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Abstract—Traditional layout analysis methods cannot be easily
adapted to born-digital images which carry properties from both
regular document images and natural scene images. One layout
approach for analyzing born-digital images is to separate the
text layer from the graphics layer before further analyzing any
of them. In this paper, we propose a method for detecting text
regions in such images by casting the detection problem as a
semantic object segmentation problem. The text classification is
done in a holistic approach using fully convolutional networks
where the full image is fed as input to the network and the
output is a pixel heat map of the same input image size. This
solves the problem of low resolution images, and the variability
of text scale within one image. It also eliminates the need for
finding interest points, candidate text locations or low level
components. The experimental evaluation of our method on the
ICDAR 2013 dataset shows that our method outperforms state-
of-the-art methods. The detected text regions also allow flexibility
to later apply methods for finding text components at character,
word or textline levels in different orientations.

I. INTRODUCTION

There is a huge growth in the amount of multimedia
data on social network media such as advertisements, holiday
pictures, business cards, magazines. This has led to large data
collections of heterogeneous and weakly structured content.
Two popular types of images in network media are scene
images with embedded text and born-digital images. Analyzing
the latter class of images has not received as much attention as
scene text images despite its importance. Analyzing the con-
tents of such images is very challenging because of cluttered
background, complex layout with mixed graphics and text, low
resolution, variations of font type, size and color and oriented
and multi-lingual text.

The textual information present in the text layer of born-
digital images carries rich and precise high level semantics
that would improve mining and retrieval of the web content,
and would be useful in a variety of social and commercial
applications. Most of prior methods for detecting or seg-
menting the text layer in scene or born-digital images have
followed a bottom-up approach, by trying to find low level
text components using local interest points (MSER), connected
components or sliding windows [1], [2]. The complex back-
ground, low resolution and the variability in text scale that
characterize born-digital images, make such methods not very
effective in localizing all the text. Additionally, after finding
initial text interest candidates, some of them may be lost in
the subsequent steps of classification and grouping.

Another technical challenge that faces text detection meth-
ods is: designing text features that would achieve high accuracy

in text component classification. Many methods have fol-
lowed the traditional approach of using hand-crafted features
for training text classifiers [3], [4]. However, such features
are usually database-dependent and their computation can be
highly time-consuming. Hence, the more recent approaches
in text detection (mostly in scene images) have turned to the
approach of automatic learning of features via deep learning
techniques. However, the problem of finding initial relevant
and meaningful low- or high-level text components remains
challenging, specially with multi-oriented and multi-scale text
which appears in advertisements and other digitally-born im-
ages in the web.

In order to overcome all of the above mentioned challenges,
researchers have – very recently – turned to holistic deep
learning approaches, i.e. proposal-free text detection [5], [6],
[7]. The “proposals” refer to the initial text candidates or
regions of interest before the learning and classification steps.
In a proposal-free approach, the whole image as a pixel map is
fed to a deep network, then after training, the network is able
to output a corresponding heat map with classification labels
of image pixels. This approach has been applied to scene text
images and yielded superior performance compared to state-
of-the-art methods.

In this work we have opted to follow the holistic
(candidate- / proposal-free) approach for detecting text regions
in born-digital images. In particular, we use Fully Convo-
lutional Networks (FCN) [8] as a main component in our
method. FCN have been developed and used very recently in
computer vision for semantic segmentation, edge detection and
a variety of problems, due to their holistic feature of taking
full images as input.

Our method is composed of two modules: (1) The FCN-
based module is trained in a holistic manner, and it generates
semi-final candidate text regions through labeling text pixels,
(2) The text layer formation module involves projection-based
segmentation that splits the falsely connected text regions. The
method is simple and generic, where the FCN module directly
outputs highly accurate text regions at pixel level. Hence, our
method works directly at pixel level of colored images, and
gives each pixel a semantic label as text or non-text. This
method has proven to be very effective for detecting text in
both low- and high-resolution born-digital images.

The rest of this paper is structured as follows. Prior related
work is reviewed in the next section, the description of the
proposed method is detailed in Section III, and the experi-
mental evaluation is presented in Section IV. The conclusions
are discussed in the last section.
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II. RELATED WORK

Text detection and segmentation in scene images and born-
digital image have been hot research topics in the recent years,
with the deep learning-based approaches becoming prominent
in the last two years. An excellent comprehensive survey for
this topic along with its scientific issues and challenges can be
found in [3]. This survey focuses on the classical approaches
which are not based on deep learning. We note that much fewer
works have focused on born-digital images [4], [9], [10], [11].
Those works – for born-digital images – all follow a traditional
non deep learning-based approaches, and they rely on finding
candidate (initial) components or interest regions as a first step.

The typical approach in deep learning-based methods is
to find candidate (initial) components or interest regions, then
classifying those candidates using convolutional neural net-
works (CNN) -based classifiers. Finding the initial candidates
is done using MSER [1], CE-MSER [12], Sliding windows
[2] or Edge-boxes [13]. This step can also be based on
deep learning such as in the Region Proposal Network (RPN)
[14]. Then, the CNN-based classifiers assign the candidates
text or non-text labels, character labels etc. After this stage,
a refinement step takes place where words / text-lines are
formed using one of various methods: grouping by visual and
geometry features, context features, graph-based and also deep
learning-based [15].

In contrast to the typical approach, very few and very
recent methods have followed a holistic approach so that to
eliminate the need for finding initial text proposals. We review
here those few methods as our method falls in this category.
Zhang et al. [6] have proposed a method for multi-oriented
scene text detection using two FCN networks. The first FCN
takes full input images and outputs pixel heat map with text
classification probabilities. They train another FCN network to
predict character centroids as a refinement step of the output
of the first FCN. After that, they form text-lines using many
steps which also handle finding text orientation.

He et al. [5] have presented Cascaded Convolutional Text
Network (CCTN) for localizing text accurately in natural scene
images. Their method is composed of two cascaded steps:
(1): Coarse text region detection with a VGG-based network
modified to handle multi-oriented and multi-scale text with
parallel convolutional layers that have different kernels. This
step is also holistic, it takes a full input image and outputs a
pixel-level heat map. (2): Fine text-line detection with another
VGG-based network: it takes as input the cropped rough
regions which resulted from step (1), and outputs pixel maps.
In the ground truth images, the central textline area of text
bounding boxes is labeled as positive.

Yao et al. [7] have designed an interesting method called
holistic, multi-channel prediction for scene text detection.
Their work is based on a variant of FCN called the HED
framework, where the input is a full image with a 3-side
output layer: two pixel-wise prediction maps for text regions
and individual characters regions, and a map of orientation
values for linking between characters. The sub-networks are
trained independently, then the outputs are fused together.

These FCN-based methods have achieved the best of state-
of-the-art results, specially regarding detecting oriented scene
text. However, they all have a complex structure of more

Fig. 1. Block diagram of the proposed method. The FCN module outputs
a heat map in which the red pixels correspond to the positive text class. The
text layer formation module splits the falsely connected detected text regions.
The “text layer” output shows its comprising text regions in white color. The
bottom part shows the detected text layer on top of the input test image.

than one FCN network, and still face difficulties with the
huge variability of text scale. The recent results show that the
holistic approach is the most promising to follow and adapt
for analyzing born-digital images.

III. THE HOLISTIC TEXT LAYER SEPARATION APPROACH

In this section, we present details of the proposed approach.
In the training phase, colored images in their full size are fed
as input to the main FCN module with their corresponding
ground truth represented as binary label maps. We deal with
detecting text regions as pixel-wise classification, and cast
this classification as a binary semantic segmentation problem,
where we have two classes with the labels: text or non-text at
pixel-level.

The FCN-based network is built and trained to output the
so called heat map (see Subsection III-A). This is a label image
with confidence scores for each pixel being a text or non-text
pixel. In the test phase, an image is fed to the trained FCN-
based network, and we a get an output heat map. The second
module performs connected component analysis on the output
label map and uses projection profiles to split some of the
resulting text regions into words and text-lines if needed. The
final regions comprise the text layer of a particular test image.

Figure 1 shows a block diagram of the composing parts of
our approach. The FCN-based module is trained in a holistic
manner, and it generates semi-final candidate text regions
through labeling text pixels. The text layer formation module
involves projection-based segmentation that splits the falsely
connected text regions. The method is simple and generic,
where the FCN module directly outputs highly accurate text
regions at pixel level. We will show how the FCN-based
network is successfully trained and tested on multi-scale text.
Additionally, this module could be trained on multi-oriented
and multi-lingual text, because we pose no assumptions or
preprocessing steps that are script dependent or orientation
dependent.

This holistic FCN-based training overcomes the limita-
tions of the approaches which rely on character or other
text component detection. Such approaches cannot robustly
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Fig. 2. The detailed architecture of the FCN-based network used in the
first module of our proposed method. The architecture shows how to recover
a pixel-wise prediction map that corresponds to the size of the input image
through deconvolution layers. The parameters of CONV and DeCONV layers
are shown as (kernel size, kernel size, num. outputs)[stride, padding]. The
parameters of the POOL layers are shown as (kernel size, stride).

discriminate the large variety of text components from the
complex background. Our FCN-based module learns both local
and global text related features around a text pixel. Moreover,
our approach does not require complicated preprocessing steps
for preparing input images, but at the same time, it allows for
any post-processing to be applied on the resulting generic text
regions within the text layer. Any subsequent layout analysis
steps could be performed on the detected text layer.

A. The FCN-based Text Region Detection

Our FCN-based module is built by modifying and adapting
the architecture of the fully convolutional models for semantic

segmentation of natural objects proposed recently by Shel-
hamer et al. [8]. The latter network was also built from the
famous 16-layer VGGnet where the fully connected layers
are converted to 1x1 convolutional layers to preserve spatial
information.

The network design in our work is customized for text
detection as shown in Figure 2 and as follows. The base net
is similar to the FCN described in [8] and is composed of 13
convolutional (CONV) layers, and each of them is followed
by a RELU layer. The CONV layers are separated by 5 max-
pooling (POOL) layers arranged as seen in Figure 2: 1 POOL
layer after the first 2 CONV-RELU layers, 1 POOL layer after
the second CONV-RELU layers, and then 1 POOL after each 3
consecutive CONV-RELU layers. The first CONV layer takes
image data as input.

As seen in the design in Figure 2, the network can handle
any input image size of [widthxheightx3]. This input holds
the raw pixel values of the image, in this case an image of
width, height and three color channels R,G,B. The 3D mean
is computed across the training images. The mean is subtracted
from each image (training or test image) before it is fed to the
network.

After the base net comes the fully convolutional part of
the network where 2 fully connected layers are converted
to (replaced by) equivalent 2 fully convolutional layers. As
known, the fully connected layers produce non-spatial outputs,
but in FCN networks, the fully connected layers are handled as
convolutions with kernels that cover their entire input regions.
Hence, they become capable of taking an input image of any
size and output per-pixel classification maps. Each of the two
fully convolutional layers is followed by a RELU layer and a
dropout layer for better learning generalization.

Another CONV layer takes its input from the last dropout
layer and has 2 outputs that correspond to the number of
classes (text versus non-text). The first output map is produced
by a deconvolution layer (DeCONV) that follows the previous
layer with a kernel size of 4 and a stride of 2. This produces
an output of the size of the input image. The deconvolution
here is in effect an upsampling process to get back the spatial
pixel locations of the image. With the proper kernel and stride
sizes, the CONV output is converted to a spatial map.

In this DeCONV layer, if we used the parameters
(64, 64, 2)[32, 1], we could stop here and get the desired
output. However, due to the large stride size of 32, we get
a coarse output (the resulting text region or text pixel classi-
fication output is not accurate enough). Hence, as designed in
Shelhamer et al. [8], we also use the outputs from previous
layers to get a finer output as follows.

The output of the last POOL layer, is fed to a CONV
layer, and then via a crop layer and a fusion function, the
output of the CONV layer is fused with output of the DeCONV
layer. The output map is obtained by a second DeCONV layer
of a kernel size 32 and a stride 16 to recover the spatial
predicted image. A crop layer is used to map the output of
the convolutional layer to the input image data layer. Then
the loss is computed by a Softmax layer which compares the
ground truth label image to the segmentation output of the
crop layer.
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Overall, this design allows the network to handle variations
in text scale, and in general the low resolution born-digital
images. The final result of this part of our approach is a
per-pixel heat-map that indicates the probability of each pixel
being a text or non-text.

B. FCN-based Model Training

In the training phase, the FCN network described above is
initialized as follows. The weights till the last Dropout layer are
initially copied from the pre-trained model of VGG16 network
as done in fine tuning training. The layers after that are all
related to our text/non-text classification problem, so they are
initialized with new weights by Xavier weights initialization.

Fig. 3. Ground truth preparation. The first row shows the original images. The
second row shows the pixel-level segmentation ground truth provided in the
dataset. The third row shows the first variant of the ground truth preparation
used in our method, where the pixels inside the green bounding boxes except
text pixels are labeled as ignored. The fourth row shows the second variant
where all the pixels inside the text bounding box is labeled as text.

The training process is a supervised learning one, the loss
layer takes the ground truth label images to compute the loss.
The ground truth is prepared in two variants as follows. In the
first variant: text pixels are labeled as positive (text class), the
pixels inside the bounding box of text words are labeled as
”ignored” and background pixels are labeled as negative (non-
text class). In the second variant, both the text pixels and the
pixels inside the bounding box of text words are labeled as
positive (text class), and the rest is labeled as negative. Figure
3 shows example ground truth images of the two variants
with their corresponding input images. In the second variant,
a text region is considered as an object, which provides strong
semantic information from the local context around the actual
text pixels.

The solver parameters for carrying out the training and
testing processes are detailed in Subsection IV-B. Additionally,
we augmented the dataset to achieve a more robust training and
prediction results. The network gives dense prediction based
on the deconvolution (upsampling) and the pixel-wise loss.

In this way, our FCN-based network transforms the original
image layer by layer from the original pixel values to the final
class scores. The deep layers containing the learned feature
maps carry knowledge about the text including low level

Fig. 4. The text layer formation module of the proposed method. At the top
left: the original input image. The heat map resulted from the FCN module is
shown second. The connected components of the heat map are analyzed via the
projection profiles shown in the right column. After splitting the components
at split points, we get the final output of text regions in the left bottom image.

properties and also about the local context of text components.
The trained FCN is a strong text labeling model that does not
make any assumptions about the orientation of the text or its
script. This makes such a model applicable for analyzing any
content of born-digital images.

C. Text Layer Formation

The output from the previous module of our method is a
heat map that contains predicted pixel-wise text labels. The
union of all those pixels comprises the text layer. The FCN
network yields roughly accurate text regions that correspond
to words or text lines of the input image. Even in the ground
truth, the words may appear very close to each other within a
textline due to the low resolution of a born-digital image.

Our goal is to separate and extract all the text in a text
layer without necessarily segmenting the content into words.
The complex layout of born-digital images does not allow for
traditional layout analysis methods to find textlines. Once the
text layer is segmented out, a post-processing method can be
applied to achieve any desired level of text granularity.

In order to further enhance the text regions, we convert the
heat map to a binary label image, and perform connected com-
ponent analysis on it. The obtained components correspond
to text regions at different granularity. For each component,
we get the corresponding heat map region, and analyze its
projection profile parallel to the largest principal axis. We
split the region into two or more sub-regions at the low points
(minima) of the projection profile. Figure 4 shows this steps
of this process and the final text regions. The effect of this is
getting more accurate text regions, for example splitting two
attached lines or words into two separate lines or two words
respectively. The union of those final regions forms the text
layer of an image.

IV. EXPERIMENTAL EVALUATION

We have implemented our method in a text classifica-
tion system, and evaluated this system on a standard public
database for born-digital images. In the following subsections
we detail the settings of our experiments and analyze the
results.

4



A. Database and Evaluation Metrics

We evaluated the performance of our method on the IC-
DAR 2013 Robust Reading Competition Challenge 1 on born-
digital images [16]. Images that were originally synthesized
on computers such as advertisements and web images with
embedded text are called born-digital images. Many content
authors choose to embed text in images, rather than encoding it
explicitly in the electronic document. This hinders the process
of web information retrieval [16].

The database contains 551 in total, and according to the
competition settings, 410 images are assigned for training
and 141 images for testing. The minimum resolution in this
database is 100x100 pixels. Born-digital images are generally
characterized by their low resolution such as the images
embedded in webpages and email messages. However, some
of them have high resolution such as advertisement images.

As for evaluation metrics, we use the standard recall, preci-
sion and f-measure metrics as done in most scene text detection
works, and also in RRC competitions [16]. In such evaluation,
a text word (or bounding box) detection is considered as a
correct detection if the overlap ratio between the detected box
and the ground truth bounding box is ≥ 0.5.

B. Experimental Setup

The train/test split of the used database is as explained
above (410/141 images). The FCN-based network solving
parameters are as follows. The loss is averaged each 20
iterations, and learning rate is fixed during training where
are base learning rate is 1e−10. The FCN networks use a
high momentum of 0.99. The iteration size is set to 1 so
that to prevent gradient accumulation. The weight decay is
set to 0.0005. Finally, the maximum training iterations is set
to 100000.

For both the training and testing phases, the input images
are fed to the network in their original variable resolutions.
Interpolation surgery is applied on the upsampling (DeCONV)
layers to yield heat maps that correspond to the image size.
This is applied as explained in [8].

C. Results and Analysis

Two experiments are carried out while varying how the area
around text pixels is labeled. As we mentioned in Subsection
III-B, two variants of the ground truth are prepared. The second
labeling variant – where all pixels within the text bounding box
are labeled as positive – gives better results because (1) the text
and non-text classes will be more balanced due to the increase
in positive samples, and (2) the pixels around the actual text
pixels carry local contextual cues about the text, and it is hard
to distinguish them from the actual text pixels.

The resulting text label map which contains semi-final text
regions is fed to the post-processing module to output the final
text regions which comprise the text layer. Example results
are shown in Figure 5. The figure shows that the detected
text regions are mostly accurate and correspond to words or
textlines in the test images. The text varies in scale in the
images, but our method is capable of detecting almost all the
text pixels.

Fig. 5. Example text detection results of the proposed method. The images
are 5 test images of different resolutions from the born-digital images dataset
in [16]. The detection results are shown in green boxes. The green regions
are in most of the cases accurate and cover words or textlines of the text.

Those final text regions are evaluated compared to the
ground truth using the evaluation metrics mentioned in Sub-
section IV-A. Table I shows the results. As can be concluded,
the method achieves high accuracy in text pixel classification
despite the much larger number of pixels that belong to
background. This is proven through the values of both recall
and precision related to the number of correct detections of
text boxes.

TABLE I. TEXT DETECTION ACCURACIES OF THE PROPOSED METHOD

COMPARED TO STATE-OF-THE-ART METHODS ON THE DATASET OF

BORN-DIGITAL IMAGES IN [16].

Method

Metric
Recall Precision F-measure

Proposed 88.38% 91.87% 90.09%

Pal-DAS16 [10] 87.95% 91.14% 89.51%

Pal-ICDAR15 [4] 85.44% 93.91% 89.47%

Sams [11] 89.40% 88.83% 89.11%

USTB-TexStar [17] 82.38% 93.83% 87.74%

The highest achieved results in published state-of-the-art
methods – for the task of text detection in born-digital images
– is 89.51% using the standard f-measure according to Chen
et al. [10]. The latest results for the same task can also be
found in works prior to Chen et al. in 2016 [10], such as the
other work of Chen et al. in 2015 [4] and in the RRC2013
competition report [16].

As can be seen in Table I, our method performs compet-
itively to- or better than the best state-of-the-art methods in
terms of the three evaluation metrics. In our method, we do
not process the detected text lines to get words, whereas the
evaluation is actually done at word level and so are the reported
f-measure results of state-of-the-art methods. Hence, the eval-
uation tool penalizes the text box that contains more than one
word. In some cases (as can be seen in Figure 5), our method
yields such text boxes. This could be improved by applying
a post-processing or grouping methods for splitting/merging
the detected text boxes into words. We argue that this would
achieve even better performance of our method.
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V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has presented a method for separating the text
layer in born-digital images in a simple holistic approach. The
text pixels classification is cast as a semantic segmentation
problem and is carried out using an FCN-based network. The
final text regions are formed by splitting the less dense regions
in the projection profiles of text connected regions.

We have shown that the choice of FCN networks fits very
well the problem of detecting text of variable resolution in
born-digital images. This is due to that they take input images
in their full size and work directly at pixel level of colored
images. As opposed to previous approaches that apply CNN
classifiers on candidate text regions, our method does not
require complicated preprocessing steps, and is able to directly
output accurate enough text regions.

In principle, this method can be generalized to multi-
oriented and multi-lingual text by extending the training data
and improving the training process. As a next step, we will
work on detecting multi-oriented text by both improving the
architectural design on the FCN network and applying post-
processing steps to compute the orientation of text regions. In
another direction, we would like to investigate using bounding
box regression as a post-processing step to output highly accu-
rate text regions that can be directly used for text recognition.
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