-elemental standard solution at the beginning, the
middle, and the end of the analysis. The 20.10"12gg~! of
the REE standard was measured every five samples. Stan-
dards were prepared by the dilution of a multi-elemental
stock solution (SCP Science, PlasmaCAL, Custom standard)
in 0.32mol L~' HNO;3 with ca 0.1 ppb of In and of Re to
match the relative concentrations measured in the samples.
The certified reference material SLRS-5 (NRC Canada) was
systematically analyzed with the samples and their concen-
trations are within the error bar of the consensual values pub-
lished by Yeghicheyan et al. (2013), with a smaller error (see
Fig. S1 in the Supplement). Reproducibility was assessed
by measuring two or three times 2 mL of 23 samples from
the same leaching solution. The difference between repli-
cates varied from 0 % to 20 %, and were mostly under 10 %.
The average percentage of difference between these analyti-
cal replicates is presented in Fig. S2. Procedural blanks have
been estimated by conducting the same chemical procedure
on clean, unused filters. The average chemical blank (n = 8)
represented 0.01 % to 5 % of the sample concentrations, ex-
cept for Y and Lu, for which the contribution of the blank
was generally higher (between 1 % and 30 %). Blanks were
finally subtracted to the measured concentrations.

Four sources of errors could affect the final data: errors in
(i) the proportion of filters analyzed that comes from cutting
the filters into halves; (ii) the volume of leachate; (iii) the vol-
ume taken in the archive for analysis; (iv) the standard devi-
ation associated with ICP-MS measurements. The final error
was calculated by propagating the uncertainties of these dif-
ferent sources, except for the cutting error, which is rather
theoretical than empirical and was impossible to evaluate
at the time. We assumed that particles had a homogenous
distribution on the filters as heterogeneity is difficult to as-
sess. This hypothesis is supported by the good agreement of
Y, Ba, and 232Th between the samples from Niskin bottles
and the samples from GO-FLO bottles, which were not cut
into halves (see Sect. 2.3.2 below). The different errors, their
method of calculation and their comparison are summarized
in Fig. S3.

2.3.2 Laboratory-to-laboratory comparisons and
validation of our data

Ba and 232Th results were used to compare the data obtained
between Tervuren and Toulouse in order to assess the con-
sistency of the different ICP-MS analyses. Y was used to
compare the consistency of data obtained between Brest and
Toulouse using two different sampling systems, filtration, di-
gestion, and analytical procedures. Y concentrations were
more specifically used to validate the YREE sampling with
the standard rosette, which is less prone to contamination
than Fe or Zn, as underlined by van de Flierdt et al. (2012).
Results are presented in Fig. S4. Analytical determinations
of Ba and 232 Th concentrations were performed in Toulouse

Biogeosciences, 17, 5539-5561, 2020
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and in Tervuren (Lemaitre et al., 2018b). In Tervuren, an
inductively coupled plasma quadrupole mass spectrometer
(ICP-QMS; X Series 2 Thermo Fischer®) was used, while
a high-resolution mass spectrometer was used in Toulouse
(HR-ICP-MS; Element XR Thermo Fischer®). “Toulouse”
versus “Tervuren” Ba concentrations show a regression slope
of 0.86 (r2 =0.91, n = 198). For 232Th, “Toulouse” versus
“Tervuren” concentrations show a slope of 1.05 (r> = 0.98,
n = 198; Fig. S4).

The comparison between the two sampling and subsequent
analytical procedures is illustrated by Y concentrations ana-
lyzed in “Brest” and “Toulouse”. In Brest, filters collected
with the clean rosette were leached with a mixture of HF and
HNO3 during 4h at 130 °C before evaporation (for details,
see Gourain et al., 2019), while in Toulouse, filters collected
with the standard rosette were digested with a HCI, HF,
and HNO3 solution (see above Sect. 2.3.1). The comparison
shows an excellent consistency between both datasets: for Y,
the regression slope is 0.93 (r> = 0.82, n = 78; Fig. S4). For
Ba, the regression slope is 0.86 (+> = 0.91, n = 78). This in-
tercomparison exercise supports the excellent reliability of
our PREE data and allows us to discuss the PREE concen-
trations in the context of trace metal concentrations from
Gourain et al. (2019) in the following parts.

3 Results

Concentrations of PY, PREE, PBa, and P232Th are compiled
in Table 2. For the sake of clarity, we only displayed PCe,
PNd, and PYb concentrations (Figs. 2 and 3) since these
three REE represent the light REE (Nd), heavy REE (Yb),
and a specific behavior (Ce). Notably, LREE and HREE are
not equally influenced by dissolved-particulate exchanges
(Koeppenkastrop et al., 1991; Koeppenkastrop and De Carlo,
1992, 1993; Sholkovitz, 1992; Sholkovitz et al., 1994). As
free trivalent LREE are more abundant in seawater, they are
more prone to adsorption on particles than HREE (Schijf et
al., 2015). The specific behavior of Ce is due to the occur-
rence of its IV oxidation state in addition to the III oxida-
tion state common to all the REE. Two mechanisms for Ce
oxidation have been proposed so far: a microbially medi-
ated oxidation in seawater under oxic conditions that leads
to formation of insoluble CeO;, more particle reactive than
Ce(Ill) (Byrne and Kim, 1990; Elderfield, 1988; Moffett,
1990, 1994; Sholkovitz and Schneider, 1991), and an ox-
idative scavenging onto Mn oxide particles (De Carlo et al.,
1997; Koeppenkastrop and De Carlo, 1992). These two pro-
cesses act in addition to the general scavenging process that
affects all the trivalent REE by surface complexation, thus
leading to the Ce enrichment in particles and its stronger de-
pletion in the dissolved phase compared to other REE.
Particulate Ce concentrations are higher than PNd con-
centrations (Figs. 2, 3a, and b), which are higher than PYb
concentrations (Fig. 3¢ and d), in agreement with the natural
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abundance and reactivity of these three REE: the light Ce and
Nd are more abundant than the heavy Yb, and Ce is the most
particle-reactive of the REE.

3.1 Cerium

As shown in Fig. 2, particulate Ce concentrations varied be-
tween 0.2 pmol L™! (station no. 64) and 16.3 pmol L™ (sta-
tion no. 32; Fig. 2). They were higher close to the Iberian
margin (station no. 1: 1 pmol L~! < PCe <9.4 pmol L™!) and
on the Greenland shelf (station no. 53: 5.7 pmol L™! < PCe
<14.6 pmol L~1). In the NAST (station no. 13) and NADR
(station nos. 21 to 38) regions, vertical profiles presented
a surface or subsurface maximum at all stations. A second
maximum was observed at 160 m at station no. 13 and in the
NADR region (except close to the subarctic front, at station
no. 26). Below 200 m depth, PCe concentrations decreased
and reached a value of 2 pmol L~! within the mesopelagic
area. Particulate Ce concentrations were higher to the east of
the subarctic front (station nos. 13 and 21) compared to the
west (station nos. 26, 32, and 38). In the ARCT region, sur-
face PCe concentrations were lower and increased between
80 and 160 m, with all PCe >1 pmol L™! at all open-sea sta-
tions. Maximum concentrations were observed just below
200 m, at station nos. 44, 64, and 69. At depths greater than
200 m, PCe concentrations were more variable in the ARCT
region than in the NADR region. They were higher than those
observed at the surface except at station no. 69, where they
remained between 1 and 2 pmol L™!. Particulate Ce profiles
differed from that of PNd and PYb at two stations only: sta-
tion no. 38, where higher concentrations were observed at
100 and 800 m for PCe only; and station no. 44, where PCe
concentrations were more variable in the epipelagic zone
than PNd and PYDb, with maxima located at 120 and 160 m
depth. These maxima were not observed for other PREE at
this station.

3.2 Neodymium

As for PCe (and other PREE; see Supplement and Table 2),
PNd concentrations were the highest close to the Iberian
and Greenland margins, with values up to 4.5pmolL~! in
the upper 100 m (Fig. 3a and b). Concentrations decreased
as the distance to margins increased, as seen at stations no.
13, where PNd was lower than 1 pmolL~!. Low PNd val-
ues were also measured at station no. 77, which is relatively
close to the Newfoundland margin yet located outside of the
continental shelf.

https://doi.org/10.5194/bg-17-5539-2020
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WOOFISO0  $9F6EIHT  100FSE0  10000F L1000  LOO0OFTITO0  €0000F LEODD 1000 F €200 0000F 8000  1000F 00 0000FLO0O  [000FPF00  0000F 1100 000F SO0  100FTTO  000F900  €00FOIT  100F090 09 £EE0F 1
9000F0SI0  I'LFHe69T  900FI6T €0000FLLOOO [TO00FTIRO0  80000FOEI00  9000FL600  1000FIE00  9000FT61'0  TOOOFSEN0  LOOOFSETO TOOOF0900 [0OFEE0 900FSET 100FLEO  LOOFO06T  POOFELT OF £EE0F 1
ISOOFIEOT  TOIFL8IL  900FTET  H0000F 1000  1T000FS6+O0  LOOOOF 8LOO0  HOOOF 1S0°0  1000F 0200 +HO00FLOI'0  1000FIO0  LOOOFFTI0  1000FTEO0 100F9I'0 €00FOL0 100FTTO  800F00T  POOF960 0T £EE°0F 1
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Table 2. Continued.
Particulate Rare Earth Elements, yttrium, barium, and 232Th concentrations and associated error (20) in pmol L™!

Staion Longitude Latitude Depth (m) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Ba Th
32 26703 55515 450 11424036 (16274£0.59) 0.14£0.00 043+002 0.09+000 0.024+£0.000 0.099£0.004 00100000 0.060+£0.003 00120001 0.033+£0.002 0.0045+£0.0002 0.0308+0.0012  0.0034%0.0001 0.60£0.06 590.9+155 0.0600.005
32 26703 55515 500 0.54+0.01 1374003 0.11£000 042£0.01 009001 0.023£0.001 00810002 0.013£0.001 0.064+0.003 0.012£0.000 0.035+0.002 0.0047+0.0004 0.0300£0.0009 0.0037+£0.0001 0.61+0.02 3571145  0.054%0.002
32 26703 55515 598 047+0.01 1204003 0.10£000 039+£001 007£000 002120001 0070£0.001 0.010£0.000 0.060+0.003 0.011£0.000 0.032+0002 0.0045£0.0002 0.0303£0.0006 0.0037£0.0001 0.67+£0.02 3108+7.1 0.055+0.001
32 26703 55515 700 0.53+£0.03 1434007 0.12+£001 042£0.02 0084000 00180002 00710003 0.010£0.001 00590003 0.011£0.000 0.031+0.003 0.0046+0.0003 0.0286+0.0012 0.0032+£0.0002 0.71+0.04 282.1%16.1 0.055+0.002
32 26703 55515 800 0.58+0.02 1574005 0124000 042£0.01 008001 00270001 0.079£0.002 0.011£0.001 0.063£0.003 0.012£0.000 0.0320.003 0.0042+0.0003 0.0281 £0.0006 0.0035+£0.0001 0.59£0.02 3161192  0.068 %0.002
32 26703 55515 1000 0.56+0.02 1474005 0.11£000 044£0.02 0074£0.00 0.022£0001 0082+£0.002 0.015£0.001 00660003 0.013£0.000 0.035+0.002 0.0049+0.0002 0.0307£0.0007 0.0034£0.0001 0.85+0.03 2622+123  0.056%0.002
38 31266  58.843 10 490007 6.13£0.10 037+£001 139£0.03 025+0.00 005740002 0274+0.013 0.033£0.001 0.188+0.004 00360001 0.100£0.003 0.0124+0.0003 0.0763+0.0016 0.0091£0.0003 2.17+0.04  197.0£41 0.037%0.001
38 31266 58.843 20 273£0.02 170001 050£0.00 2.54+0.02 036+£0.00 00800001 04200003 0.048+£0.000 02710002 0.052+0.000 0.138£0.001 0.0183£0.0001 0.1105£0.0007 0.0138+0.0001 294£0.02  101.0£0.7  0.040=0.000
38 31266  58.843 40 1.67+0.04 1094002 0354001 128£0.03 024001 0.054£0.001 0217+£0.008 0.030£0.002 0.169+0.008 0.031+£0.001 0.087+0.004 0.0108+£0.0006 0.0667=+0.0016 0.0089+£0.0003 1.83+0.04  1844+64 0.135+0.005
38 31266 58.843 60 0.61+0.01 036001  0.12+£0.00 048£0.01 0.10£0.00 002140000 0.084+£0.009 0.011£0.000 0068+0.002 0.012£0.000 0.032+0.001 0.0046+0.0002 0.0260%0.0006 0.0025+£0.0001 0.68+0.02  1154+26 0.111£0.003
38 —31.266 58.843 80 0.44+0.01 0.48+£0.01  0.07£0.00 0274£0.01 0.06+£0.00 0.013£0.000 0.05440.001 0.007£0.000 0.043£0.002 0.008+0.000 0.022+0.001  0.0030%£0.0002  0.020240.0005  0.0020+0.0001  0.37£0.01 176.6 £6.2  0.018+0.001
38 31266  58.843 100 038+£0.01  (3.17£0.07) 007£0.00 025+001 0.05£000 0013£0.000 0.050£0.001 00070000 0.040+£0.002 0.008+0.000 0.022+0.001 0.0032+£0.0002 0.0195+£0.0006 00021 £0.0001 034001  249.9+7.9 0.020=0.001
38 31266  58.843 120 0.41£0.01 0544002  0.07£0.00 025+£0.01 006000 0.015£0.001 00530001 0.007£0.000 00420003 0.008+£0.000 00210001 0.0030+0.0002 0.0193£0.0005 0.0015+£0.0001 042001 3571135  0.060%0.002
38 —31.266 58.843 140 0.45+0.01 0.56£0.01  0.07£0.00 026+0.01 0.05+£0.00 0.013£0.000 0.053+0.001 0.008+0.000 0.046 £0.001  0.009+0.000 0.025+0.002 0.0036+0.0001  0.0226 +0.0005  0.0025+0.0001  0.39+0.01 498.8+12.0 0.023+0.001
38 —31266  58.843 160 0.75+0.02 L14£0.03 0.11£000 042+0.02 008000 0.023£0.001 007740002 0.011£0.001 00620004 0.012£0.000 00340002 0.0050+0.0004 0.0315£0.0008 0.0036£0.0002 0.66+0.02 63594251 0.108%0.006
38 31266 58.843 180 0.49+0.01 0.55+0.01  0.08+£0.00 031£0.01 007000 0.015£0.000 0.075£0.006 0.010£0.000 0.055+0.002 0.011£0.000 00310002 0.0040+0.0003 0.02700.0006 0.0030+£0.0001 0.50+0.01 644.8%156 0.031%0.001
38 —31.266 58.843 200 0.47+0.01 0.60+£0.01  0.09£0.00 033+0.01 0.07+£0.00 0.017+£0.000 0.066+0.001 0.016+0.000 0.057+£0.001 0.011+0.000 0.029+0.001 0.0042+0.0002 0.0271 +£0.0007  0.0030+0.0001  0.524+0.02 595.1+16.7  0.026 +0.002
38 —31266  58.843 300 0.58+0.02 1024003 0124000 048+£0.02 0.10£001 00370002 0.098+0.003 0.015£0.001 0.082+0.005 0.016+£0.000 00440003 0.0060+0.0003 0.0376+£0.0015 0.0043£0.0002 0.75+£0.03 7458+269 0.052+0.001
38 31266 58.843 400 0.86+0.03 1624005 020+001 077£0.03 0.I5£001 00510002 0.154£0.005 0.023£0.001 0.132£0.006 0.025+£0.001 0.068+0.004 0.0092+0.0005 0.0569%0.0022 0.0069+0.0003 134005 679.3%£27.0 0.068 %0.004
38 31266 58.843 500 0.83+£0.02 1.65£0.04  020+£001 082+0.03 0.18+0.01 00520002 0.197+£0.009 0.026+0.001 0.151£0.004 00280001 00780003 0.0103£0.0005 0.0654=0.0018 0.0081£0.0003 142+0.04 4288+163 0.063%0.003
38 —31266  58.843 600 1.15+0.03 2294005 024001 098+004 021£0.02 0.070+£0.003 0203£0.005 0.032+£0.001 0.175£0.007 0.033+£0.001 0.091+0.005 0.0125£0.0006 0.0769+£0.0016 0.0098+0.0003 154+£0.05 5253+£19.7 0.107+0.003
38 31266 58.843 700 0.93+0.02 1784004  020+0.00 080+£0.02 0242001 0.045£0.001 0.160£0.003 0.025+£0.001 0.138+0.003 0.026+0.000 0.074+0.003 0.0095+0.0003 0.0620+0.0013 0.0077+£0.0001 1.42%0.03 732.6+20.0 0.080%0.002
38 31266 58.843 800 2.19+0.06 5094005 034002 119£003 0.15£001 0.038+£0001 0.148£0.004 0.027+£0.002 012420005 0.023+£0.001 0.064£0.004 0.0082+0.0004 0.0529£0.0014 0.0065+0.0002 1.04+£0.03  273.0£95 0.070+0.004
38 31266  58.843 1000 0.90+0.02 1774004  024+001 097+£0.04 0214001 00560001 0208+£0.005 0.032£0.002 0.178+£0.006 0.033+£0.001  0.09+0.004 0.0120£0.0005 0.0751£0.0016 0.0095+£0.0003 1.52+0.04 244.6+93  0.084%0.003
44 38954 59.62 10 072+002  059+002 0.12+001 045£0.02 009000 0.025+£0.001 0.115+0.004 0.025+£0.001  0.129+0.01 0.029+0.001 0.100£0.007 0.0173£0.0012  0.1376£0.0040 0.0208+0.0007 191£0.07  1154+12  0.082+0.003
44 38954  59.62 20 0.82+0.03 0484002 0.13+£001 056+£0.03 0.10£0.00 002940001 0.127£0.004 0.021£0.001 0.153£0.008 0.035£0.001 0.123£0.007 0.0209+£0.0013 0.1716=0.0036 0.0267£0.0008 2.50+0.08  954=+1.1 0.082%0.002
44 —38954  59.62 40 055+002 0484002 0.11+000 044£001 009£000 0025+£0.001 0.101+0.003 0.020£0.001 0.092£0.003 0.019+£0.001 0.056+0.002 0.0083+0.0004 0.0571+£0.0018 0.0079+0.0003 124+£0.05 2824+9.1 0.048+0.001
44 38954 59.62 60 0.79+0.03 0.80£0.03 011000 039£0.01 009000 00240001 0.087+0.003 0.012£0.001 0.075£0.002 0.015£0.000 0.0440.002 0.0063+0.0003 0.04420.0013  0.0055+£0.0002 0.79+0.03  287.5+85 0.040%0.001
44 38954  59.62 80 0.39+0.01 0914002 0.08+£000 0294001 0.06+0.00 0.015£0.000 0.060£0.001 0.008£0.000 00490002 0.009£0.000 00280001 0.0038£0.0002 0.0246+0.0006 0.0028-£0.0001 0.77+0.02  432.5+87  0.042%0.001
44 38954 59.62 100 046+£0.02  072£003 009£0.00 0.34£001 0.06£000 0020£0.003 0.065+£0.003 0.009+0.001 0.055+£0.003 00110000 0.030+£0.002 0.0042+£0.0002 0.0272+0.0010 0.0031+0.0002 0.54+0.03 429.0+18.7 0.041+0.002
44 38954 59.62 120 0.38+0.01 1814003 0.08+000 030£0.01 007000 0015£0.000 0.063+0.001 0.009£0.000 00540002 0.010£0.000 0.029+0.001 0.0038+0.0002 0.0257+0.0005 0.0027+£0.0001 0.50+0.01  436.4+82  0.036%0.000
44 38954  59.62 140 040001 0614002 0.08+£000 031£0.01 0.07£000 0.025£0.001 0.065+£0.002 0.008£0.000 0.049£0.002 0.009£0.000 00260001 0.0034£0.0002 0023000007 0.0022£0.0001 0.56+0.02 4353129  0.034%0.001
44 38954 59.62 160 1.74£0.06 3254002 0124000 040+001 007£0.00 0.018+£0.001 0.078+0.003 nd. 0.057£0002 0.011£0.000 00310002 0.0043£0.0002 0.0260+0.0009 0.0028£0.0001 0.54+0.03 517.94204 0.044%0.001
44 38954 59.62 200 0.67+0.01 L16£0.02  0.14£000 049£0.01 0094000 00180000 00840002 0.012£0.000 0.0640.002 0.012£0.000 0.033+0.001 0.0044+0.0002 0.0281£0.0007 0.0031£0.0001 0.58+0.02 663.8%1 0.0380.001
44 38954 59.62 300 0.51+0.01 1.08£0.02  0.11£000 040£0.01 008000 0.021£0.000 00760002 0.012£0.000 00640001 0.012£0.000 00340001 0004400001 0.0290+0.0006 0.0032£0.0001 0.68+£0.02 715.1+148 0.045+0.001
44 38954 59.62 400 0.50+0.01 0924002 0.11£000 040£0.01 009000 002140001 0.083+£0.003 0.011£0.000 00620002 0.012£0.000 0.032+0.001 0.0045+0.0002 0.0268+0.0005 0.0030£0.0001 0.60+0.02 71874147 0.048%0.001
44 38954 59.62 500 0.60+0.02 1214004 0.13£000 045£0.01 008000 0.026+0.001 0.081%0.002 nd. 00660002 0.012£0.000 00340001 0.0047£0.0003 0.0298+0.0008 0.0031£0.0001 0.65+0.03 6435178  0.055%0.001
44 38954 59.62 600  0.58+0.01 LI5£0.02  0.13£000 045+£001 009000 001920000 00840003 0.014£0.000 0.057£0.002 0.01£0.000 0.028+0002 0.0038+0.0002 0.0233+£0.0005 0.0023£0.0001 042+£0.01  4823+92 0.055+0.001
44 38954 59.62 700 047+0.01 0824002 0.10£0.00 034£0.01 007000 001940001 0.067+£0.002 0.009£0.000 0.050£0.002 0.009+0.000 0.025+0.001 0.0034+0.0002 0.0208+0.0006 0.0016£0.0001 047002 657.9+17.9 0.041%0.001
44 38954 59.62 800 0.26+0.01 0474001 0.06+0.00 0.19+£0.01 004000 0.010£0.000 0.036+£0.001 0.009£0.000 0.028+0.001 0.005£0.000 0.015+0.001 0.0020£0.0002 0.0127+0.0004 0.0010£0.0001 020+0.01 484.9+146 0.028%0.001
44 38954 59.62 1100 0.570.01 1394003 0.12+£000 043£001 009000 00160000 00840004 0.014£0.000 0.064+0.003 0.012£0.000 00340001 0.0045£0.0003 0.0290+0.0006 0.0027+0.0002 049+£0.02  2822+59  0.060=+0.001
44 38954 59.62 1401 0.90+0.03 1.854£0.07 0.14+001 051£0.02 011000 00460007 0.098+£0.004 0.013£0.000 0.078+0.003 0.015+£0.001 00410002 0.0055+0.0002 0.0342£0.0011 0.0035+£0.0002 0.74+0.04 2964%139 0.089 %0.004
51 —42.013 59.8 10 059+0.15 041031 0.10£005 038+0.14 0.08+002 0.020£0.005 0.095+0.018 nd. 0.102£0.019 0.022£0003 0077£0012 0012900015 0.1113£0.0070 0.0178+£0.0010 1.57+£021 120.0+13.4 0.057+0.021
51 42013 59.8 19 042+024 052405 006008 021+021 0.04+£003 00110007 0.0474£0.025 0008+£0.004 0.054£0.025 00120003 0.041+£0.014 0.0072£0.0017 0.0567+£0.0098 0.0092+0.0014 0.71£050 61.4+11.2 00330041
51 42013 59.8 40 061£0.14 050023 0.10+£003 037+£0.09 008002 00200004 0.088+0.013 0.013£0.002 0085+0.013 0.017+£0.002 0.055+0.007 0.0085+0.0007 0.0656+0.0043 0.0097+£0.0007 1.16+0.13  1664+69 0.038%0.015
51 —42.013 59.8 60 0.64£009  049£0.19 0.0£0.02 050+008 008001 0020£0.003  0.081£0.01 00120002 0.082£0.009 00170001 0.050£0.005 0.0079£0.0005 0.0574£0.0030 0.0080+0.0004 1.01£0.08  179.1+37 0.049+0.014
51 —42013 59.8 80 0.65+0.15 1504032 0114004 042£0.13 0094002 0.025£0.004 0084+0015 0.012£0.002 00710013 0.013£0.002 0.038+0.007 0.0057+£0.0007 0.0391£0.0042 0.0049+£0.0005 081+0.15 242.6+48 0.050+0.018
51 42013 59.8 100 0.73£0.20 LI1£044 0.13+£006 046£0.19 0094003 002240007 0.088+0.021 0.0174£0.003  0.072£0.02 0.014£0.003 0.039+0.012 0.0058+0.0013 0.0401 £0.0068 0.0052+£0.0009 0.83+0.19 2985119 0.048+0.028
51 —42.013 59.8 120 0.57+0.16 1.39+£032  0.154£0.05 0.52+0.13  0.10£0.02 0.031£0.005 0.103+£0.017 0.0144+0.002 0.086+£0.015 0.0160.002 0.043+0.008 0.0058 £0.0011 0.0362+£0.0062 0.0041 £0.0009 0.90+0.17 185.9+14.1 0.062+0.019
51 —42.013 59.8 140 0.76+0.18 1444035 0.16+006 055+0.15 0.11£0.02 00260005 0.106+£0016 0.013£0.003 00810021 001520002 0.043£0.009 0.0056+0.0011 0.0383£0.0040 0.0045+£0.0005 0.79+0.14  279.4+56 0.065+0.028
51 42013 59.8 160 0.67+0.02 1354002 0.15+000 053£0.01 0.10£0.00 00250001 0.105+£0.004 0.014£0.003 0.075+0.005 0.014£0.001 0.038+0.004 0.0054+0.0008 0.0340%0.0037 0.0037+£0.0006 072006 261.0£49  0.066%0.002
51 —42.013 59.8 180 0.92+0.01 1.83+£0.01  0214+0.00 0.73+£0.00 0.14£0.00 0.034£0.000 0.126+£0.001  0.017+0.000 0.101£0.002 0.018 £0.000 0.052+0.002  0.0067 £0.0002  0.0446 £0.0008  0.0053 £0.0001  0.93+0.01 2483410 0.088+0.001
51 —42013 59.8 200 1.10£0.02 2314002 0254000 089+001 0.17£0.00 0.045+£0.001 0201+0.003 0.025+£0.001 0.131£0.005 00240001 0.068+0.003 0.0090+0.0004 0.0576:£0.0024 0.0071+£0.0004 1.19+£0.05  3505+73 0.110+0.001
51 42013 59.8 300 136£002 247002 0.14£001 054£002 0.09+000 002040001 0.101£0.008 0015£0.001 0.086+£0.005 00170001 00460003 0.0064+0.0004 0.0400£0.0018 0.0049+£0.0003 0.92+0.04  462.1£72  0.078%0.001
51 —42.013 59.8 400 1.04 £0.02 2.114+0.04 023+£0.01 0.83+£0.03 0.17+0.04 0.041+0.001 0.165+0.003 0.021 £0.001  0.131+0.003  0.024£0.000 0.067 £0.003  0.0091 £0.0007 0.0588+0.0013  0.0073£0.0002 1.79+0.03 426.0+103 0.087 £0.002
51 —42013 59.8 500 1.06+£0.02 260+£0.03 028+0.00 1.03+£001 021£0.00 0.054£0.000 0.19240.003 0.027+£0.001 0.159£0.003 0.029+£0.001 0.081+0.003 0.0105+0.0002 0.0669+£0.0014 0.0082+0.0002 144+£0.03 321.8+85 0.108+0.001
51 42013 59.8 600 0.44+0.02 1024005 0.10+000 038+£0.02 008000 00250001 0.077+0.003 0.011£0.001 0.065+0.003 0.012+£0.000 0.034+0.002 0.0046+0.0003 0.0282+0.0014 0.0029+£0.0002 0.93+0.04  2258+57  0.040%0.002
51 —42013 59.8 700 0.50+£0.02 LI740.04 0124001 043£0.02 008000 0.026+0.001 00880005 0.012£0.001 00740004 00140001 00400002 0.0057+£0.0002 0.0370£0.0014 0.0046£0.0002 0.87+0.03  259.1+85 0.050%0.002
51 42013 59.8 800  0.74+0.02 226+£0.04 020£001 073+£002 0.15£0.00 0.036+£0.001 0.143£0.004 0.021£0.001 0.119£0.003 0.022+£0.000 0.061+0.002 0.0081+0.0002 0.0511£0.0011 0.0063+0.0001 1.12+£0.03  2295+8.1 0.073+0.002
51 42013 59.8 1000 0.53%0.03 1284005 0.13+001 048£0.02 010000 002940001 0.095+0.003 0.013£0.001 0.079+0.004 0.014£0.000 0.040+0.002 0.0054+0.0002 0.0334£0.0011 0.0038+£0.0002 0.83+0.03 171.6£6.8 0.057+0.002
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64 —46.083  59.07 140 055+£0.02 4264007 0.11£0.00 0.39£002 0.08£000 00200001 0.086+£0.004 00110000 0.068+£0.003 0.013£0.000 0.039+£0.002 0.0056+0.0003 0.0378£0.0014 0.0046+0.0002 0.65+0.03 400.6+16.2 0.056=0.002
64 —46.083  59.07 160 0.71+0.02 1394005 0.15+001 056+£0.02 0124000 00270001 0.100£0.003 0.016£0.001 00840003 0.015£0.000 0.042+0.003 0.0060+0.0003 0.0376+0.0013 0.0042£0.0002 0.73£0.03 369.0%132  0.066 % 0.002
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Figure 3. (a) Vertical profiles of particulate [Nd] and (b) [Yb] concentrations superimposed on salinity () measured by CTD at every
GEOVIDE station (Lherminier and Sarthou, 2017); in white, the prevailing water masses characterized by a multi-parametric (OMP) analysis
as in Fig. 2. At station no. 53, profiles are shifted to the bottom at a lower scale because of the shallow depth of the station. (c) Particulate
[Nd] and (d) [Yb] concentrations interpolated with the DIVA gridding function of Ocean Data View along the section defined in Fig. 1, with

a zoom on the first 200 m in (c, d).

3.3 Ytterbium

Distributions of PNd and PYb differed in several ways
(Fig. 3). Station nos. 13, 44, and 69 displayed a maximum in
subsurface for PYb that was not observed for PNd. In con-
trast, a local maximum in PNd was identified at 160 m at
station nos. 64 and 69 but not for PYb. In the open ocean,
at station nos. 21, 26, 32, and 38, concentrations of both
elements were higher in the surface layer than below. The
highest PYb concentrations were determined in the NADR
region, which was the most productive at the time of the
cruise (Fonseca-Batista et al., 2019). Concentrations then de-
creased with depth to become constant, except at station no.
38, where they increased again in the mesopelagic zone (be-
low 300m). In the ARCT region, surface concentrations of
PNd were lower at 100 m than at 250 m, similar to station no.
1, contrasting on this point with the NADR region.

3.4 PYby/PNdy ratios

To highlight a possible fractionation between LREE and
HREE, the PYby/PNdy ratio is calculated from concen-
trations normalized to the Post Archean Australian Shale
(PAAS), commonly used for REE normalization, in order

Biogeosciences, 17, 5539-5561, 2020

to get rid of the natural abundance “zig zag distribution” of
the REE (Piper and Bau, 2013). This normalization allows
(i) a better diagnostic of the fractionation between PREE and
(ii) comparison with patterns in the literature. Results are pre-
sented in Fig. 4. The PYby/PNdy ratio varied between 0.2
and 4.5, with an outlier (9) at station no. 13 at 40 m. Lower
ratios (<1) were observed along the margins, increasing with
the distance from the coast. In the open ocean, except at sta-
tion no. 38, PYbn/PNdy was higher at the surface (>1.4)
and decreased in the subsurface layers, ranging between 1
and 1.4. At station no. 38, it was smaller than 1 in the up-
per 100 m and around 1 below. The lowest PYby/PNdy ratio
was determined in the core of the epipelagic zone at station
no. 21 at 100 m (Fig. 4), where high concentrations of PLa,
PCe, PPr, and PNd (in other words, LREE) were measured.
Howeyver, for other stations with a similar enrichment, no low
PYbn/PNdy ratios were observed (stations nos. 21 at 600 m,
32 at 450 m, and 38 at 800 m).

https://doi.org/10.5194/bg-17-5539-2020
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Figure 4. Vertical profiles of PYb/PNd ratios normalized to PAAS in each biogeochemical province (ARCT, NADR, NAST). The upper
panels present the first 200 m and the lower panels all the data. The dashed black vertical line in each panel represents a ratio equal to the

one of PAAS.

4 Discussion
4.1 Comparison with other studies

Particulate REE data in suspended particles are very scarce
in the literature. To our knowledge, for the North Atlantic,
only one other set of concentrations was published by Kuss
et al. (2001), who measured PREE in samples centrifuged
from several m> of water at a depth of 7m, collected along
the 20° W meridian between 30 and 60° N. Even though this
study is located in a different area of the North Atlantic
Ocean, and only in the surface, similarities can be pointed
out. Kuss et al. (2001) observed PCe concentrations rang-
ing between 0.2 and 4.9 pmolL~! with higher concentra-
tions close to the margins especially near the Iberian mar-
gin, consistent with our data. Their PNd concentrations of
ca. 0.5pmolL~! to the southeast of the NADR are also
consistent with ours. The PNd concentrations reported by
Tachikawa et al. (1999b) at a station located in a mesotrophic
zone of the northeastern tropical Atlantic and directly in-
fluenced by Saharan dust (6 to 15gm~™2r!, Rea, 1994)
were almost 2 times higher than those reported here (PNd =
2.6 pmol L™! at 10 m at station M, when PNd <1.4 pmol L™!
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for GEOVIDE at 10 m; Fig. S5). The same authors measured
lower concentrations than ours at the oligotrophic site of their
study, where the dust flux was lower than at the mesotrophic
site (4-5gm~2yr~!, Rea, 1994) but higher than that found
during the GEOVIDE cruise (2 to 500 ng m~3, Shelley et al.,
2017). Interestingly, PCe concentrations measured by these
authors are similar to those reported in this study, for both the
mesotrophic and oligotrophic sites. The difference of con-
centrations observed for the other PREE can be due to the
fact that particle concentrations are usually higher in the sub-
polar North Atlantic than in the tropical Atlantic (Gehlen et
al., 20006).

4.2 Lithogenic and authigenic PREE fractions

Particulate REE are found in both the lithogenic and authi-
genic phases of particles. Schematically, particles are often
represented with a “lithogenic core” coated by authigenic
material (Bayon et al., 2004; Sholkovitz et al., 1994). The
“lithogenic core” has an external origin, product of the con-
tinental weathering transported by the winds or discharged
by the rivers to the continental margins. The authigenic
phases are produced in the water column, and particulate
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REE present in this phase can result from surface biolog-
ical activity or scavenging by organic coatings and/or iron
and manganese oxides and hydroxides (Bau, 1999; Bau and
Koschinsky, 2009; Lam et al., 2015). Traces of the biolog-
ical absorption can be found in inorganic planktonic tests
(CaCOs3, Palmer, 1985; Roberts et al., 2012; and BSi, Akagi,
2013) or in biogenic byproducts like barite (Ba,,, Garcia-
Solsona et al., 2014; Guichard et al., 1979). The common
view is that LREE are more sensitive to oxide phases of Fe
and Mn, while HREE, more soluble, could preferentially re-
act with biogenic phases (Akagi, 2013; Bertram and Elder-
field, 1992; Grenier et al., 2018; Pham et al., 2019). In the
Bering Strait, Akagi et al. (2011) also observed a strong as-
sociation between particulate HREE and biogenic silica col-
lected in sediment traps. This specific BSi control on HREE
behavior is discussed in Sect. 4.6. Distribution coefficients
also vary between HREE and LREE with depth and the na-
ture of the particle phases (Schijf et al., 2015).

Thus, differentiating the distribution of REE between the
lithogenic and authigenic phases can allow estimation of
the fraction implied in scavenging and/or absorption pro-
cesses by the authigenic phase, while the lithogenic frac-
tion can be used to picture continental inputs. The lithogenic
REE fraction could also be estimated using conservative
lithogenic tracers such as Al, 232Th, or Ti (e.g., Gourain et
al., 2019; Tachikawa et al., 1997). These authors used Al
as a lithogenic tracer, while here we chose to use 232Th. In-
deed, the lithogenic fractions calculated from particulate Al
(PAI) concentrations were often higher than 100 % in sur-
face waters close to the margins, revealing that a fraction of
the total PAI is likely in the authigenic phase (Lerner et al.,
2018; Van Beueskom et al., 1997). In addition, as Al is more
prone to contamination, it was sampled with the clean rosette
(Gourain et al., 2019), while 232Th was measured in the same
samples as PREE, collected with the standard rosette. The
concentration of the lithogenic PREE fraction in particles is
calculated by multiplying the 232 Th concentration in a given
sample by the ratio of the considered REE on 232Th in the up-
per continental crust (UCC, Rudnick and Gao, 2014, Eq. 1),
a value similar to the uniform 232Th concentrations reported
by Chase et al. (2001) in marine sediments from cores of the
South Atlantic.

' o [REE]
[REEjitho] = [*"“Th] x ([232Th] (D
uce
[REEjitho]
9%REE}itho = ————— x 100 2
0 litho [REE] X 2)
%REE uthi = 100 — %REEiitho 3)

These PREE lithogenic concentrations are then divided by
the total PREE concentrations to obtain the fraction of partic-
ulate REE of lithogenic origin (Eq. 1). The authigenic frac-
tion is then obtained by subtracting the lithogenic fraction
from 100 % (Eq. 2).
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The percentage of lithogenic PNd along the section is rep-
resented in Fig. 5. In this figure, we also chose to represent
the average value of the lithogenic fractions of the remaining
PREE for the PLREE at five selected stations, excepted for
PCe because of its distinctive behavior that leads to higher
affinity for particles. We also plotted the PHREE at the same
stations (nos. 1, 26, 51, 53, and 77). Error bars represent the
standard deviation of the resulting averages. These five sta-
tions are representative of the three dominant biogeochemi-
cal contexts observed along the section: under lithogenic in-
put influence (no. 1, no. 53), dominated by biological activity
(no. 26, no. 51), and influenced by both (no. 77). Sometimes,
the estimated Nd lithogenic fraction exceeded 100 % (up to
550% at 20m at station no. 1 and up to 130% at 160 m
at station no. 13 and at 200 m at station no. 32). This sug-
gests an excess of 232Th in the particles, likely authigenic,
or a difference between the adsorption kinetics of 232Th and
REE, as reported by Hayes et al. (2015). In these cases, we
capped the lithogenic proportion to 100 %. The occurrence
of an authigenic fraction of 23>Th may lead to a bias in the
calculation of the lithogenic contribution and an overestima-
tion of lithogenic contributions cannot be excluded at the sur-
face. However, 2>>Th remains predominantly lithogenic, and
the comparison between the fractions calculated with Al and
232Th provided in Fig. S6 for station nos. 1, 13, 32, 51, and
77 validates the use of 232Th.

4.3 PAAS normalization and REE patterns

The patterns of PAAS-normalized concentrations are repre-
sented in Fig. 5 together with the profiles for the same five
stations as in Sect. 4.2. For ease of reading, patterns are aver-
aged by depth intervals displaying similar values. Error bars
represent the standard deviation of the concentration series.
A dissolved REE pattern obtained in the North Atlantic Deep
Water at 12°S at 2499 m (Zheng et al., 2016) is also rep-
resented, for comparison with a “typical” dissolved seawa-
ter pattern, marked by a negative Ce anomaly and a pro-
nounced normalized HREE/LREE positive slope (De Baar
et al., 1985; Elderfield, 1988; Elderfield and Greaves, 1982;
Tachikawa et al., 1999a). The patterns of other stations are
represented in Fig. S7.

The validity of using PAAS for normalization is assessed
by the fact that PAAS does not present any significant dif-
ference in REE composition between shales and loess from
Europe, North America, and China (Rudnick and Gao, 2014),
which are potential sources of lithogenic material for Europe
and North America. Normalization to atmospheric deposi-
tions has been put aside as these inputs were very low dur-
ing the cruise (Shelley et al., 2017), and the REE patterns
of these dusts are not available. In addition, normalization to
dusts would not have allowed us to compare our data with the
REE patterns in the literature, which commonly uses PAAS
to normalize.
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Figure 5. Center: fraction of lithogenic PNd along the GEOVIDE section (in %); side plots: vertical profiles of the lithogenic fraction of
LREE (except Ce, blue lines) and HREE (red lines) and PAAS-normalized REE patterns of the total fraction at station nos. (a) 1, (b) 26,
(¢) 51, and 53 and (d) no. 77. Patterns are averaged by depth intervals displaying similar values. Error bars represent the standard deviation of
the concentration series. A typical seawater pattern (NADW; 12° S, 2499 m, Zheng et al., 2016) is represented along with patterns of station

no. 26 with a blue line.

4.4 Lithogenic supply at the margins

The high PREE concentrations close to the Iberian margin
and on the Greenland shelf suggest that particulate material
is released by the margins to the water column (Fig. 3 and
Table 2), the highest concentrations being measured at sta-
tion no. 1 (Fig. 5). At these stations, the lithogenic PREE
fractions range between 50 % and 100 % (Fig. 3). The rel-
atively flat total PREE patterns displayed at these stations
show only a slight enrichment in LREE due to their prefer-
ential scavenging compared to the HREE (Fig. 5; Sholkovitz
et al., 1994).

High percentages of lithogenic PREE were visible along
two isopycnals (og = 27.05 and o9 = 27.4) visible from sta-
tion no. 1 to station no. 32 (in other words beyond the Subpo-
lar Front), spreading over 1700 km from the Iberian margin
(Fig. 6). Similar maxima have been reported for lithogenic
particulate iron (PFe) and particulate manganese (PMn) by
Gourain et al. (2019) (their Fig. 6b).

Above the Greenland shelf, at station no. 53, the frac-
tion of lithogenic PREE was also high (55 % to 86 % for
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PNd), only slightly lower than at station no. 1, with a me-
dian lithogenic contribution of 59 % for PLREE and 83 %
for PHREE (Fig. 5). Unlike what was observed at the south-
eastern end of the GEOVIDE section from station nos. 1 to
26, these lithogenic particles do not spread offshore. Indeed,
except at the surface, the lithogenic fraction for LREE was
lower than 50 % at station nos. 51 and 64 in the Irminger
Sea and in the Labrador Sea, respectively. This can be ex-
plained by the circulation: the East Greenland Irminger Cur-
rent (EGIC) is a strong narrow current bypassing Green-
land along its shelf (23.4 £ 1.9 Sv, Daniault et al., 2016),
likely preventing exchanges between the Irminger Subpo-
lar Mode Water (Ir'SBPMW) and waters of the Greenland
shelf, transported by the EGCC, which flows parallel to the
coast (green and orange arrows around the Greenland south-
eastern tip in Fig. 1). Our observations are consistent with
those of Lacan and Jeandel (2005), who showed that the
Nd isotopic signatures (eng) of SPMW transported by the
EGIC do not vary significantly along the Greenland shelf.
In the same way, the lithogenic influence is moderate at sta-
tion no. 77, where land—ocean exchanges are reduced due
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Figure 6. Estimated fraction of lithogenic PNd in the upper 1000 m superimposed on density from station nos. 1 to 32. White arrows follow
the high lithogenic fractions spreading along the isopycnals o = 27.05 and o = 27.4.

to the EGCC (1.5+0.2Sv, Daniault et al., 2016). While
the lithogenic fraction is still relatively high at this station
(50 % < REEjjho <80 % below 150 m), the fractionated pat-
terns indicate that other processes are at play (Fig. 5), for
example, preferential scavenging of LREE on Mn and Fe
oxyhydroxides (Bau, 1999) and/or fractionation by diatoms
(Akagi et al., 2011). The roughly constant lithogenic contri-
bution around 60 % at station no. 77 indicates that like around
Greenland, no nepheloid layers are spreading from the New-
foundland margin, at least at the time of the cruise.

Gourain et al. (2019) reported similar results for lithogenic
PFe and PMn fractions estimated during the same cruise.
These authors also observed a strong contribution of
lithogenic material from the Iberian margin spreading un-
til station no. 32, a lower contribution along the Newfound-
land margin, and almost no lithogenic contribution from the
slope of the Greenland margin. Using lithogenic PMn as a
tracer of sediment resuspension, they estimated that 100 %
of PMn originated from sediment resuspension at station no.
1 between 250 m and 1000 m (their Fig. 4). Interestingly, E.
Le Roy (Le Roy, 2019) observed an unexpected maximum
of 227 Ac activity at 500 m at station nos. 1 and 21, indicat-
ing the influence of a sediment source, also consistent with
the PREE lithogenic fraction. However, at station no. 13, the
lithogenic PREE maximum was not found at the same depth
as for 227 Ac (160 m instead of 200 m). Unfortunately, the dif-
ferent sampling resolutions for PREE and 2%’ Ac did not per-
mit us to further compare data between these tracers except
at the surface of station no. 1, where a maximum of 227 Ac
was consistent with the lithogenic PREE signal.

Biogeosciences, 17, 5539-5561, 2020

These highly enriched depths in lithogenic tracers could be
due to the formation of intermediate nepheloid layers (INLs)
at 250 and 500 m along the Iberian margin, similar to those
revealed slightly more north by McCave and Hall (2002).
A contribution of the Mediterranean Water (MW) to these
high concentrations and lithogenic proportions cannot be ex-
cluded, but the lack of data in the core of the MW (1000 to
1500 m, Garcia-Ibafiez et al., 2018) prevented us from con-
cluding further.

A highly energetic process is needed to generate strong
resuspension of lithogenic matter. It may result from the fric-
tion and energetic excitation of internal waves along the con-
tinental slope (Cacchione, 2002). Another possible source
is the erosion of the coast by the strong current (from 0.05
to 0.1 ms~!) coming from Gibraltar and flowing northward
along the Iberian margin (Gourain et al., 2019; McCave and
Hall, 2002; Zunino et al., 2017). A combination of all these
dynamic processes generating internal waves north of sta-
tion no. 1 could have led to strong sediment resuspension
and subsequent advection of resulting particles southward by
the current.

To sum up, margins can provide significant amounts of
particulate lithogenic REE to the ocean that must be consid-
ered in the mass balance of REE. Occurrence and magnitude
of these inputs depend on the morphology of the margin, the
hydrodynamical forcing, and the amount and composition of
sediments leading (or not) to the formation of nepheloid lay-
ers.
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4.5 Rare Earth Element fractionation: Ce anomalies

As briefly mentioned above, Ce presents a unique chemistry
among REE, with the coexistence of a trivalent form and
a tetravalent form. In seawater, the redox cycles of Ce and
Mn are strongly linked (Bau and Dulski, 1996; Elderfield,
1988; Moffett, 1990, 1994). Biotic and abiotic oxidations of
Ce have been previously reported. In seawater, the oxida-
tion of Ce3* in CeO, is microbially catalyzed and the re-
sulting tetravalent CeQ is insoluble, and thus preferentially
adsorbed by surface complexes of particles (Byrne and Kim,
1990; Elderfield, 1988; Moffett, 1990, 1994). This pattern
of oxidation, which is similar to Mn oxidation, suggests a
common mechanism and possible coprecipitation, yet with
different kinetics (Moffett, 1990, 1994). Mn oxides can cat-
alyze Ce abiotic oxidation at the surface of particles, leading
to an oxidative scavenging of Ce by Mn oxides (Bau, 1999;
Bau and Koschinsky, 2009; Byrne and Kim, 1990; De Carlo
et al., 1997; Koeppenkastrop and De Carlo, 1992). Also, a
Ce enrichment in Fe hydroxides by sequential leaching of
ferromanganese crusts has been reported (Bau and Koschin-
sky, 2009). In contrast, experiments of REE addition dur-
ing Mn oxide and Fe hydroxide precipitation showed little
(Davranche et al., 2004) or no evidence of a preferential Ce
scavenging by Fe hydroxides unlike for Mn oxides (De Carlo
et al., 1997; Koeppenkastrop and De Carlo, 1992; Ohta and
Kawabe, 2001). Therefore, the preferential Ce scavenging
onto Fe hydroxides is still under debate. This exceptional be-
havior among REE results in a Ce depletion in seawater.

Conversely, in particles, this leads to a “symmetrical” Ce
enrichment compared to other REE when concentrations
are normalized to a lithogenic reference as PAAS (Garcia-
Solsona et al., 2014; Tachikawa et al., 1999a). This Ce en-
richment is quantified using the Ce anomaly, calculated with
the concentrations normalized to PAAS. The expression of
Bolhar et al. (2004, Eq. 4) is used in this paper:

Ce [Ce]

o = TP NG o)
e 2 x [Pr] — [Nd]

This expression uses Pr and Nd concentrations and is pre-
ferred to the one using La and Nd concentrations, as La can
also present anomalies in seawater (Bau and Dulski, 1996).

In this dataset, most of the Ce/Ce* ratios are greater than
one (i.e., positive anomaly). At station nos. 26, 32, 51, and
77 between the surface and ca. 100m, PCe was depleted
compared to other PREE, and (Ce/Ce*) <1. This surface
minimum was followed by a pronounced positive anomaly
down to 200 m. At deeper depths, the anomaly was rela-
tively higher in the NADR region compared to the NAST
and ARCT regions, where they are around 1 when they are
> 1.2 in the NADR region (Fig. 7).

In the NADR region, between the surface and 50 m (sta-
tion nos. 26 and 32) and between 20 and 60 m (station no.
38, which showed a surprising positive anomaly at the sur-
face), the negative PCe anomaly was related to the seawater-
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like patterns, produced by REE uptake in seawater during
formation of biogenic matter (Garcia-Solsona et al., 2014;
Tachikawa et al., 1999b): all REE were absorbed from seawa-
ter without fractionation. These PCe anomalies were rather
constant or showed a slight increase with depth until 50 m or
100 m, depending on the stations. Below, the PCe anomalies
increased with depth. These PCe anomaly variations were
consistent with the high productivity and export characteriz-
ing this area (Lemaitre et al., 2018b). Indeed, if particles were
removed faster than Ce is oxidized, the Ce anomaly would
have been limited with depth (Moffett, 1990). Two factors
could explain the step in Ce/Ce* observed between 50 and
100 m in the NADR: the beginning of remineralization in fa-
vor of the release of trivalent REE; and/or a decrease in the
particle settling speed, in favor of CeO; adsorption from sea-
water and precipitation of Mn oxides which catalyzed Ce ox-
idation onto particles. Both factors could act simultaneously.
The anomaly became even larger between 200 and 400 m,
depending on the profiles, and was constant below 600 m,
suggesting an equilibrium between Ce oxidation, trivalent
REE desorption, and remineralization processes. The behav-
ior of PCe at station no. 21 was less clear, the profile display-
ing strong vertical variations (Fig. 7b): an important increase
in Ce/Ce* was observed at 40 m depth; then, Ce/Ce* de-
creased at 200 m to a value similar to the surface one. These
sharp variations suggested an influence of lithogenic parti-
cles, which was not observed at the other stations. A compar-
ison between PCe lithogenic fractions and the Ce anomaly
vertical profiles showed mirror variations: less pronounced
PCe anomalies were correlated with higher PCe lithogenic
proportions (Fig. S8). This could be explained by advection
of quite well preserved lithogenic material with smooth Ce
anomaly. This is consistent with the spreading of nepheloid
layers from the Iberian margin discussed above.

In the ARCT region, negative anomalies were also deter-
mined at the surface, but they were less pronounced than in
the NADR region (Fig. 7). The PCe anomalies increased with
depth down to 200 m at station nos. 44, 51, 64, and 77 but
remained lower than in the NADR region for the same depth
range. These profiles could be compared to the profiles of sta-
tion nos. 26 and 32, with a rather constant PCe anomaly in the
first meters that increased after a “critical” depth (here about
40 m versus 100 m in the NADR). The PCe anomaly was then
roughly constant below 200 m at station nos. 51, 64, and 69.
At station nos. 44 and 77, the anomaly increased below 700
and 1000 m, respectively. The weaker negative anomaly at
the surface was consistent with a lower primary production
(Lemaitre et al., 2018b). The roughly constant PCe anomaly
at depths below 200 m indicated that equilibrium between bi-
otic and abiotic Ce oxidation, adsorption and remineraliza-
tion of trivalent REE was reached faster in the ARCT region.

At station no. 69, high PCe positive anomalies were ob-
served at the surface, and there was no significant increase
in the anomaly with depth. These variations were consis-
tent with the fraction of lithogenic PCe, but not as much as
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Figure 7. (a) Particulate Ce anomaly (Ce/Ce™*) along the GEOVIDE section, interpolated with the DIVA gridding function of Ocean Data
View and (b) Ce/Ce* profiles grouped by biogeochemical provinces (ARCT, NADR, NAST). Panel (a) presents the first 200 m and panel
(b) all the data. Values above 2.5 are not represented. The dashed black vertical line in each panel represents the absence of anomaly (1).

at station no. 21, where the lithogenic fraction was smaller
(<60 %, Fig. S8). At this station, the equilibrium between
the reactions leading to a PCe enrichment and adsorption-
remineralization of all REE was reached at ca. 100 m, which
was deeper than at the other stations of the region, suggest-
ing a lower particle flux. At station no. 53, Ce anomaly was
roughly constant (around 1), which is consistent with a sta-
tion dominated by lithogenic inputs.

Four points displayed a Ce/Ce* >3 (station no. 32 at 140
and 450 m, station no. 38 at 100m, and station no. 64 at
140 m). Although we cannot exclude punctual contamination
in Ce during the sampling, we do not have a clear explana-
tion and decided not to consider these data further. They are
reported in parentheses in Table 2 and are not included in the

figures.
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4.6 The influence of biological activity on the PREE
distributions

At station nos. 26, 32, 38, and 44, which displayed a
seawater-like pattern at the surface, the formation of bio-
genic matter associated with high particle fluxes could ex-
plain the negative Ce anomaly and high PYbyn/PNdy ratios
(>1 and up to 4.5). These patterns were progressively atten-
uating with depth due to the Ce oxidation discussed in the
preceding section. However, the enrichment in HREE could
reach 1000 m (Fig. 4), while the negative Ce anomaly was
never observed at depths deeper than 100 m. Yet surprisingly,
this could indicate that HREE are not fully associated with
the soft tissues of the biogenic material. A LREE enrichment
was simultaneously observed, consistent with the preferen-
tial scavenging of LREE onto solid phases.
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Figure 8. PAAS-normalized PHo/PY profiles grouped by biogeochemical provinces (ARCT, NADR, NAST). (a), (b), and (c) present the
first 200 m and (d), (e), and (f) all the data. The dashed black vertical line in each panel represents the PAAS ratio (1).

When looking more closely at the authigenic phase of
these samples, an uncommon enrichment of PHREE was
observed, consistent with the total PREE patterns (Figs. 5
and S7). A strong primary production was determined at all
these stations (Fonseca-Batista et al., 2019), so the prefer-
ential transfer of HREE from the dissolved phase to the au-
thigenic particulate phase likely occurred when the biologi-
cal stripping was active. This transfer seemed to have been
even more important in the ARCT region, leading to more
pronounced HREE enrichments, while the strongest bloom
was observed in the NADR region. In the ARCT surface wa-
ters the PYby/PNdy could reach 4.5, whereas PYbyn/PNdn
never exceeded 3 in the NADR region. In the ARCT re-
gion, the bloom was dominated by diatoms, still active at
station nos. 51 and 44 and declining at the others (Fonseca-
Batista et al., 2019; Lemaitre et al., 2018b). This declining
bloom led to a strong export, but high remineralization rates
decreased the biological imprint in favor of the lithogenic
signature at depth (Fig. 5). Thus, we suspect that biologi-
cal uptake had a strong effect on the total and authigenic
PREE patterns observed during GEOVIDE. A relationship
between HREE and biogenic silica (BSi) was suggested by

https://doi.org/10.5194/bg-17-5539-2020

Akagi (2013), following thermodynamic calculations. Ac-
cording to this work, between 40 % and 65 % of REE form
a REE(H3Si04)*t could complex with silicic acid in the
deep North Atlantic. Complexation of REE with silicates
was further confirmed by Patten and Byrne (2017), although
these authors estimated a lower complexation constant, and
a smaller fraction of silica-complexed REE. In addition, sig-
nificant correlations were observed between dissolved Si and
dissolved HREE by Bertram and Elderfield (1992; west-
ern Indian Ocean), Stichel et al. (2012) and Garcia-Solsona
et al. (2014, both in the Atlantic sector of the Southern
Ocean), Grenier et al. (2018; Kerguelen Islands), and Pham
et al. (2019; Solomon Sea). Contrastingly, in other areas, Pat-
ten and Byrne (laboratory experiment, 2017, their Fig. 7) and
Zheng et al. (tropical South Atlantic, 2016, their Fig. 11)
showed that the relationship between SiOH4 and REE was
either curvilinear or not significant. In our study, the high-
est surface authigenic PYby/PNdy ratios were located in
the Irminger and Labrador seas, where the highest BSi con-
centrations of the GEOVIDE section were also measured
(Sarthou et al., 2018) (Fig. S9a and b). A correlation between
BSi and PHREE concentrations was detected, although it re-
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Mn, Fe, and Al concentrations from Gourain et al. (2019). (¢) PHo/PY normalized to PAAS.

mained weak, the highest correlation coefficient being R> =
0.4 for Lu. Interestingly, this correlation coefficient increased
with the atomic mass number, confirming that BSi has a sig-
nificant effect on authigenic PHREE distributions, from Tb
to Lu, but not on lighter REE (Fig. S9c). These correlations
may indicate that in some areas characterized by high diatom
blooms, the HREE distributions could be partly linked to the
BSi formation, in agreement with Akagi’s hypotheses. This
relationship would depend on the abundance and the nature
of particles (i.e., the occurrence of diatoms) and on the spe-
ciation of REE in the dissolved phase (de Baar et al., 2018).
Akagi (2013) suggested that silica—REE complexes could be
incorporated during frustule formation, but the mechanism
underlying this enrichment during diatom blooms still has to
be clarified. Linking it to what is known about complexation
and adsorption processes of the REE is beyond the scope of
this work. In addition, an effective relationship between BSi
and PHREE can be blurred by other scavenging processes
involving particulate Mn and Fe (hydr)oxides, also known to
influence the slope between LREE and HREE.

If diatoms are effectively preferentially incorporating the
HREE, the high prevalence of coccolithophorids characteriz-
ing the NADR bloom (Lemaitre et al., 2018b) could explain
the relatively low HREE enrichment in surface. Besides, pat-
terns flatten with depth to present a quasi-lithogenic signature
below 60 m, suggesting that particles with a strong organic
signature did not reach this depth at the time of sampling.

Biogeosciences, 17, 5539-5561, 2020

4.7 The PAAS-normalized particulate Ho/Y ratio: a
proxy of processes independent of the ionic radius

Yttrium (Y) and lanthanide holmium (Ho) are characterized
by roughly the same ionic radius and charge, making them
“geochemical twins” (Bau, 1999). The PAAS-normalized
particulate ratio (PHon/PYN) highlights differences in their
distributions and therefore allows identification of radius-
independent fractionation processes affecting YREE in sea-
water. We choose to normalize PHo/PY measured in our par-
ticulate samples to the PAAS ratio in order to reveal any
relative loss or enrichment compared to continental mate-
rial (Fig. 8). Because of different electron configurations,
Ho is more prone to establishing ionic bounds and thus to
being preferentially adsorbed onto (hydr)oxides like FeOH3
and MnO;. In comparison, Y preferentially establishes cova-
lent bounds, and will be preferentially absorbed compared to
Ho (Censi et al., 2007; Bau, 1999; Bau et al., 1995). Along
the GEOVIDE section, PHon/PYN ratios varied between
0.4 and 1.5, with most of the values being smaller than 1
(i.e., depleted in Ho compared to PAAS). To assess the influ-
ence of FeOHz and MnO; on PHon/PYN distributions, we
calculated their concentrations using the formula of Lam et
al. (2015) and PMn and PFe data from Gourain et al. (2019).
There was no obvious relationship between PHon/PYN and
FeOH3 and MnO; (Fig. 9). Notably, PHon/PYy ratios were
higher when [Fe(OH)3] > 1072 ug L~! and when MnO, con-
tent increased. However, the PHon /PYN ratio was low (<0.6)
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in the Labrador Sea surface waters (station no. 69), the
Irminger Sea (station nos. 44 and 51), and from the sur-
face to 750m depth in the NADR region (station nos. 21,
26, and 32; Fig. 8). This is consistent with the fact that both
these locations are depleted in MnO, and Fe(OH)3, leading
to a weak adsorption of Ho (Fig. 9). All along the section,
low PHon/PYy ratios were observed from the surface to
800 m depth at productive stations (station nos. 21, 26, and
32, PHon/PYN <0.9). This suggested a preferential absorp-
tion of Y during the formation of biogenic matter, as reported
by Censi et al. (2007). In the NADR region, between 200
and 600 m depth, PCe anomalies were positive (>1), PHREE
were enriched, and PHo concentrations were relatively de-
pleted at station nos. 26 and 21 (PHon/PYn <1). The low
remineralization rates observed in this area (Lemaitre et al.,
2018a) could explain the enrichment of PY concentrations
at the surface. At station no. 32, high PHo concentrations
between 350 and 600 m depth were concomitant with the
largest PCe positive anomaly (>1.2), indicating intensive ad-
sorption processes, leading to an enhanced scavenging of
REE.

In the ARCT region, at station no. 69, slightly lower
PHon/PYy ratios were observed compared to the other sta-
tions of this region (0.5 at the surface, around 0.7 to 0.9 with
depth). This station was characterized by a low primary pro-
duction and the highest remineralization rates of the section
(Fonseca-Batista et al., 2019; Lemaitre et al., 2018a, b). This
could have led to high adsorption of Ho relative to Y. As Ho
is more prone to being released from particles than Y, a lower
PHon /PYN ratio was observed. The higher PHon/PYN ra-
tios determined at the other ARCT stations point to scaveng-
ing by particles, although the Ce anomaly was lower than in
the NADR region.

Although the PHon/PYN ratios were not directly corre-
lated with MnO, and Fe(OH)3 estimated concentrations, this
ratio was lower when the primary production was high, in
agreement with a preferential incorporation of Y into the bio-
genic matter. The change in PHoy /PYN ratios with depth re-
flects a balance between two processes: the preferential scav-
enging of Ho by adsorption onto MnO; (identified with PCe
anomalies) and remineralization.

5 Conclusions

Particulate concentrations of the 14 Rare Earth Elements and
232Th were measured in 200 samples of suspended parti-
cles collected in the epipelagic and mesopelagic zones of
the subpolar North Atlantic during the GEOVIDE cruise
(GEOTRACES GAO1) during the late spring—early summer
of 2014, providing one of the only available PREE distri-
bution snapshots in the North Atlantic. All PREE concen-
trations were higher close to the margins, especially at the
Iberian margin (station no. 1) and on the Greenland shelf
(station no. 53). These high concentrations contrasted with
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the low concentrations measured in the surface waters of
the NADR region (station nos. 26, 32, and 38) and in the
Irminger Sea (station no. 44).

The use of 23?Th as a lithogenic tracer allowed identifi-
cation of the lithogenic and authigenic REE fractions. The
greatest PREE lithogenic fractions were determined close to
the Iberian margin, where 80 % to 100 % of PREE have a
lithogenic origin, in particular within two nepheloid layers
located at 250 and 500 m depth. These two nepheloid lay-
ers extended westward, mostly along isopycnals op = 27.05
and o9 = 27.4. This lithogenic signature was still visible at
station no. 32, in other words at 1700 km from the margin,
due to strong currents and energetic dynamics potentially
enhanced by internal waves. Lower lithogenic fractions, be-
tween 50 % and 80 % of REE, were determined close to the
Newfoundland margin and on the Greenland shelf (station
no. 53). No significant lithogenic inputs could be observed
far from the Greenland shelf at station nos. 51 and 64. This
is due to the strong EGIC current that prevents exchanges
between the shelf and the open ocean.

The influence of biological activity on REE scavenging
has also been evaluated. In areas of high biological pro-
ductivity, the authigenic phase of particles was enriched in
HREE compared to LREE. These particles also displayed
negative PCe anomalies as well as low PHon /YN ratios, sug-
gesting recently formed particles with a preferential uptake
of HREE and Y by absorption. In the NADR region, PCe
anomaly and LREE enrichment increased with depth, while
the PHon /PYN ratio remained low (<1). Low remineraliza-
tion rates could maintain low PHon/PYN ratios while pro-
moting exchanges with the dissolved phase. This also led
to the building of the PCe anomaly through sorption pro-
cesses and to PLREE enrichment. In the Labrador Sea, rem-
ineralization rates were higher and moderate PCe positive
anomalies were observed together with low PHon/PYy ra-
tios (1<PCe/Ce*<1.2, PHon/PYN <1). High remineraliza-
tion rates could have induced an increase in exchanges be-
tween particulate and the dissolved pools, leading to a lower
number of adsorption sites on the authigenic coatings, and to
subsequent lower PCe anomalies. The low PHon /PYy ratios
can also be attributed to these reduced exchanges. Thus, our
results suggested that the PHon/PYy ratios were less con-
trolled by MnO; and Fe(OH)3 than previously proposed but
more likely controlled by other processes such as absorption
and adsorption that do not involve these two (hydr)oxides.

We also highlighted the importance of biogenic silica for
HREE preferential scavenging, shown by a clear increase in
the PHREE concentrations in the surface waters of the ARCT
region, where a massive diatom bloom occurred. The correla-
tion coefficient between BSi and REE concentrations showed
no particular links with the atomic mass number from La to
Gd, while it increased from Tb to Lu. This relationship was
only observed for PHREE and the underlying mechanisms
will have to be investigated in future studies.
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