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Neutron scattering, specific heat and magnetisation measurements on both powders and single
crystals reveal that Dy2Ir2O7 realizes the fragmented monopole crystal state in which antiferromag-
netic order and a Coulomb phase spin liquid co-inhabit. The measured residual entropy is that of
a hard core dimer liquid, as predicted. Inclusion of Coulomb interactions allows for a quantitative
description of both the thermodynamic data and the magnetisation dynamics, with the energy scale
given by deconfined defects in the emergent ionic crystal. Our data reveal low energy excitations,
as well as a large distribution of energy barriers down to low temperatures, while the magnetic
response to an applied field suggests that domain wall pinning is important; results that call for
further theoretical modelling.

The fractionalisation of microscopic elements into col-
lective objects of reduced dimension has been a key con-
cept in condensed matter for several decades [1]. In three
dimensions the emergence, in frustrated pyrochlore mag-
nets, of effective fields with U(1) symmetry [2] provides
an important, geometrically driven and experimentally
relevant source of fractionalisation [3]. In particular, in
spin ice materials [4] and models [5, 6], the associated
topological charge, dressed by real magnetic flux provides
the magnetic monopole excitations [6, 7] which have been
much studied over the last decade. In this case, the mag-
netic moment configurations follow closely the emergent
field theoretic picture and appear to fragment into two
orthogonal fluids via a Helmholtz decomposition [8]. The
two components act independently and in the right con-
ditions can even order independently, giving the possi-
bility of a monopole charge crystal [8–11], an antiferro-
magnetically ordered phase [12–15] which coexists with
a ferromagnetically correlated Coulomb phase [16].

Pyrochlore iridates R2Ir2O7, where the rare earth R
and iridium form interpenetrating pyrochlore structures,
are ideal materials to generate such physics on the mag-
netic rare-earth sublattice. In these compounds, the Ir4+

sublattice orders magnetically into an “all-in−all-out”
configuration (AIAO), with spins oriented along the local
〈111〉 directions [17–20], at temperatures between 30 and
150 K [21] (Pr2Ir2O7 being an exception). As the R−R
interactions are generally in the Kelvin range, a good
starting approximation is to treat this order as a stag-
gered magnetic field which favours the same AIAO con-
figurations for the rare earth spins [17, 19]. Within the
monopole picture, this corresponds to a staggered chem-
ical potential [11] which reduces the point group sym-

metry of the monopole sites and opens the door to the
stabilisation of the fragmented monopole crystal phase
when R−R interactions are ferromagnetic.

In this Letter, we show that Dy2Ir2O7 realises such a
fragmented monopole crystal state at temperatures be-
low around 1 Kelvin. We show that half the total mo-
ment of the Dy3+ ions is devoted to each of the magnetic
sectors while specific heat measurements expose the pre-
dicted residual entropy, which is that of a hard core dimer
fluid on the diamond lattice [8, 22, 23]. We model the re-
sults, including Coulomb interactions between monopoles
[6], finding good qualitative agreement with experiment,
with our analysis highlighting the role of long range in-
teractions for both static and dynamic measurements.
However, our analysis also reveals the existence of low
and high energy excitations that are not accounted for
by simple models. Our results are compatible with pre-
vious experiments on Ho2Ir2O7 [12], but go considerably
beyond them in presenting quantitative measures of both
the Coulomb phase and the magnetic, ionic crystal.

Both polycrystalline and small single crystal (∼
0.01 mm3) samples were used [24]. Polycrystalline sam-
ples were characterised by neutron diffraction on the G4.1
(LLB) diffractometer down to 70 mK, and by inelastic
neutron scattering down to 1.6 K on IN4 and IN6 (ILL)
[24, 25]. The latter measurements allowed us to refine the
Dy3+ crystal electric field, giving an Ising ground state
doublet with a magnetic moment m = 9.85 µB [24]. Mag-
netisation measurements were performed down to 2 K on
Quantum Design (QD) MPMS and VSM SQUID mag-
netometers, and between 90 mK and 4 K on purpose-
built SQUID magnetometers equipped with a miniature
dilution refrigerator [26]. Specific heat measurements
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FIG. 1. FC magnetisation M/H vs temperature for the pow-
der sample (H = 100 Oe) and a single crystal (H = 1000 Oe
applied in an arbitrary direction) on a semi-logarithmic scale.
Inset: zoom in the ZFC-FC magnetisation of the powder sam-
ple (H = 100 Oe).

were performed between 0.4 and 20 K with a 3He QD
PPMS on the same single crystal (of mass 0.27 mg) as
the QD VSM SQUID measurements. The specific heat
of a pellet of Eu2Ir2O7 powder was measured as a refer-
ence non-magnetic rare-earth. For the very low temper-
ature SQUID measurements, several single crystals were
coaligned.

Like in other pyrochlore iridates [21], the iridium AIAO
ordering manifests through a small irreversibility in the
zero field cooled – field cooled (ZFC-FC) magnetisation
of the powder sample, below about 125 K (see Figure 1),
a slightly smaller temperature than the 134 K reported in
Ref. 21. The irreversibility is very small compared to this
earlier study while no irreversibility could be detected for
single crystals. The ZFC-FC irreversibility has been pro-
posed to be due to structural defects and domain-walls,
which modify the iridium molecular field felt by the rare
earth ions, resulting in the enhancement of their polar-
ization with decreasing temperature [19, 27, 28]. This
scenario would suggest that our samples are cleaner than
those used in previous reports.

Magnetic Bragg peaks appear in powder neutron
diffraction measurements below about 100 K (see Figure
2(a)). Fullprof refinements [29] with a k = 0 propaga-
tion vector give an AIAO magnetic structure [19, 20, 30]
(shown in the inset of Figure 2(b)) for both the Dy and
Ir ions. The low temperature iridium ordered moment is
found to be constant in the analysis range (T < 80 K)
and equal to mIr = 0.34± 0.14 µB. The temperature de-
pendence of the ordered moment per Dy3+ ion mDy be-
tween 10 and 80 K (Figure 2(b)) is characteristic of field
induced order [19]. At lower temperature, Dy-Dy inter-
actions favor a spin ice state, which competes with this
field induced state, leading to a saturation of mDy below
T = 1.5 K to the value of 5 ± 0.1 µB, that is, to half of
the total moment, as expected in the fragmentation sce-

(a)

(b)

0

1000

2000

3000

4000

1 1.5 2 2.5 3

200K
1.5K

1.5K - 200K
fit at 1.5K

N
eu

tro
n 

co
un

ts
 (a

rb
.u

ni
ts

)

Q (Å-1)

(2
20

)

(1
13

)

(3
31

)

0

1

2

3

4

5

0.1 1 10

NNSI
dumbbell

M
D

y (µ
B)

T (K)

0

25

50

75

0.5 1 1.5 2 2.5 3

experiment
Monte-Carlo

N
eu

tro
n 

co
un

ts
 (a

rb
. u

ni
ts

)

Q (Å-1)

FIG. 2. (a) Diffractograms at T = 1.5 (blue) and 200 K
(red), and difference between 1.5 and 200 K (green). The
black line is the refinement obtained at 1.5 K. Inset: Zoom
of the difference, corrected from the paramagnetic scattering
(green). The black line is the powder average magnetic scat-
tering function from Monte Carlo calculations in the NNSI
model for T/Jeff = 0.05 with hloc/Jeff = 4.5. (b) Refined
Dy3+ ordered magnetic moment vs temperature between 80 K
and 60 mK. Lines are the calculated ordered moment in the
NNSI model for Jeff = 1.1 K and hloc/Jeff= 4.5 (red) and in
the dumbbell model for µ = −4.40 K and ∆ = 4.95 K (blue).
Inset: AIAO configuration on two tetrahedra.

nario. Some diffuse magnetic signal persists down to the
lowest temperature (see inset of Figure 2(a)). These mea-
surements thus provide two essential fingerprints for the
stabilization of a fragmented crystal state in Dy2Ir2O7:
AIAO ordering accounting for half of the magnetic mo-
ment coexisting with a correlated spin liquid phase.

As the local field lowers the symmetry of the monopole
sites to that of the zinc-blende structure [31], a thermal
phase transition is not required and none is observed in
specific heat measurements (see Figure 3(a)). However,
as one enters fully into the fragmented phase a broad
peak is observed, with a maximum at about T = 1.4 K.
This is reminiscent of the signal observed in classical spin
ice [32] but is even broader, spreading out to much higher
temperature, reflecting the energy scale of the local field.

Our low temperature results differ from previous stud-
ies, which report a broad maximum at about 5 K in the
susceptibility [33] or a sharp peak in the specific heat at
1.2 K [34]. Nevertheless, our measurements performed on
both a powder and single crystals synthesized in different
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laboratories are consistent with each other. In addition,
most of our observations can be accounted for by the
model developed below.

We model the magnetic Dy-Ir interaction by a temper-
ature independent mean field term. This is most easily
considered using the nearest neighbour spin ice model
(NNSI) [12]:

H = Jeff

∑
<i,j>

σiσj − hloc

∑
i

σi (1)

where Jeff is an effective, ferromagnetic nearest neighbor
coupling, σi = 1 (−1) is a reduced spin variable pointing
in (out) of an up tetrahedron [35] and hloc is a staggered
magnetic field coming from the iridium ions. However,
the monopole approximation for spin ice, including long
range interactions is captured by the dumbbell model
[6, 36, 37]. Here magnetic charge Qi sits at the vertices i
of the diamond lattice, dual to the pyrochlore lattice and
the spin Hamiltonian is replaced by

Hdb =
u

2

∑
i 6=j

(
a

rij

)
n̂in̂j − µ

∑
i

n̂2
i −∆

∑
i=1,N0

(−1)in̂i,

(2)
where n̂i = Qi/Q = 0,±1,±2 is a site occupation vari-

able, Q = 2m/a the monopole charge, u = µ0Q
2

4πa = 2.82 K
the Coulomb energy scale, µ < 0 the chemical potential
[11] and N0 the number of tetrahedra. The staggered
chemical potential ∆ replaces hloc giving an energy dif-
ference for monopole creation on the two sublattices of
the diamond lattice [8]. Note that, although the field acts
on a dipole and chemical potential on a monopole, when
reduced to units of energy they are equal: hloc = ∆ [11].

We have fitted the experimental results for the Dy or-
dered moment with data from the NNSI, with Jeff =
1.1 ± 0.1 K and hloc = 4.95 ± 0.25 K. For the dumb-
bell model, parameters were chosen to simultaneous re-
produce both the magnetisation and the specific heat,
giving µ = −4.40 ± 0.10 K and ∆ = 4.95 ± 0.15 K (see
Figure 2(b) and Figure 3(a)). The values of Jeff and µ are
close to the estimates for Dy2Ti2O7 [38]. The hloc/Jeff

ratio is the same as for Ho2Ir2O7 and these values place
Dy2Ir2O7 deep in the predicted fragmented crystal phase
at low temperature [11, 12].

The NNSI model fits the temperature dependence of
mDy quite accurately but in doing so gives a poor rep-
resentation of the specific heat (see Figure 3(a)), as was
the case for Dy2Ti2O7 [38]. Introducing long range inter-
actions, the dumbbell model reproduces both mDy and
the specific heat peak height and position, although the
agreement is less convincing in the wings at high and low
temperature. Above 4 K the model specific heat remains
considerably higher than that of the experiment, indi-
cating that correlations exist out to even higher temper-
atures. More surprisingly, while the model specific heats
drop exponentially at small temperature, the experimen-
tal data appears to fall more slowly, retaining entropy

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

experiment
NNSI
dumbbell

C
m

ag
 (J

. m
ol

 D
y-1

.K
-1

)

T (K)

0

1

2

3

4

5

6

0.1 1 10 100

Δ
S 

(J
.m

ol
 D

y-1
.K

-1
)

T (K)

R [ln(2)-1/2 ln(1.3)]

R [ln(2)-1/2 ln(3/2)]

R ln(2)

(a)

(b)

FIG. 3. (a) Cmag vs T . The experiment (black dots)
is compared to the NNSI (red circles, hloc/Jeff = 4.5 and
Jeff = 1.1 K) and the dumbbell (blue squares, µ = −4.40 K
and ∆ = 4.95 K) models. Specific heat data of Eu2Ir2O7

with non magnetic Eu were subtracted from the original data
to extract the Dy magnetic contribution. (b) Entropy ob-
tained from the integration of the above curves (semilog-
arithmic scale). R ln(2) corresponds to the full spin en-
tropy, R[ln(2) − 1/2 ln(1.3)] to the fragmented entropy and
R[ln(2)− 1/2 ln(3/2)] to the Pauling entropy of ice.

down to lower temperatures. This indicates that low
energy excitations are present, which are not accounted
for theoretically. These may originate from corrections
to the dumbbell model which lift the degeneracy of the
Coulomb phase, to structural defects, or to low energy
excitations in the iridium sector that are not accounted
for.

In the monopole crystal phase it is predicted that the
closed loops of virtual spin flips should induce a residual
entropy equal to that of an ensemble of hard core dimers
on a diamond lattice, S ≈ 1

2 ln(1.3) = 0.131 per spin
[8, 22, 23] and the models have this ground state entropy
built into them. This is confirmed in Figure 3(b) where
we show the entropy recovered through integrating C

T for
both experiment and simulation. Experimentally, despite
the apparent quantitative difference with the models we
also recover this residual entropy to an excellent approx-
imation.

The dynamics of the fragmented state can be probed
with magnetisation and ac susceptibility measurements.
A freezing is observed when the system enters the frag-
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FIG. 4. ZFC-FC dc susceptibility (black points, H = 50 Oe)
and ac susceptibility, χ′ and χ′′ (coloured symbols, frequencies
f between 0.0057 and 211 Hz, Hac = 1 Oe) vs temperature
for the powder sample. Data were corrected for demagnetisa-
tion effects with a demagnetisation factor N = 0.1 cgs. Inset:
Relaxation time τ = 1/2πf vs 1/T , obtained from the maxi-
mum of χ′′ vs f measurements at fixed temperature [24]. The
red line is a fit to the Arrhenius law τ = τ0 exp (E/T ) with
τ0 = 9.4× 10−6 s and E = 3.6 K.

mented crystal state, which manifests as a separation at
T = 1.4 K between the ZFC and FC magnetisations mea-
sured when cooling from 4 K (see Figure 4). Although
the shape of the curve is slightly different for powders
and single crystals, the ratio MZFC/MFC is the same in
both cases and reaches about 0.2 at 80 mK [24]. The
ZFC magnetisation remains finite down to 80 mK, con-
trary to Dy2Ti2O7, where it falls to zero below 300 mK
[39]. This indicates that additional degrees of freedom
exist that help magnetisation to relax, consistently with
our observations for the specific heat.

The ac susceptibility, shown in Figure 4 exhibits a fre-
quency dependence that can be accurately described by
a thermally activated process, above an energy barrier
E = 3.6 K. This dynamics can be understood through the
propagation of magnetically charged, deconfined defects
in the monopole crystal [22]. In the dumbbell model,
the lowest energy excitation is a double monopole with
energy [24]

Edb = −(3µ+ ∆)− uα, α = 1.638, (3)

which gives Edb = 3.63 K, in remarkable agreement with
experiment. However, a word of caution is required; the
propagation of the excitation, through a single spin flip,
creates a hole of energy E

′

db = µ + ∆ + uα = 5.2 K.
In order to avoid this higher energy scale the dynam-
ics would have to involve double spin flips [3, 22, 24].
The NNSI model underestimates these energies giving
ENNSI = 1.65 K and 2.75 K respectively [12], illus-
trating the importance of the Coulomb interaction be-
tween the magnetic charges. A Cole-Cole analysis of the
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ac susceptibility data shows that a large distribution of
time scales exists, which broadens as the temperature de-
creases [24, 40, 41]. Just as for spin ice, this is compati-
ble with quasiparticle hopping via a range of microscopic
time scales [42–44].

The phase diagram of the fragmented crystal, as a
function of applied magnetic field H, is expected to be
rich [8, 12, 24]. The magnetic field couples independently
to the two fragmentation sectors, remarkably providing
a staggered chemical potential for the monopoles [6, 11]
in competition with the staggered internal field. As a
consequence, a field placed along [111] (forward) and
−[111] (reverse) directions are inequivalent, working with
or against the internal field. In the forward direction the
monopole configuration is unchanged by the field so that
the magnetisation should saturate via a Kasteleyn tran-
sition [8, 45] at low field. For T = 0.1 K the saturation
field is only 6 mT [24]. In the reverse direction the field
generates a reduced effective ∆, forcing the system back
into the spin ice phase above a first threshold and into a
monopole crystal going against the staggered field above
a second threshold. This reorganisation leads to three
magnetisation plateaux [12] and, for long range inter-
actions further phase transitions [11]. We predict a first
plateau with M = m/6 for low field, jumping to a second
at m/3 for µ0H ≈ 1.3 Tesla and to a third at saturation,
for µ0H ≈ 3.2 Tesla [24].

The availability of single crystals allows us to test
these predictions. Data for fields placed along the [111]
and [110] directions, together with measurements from
powder samples are shown in Figure 5. The saturated
magnetisation per Dy approaches the expected values,
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M[111],pwd = m/2 and M[110] = m/
√

6 [46] for fields
above 3 T. The predicted magnetisation plateaux are
not observed, although the initial slope is steep, and in
the powder data a change of slope is observed at around
1.5 T, corresponding to the centre of the second plateau.

An explanation for the absence of plateaux could be
the presence of a partially frozen mosaic of “AIAO /
AOAI” iridium domains (as observed in Nd2Ir2O7 [47])
which drive domains of monopole crystal order. In this
case, the two kinds of domains would see the applied field
as a forward or a reverse field. If completely frozen, the
reverse domains would dominate the field response, re-
sulting in the observation of plateaux for arbitrary mag-
netisation values. Partial reorganisation of the domain
structure would result in field induced evolution of the
fraction of the sample following the forward response sce-
nario, masking the plateaux of the reverse response. Such
a mixed response would terminate for fields around the
upper threshold of 3.2 T, which is consistent with the
experimental results.

We observe a narrow hysteresis on field sweeping (see
inset of Figure 5) which is consistent with the partial
pinning of domains. It is accompanied in single crystals
by small magnetisation “avalanches”, driven by self heat-
ing as for Dy2Ti2O7 [48, 49], although the effect is less
dramatic here, possibly due to the large thermal conduc-
tivity of the iridates or to additional relaxation channels
offered by corrections to the simple models. The pinning
appears stronger in the powder, where the remanence
of the plateau is observed, which is consistent with our
results at the iridium transition - see Figure 1.

In conclusion, Dy2Ir2O7 stabilises the fragmented
monopole crystal state. Our analysis shows that both
static and dynamic properties within this phase are gov-
erned by long range interactions, captured in a first ap-
proximation by the monopole picture of spin ice. How-
ever, our measurements show evidence of low energy exci-
tations which are not generated by the model. Magneti-
sation curves measured on single crystals do not show
evidence of predicted magnetisation plateaux, or of the
reduced point group symmetry of the monopole crystal.
This suggests that the role of the iridium has to be exam-
ined further, both at the microscopic level and in terms
of its domain structure and dynamics.
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Fragmented monopole crystal, dimer entropy and Coulomb interactions in Dy2Ir2O7

Supplementary Material

SYNTHESIS

Polycrystalline samples of Dy2Ir2O7 were synthe-
sized at the Institut Néel by a mineralization process,
following the procedure described in Ref. S1. The
lattice parameter and the x coordinate of the 48f oxygen
atom were found to be a = 10.181 Å and x = 0.335 at
T = 1.5 K.

Small single crystals (∼ 0.01 mm3) were synthesized
at Oxford starting from a polycrystalline Dy2Ir2O7 pow-
der sample prepared in the stoichiometric ratio of 1:1.05
using high purity (> 99.99 %) Dy2O3 and IrO2 chem-
icals. The powders were then thoroughly mixed along
with 0.1 g of KF (for 5 g) inside an Argon glove box and
pressed into 15 mm diameter pellets. Using a Pt crucible
the pellets were sintered at 1100 ◦C for 100 h. The single
phase pyrochlore powder was used as a starting material
and mixed with KF flux in the ratio 1:200 and packed
into a Pt crucible with a tightly fitted lid [S2]. The cru-
cible was placed inside a chamber furnace and heated to
1050 ◦C and after holding for 10 h, it was cooled down
to 875 ◦C at 1 ◦C/h rate and finally to room tempera-
ture at 60 ◦C/h. Octahedral shaped single crystals were
separated from the flux using hot water. Phase purity of
the powder and single crystal sample was characterised
using PANalytical and Supernova x-ray diffractometers
respectively.

FIG. S1. Inelastic neutron scattering measurements of
S(Q,E) measured on IN4 at T = 1.6 K with an incoming
wavelength of 1.3 Å.

NEUTRON DIFFRACTION MEASUREMENTS

Neutron powder diffraction (NPD) measurements were
carried out on the G4.1 diffractometer (LLB-Orphée,
France), equipped with an orange cryostat (for experi-
ments in the 1.5 - 300 K range) or a Cryoconcept-France
HD dilution refrigerator (100 µW@100 mK) for experi-
ments in the 72 mK - 4 K range. For the experiments
in the orange cryostat, the sample was put in a 3 cm
diameter sample holder. For the experiments inside the
dilution fridge, the sample was put in a specific 1 cm
diameter vanadium cell, in 14 bars of He gas at ambi-
ent temperature, to ensure proper thermalisation. The
working wavelength of G4.1 was 2.427 Å. Rietveld refine-
ments of the powder diffractograms were performed with
the Fullprof suite [S3].

INELASTIC NEUTRON SCATTERING
MEASUREMENTS AND CRYSTAL ELECTRIC

FIELD

Crystal Electric Field (CEF) parameters were refined
following the procedure detailed in the Supplementary
note 2 of Ref. S1.

Inelastic neutron scattering measurements were per-
formed down to 1.6 K on IN4 and IN6 (ILL) with inci-
dent wavelengths λi = 0.74, 0.9, 1.3, 1.8 Å and λi = 5.1 Å
respectively [S4]. Two clear CEF modes are observed at
29.5 and 37 meV (See Figure S1). No dispersion of the
crystal field excitations were visible within the resolutions
of the inelastic neutron scattering experiments.

The CEF Hamiltonian for f electrons in the D3d(3̄m)
point group symmetry of the 16d Wyckoff site occupied
by the Dy3+ ions in the Dy2Ir2O7 crystal writes:

HCEF =B0
2C

0
2+

B0
4C

0
4 +B3

4(C3
4 −C−3

4 )+

B0
6C

0
6 +B3

6(C3
6 −C−3

6 ) +B6
6(C6

6 −C−6
6 )

(S1)

when the quantization axis is chosen along the local 3-
fold axis. The Cq

k stand for Wybourne operators that, in
a spatial rotation, transform like the spherical harmonics
Y qk . The Bqk are the (real) CEF parameters.
HCEF lifts the degeneracy of the ground state multi-

plet 6H15/2 (S = 5/2, L = 5, J = 15/2) of the ion Dy3+

into three doublets (Γ4,Γ5) and five doublets Γ6. Γ4 and
Γ5 are the even-parity one-dimensional irreducible rep-
resentations of the double point group generated from
D3d(3̄m) joined together by time inversion to form a
corepresentation (Γ4,Γ5) and Γ6 is the even-parity two-
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FIG. S2. Integrated inelastic neutron scattering intensity
∫
S(Q,ω)dQ measured on IN4 at T = 1.6 K (red points) with

incoming wavelengths λi = 1.3 Å (left) and 0.9 Å (right). The data were integrated in the Q = 2− 4 Å−1 range. The dashed
lines stand for the integrated neutron scattering function associated with the CEF transitions using the CEF parameters given
in the text. The symbols Γi (i = 4, 5, 6) stand for the irreducible representations discussed in the text.

dimensional irreducible representation of the same double
group forming a corepresentation by its own.

The Bqk CEF parameters were numerically estimated
by restricting to the 6H15/2 through reverse Monte Carlo
from the energy and intensity of the excitations detected
by neutron. The best fits are obtained for:
B0

2 = 64.1±0.4 meV, B0
4 = 307.0±1.5 meV, B3

4 = 90.3±
3.0 meV, B0

6 = 129.4± 0.6 meV, B3
6 = −90.7± 3.0 meV,

B6
6 = 69.5± 1.5 meV (See Figure S2).
This leads to the ground state (Γ4,Γ5) doublet :

|±〉 ≈ ± 0.98| ± 15/2〉 ∓ 0.18| ± 9/2〉 ∓ 0.02| ± 3/2〉
± 0.03| ∓ 3/2〉

to which a pseudo-Ising magnetic moment of magnitude
9.85 µB is associated, aligned along the local 3 fold axes.
The parallel and perpendicular Landé factors are calcu-
lated to g‖ = 19.71 and g⊥ ≈ 0.

SINGLE CRYSTAL LOW TEMPERATURE
MAGNETIZATION AND SUSCEPTIBILITY

The ZFC-FC magnetization for the single crystal was
measured with the field applied along the [111] and [110]
directions (see Figure S3). In both directions, the ZFC-
FC separation is observed at the same temperature as
the powder sample.

The M/H values obtained in the single crystal are nev-
ertheless far above the powder sample value, as was al-
ready seen in the low temperature part of the curves mea-
sured in the Quantum Design magnetometer (see Figure
1 of the main text). We do not have a clear explanation
for these differences. It should be pointed out that in
the whole series of pyrochlore iridates, a strong sample
dependence of the magnetization vs temperature curves
has been observed. It has been ascribed to non magnetic
defects, such as Ir5+ ions, which alter the molecular field
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FIG. S3. ZFC-FC magnetization vs temperature for the single
crystals measured with Hdc = 100 Oe applied along the [110]
(green) and [111] (blue) directions, together with the ac sus-
ceptibility (red) at f = 2.11 Hz with Hac = 1.82 Oe along the
[111] direction. (The starting ZFC magnetization measured
along the [110] direction is larger because the measurement
only started at 225 mK).

applied on the rare-earth (if it is magnetic) and create
pinning centers [S5, S6]. Even in our samples where the
ZFC-FC hysteresis at the metal insulator transition is
weak, supporting a weak density of defects, this differ-
ence between the susceptibility values suggests that some
disorder must be present. This is further supported by
the magnetization increase observed in the FC curves of
the single crystal at about 600 mK, which is not present
in the powder samples where the magnetization is almost
flat at these temperatures.

Nevertheless, the single crystal ac susceptibility curve
- up to a factor - is similar to the powder sample’s one.
Especially, the frequency dependence of the peak is the
same in both samples (see Figure S4), which shows that
the magnetic charge excitations’ dynamics is not affected
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FIG. S5. χ′ (top) and χ′′ (bottom) vs f at fixed temperatures
between 125 and 850 mK measured on the powder sample.

by the differences reported above, and are thus intrinsic
to the fragmented phase.

COLE-COLE ANALYSIS

Measurements of the ac susceptibility as a function of
frequency f at fixed temperatures give insight into the
dynamics of the system. In the presence of a single re-
laxation time τ , the susceptibility is expected to obey a

Debye law

χ(ω) = χS +
χ0 − χS

1 + iωτ
(S2)

where ω = 2πf , χ0 and χS are the isothermal and adia-
batic susceptibilities, respectively.

It results in a lorentzian shape in the dissipative part
χ′′(f) of the susceptibility, centered on a frequency f0

equal to 1/2πτ , and thus provides a direct determination
of the relaxation times of the system. In the Cole-Cole
representation, i.e. χ” vs χ′ plots at a given frequency,
the curve is a semi-circle if the Debye law is obeyed,
whose radius and center are defined by χ0 and χS.

In the presence of a distribution of relaxation times
centered on a characteristic time, these Cole-Cole plots
change into flattened semi-circles. It was shown that the
susceptibility can then be described by [S7]:

χ(ω) = χS +
χ0 − χS

1 + (iωτ)1−α (S3)

where α defines the distribution width.
In Dy2Ir2O7, the susceptibility χ(f) curves are much

broader than expected from a Debye behavior (see Figure
S5). This can be clearly seen in Cole-Cole plots (see inset
of Figure S6), where the curves are strongly flattened
semi-circles. At very low temperature, typically below
250 mK, features are so broad that no characteristic time
can be defined.

We have analyzed the susceptibility curves by fitting
the frequency dependence of the real part, χ′, and imag-
inary part, χ′′, of the susceptibility, as well as χ′′ vs χ′,
using the expressions deduced from Equation S3 (See Fig-
ure S6 for the result at 400 mK) [S8]. We then obtain
the temperature dependence of the relaxation time shown
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FIG. S6. χ′ (blue) and χ′′ (red) vs f at T = 400 mK. Inset: χ′′

vs χ′. The lines are fits using Equation S3 with χ0 = 0.00751
emu/g, χS = 0.00191 emu/g, τ = 0.0865 s and α = 0.627.
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in the inset of Figure 4 of the main text. In addition,
these fits provide an estimation of the distribution width
through the α parameter. As expected, it strongly in-
creases when the temperature decreases (see Figure S7).
α seems to follow roughly a 1/T 1/2 dependence whose
origin is unknown at the moment.

CALCULATIONS IN THE DUMBBELL MODEL

Data for the dumbbell model were obtained by Monte
Carlo simulations with the Metropolis algorithm. Long-
range interactions were considered by means of Ewald
summations [S9]. The internal magnetic fields were mod-
elled by introducing a staggered chemical potential dif-
ferent on A and B sites.

We simulated cubic systems of L3 conventional unit
cells of the pyrochlore lattice, consisting of 16 spins and
8 charge sites each, with periodic boundary conditions.
We used up to L = 8, and no significant finite-size effects
were found. Equilibration took 5×105 Monte Carlo steps,
and 5 × 105 steps were used to calculate the averaged
quantities of interest at each temperature. The results
were also averaged over 5 independent runs.

EXCITATIONS IN THE DUMBBELL MODEL

In the monopole picture of spin ice, the relevant free
energy is the grand potential Ω = UC−µ1N1−µ2N2−ST
[S10] where UC is the Coulomb energy, N1 and N2 the
number of single and double monopoles, µ1(2) the rele-
vant chemical potentials and S the entropy. To calcu-
late the energy cost of an excitation one must consider
changes to the “number enthalpy”, or Landau energy
[S11] δU = δUC − µ1δN1 − µ2δN2. The sign convention

of thermodynamics is such that µ < 0 corresponds to an
energy cost for adding a particle. In the present prob-
lem the notation is further complicated by the staggered
chemical potential which favours monopoles of different
charge on different sublattices so that north and south
monopoles and double monopoles have different chemi-
cal potentials for creation on each of them [S12].

The lowest energy defect to the monopole crystal turns
out to be a double monopole on a site favoured by
the staggered term ∆. Introducing this defect goes in
two steps: firstly a single monopole is removed from a
favoured site. The relevant chemical potential is µ1 =
µ+∆ and the change in Landau energy δU = uα+µ+∆.
Secondly one adds a double monopole on a favoured site
for which the chemical potential is µ2 = 4µ + 2∆ with
δU = −2uα − 4µ − 2∆. The total energy cost is the
sum of these two terms, Edb = −(3µ+ ∆)− uα, which is
the expression given in the main text. Putting in the
parameters u = 2.82 K, µ = −4.40 K, ∆ = 4.95 K
and α = 1.638 gives Edb = 3.63 K. The energy cost
of a monopole hole is the first step of this procedure,
E

′

db = uα+ µ+ ∆ = 5.17 K.
Which of these two energy scales is largest depends

crucially on the relative values of µ and ∆. This suggests
that a set of µ and ∆ values exist for which Edb = E

′

db.
The existence of this set of points could have conse-
quences for the stochastic dynamics of the dumbbell
model but this point has not been investigated in the
present study.

RESPONSE OF THE DUMBBELL MODEL TO A
[111] MAGNETIC FIELD

Taking the magnetic moments as elements of the emer-
gent lattice field, the generation of magnetic monopole
quasi-particles leads to the effective fragmentation of the
moments into two parts via a Helmholtz decomposition.
The first, the “longitudinal” part gives the magnetic
monopoles and is divergence full. The second, the left
over, is divergence free and “transverse”. The Fourier
transforms of the two components are orthogonal to each
other. In the monopole crystal phase, the longitudi-
nal part has long range, antiferromagnetic, AIAO order,
while the transverse part forms the Coulomb phase clas-
sical spin liquid.

The applied field acts on both the longitudinal and
transverse parts. The field provides a potential energy
gradient for the monopoles so that the north and south
poles reduce their energy by moving in opposite direc-
tions with respect to it. However, the constraints of mag-
netism exclude the possibility of a dc monopole current
[S13, S14]. With the field placed along the [111] direc-
tion the combination of energy gradient and constraints
produces an effective staggered chemical potential for the
monopoles [S12]. However, in this supplementary infor-
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mation we simply treat the Zeeman energy of the spins in
addition to the Coulomb energy of the monopoles, leav-
ing a complete discussion of the effect of the field on the
two components for future work.

The four spins of a unit cell, taken here to consist of
an “up” tetrahedron, lie parallel or anti-parallel to the
four body centred cubic axes

d1 =
1√
3

[1, 1, 1], d2 =
1√
3

[1,−1,−1],

d3 =
1√
3

[−1, 1,−1], d4 =
1√
3

[−1,−1, 1].

The ice rules with, for each tetrahedron two spins in
and two out, correspond to two spins aligned and two
anti-aligned. A monopole with charge Q (−Q) sits on
a tetrahedron with “three-in/one-out” (“three-out/one-
in”) and corresponds to three spins aligned (anti-aligned)
and one anti-aligned (aligned). Taking the convention
that the staggered internal field of the iridium ions
favours a positively charged monopole on an up tetra-
hedron, the forward (reverse) magnetic field is H =
+(−) H√

3
[1, 1, 1].
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FIG. S8. Calculated M vs H with the field in the forward
direction, H ‖ [111], for T = 0.7 K and two system sizes
(L = 3 and 6).

With the field in the forward direction, there is no
change in the monopole ordering on increasing the field.
Above the saturation field the apical spin on the up tetra-
hedron points out along the field direction with the three
spins of the base pointing in, each with projection of
m/3 along the field direction giving a total projection
per spin along the field direction of m/2. Ferromagnetic
order comes from extending the loops of zero energy spins
flips (the loops of hard core dimers) into system spanning
topological sectors [S15]. Starting from the saturated or-
dered state, excluding any defects in the ionic crystal
the system can only disorder via a Kasteleyn transition
[S16, S17]. To see this one must consider the construc-
tion of a loop of reversed spins passing through a unit
cell of the pyrochlore lattice.

The flipped loop enters the tetrahedron by flipping the
spin at its apex and leaves by flipping one of the three
spins on the base. The total change in Zeeman energy for

these combined flips is δε =
8µ0mH

3
while the generated

entropy is δs = kB ln (3) giving a contribution to the
free energy, δΩ = δε − Tδs. Placing the loop therefore

reduces the free energy for T > TK =
8µ0mH

3kB ln (3)
where

TK is the Kasteleyn transition temperature. Putting our
numerical value of m = 9.85 µB we find a universal ratio
at the Kasteleyn transition:

µ0H

T
= 0.062 T.K−1 (S4)

In Figure S8 we show preliminary simulation data for
magnetisation as a function field for the dumbbell model
applied in the forward direction, at T = 0.7 K for L = 3
and L = 6. Our predicted critical field at this temper-
ature is µ0H = 0.0435 T. The data show a sharpening
with system size towards a singularity in the saturated
magnetisation at a field close to the predicted value and
the data is consistent with a Kasteleyn transition [S16].
We anticipate that more sophisticated simulations us-
ing a non-local loop algorithm [S18] would confirm this
prediction with precision. At the temperature used in
the experiment, T = 0.1 K, the critical field would be
µ0H = 6.2 mT.

For the field in the reverse direction, the magnetisation
saturates at a first plateau value for small field, with the
apical spin pointing in, along the field direction. Two of
the base spins point in, with projection against the field
with one pointing out, projecting with the field (forward
crystal). The projected moment per spin is thus m/6.
Increasing the field further reduces the effective value of
∆ until a threshold field passes the system back into the
spin ice state with two spins in and two out. That is,
one of the basal spins flips giving a second plateau with
projection of m/3 per spin. Increasing the field further,
the final basal spin flips above a second threshold giving
a three-out/one-in tetrahedron, that is a south pole on
a site where the internal field on its own would favour a
north pole (reversed crystal).

The field thresholds can be estimated at zero temper-
ature by calculating the minimum Landau energy for the
three phases. From equation (2) - main text:

U1 = N0

[
−uα

2
− µ−∆− µ0mH

3

]
,

U2 = N0

[
−2µ0mH

3

]
,

U3 = N0

[
−uα

2
− µ+ ∆− µ0mH

3

]
,

(S5)

where U1 corresponds to the forward monopole crys-
tal phase, U2 the spin ice phase and U3 the reversed
monopole crystal phase.
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The field thresholds correspond to U1 = U2 and U2 =
U3, coexistence between phases 1 and 3 being thermody-
namically unstable. It follows that

µ0H1 =

(
3kB
m

)[uα
2

+ µ+ ∆
]
,

µ0H2 =

(
3kB
m

)[
−uα

2
− µ+ ∆

]
.

(S6)

Using parameters from the main text, u = 2.82 K, µ =
−4.4 K, ∆ = 4.95 K and α = 1.638 we find µ0H1 = 1.3 T
and µ0H2 = 3.2 T respectively.
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FIG. S9. Calculated M vs H with the field in the reverse
direction, H ‖ [-1-1-1], for T = 0.3 and 0.7 K for L = 3.

In Figure S9 we show magnetisation against field sim-
ulated from the dumbbell model for L = 3 for T = 0.3 K
and 0.7 K. The data are seen to follow our predictions
accurately and after a rapid rise, magnetisation plateaus
are observed at the predicted values for the predicted
fields. Note that, while at T = 0.3 K the evolution be-
tween the plateaus is discontinuous, at T = 0.7 K the
jumps become rounded. This strongly suggests the ex-
istence of phase transitions in the family of transitions
outlined in Ref. S12, in which case one would expect
the transitions to end at a critical end point somewhere
above T = 0.35 K but this point was not pursued in the

present study.
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