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ABSTRACT

Motivation: Complex patterns of protein phosphorylation mediate
many cellular processes. Tandem mass spectrometry (MS/MS) is a
powerful tool for identifying these post-translational modifications. In
high-throughput experiments, mass spectrometry database search
engines, such as MASCOT provide a ranked list of peptide
identifications based on hundreds of thousands of MS/MS spectra
obtained in a mass spectrometry experiment. These search
results are not in themselves sufficient for confident assignment
of phosphorylation sites as identification of characteristic mass
differences requires time-consuming manual assessment of the
spectra by an experienced analyst. The time required for manual
assessment has previously rendered high-throughput confident
assignment of phosphorylation sites challenging.

Results: We have developed a knowledge base of criteria, which
replicate expert assessment, allowing more than half of cases
to be automatically validated and site assignments verified with
a high degree of confidence. This was assessed by comparing
automated spectral interpretation with careful manual examination
of the assignments for 501 peptides above the 1% false discovery
rate (FDR) threshold corresponding to 259 putative phosphorylation
sites in 74 proteins of the Trypanosoma brucei proteome. Despite
this stringent approach, we are able to validate 80 of the
91 phosphorylation sites (88%) positively identified by manual
examination of the spectra used for the MASCOT searches with a
FDR < 15%.

Conclusions: High-throughput computational analysis can provide
a viable second stage validation of primary mass spectrometry
database search results. Such validation gives rapid access to a
systems level overview of protein phosphorylation in the experiment
under investigation.

Availability: A GPL licensed software implementation in Perl for
analysis and spectrum annotation is available in the supplementary
material and a web server can be assessed online at http://www
.compbio.dundee.ac.uk/prophossi
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1 INTRODUCTION

Protein phosphorylation is regarded as a key mechanism for the
regulation of many cellular processes including metabolism, cell
division and apoptosis (Cohen, 2000). It has been estimated that
>50% of expressed proteins are phosphorylated at some point in
their life cycle (Hjerrild and Gammeltoft, 2006) though only a small
fraction of the potential phosphorylation sites have been identified.

In recent years, the examination of complex protein mixtures by
tandem mass spectrometry (MS/MS) has become feasible through
advances in instrumentation and computational methodologies (Cox
and Mann, 2007). Peptide and protein analysis at the cell extract
level has become an almost routine procedure as algorithms such as
MASCOT (Perkins et al., 1999) or SEQUEST (Yates et al., 1995)
among others allow rapid identification of proteins through matching
tandem mass spectra to sequence databases.

Statistical methods have been developed to enable the validity
of peptide observations to be assessed. Search strategies such as
the inclusion of reversed or scrambled sequences in the database
can give an estimate of the likely accuracy, or false discovery
rate (FDR), for peptide identifications with respect to the database
search engine score for a particular experiment (Elias and Gygi,
2007; Kall et al., 2008). This allows a reasonably robust description
of the protein species in a particular sample. Further work has
been performed to match peptide fragmentation patterns to peptide
sequences through machine learning techniques such as hybrid
support vector machines/Bayesian networks (Klammer ez al., 2008)
and decision trees (Elias et al., 2004) but these are not yet readily
applicable to peptides containing post-translational modifications
(PTMs).

Although protein and peptide analysis is now a mainstream high-
throughput technique, reliable identification of PTMs remains a
specialist area. Algorithms designed for peptide database matching
can take PTMs into account but are not designed to provide robust
identifications. PTMs are often present only in low stoichiometry
and ion signals corresponding to phosphopeptides tend to be
suppressed in the presence of non-phosphorylated peptides.
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Fig. 1. An example of misidentification of the correct phosphorylation site.
MASCOT identifies the phosphorylation site as pS16 (peptide score 118),
though the expected y5-98 ion is much weaker than the weak y5 ion (blue).
The second ranked hit (pY17, score 102) is preferred by the experienced
analyst with a strong y5 ion match (red) giving a continuous y-ion ladder.
The spectrum was annotated with Prophossi and modified. The threshold for
ion inclusion is indicated by a blue bar on the y-axis.

The low stoichiometry of PTMs requires the use of peptide
enrichment approaches such as affinity pull down (Gronborg et al.,
2002), immobilized metal affinity chromatography (Andersson and
Porath, 1986; Stensballe et al., 2001) or titanium dioxide columns
(Pinkse et al., 2004) to enrich the phosphopeptide complement of a
complex mixture.

The peptide enrichment strategies required for PTM identification
in complex mixtures compromise the scoring assumptions upon
which generic database search strategies are based, rendering it
unreliable to take the database search scores as a surrogate for
PTM identification accuracy. Consequently, confident identification
of PTMs requires the manual inspection of the raw MS/MS spectra
by a competent mass spectrometrist, a time-consuming step that
acts as a major bottleneck in global PTM analyses where many
thousands of spectra may require analysis. This examination requires
interpretation of the fragmentation pattern in line with the experience
of the scientist, and comparison of multiple interpretations of the
data, each of which could be correct if the sample contains multiple
isobaric isoforms of the phosphopeptide.

An example is shown in Figure 1 where an experienced mass
spectrometrist identifies the phosphoTyrosine (Rank 2 hit) as a
better interpretation than the phosphoSerine (top-ranked hit). Full
Prophossi reports for these two peptide—spectrum matches (PSMs)
are available in the Supplementary Material.

This issue has been approached by two other groups, both
of whom apply a post-processing step to standard peptide
MS/MS search engine results. Beausoleil er al. (2006) report
a probabilistic method that calculates an Ascore based on the
appearance of phosphorylation sites in multiple candidate solutions
to the spectrum-database mapping conundrum. They calculate a
probability score based on the appearance of site-determining ions,
i.e. those fragment ions that would be specific for a particular
phosphopeptide isoform. The method is dependent on the SEQUEST
search engine to identify the two top phospho-isoform hits and it
reports quality data only for the best phospho-isoform hit. It does
not consider the possibility of isobaric phospho-isoform mixtures.
The closed source implementation of the software prevents user
optimization of the search parameters. Smith et al. (2007) have

taken a different approach which is, in some respects, similar
to ours. They examine the daughter ion spectrum and assign
scores based on a limited range of spectral features. Peptide
matches failing to reach a defined score threshold are rejected.
Both of the aforementioned methods have some limitations: The
Beausoleil method ignores spectral features beyond the site-
determining ions and does not consider neutral loss of phosphate
from phosphoSerine and phosphoThreonine, resulting in a smaller
number of phosphopeptide spectrum matches. The Smith method
assigns scores from a limited range of features, which alone may
not be sufficient to specifically locate a phosphorylation site, and
has not been tested empirically.

Our methodology, described in this article, incorporates a broader
range of spectral features and seeks to identify evidence for the
specific localization of the putative phosphorylation sites. Thus,
every PSM, i.e. every hit from a MASCOT or other search engine
search, is assessed on its own merit. The method is, therefore,
able to interpret complex spectra derived from multiple isobaric
phosphopeptide species. Opinions from three experienced mass
spectrometrists were used to derive a set of chemistry-based criteria
that could be applied to tandem mass spectra for selection between,
and validation of, the database PSM search hits. This method
does not perform database searches itself but provides a report on
how well the observed spectrum fits to the predicted matches, and
whether the predicted match passes these analytical criteria. As such,
it can be applied to the results of any such database search.

Typically, relatively few phosphopeptide spectra are observed in
proteomics experiments in the absence of specific phosphopeptide
enrichment protocols and this low coverage can be treated by hand
by an experienced analyst. However, when such enrichment methods
are applied, such as in the experiments described here, the proportion
of spectra arising from phosphopeptides rapidly expands to a level
where automated processing tools are a practical necessity. Our
aim was to develop tools that automate rapid processing of large
numbers of spectra with few falsely identified phosphorylation sites
(high selectivity) and a sufficiently good sensitivity to provide
significant coverage. As we are examining proteomes, where little
is known about the existing phosphorylation state of the organism,
a tool that rapidly and confidently assigns the majority of easy
cases is a considerable boost to productivity. All database hits
can be assessed, and positive results reported. As all the criteria
can be explicitly described in English, marginal hits can be also
examined rapidly by an experienced analyst with an appropriate
visualization tool. Additionally, a full text report that highlights
salient features and annotates the spectrum can be generated. This
approach has been validated through assessment of the automated
annotation of the Trypanosoma brucei phosphoproteome (Nett
et al., 2009b). We manually examined all identified hits for a
specific family of proteins (the protein kinases) and examined
the error rate and bias in our automated processing. Our method
runs rapidly, allows the assessment of more than just the top hit
and gives excellent selectivity with good sensitivity. Output can
be via an annotated spectrum and report, produced in HTML or
PDF, or via a software application programming interface, allowing
integration of the analysis in a high-throughput analysis pipeline.
Several of our predictions of occupied T.brucei phosphoTyrosine
sites have been validated experimentally by both western blot
and immunofluorescence microscopy experiments using two well-
characterized anti-phosphoTyrosine antibodies (Nett et al., 2009a).
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A public web server has been made available at http:/
www.compbio.dundee.ac.uk/prophossi for individual researchers to
examine their peptide spectra online.

2 METHODS
2.1 Phosphopeptide samples and mass spectra

The generation of the T.brucei phosphopeptide mixture and its separation,
and analysis have been described previously (Nett ez al., 2009b). In summary,
the cytosolic fraction of a T.brucei culture was obtained, digested with
trypsin and phosphopeptides enriched though a combination of strong cation
exchange and titanium dioxide chromatography as described by Olsen
et al. (2006). Mass spectrometry was performed using a Q-Star XL mass
spectrometer (Applied Biosystems) and an LTQ-Orbitrap (Thermo Electron)
both equipped with a nanospray ionisation source. The Q-Star XL mass
spectrometer was operated in a data-dependent mode, which consisted of
a MS survey scan for 1s (m/z 400-2000) followed by four 2s MS/MS
scans of the four most intense doubly or triply charged ions (m/z 60—1800)
exceeding 10 counts. In the LTQ-Orbitrap mass spectrometer, a survey scan
was performed over a split mass range (m/z 300-800 and 800-2000) in the
Orbitrap analyser each of them triggering five MS? LTQ acquisitions of
the five most intense ions using multistage activation on the neutral loss of
98, 49 and 32.33 Da. Orbitrap mass spectra were processed with Analyst
1.4 software (Applied Biosystems). Q-star mass spectra were processed
with Analyst QS 1.1 software (Applied Biosystems) and centroided and
deisotoped peak list files of the SCX-TiO, experiments were concatenated
using the MASCOT daemon engine (Matrix Science, London, UK) for
Q-Star XL spectra. Raw files obtained from the LTQ-Orbitrap were converted
to MASCOT generic files using Raw2msm software (gift from Prof. Matthias
Mann, Max Planck Institute for Biochemistry, Munich) before merging into
a single file.

2.2 Database searches

A composite T.brucei database containing all predicted proteins from the
genome sequencing projects for T.brucei strains 427 and 497 (downloaded
from GeneDB) and all T.brucei peptides in UniProt was created and
curated to remove redundant sequences. A decoy dataset containing
the reversed sequence of all remaining sequences was generated and
appended to the forward dataset. MASCOT (version 2.1, Matrix Science,
London, UK) searches were performed on a 4-node cluster using a
parent/daughter ion mass accuracy of 0.1Da (Q-Star) or a parent ion
mass accuracy of 10ppm and daughter ion mass accuracy of 1Da
(Orbitrap). Searches were performed using trypsin as the digestion enzyme,
carboxyamidomethylation of cysteine as a fixed modification and with
the oxidation of methionine and phosphorylation of serine, threonine
or tyrosine classed as variable modifications. The data were searched
against the composite and decoy databases described above. MASCOT
database search results were processed with custom Perl scripts using
the MASCOT developer’s toolkit (Matrix Science, London, UK). Large
results such as those generated by these kinds of experiments are extremely
resource-demanding to view through the MASCOT web interface, so an
intermediate relational database (MySQL) was created, the MASCOT Large
Results Viewer (MLRV), in which the peptide, protein, modification and
search hit information could be stored in a readily queryable manner.
MGEF files were transformed to DTA files using custom Perl scripts and
SEQUEST searches performed on the same sequence database through the
TransProteomicsPipeline (TPP) software (Pedrioli, 2010). A maximum of
10 top hits were retained for each spectrum and imported into a custom
PostgreSQL database, the SEQUEST Large Results Viewer (SLRV). TPP
was also used to post-process each search with PeptideProphet, which
provides a score for the top hit for each spectrum query. These data were
incorporated into SLRV with custom Perl scripts. Standard SEQUEST
parameters were used with peptide mass tolerance=10 and peptide mass

Table 1. Analysis Criteria for automated validation of PSMs

Prefilter criteria

P1 Forward hit Only hits against forward, non-redundant
sequences are selected

Only hits within 0.1 Da (or 0.1 + 1 Da) of the
parent ion m/z are selected.

Only hits containing a putative Phospho PTM are
selected

Only hits which are within 20 MASCOT score
points of the top ranked hit for that query are
selected.

Only peptides with a MASCOT score over the
calculated FDR 1% threshold are selected.

P2 Mass accuracy
P3  Phospho-PTM

P4 Within 20 points

P5 Over FDR
threshold

Validation Criteria—Phosphopeptide assignment

1  4inarow At least four sequential y- or b-series ions are
present. This indicates good coverage of the
peptide.

5 out of 6 sequential b- or y-series ions are
present. This indicates good coverage of the
peptide.

3 3 desphospho ions At least three y- or b-series ions with a phosphate
loss are present. The phosphate ester bond
tends to be more labile than the peptide bond.

The imino bond to the N-terminal side of a
proline residue is particularly labile. If the
sequence contains a Proline residue then
at least one of the imino bonds should give a
fragment ion with at least 50% maximum
intensity and much stronger than the relatively
weakly cleaved amide bond C-terminal to
Proline.

6 of the 10 most intense ions should be assigned
to y- or b-series ions.

2 5of6

4 Proline-directed
fragmentation

5 6 oftop 10 ions

Validation criteria—phosphosite assignment

6 Phosphate
transitions

To assign the site specifically, at least one ion
unique to that peptide species must be
observed. This is aided by the high rate of
phosphate loss from pSer and pThr residues.

Mass differences corresponding to pTyr should
be observed between identified peaks.

7  PhosphoTyrosine

units=2. PSMs were correlated between SEQUEST/Peptide Prophet and
MASCOT output with custom Perl scripts to enable comparison of search
methods.

2.3 Spectrum analysis criteria definition

Three experienced mass spectrometrists were observed and interviewed as
they manually assessed peptide—spectrum matches. The processes by which
they accumulated evidence were noted and formalized as a set of analytical
criteria, an assessment of whether it was always applicable, whether it was
only applicable to certain peptides or whether it was only applicable to certain
types of spectra. Criteria of the first two types were identified and coded as
Perl modules for inclusion in the data management infrastructure. It was
considered too problematic in this first study to selectively apply criteria of
the third type as this would require identifying which spectra these criteria
would be applied to. These, typically more difficult cases, remain at present
the domain of the mass spectrometry professional. The criteria derived are
listed in Table 1. These include an examination of specific proline-directed
cleavage products (Breci et al., 2003).

2155


http://

D.M.A. Martin et al.

With criteria defined, a system for appropriate Boolean combination of
the criteria was devised such that an unambiguous validation could be
ascertained. The quality assessment criteria listed in Table 1 are combined
as follows. All PSMs are subject to a prefilter (a) where they must meet
all criteria. Following ion series matching the criteria in section (b) are
applied. PSMs must match each of the following set of criteria: either four
sequential ions or five ions out of a series of six must match; At least three
des-phospho ions must be observed for sequences containing phosphoSerine
and phosphoThreonine; if the peptide contains proline, then a strong proline-
directed fragmentation ion must be observed; at least 6 of the most intense
10 ions must be positively assigned. For phosphosite identification in section
(c), specific mass transitions corresponding to phosphoTyrosine must be
observed, and sufficient ions to unambiguously identify the phosphosite.
Typically, this would require an ion derived from cleavage between any
phosphosite candidates, including residues not identified as potentially
phosphorylated by MASCOT.

2.4 Automatic hit validation method

For each database search, a list of all queries, each corresponding to a specific
parent ion and with PSMs meeting the prefilter quality criteria, was obtained
from the MLRV database. For each dataset, the PSMs were prefiltered to
exclude matches with an absolute delta mass >0.1Da (or 1£0.1Da for
Q-Star data), include only PSMs with phospho modifications and only PSMs
that were within 20 MASCOT score points of the highest scoring PSM
for that query spectrum. The proportion of reverse sequences identified
with respect to forward sequences was plotted against the MASCOT
score threshold and the FDR threshold at n% (FDRn) determined as the
lowest MASCOT score where reverse sequences comprise <n% of the
total (filtered) peptide species identified. FDR results for each dataset are
summarized in Supplementary Figure S2. For the purpose of this analysis,
we restricted further investigation to peptides with a MASCOT score greater
than FDR1.

Each query was then processed as follows: the peak list corresponding
to the database search query (parent ion m/z and the related daughter
m/z peaks) was read from the peak list data file. This is referred to as
the observed spectrum. Each PSM for that query that corresponded to
predetermined quality standards was retrieved from the MLRV database. A
synthetic spectrum was generated for the peptide in question (the theoretical
spectrum) by applying simple fragmentation rules and this was compared to
the observed spectrum as a spectrum match. A customizable threshold was
used to exclude peaks that may be due to noise. In this study, we excluded any
peak with an intensity <5% of the most intense peak observed. This could
be examined via a web-based visualization tool with matching ions both
labelled on the observed spectrum and tabulated. This process is described
in Figure 2. Each rule was then applied to the spectrum match. The results
were then combined according to a predetermined Boolean system and the
results (pass/fail) stored in a database. In addition, a second layer of criteria
was used to determine whether the specific phosphorylation site(s) could be
confirmed from the spectral data.

2.5 Verification of the validation method

All 501 PSMs from 74 protein kinase sequences, containing 259 putative
phosphorylation sites, were examined manually by an experienced mass
spectrometrist to provide a ‘gold standard’ reference against which the
automated validation method could be evaluated. Detailed statistics for
this peptide set are shown in Table 2. All spectra were classified as being
either sufficient or insufficient to verify the presence of the phosphopeptide
(i.e. pass/fail, the phosphopeptide validation). In addition, the ability to
unambiguously identify the precise phosphorylation site was recorded
(pass/fail, phosphosite validation), allowing the determination of true
positive and false positive rates for the automated analysis.

13
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Fig. 2. Workflow for automated annotation of phosphosites. Experimental
LC-MS/MS data is gathered (1) and processed using platform specific
software (2) to give a generic peak list file (3). This file, is used as the
input to MASCOT (4), which generates a results file (5) containing all the
PSMs. This file is parsed into the MLRV relational database (6) and the
FDR for the search determined (7). A PSM-quality prefilter is applied (8)
and suitable PSMs are exported to the TryPP-DB (9) where they are linked to
the source peak list file used for the search. The observed MS/MS spectrum
is extracted from the peak list file (10), filtered by an intensity threshold (11)
and compared with a calculated fragmentation spectrum (12) for the peptide
under examination. Observed ions are assigned to series (13) allowing the
curation rules to be applied (14).

Table 2. Kinase dataset statistics

Site Unique Unique Peptides

Observations Sites Proteins Observed
All peptides 643 259 74 501
Rank 1 and 2 449 213 72 355
Rank 1 289 159 72 230

The subset of peptides from both Orbitrap and Q-Star experiments that were annotated
both manually and by the automated system are described. An observed peptide is a
single PSM. A PSM may contain more than one observed site. Each protein may contain
many PSMs. Each site may be observed in many peptide observations.

3 RESULTS

3.1 Comparing search engine hit score, manual and
automated validation

The relationship between search engine score and manual curation
was investigated. All PSMs with a score over 1% FDR to a protein
from the kinase set which had been evaluated manually were ranked
by score. For each search engine score, the false positive rate (PSMs
not confirmed after manual curation) and true positive rate (PSMs
confirmed after manual curation) were determined. Similar rates
were determined for the subset of matches automatically curated
as positive by ProPhosSI. ProPhosSI-curated peptides correlate
significantly better with manual curation than the search engine-
ranked sets (Fig. 3). Performance with the SEQUEST-ranked hits is
not as good as with MASCOT, due in part to the differing responses
of the search engines and ProPhosSI to phosphate neutral loss.
Neutral loss appears to be dependent on local peptide sequence,
though no substantial datasets are yet available to model this
appropriately. SEQUEST matches are, therefore, biased towards
sequences where the phosphate is less labile, and ProPhosSI, in this
current implementation, towards those where sites are labile.
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Fig. 3. All manually curated peptide—spectrum matches containing at least
one phosphorylated residue were ordered according to their MASCOT (red),
SEQUEST (black) or SEQUEST + Peptide Prophet (green) score. Dotted
lines indicate the performance of all matches ordered by search engine score.
Solid lines indicate the performance of the subset of matches positively
curated by ProPhosSI. The increased area under the curve for the solid lines
indicates better performance by ProPhosSI.

Table 3. Automated assignments

Dataset Phosphopeptides Phosphosites
Pass Fail Pass Fail

Orbitrap 1617 1992 557 252

Q-Star 2101 2521 939 456

Automated assignment to the dataset by the methodology described. A single verified
site observation at any peptide rank which met the appropriate quality criteria was
considered sufficient to call as a phosphosite.

As SEQUEST only identifies about a third of the phosphopeptides
found with MASCOT, and the Ascore software only considers the
top SEQUEST hit, it is not possible to rigorously compare Ascore
and ProPhosSI. However, using a set of 20 manually assessed PSMs,
ProPhosSI and Ascore gave similar results, with 10 PSMs having
an Ascore over 16 positively validated by ProPhosSI and 10 PSMs
with an Ascore under 9 not confirmed by ProPhosSI.

When the automated validation rate is extrapolated over the whole
peptide set, there only appears to be a relation between validation
rate and match score at very high scores for MASCOT (ion score
>90) and SEQUEST (Xcorr > 6.5 ), and not at all for Peptide
Prophet (data not shown). Otherwise the validation rate (proportion
curated as positive by ProPhosSI) remains constant at around 60%
for scores >1% FDR.

3.2 Automated validation

Spectra corresponding to 8231 PSMs with MASCOT scores
over 1% FDR were assessed. Of these, 3718 were classified
automatically as a validated phosphopeptide, with 1236 distinct
validated phosphorylation sites. These data are shown broken down
by machine type in Table 3.

3.3 Verification of validation

Of the ‘gold standard’ manually curated peptide hits, 161/230
(70.0%) were identified with the automated system. Further, 16.1%

Table 4. Automated versus manual peptide and phosphosite assignments

Automated Curation with ProPhosSI

Phosphopeptides Phosphosites
Pass Fail Pass Fail
Orbitrap (all PSM)
Manual Curation
Pass 60 17 41 5
Fail 12 79 6 13
Q-Star (all PSM)
Manual Curation
Pass 101 52 69 17
Fail 19 161 17 33
Orbitrap (Rank 1 PSM)
Manual Curation
Pass 32 5 31 3
Fail 6 37 2 2
Q-star (Rank 1 PSM)
Manual curation
Pass 53 30 53 15
Fail 9 58 2 2

The results from independent manual curation were compared with results from the
automated validation. Each individual PSM and site observation is considered for
each experiment and additionally for the subset of data that only includes top ranked
MASCOT PSMs.

of peptide hits automatically annotated as positive were not
identified as such by manual curation of the spectra (a selectivity
of 83.9%). A summary of the validation results broken down by
instrument type is shown in Table 4 (Orbitrap and Q-Star, all PSM).

Overall the criteria employed appear better suited to the data
obtained from the Orbitrap than the Q-Star with a sensitivity of
77.9% versus 66.0% and comparable accuracies with selectivities
of 83.3% and 84.2%, respectively. The overall Matthews correlation
coefficient (MCC; Matthews, 1975), a metric which considers all
elements of the confusion matrix, for the phosphopeptide assignment
is 0.600 (0.652 and 0.576 for the Orbitrap and Q-Star, respectively).

Restricting the analysis to just first rank peptides [Table 4,
Orbitrap and Q-Star (Rank 1 PSM)] gives little overall change with
85/118 peptides (sensitivity 70.8%) correctly validated and 15/100
incorrect validations (selectivity of 85%). The better performance
on Orbitrap data is reflected in the comparison of individual
phosphosite assignments by the manual curator and by the automated
process. Over all ranked peptides meeting the prefilter quality
criteria, the automated process positively validates 47 phosphosite
observations in the Orbitrap data [Table 4, Orbitrap (all PSM)].
Manual assignment identifies a further five sites missed by the
automated process (a sensitivity of 89.1%) and rejects six validated
automatically (selectivity of 87.2%). Both methods reject 13 site
observations for an overall MCC of 0.585. In the validation of
the Q-Star data [Table 4, Q-Star (all PSM)], 86 site observations
are validated automatically of which 17 are rejected by the manual
curator (selectivity of 80.2%). The manual curator validates a further
17 sites (sensitivity of 80.2%) and both methods reject 33 site
observations giving an MCC of 0.462.
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Table 5. Aggregated phosphosite assignments (by site)

Automated assignment

Pass Fail
All sites (total 129)
Manual assignment
Pass 80 11
Fail 14 24

Sites with two or more positive automatic assignments (total 60 sites
versus 129)
Manual assignment
Pass 52 39
Fail 8 30

Sites with Rank 2 peptides or higher (109 sites)
Manual assignment
Pass 72 13
Fail 8 14

Sites with Rank 1 peptides (80 sites)
Manual assignment
Pass 62 14
Fail 3 1

Each unique site is considered, taking all observations of that site. If any observation
of a phosphosite is validated in any experiment then that site is called as validated.

Restricting the analysis to sites observed only in top-ranked
peptides from the MASCOT search improves sensitivity and
selectivity in both Orbitrap and Q-Star datasets (Selectivity:
93.9% and 96.4%, respectively; Sensitivity: 91.2% and 77.9%,
respectively) though the MCC is considerably reduced to 0.374 and
0.151, respectively [Table 4, Orbitrap and Q-Star (Rank 1 PSM)],
primarily due to the small number of true negatives.

Taking both Orbitrap and Q-Star data in aggregate, 94 non-
redundant phosphorylation sites from the 74 protein kinases were
identified automatically. From the 445 peptides examined manually,
a further 11 sites were identified (a sensitivity of 88%) and 14 were
assigned as negative, giving a selectivity of 85.1%. Twenty-four sites
were rejected by both methods giving a MCC of 0.186 (Table 5, all
sites). Confidence in a phosphosite assignment can be improved
by requiring that at least two automated validated observations are
required for verification. Sixty sites were identified with at least
two validated observations, of which 8 had no manually validated
observation, a selectivity of 86.7%, only a small increase over the
single observation level but with a decrease of 35% in sensitivity
(Table 5, Sites with two or more positive automatic assignments).
Restricting analysis to just those PSMs that are in the top 2 ranks
in the MASCOT search results reduces the number of putative
phosphosites to 109 from 129. Of these sites, automated assignment
validates 72 of the 85 manually validated sites (sensitivity 84.7%)
with 8 assignments, which were not validated by any manual
curation (selectivity 90.0%). Fourteen sites were rejected by both
methods giving a MCC of 0.450.

Further restriction to just top-ranked PSMs reduces the number
of positively identified sites to 76, 83.5% of those manually
curated from all PSMs. The automated validation identifies 62
correctly (sensitivity of 81.6%) and assigns a further 3 sites with
no manual curation (selectivity of 95.4%). Only 1 site was rejected
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Fig. 4. A manually verified PSM that ProPhosSI fails to validate. Many ion
labels are not shown for clarity. Evidence for phosphorylation at S1 arises
from the b2 ion (a). ProPhosSI requires ion transitions over a phosphosite
and so requires more than one ion. Evidence for phosphorylation at S4 arises
from the uniquely assigned des-phospho y10 [2+] ion. ProPhosSI does not
consider 2+ ions as they can in many cases be assigned to more than one
fragment.

by all automated and manual PSM curations giving a MCC of
0.037. Taking into account the sites rejected at the phosphopeptide
assignment level (80 sites), the MCC is recalculated as 0.792. This
compares favourably with the MCC for all sites (141 rejected at
the peptide level) of 0.593 but is almost identical to the MCC for
all sites from Rank 2 or better peptides (120 rejected at the peptide
level) of 0.793.

We examined a small number of high-scoring PSMs where
ProPhosSI fails to validate an assignment made by an experienced
analyst. ProPhosSI appears to be least effective in where the
phosphate is not labile, is located on the N-terminal residue or
product ions are multiply charged. An example is shown in Figure 4.

4 CONCLUSIONS

Validation of phosphopeptide identifications by the examination
of spectra has historically been a bottleneck in high-throughput
phosphoproteomics. It may require many hours of careful cross-
checking for each of many thousands of individual PSMs reported by
a general database search algorithm such as MASCOT to establish
whether it corresponds to a confident identification. We have
demonstrated that the search engine score alone is an insufficient
parameter for determining whether a phosphorylation site should
be accepted. With high-throughput proteomics, this bottleneck
becomes critical, precluding the use of phosphosite analysis as
a routine screening tool. In this article, we have demonstrated
a methodology which, by modelling the analysis and decision
process of an experienced scientist, can substantially speed up
validation of a large scale phosphoproteomics dataset by processing
the data with 80-95% confidence in the positive validations and
with a high sensitivity. Not only does it provide a massive speed
benefit, allowing the processing of a complete phosphoproteomics
experiment overnight, but it provides a report for all considered
peptide hits, identifying the features it expects to see and reporting on
them. This processing and visualization then provides a framework
for an experienced analyst to manually curate the difficult cases or
to re-examine those cases that may be interesting from a biological
perspective.
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We have been conservative in our application of the analysis
criteria. Even a small decrease in the number of spectra, which
must be validated manually, provides a boost to the researcher
in terms of time gained. For this study, we estimate the time
saved to be several person—months work on a typical whole cell
phosphoproteome screen. It is essential, however, to reduce the
number of false assignments to a minimum such that researchers
making use of these assignments do not waste time chasing false
leads. We have been conservative in our approach, resulting in
a low error rate and, including curation at the phosphopeptide
level, an exceptionally high MCC. Taking more stringent criteria,
such as requiring more than one positive match to automatically
call a site, provide a slight but measurable increase in accuracy
with the downside that coverage is reduced. Combining multiple
experiments from multiple machines should provide a wealth
of data that can be combined to improve the overall coverage
of phosphoproteome identification with minimal degradation in
assignment quality.

In this study, we have demonstrated the utility of a methodology
for automatically curating large-scale phosphoproteomics
experiments. The principles behind the methods used in the
study are simple and easy to comprehend. Access to this and
similar methodologies should assist phosphoproteomics as a routine
systems biology tool, allowing a deeper understanding of the
essential role of phosphorylation in the function of the cell through
rapid, global phosphoproteome analysis.
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