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Abstract:
We study in a New Keynesian framework the consequences of adaptive learning for the design of robust mon-
etary policy. Compared to rational expectations, the fact that private sector follows adaptive learning gives the
central bank an additional intertemporal trade-off between optimal behavior in the present and in later peri-
ods thanks to its ability to manipulate future inflation expectations. We show that adaptive learning imposes
a more restrictive constraint on monetary policy robustness to ensure the dynamic stability of the equilibrium
than under rational expectations but strengthens the argument in favor of a more aggressive monetary policy
when the central bank fears for model misspecifications.
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1 Introduction

A great challenge for the central bank (CB) is to conduct monetary policy with limited understanding of many
key features of the macroeconomic environment that quickly evolves over times. Facing such a challenge, the CB
is likely to prefer basing monetary policy on principles that are also valid if the assumptions of the model differ
from reality. In other words, monetary policy should be robust to plausible deviations from the benchmark
model as suggests the robust control approach instigated by Hansen and Sargent (Hansen and Sargent 2001;
2003; 2007). By introducing model uncertainty, this approach focuses on the worst-case outcome within a set
of admissible models as economic agents are not able to attribute probabilities to all plausible outcomes. In the
sense of Hansen and Sargent, robust monetary policies are designed to perform well in worst-case scenarios by
minimizing the consequences of the worst-case specification of the policymaker’s reference model.

One important implication of this approach for the conduct of monetary policy is that the attenuation prin-
ciple under uncertainty well known since Brainard (1967) may not always hold.1 The concern about worst-case
scenarios leads the CB to amplify rather than attenuate the response of optimal monetary policy to shocks in a
closed economy (e.g. Giannoni and Woodford 2002; Onatski and Stock 2002; Giordani and Söderlind 2004; Leit-
emo and Söderström 2008; Gonzalez and Rodriguez 2013) and implies that the CB takes stronger action to avoid
particularly costly outcomes. This can generate inflation persistence (Qin, Sidiropoulos, and Spyromitros 2013)
and justify the appointment of a liberal central banker if the latter has a greater concern about misspecifications
of the Phillips curve (Dai and Spyromitros 2010). In contrast, a conservative central banker would be prefer-
able when concern for misspecifications of the true degree of shock persistence or these of the output gap was
considered (Tillmann 2009; 2014). These theoretical results give rise to some insightful prescriptions regarding
the conduct of monetary policy. However, the usefulness of such prescriptions could be limited by the fact that
they are obtained under the hypothesis of rational expectations (RE). The reason of this is that this hypothesis is
excessively demanding for private agents in terms of knowledge and understanding about the structure of the
economy as well as capability of data collecting and processing, particularly when the economic environment
is uncertain.2

Facing model uncertainty, private agents may not be able to properly forecast how economic variables evolve,
and their understanding of the economy and their expectations could be better described by a learning process
instead of the RE hypothesis.3 Such a process reflects the limited rationality of private agents. The advent of the
learning hypothesis poses a fundamental challenge to monetary policy decisions. The latter should account for
the implications of learning because when agents are learning, optimal monetary policy with RE can perform
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poorly (Milani 2008; Orphanides and Williams 2008). As highlighted by Schmidt-Hebbel and Walsh (2009), a
key lesson learned from the research on monetary policy is that neither uncertainty nor learning can be ignored.
The implications of learning for monetary policy are examined by a developing body of literature showing that
learning on the one hand helps selecting between all the possible equilibria obtained under RE, and on the
other hand can be considered as a process converging towards RE (Airaudo, Nisticò, and Zanna 2015; Bullard
and Mitra 2002; da Gama Machado 2013; Evans and Honkapohja 2003; 2006). Besides, it is recognized that
forecasting under the assumption of learning in DSGE models outperforms forecasting under the RE hypothesis
(Slobodyan and Wouters 2012). Another advantage of learning is that it resolves the disinflationary-booms
anomaly in the New Keynesian model under RE (Moore 2016).

The present study contributes to the literature on robust monetary policy by studying the implications for
monetary policy of concern for model misspecifications when private agents form expectations using adaptive
learning. The latter can be seen as the consequences of limited access by private agents to the information set.
The intention of the paper is to examine the implications of learning with a constant-gain algorithm for robust
monetary policy. We show that adaptive learning strengthens the argument in favor of a more aggressive mon-
etary policy that is advocated in misspecified models with RE. Our paper complements Molnár and Santoro
(2014), who investigate optimal monetary policy when agents are learning in the benchmark New Keynesian
model and consider the robustness of their results when the learning process is misspecified.4 Our paper is also
related to Orphanides and Williams (2007) who show that monetary policy robust to misperceptions of the nat-
ural interest rate raises the persistence of inflation, and to Bask and Proaño (2016) who find that an incorrect
assessment of the cost channel and the degree of inflation persistence by the CB greatly affects its capability to
enforce a determinate and learnable RE equilibrium.5 Both of these papers consider least square learning. In
contrast, we assume that model equations are misspecified while ignoring the concern for misspecification of
the learning process, and we look for the analytical equilibrium solutions under constant-gain learning.

The remainder of the paper is structured as follows. Section 2 outlines the model. Section 3 derives equi-
librium solutions under monetary policy discretion in both cases of RE and constant-gain learning. Section 4
explores the effects of learning on robust monetary policy. Section 5 discusses some possible extensions. Section
6 concludes.

2 The model

We consider two deviations from the standard New Keynesian model that has undoubtedly become the
workhorse in the recent literature on monetary policy (Rotemberg and Woodford 1997; Clarida, Gali, and
Gertler 1999). The first is a sequential min-max game between the nature (malevolent agent) setting the model
misspecifications to maximize the social loss and the CB who sets robust monetary policy to minimize the social
loss. The CB and the malevolent agent play a Nash game, meaning that their choice is optimal given the other
player’s choice.6 The second is the adaptive learning behavior of the private sector when forming expectations.

2.1 Aggregate demand and supply

The New Keynesian Phillips curve is modified by introducing a misspecification term ht:

𝜋𝑡 = 𝛽𝐸∗
𝑡 𝜋𝑡+1 + 𝜅𝑥𝑡 + 𝑒𝑡 + ℎ𝑡, (1)

where 0 < β < 1 stands for the discount factor, xt the output gap and πt inflation; κ is a composite parameter, i.e.
𝜅 ≡ (1−𝜗)(1−𝜗𝛽)

𝜗 (1 + 𝜑), with φ representing the inverse of the steady-state elasticity of labor supply and ϑ the
share of firms that do not optimally adjust but simply update in period t their previous price by the steady-state
inflation rate. The composite parameter κ is the output-gap elasticity of inflation and captures the effects of the
output gap on real marginal costs and thus on inflation. The expectation operator 𝐸∗

𝑡 represents private agents’
expectations conditional on information set available at time t, with the asterisk reflecting the fact that these
agents may form RE or not. The noise 𝑒𝑡 ∼ 𝑁(0, 𝜎2

𝑒 ) is an iid cost-push shock. The inflation misspecification,
ht, is controlled by a fictitious “malevolent agent” in the sense of Hansen and Sargent (2007), symbolizing the
policy maker’s worst fears about specification errors. The malevolent agent’s budget constraint is:

𝐸𝑡

+∞

∑
𝑖=0

𝛽𝑖ℎ2𝑡+𝑗 ≤ 𝜒2
𝑡 , (2)
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where 𝜒2
𝑡 represents the budget allocated by the CB to the malevolent agent to create misspecifications.

The New Keynesian IS equation is given by

𝑥𝑡 = 𝐸∗
𝑡 𝑥𝑡+1 − 𝜎−1(𝑟𝑡 − 𝐸∗

𝑡 𝜋𝑡+1), (3)

where rt is the nominal short-term interest rate and σ the risk aversion of households. To simplify the analysis,
we assume there is no demand shock and misspecification in the IS equation since the CB can neutralize shocks
affecting the aggregate demand by optimally setting the interest rate.

2.2 Monetary policy objectives

The CB is assumed to have the same preferences for inflation and output-gap stabilization as the society, whose
expected social loss function is given by:

𝐿𝑠
𝑡 = 1

2
𝐸𝑡

+∞

∑
𝑖=0

𝛽𝑖 (𝜋2
𝑡+𝑖 + 𝛼𝑥2

𝑡+𝑖) , (4)

where α > 0 denotes the relative weight assigned to the objective of output-gap stabilization. To simplify, we
assume that inflation target is equal to zero. The overly ambitious output target, which is common in the Barro-
Gordon framework, is absent in (4), i.e. output-gap target is also equal to zero. Thus, discretionary monetary
policy set to minimize social loss (4) would avoid an average inflation bias.

Under discretion, the CB designs a robust monetary policy that takes account not only of shocks affecting the
economy but also of model misspecifications reflecting the worst possible model within a given set of plausible
ones.7

The optimal robust monetary policy is obtained by solving the min-max problem:

min
𝑟𝑡

max
ℎ𝑡

𝐿𝐶𝐵
𝑡 = 1

2
𝐸𝑡

+∞

∑
𝑖=0

𝛽𝑖(𝜋2
𝑡+𝑖 + 𝛼𝑥2

𝑡+𝑖 − 𝜃ℎ2𝑡+𝑖), (5)

subject to the misspecified Phillips curve (1) and the malevolent agent’s budget constraint (2). The penalty
parameter θ > 0 controls the preference for robustness. The misspecification errors ht are inversely proportional
to θ. The absence of concern for robustness corresponds to the case where θ → ∞, implying that ht → 0. In the
following, we assume for simplicity that the malevolent agent’s budget constraint (2) is not binding.

2.3 Learning rules of private agents

While the CB is facing uncertainty, private agents also find it hard to know the actual law of motion (ALM)
for inflation and the output gap such that they learn the latter’s evolution using an algorithm.8 Thus, they
recursively estimate a Perceived Law of Motion (PLM), i.e. a noisy steady state in the terminology of Evans and
Honkapohja (2001), which is consistent with the law of motion that the CB would follow under RE. Indeed,
private agents believe that the steady-state levels of inflation and the output gap only depend on iid cost-push
shocks and hence perceive their expected levels as constant, knowing that the conditional and unconditional
expectations of these variables are identical. This justifies that private agents estimate these variables via sample
means.

Private agents form their expectations using the following learning algorithms (Marcet and Nicolini 2003):

𝐸∗
𝑡 𝜋𝑡+1 ≡ 𝑎𝑡 = 𝑎𝑡−1 + 𝛾𝑡(𝜋𝑡−1 − 𝑎𝑡−1), (6)

𝐸∗
𝑡 𝑥𝑡+1 ≡ 𝑏𝑡 = 𝑏𝑡−1 + 𝛾𝑡(𝑥𝑡−1 − 𝑏𝑡−1), (7)

where 0 ≤ 𝛾𝑡 ≤ 1 represents a deterministic sequence of learning gains that defines the speed of integration
of new data into expectations with exogenously given a0 and b0. If γt → 0, the policymakers cannot manipu-
late future expectations by changing the current policy. The underlying learning mechanism means that infla-
tion (output-gap) expectations are increasing with last period inflation (output gap).9 To ensure the analytical
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tractability of the model, we choose to adopt constant-gain learning, i.e. 𝛾𝑡+1 = 𝛾𝑡 = 𝛾. Moreover, the latter
better fits time-varying environments. As extensively discussed in the learning literature (Evans and Honkapo-
hja 2009), private agents would be more inclined to use a constant-gain learning algorithm if they believe in
possible structural changes to happen in the near future.10

3 The equilibrium under discretionary monetary policy

Learning gives us an attractive alternative way of conceiving how private agents interact with monetary author-
ity compared to the RE hypothesis. It considerably affects the CB’s trade-off between inflation and the output
gap by giving rise to an incentive for the CB to decrease the volatility of current inflation as well as a greater
room of maneuver to achieve this11 .

3.1 Rational expectations equilibrium

We use the RE equilibrium (REE) solution as a benchmark to illustrate how the equilibrium is modified by
an optimal monetary policy designed with private agents’ beliefs being taken into account. The CB solves its
min-max problem (5) subject to (1). This leads to:

𝜋𝑡 = −𝛼
𝜅

𝑥𝑡. (8)

The targeting rule (8) indicates that the trade-off between πt and xt is not affected by model misspecifications.
Solving (1)–(3) and (8) yields the ALMs for inflation and the output gap, and the interest rate rule that imple-
ments the optimal monetary policy as follows:

𝜋𝑡 =
𝛼𝜃𝛽

𝜃(𝛼 + 𝜅2) − 𝛼
𝐸∗

𝑡 𝜋𝑡+1 + 𝛼𝜃
𝜃(𝛼 + 𝜅2) − 𝛼

𝑒𝑡, (9)

𝑥𝑡 = −
𝜅𝜃𝛽

𝜃(𝛼 + 𝜅2) − 𝛼
𝐸∗

𝑡 𝜋𝑡+1 − 𝜅𝜃
𝜃(𝛼 + 𝜅2) − 𝛼

𝑒𝑡, (10)

𝑟𝑡 = 𝜎𝐸∗
𝑡 𝑥𝑡+1 + (1 +

𝜎𝜅𝜃𝛽
𝜃(𝛼 + 𝜅2) − 𝛼

) 𝐸∗
𝑡 𝜋𝑡+1 + 𝜎𝜅𝜃

𝜃(𝛼 + 𝜅2) − 𝛼
𝑒𝑡. (11)

The ALMs (9)–(11) correspond to the monetary policy set by a policymaker who does not take into account
how other economic agents revise their beliefs. To ensure that πt increases with 𝐸∗

𝑡 𝜋𝑡+1 and et, the CB must limit
its preference for robustness so that 𝜃(𝛼 + 𝜅2) − 𝛼 > 0, i.e.12

𝜃 > 𝛼
𝛼 + 𝜅2 . (12)

The system composed of (1), (3) and (8) has a unique non-explosive REE solution in terms of the only state
variable et, known as the “minimal state variable” solution (McCallum 1983). Thus, under RE, the solution of
πt takes the following form: 𝜋𝑡 = 𝜁𝑒𝑡. The formation of RE conditional on the available information at t leads
to 𝐸∗

𝑡 𝜋𝑡+1 = 𝐸𝑡𝜋𝑡+1 = 𝜁𝐸𝑡𝑒𝑡+1 = 0. Substituting 𝐸𝑡𝜋𝑡+1 = 0 into (9)–(11) leads to the REE solution:

𝜋𝑡 = 𝛼𝜃
𝜃(𝛼 + 𝜅2) − 𝛼

𝑒𝑡, (13)

𝑥𝑡 = − 𝜅𝜃
𝜃(𝛼 + 𝜅2) − 𝛼

𝑒𝑡, (14)

𝑟𝑡 = 𝜎𝜅𝜃
𝜃(𝛼 + 𝜅2) − 𝛼

𝑒𝑡. (15)
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It is straightforward to see from (9)–(11) that a decrease in θ (i.e. a greater preference for robustness) implies
a more aggressive response of the CB to cost-push shocks or a change in inflation expectations, meaning that
the CB becomes more cautious for fear of model misspecifications. Such policy response makes inflation, the
output gap  and the interest rate more volatile in the worst-case model. When θ ⟶ ∞, the CB’s concern for
model robustness disappears and we obtain again the results corresponding to the standard New Keynesian
model under the RE hypothesis.13

3.2 Learning equilibrium

Learning allows the CB to add an intertemporal trade-off between optimal behavior in t and in later periods,
generated by its ability to manipulate future inflation expectations. Current monetary policy decisions, given
their effects on future inflation expectations, should take into account future intratemporal trade-offs between
inflation and the output gap. We assume here that the CB exactly knows the learning algorithms followed by
private agents when setting the monetary policy.

The CB’s policy decision results from solving the min-max problem (5) subject to (1)–(3) in which 𝐸∗
𝑡 𝑥𝑡+𝑖+1

is substituted by bt+i and 𝐸∗
𝑡 𝜋𝑡+𝑖+1 by at+i, and to (6)–(7). The Lagrangian of the CB’s min-max problem is:

min
Ψ

max
ℎ𝑡

ℒ 𝐶𝐵
𝑡 = 𝐸𝑡

+∞

∑
𝑖=0

𝛽𝑖{ 1
2

[𝜋2
𝑡+𝑖 + 𝛼𝑥2

𝑡+𝑖 − 𝜃ℎ2𝑡+𝑖] − 𝜆1,𝑡+𝑖 [𝜋𝑡+𝑖 − 𝛽𝑎𝑡+𝑖 − 𝜅𝑥𝑡+𝑖 − 𝑢𝑡+𝑖 − ℎ𝑡+𝑖]

−𝜆2,𝑡+𝑖 [𝑥𝑡+𝑖 − 𝑏𝑡+𝑖 + 𝜎−1(𝑟𝑡+𝑖 − 𝑎𝑡+𝑖)] − 𝜆3,𝑡+𝑖 [𝑎𝑡+𝑖+1 − 𝑎𝑡+𝑖 − 𝛾(𝜋𝑡+𝑖 − 𝑎𝑡+𝑖)]
−𝜆4,𝑡+𝑖 [𝑏𝑡+𝑖+1 − 𝑏𝑡+𝑖 − 𝛾(𝑥𝑡+𝑖 − 𝑏𝑡+𝑖)]}.

(16)

where Ψ ≡ {𝑟𝑡, 𝜋𝑡, 𝑥𝑡, 𝑎𝑡+1, 𝑏𝑡+1} . Deriving (16) with respect to rt, ht, πt, xt, at+1 and bt+1 yields the first-order
conditions:

𝜆2,𝑡 = 0, (17)

−𝜃ℎ𝑡 + 𝜆1,𝑡 = 0, (18)

𝜋𝑡 − 𝜆1,𝑡 + 𝛾𝜆3,𝑡 = 0, (19)

𝛼𝑥𝑡 + 𝜅𝜆1,𝑡 − 𝜆2,𝑡 + 𝛾𝜆4,𝑡 = 0, (20)

𝜆3,𝑡 − 𝐸𝑡 [𝛽2𝜆1,𝑡+1 +
𝛽
𝜎

𝜆2,𝑡+1 + 𝛽𝜆3,𝑡+1(1 − 𝛾)] = 0, (21)

𝜆4,𝑡 − 𝐸𝑡 [𝛽𝜆2,𝑡+1 + 𝛽𝜆4,𝑡+1(1 − 𝛾)] = 0. (22)

Substituting 𝜆2,𝑡 = 0 given by (17) into (22) leads to 𝜆4,𝑡 = 𝛽(1− 𝛾)𝐸𝑡𝜆4𝑡+1, of which the only bounded forward-
looking solution is 𝜆4,𝑡 = 𝜆4,𝑡+1 = 0. Using these results into (20) yields 𝜆1,𝑡 = − 𝛼

𝜅 𝑥𝑡 and 𝜆1,𝑡+1 = − 𝛼
𝜅 𝑥𝑡+1.

Substituting 𝜆1,𝑡 = − 𝛼
𝜅 𝑥𝑡 into (19), we get:

𝜋𝑡 + 𝛼
𝜅

𝑥𝑡 + 𝛾𝜆3,𝑡 = 0. (23)

When the expectations are exogenous and constant, i.e. γ = 0, the above rule is identical to the one given by (8),
which is the targeting rule under RE. The rule (23) shows that only the Lagrange multiplier associated with
the evolution of inflation expectations, i.e. λ3,t, plays a role in the setting of optimal monetary policy. It follows
from (23) that
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𝜆3,𝑡 = − 1
𝛾

(𝜋𝑡 + 𝛼
𝜅

𝑥𝑡). (24)

The Lagrange multiplier λ3,t here represents, according to Molnár and Santoro (2014), the marginal effect of an
increase in inflation expectations on welfare loss at time t + 1. The learning hypothesis means that γ > 0, and
hence the sign of λ3,t depends on whether inflation expectations formed in the current period at are positive or
not. Indeed, since inflation target is set to zero, at could be either positive or negative depending on the nature
of past shocks. If at is positive (negative), an increase in at drives future inflation expectations further away from
(closer to) the target and hence reduces (increases) the social welfare, implying that λ3,t is positive (negative).

Combining equations (18) and (20) leads to

𝑥𝑡 = −𝜅𝜃
𝛼

ℎ𝑡. (25)

Substituting ht by its value given by (25) into (1) yields a modified Phillips curve:

𝜋𝑡 = 𝛽𝐸∗
𝑡 𝜋𝑡+1 + (𝜅 − 𝛼

𝜅𝜃
)𝑥𝑡 + 𝑒𝑡, (26)

where the response of inflation to a change in the output gap decreases with increased concern of the CB for
robustness (i.e. a decrease in θ).

The second-order condition for the malevolent agent’s maximization problem, i.e. 𝜕2ℒ 𝐶𝐵
𝑡

𝜕2ℎ𝑡
< 0, implies 𝜃 >

𝛼
𝛼+𝜅2 .14 To ensure that the sign for the coefficients of the ALMs under learning will not be counterfactual, we
impose a lower bound on θ, i.e.15

𝜃 > 𝛼
𝜅2 , (27)

which is more restrictive than the corresponding one imposed under RE, i.e. 𝜃 > 𝛼
𝛼+𝜅2 . The model has a unique

solution corresponding to the CB’s min-max problem under constant-gain learning (Appendices A.1 and A.2).
The ALM for inflation is

𝜋𝑡 = 𝑐𝑐𝑔
𝜋 𝑎𝑡 + 𝑑𝑐𝑔

𝜋 𝑒𝑡. (28)

where 𝑐𝑐𝑔
𝜋 = − 𝑝0+𝑝2(𝑐𝑐𝑔

𝜋 )2

𝑝1
≡ 𝑓 (𝑐𝑐𝑔

𝜋 ), 𝑑𝑐𝑔
𝜋 = 𝛼𝜃

𝜃(𝛼+𝜅2)−𝛼+𝜃𝛼𝛾2𝛽2(𝛽−𝑐𝑐𝑔
𝜋 )+𝛾𝛽(1−𝛾)[𝜃𝛼𝛽−(𝜃(𝛼+𝜅2)−𝛼)𝑐𝑐𝑔

𝜋 ]
, with 𝑝0 =

𝛼𝛽𝜃 {1 − 𝛽(1 − 𝛾) [1 − 𝛾(1 − 𝛽)]} > 0, 𝑝2 = 𝛾𝛽 {(𝜅2𝜃 − 𝛼)(1 − 𝛾) + 𝜃𝛼 [1 − 𝛾(1 − 𝛽)]}, 𝑝1 = −(𝜅2𝜃 −
𝛼) [1 − 𝛽(1 − 𝛾)] − 𝛼𝜃(1 − 𝛽) {1 − 𝛽 [1 − 𝛾(1 − 𝛽)])} − 𝑝0 − 𝑝2.

Under the condition 𝜃 > 𝛼
𝜅2 , we have 𝑝2 > 0 and 𝑝1 < 0. The solution for 𝑐𝑐𝑔

𝜋 that ensures a non-explosive
evolution of πt described by the ALM for inflation (28) is:

𝑐𝑐𝑔
𝜋 =

−𝑝1 − √𝑝21 − 4𝑝2𝑝0
2𝑝2

, (29)

where 0 < 𝑐𝑐𝑔
𝜋 < 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 (Appendix A.2). The last condition implies 𝑐𝑐𝑔
𝜋 < 𝛽 and 𝑑𝑐𝑔

𝜋 < 1. When expectations

are constant, i.e. γ = 0, we obtain 𝑐𝑐𝑔
𝜋 = 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 , and 𝑑𝑐𝑔
𝜋 = 𝛼𝜃

𝜃(𝛼+𝜅2)−𝛼 .
Inserting πt given by (28) and ℎ𝑡 = − 𝛼

𝜅𝜃 𝑥𝑡 obtained from (25) into (1), we obtain the ALM for the output gap:

𝑥𝑡 = 𝑐𝑐𝑔
𝑥 𝑎𝑡 + 𝑑𝑐𝑔

𝑥 𝑒𝑡, (30)

where 𝑐𝑐𝑔
𝑥 = − 𝜅𝜃

𝜅2𝜃−𝛼 (𝛽 − 𝑐𝑐𝑔
𝜋 ) < 0 and 𝑑𝑐𝑔

𝑥 = − 𝜅𝜃
𝜅2𝜃−𝛼 (1 − 𝑑𝑐𝑔

𝜋 ) < 0. Given that 𝑐𝑐𝑔
𝜋 < 𝛽 and 𝑑𝑐𝑔

𝜋 < 1, (27) ensures
that 𝑐𝑐𝑔

𝑥 < 0 and 𝑑𝑐𝑔
𝑥 < 0 so that they are consistent with empirical findings. Substituting xt given by (30) in (3)

yields the ALM for the interest rate:
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𝑟𝑡 = 𝛿𝑐𝑔
𝑟 𝑏𝑡 + 𝑐𝑐𝑔

𝑟 𝑎𝑡 + 𝑑𝑐𝑔
𝑟 𝑒𝑡, (31)

where 𝛿𝑐𝑔
𝑟 = 𝜎, 𝑐𝑐𝑔

𝑟 = 1+ 𝜎𝜅𝜃
𝜅2𝜃−𝛼 (𝛽 − 𝑐𝑐𝑔

𝜋 ) and 𝑑𝑐𝑔
𝑟 = 𝜎𝜅𝜃

𝜅2𝜃−𝛼 (1− 𝑑𝑐𝑔
𝜋 ). In the ALM for the interest rate, the output-gap

expectations have constant feedback effects, no matter how robust the policy is.
The feedback effects of inflation expectations and cost-push shocks on inflation, the output gap and the

interest rate are function of the preference for robustness. It is to notice that the ALMs for inflation and the
output gap are independent of output-gap expectations under both learning and RE, while the interest rate
under learning responds to output-gap expectations with the same coefficient as under RE.

Notice that for γ = 0, the feedback coefficients in the ALMs are identical to those in (9)–(11), hence identical
to those under RE. Indeed, in the absence of learning, inflation and output-gap expectations remain anchored
at their steady-state values and thus are identical to those obtained under RE (Appendix A.2).

4 Robustness and the effects of constant-gain learning

The comparison of equilibria under learning and under the RE hypothesis is done exhaustively in Molnár and
Santoro (2014), so we focus on the difference induced by constant-gain learning and robustness compared to
the benchmark model without model uncertainty.

4.1 The stability condition

The existence of a converging solution for 𝑐𝑐𝑔
𝜋 ensures that there is a converging solution for other coefficients

of ALMs, such as 𝑐𝑐𝑔
𝑥 , 𝑑𝑐𝑔

𝜋 , 𝑑𝑐𝑔
𝑥 , 𝑐𝑐𝑔

𝑟 , and 𝑑𝑐𝑔
𝑟 while 𝛿𝑐𝑔

𝑟 is independent of learning and robust control. Comparing
the existence condition of a converging path for inflation under RE and the one obtained under learning leads
to the following proposition.

Proposition 1: Adaptive learning imposes a more restrictive constraint on monetary policy robustness
The CB can ensure the dynamic stability of the economy by imposing a higher lower bound on the parameter represent-

ing its preference for robustness when private agents form expectations under constant-gain learning, i.e. 𝜃 > 𝛼
𝜅2 , than

under rational expectations, i.e. 𝜃 > 𝛼
𝛼(1−𝛽)+𝜅2 .

Proof.
See Appendix A.2.

A higher lower bound for θ implies a smaller possibility for the CB to implement a robust monetary policy
strategy. To show the difference between the thresholds imposed on the CB’s preference for robustness under
learning and RE, we use Woodford’s (1999) parameter values, α = 0.048, β = 0.99 and κ = 0.024, and find that
under adaptive learning, the threshold for θ above which the dynamic system is stable is 83.33. Meanwhile,
for the same parameter values, the corresponding threshold for θ under RE is 45.45. This indicates that the
CB should have much less fear for model misspecifications when private agents are learning than under RE.
One possible explanation of this difference is that learning is one kind of model misspecification so that to
deal with the fact that private agents are learning, the CB should have less concern for model misspecification
regarding the Phillips curve. Notice that the value of θ compatible with the dynamic stability of the equilibrium
is smaller than the lower bound on θ, i.e. 𝜃 > 𝛼

𝜅2 , imposed to ensure that the sign of the coefficients in the ALMs
under learning is not counterfactual. Consequently, the condition ensuring the dynamic stability is 𝜃 > 𝛼

𝜅2 . This
implies that the threshold ensuring the dynamic stability of the equilibrium under learning is independent of
the learning coefficient.

4.2 The effects of robustness on the feedback coefficients of ALMs

To the difference of Molnár and Santoro (2014), the effects of learning interact with the CB’s preference for
robustness in the present model. We evaluate here how the conduct of monetary policy is affected by learning
and model robustness.

Deriving 𝑐𝑐𝑔
𝜋 , 𝑑𝑐𝑔

𝜋 , 𝑐𝑐𝑔
𝑥 , 𝑑𝑐𝑔

𝑥 , 𝑐𝑐𝑔
𝑟 , and 𝑑𝑐𝑔

𝑟 with respect to γ and examining their sign lead to the following
proposition.
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Proposition 2: Adaptive learning makes robust monetary policy less accommodative compared to RE
An increase in the learning gain γ reduces (increases) the feedback coefficients of inflation expectations and cost-push

shocks in the ALMs for inflation and the output gap (the nominal interest rate) compared to those obtained under RE.

Proof.
See Appendix A.3.

Comparing (9)–(11) with (28), (30) and (31), we find that the feedback effect of inflation expectations on the
ALM for inflation (the output gap) is attenuated (amplified) under learning compared to RE, i.e. 𝑐𝑐𝑔

𝜋 < 𝛼𝛽𝜃
𝜃(𝛼+𝜅2)−𝛼

(𝑐𝑐𝑔
𝑥 < −𝛽𝜅𝜃

𝜃(𝛼+𝜅2)−𝛼 , respectively) and this is made possible by the stronger response of the interest rate to inflation
expectations under learning, i.e. 𝑐𝑐𝑔

𝑟 > 1+ 𝜅𝜃𝜎
𝜅2𝜃−𝛼 . The interest rate reacts more strongly as γ increases. Regarding

the feedback coefficients associated with cost-push shocks in the ALMs, it is straightforward to show that 𝑑𝑐𝑔
𝜋 <

𝛼𝜃
𝜃(𝛼+𝜅2)−𝛼 , 𝑑𝑐𝑔

𝑥 < − 𝜅𝜃
𝜃(𝛼+𝜅2)−𝛼 and 𝑑𝑐𝑔

𝑟 > 𝜎𝜅𝜃
𝜃(𝛼+𝜅2)−𝛼 , meaning that under learning, inflation is less sensitive while

the output gap and the interest rate are more sensitive to current cost-push shocks than under RE.
Using the baseline parameter values, α = 0.048, β = 0.99, and κ = 0.024 and σ = 0.157, Figure 1 shows how

the learning gain γ and the preference for model robustness θ affect the feedback coefficients in the ALMs.
It emerges from Figure 1 that the learning process with a non-trivial learning gain (i.e. γ > 0) attenuates

the feedback effects in the ALMs for inflation but amplifies these effects in the ALM for the output gap and
the interest rate compared to the corresponding ones under RE (which are identical to the ones with γ = 0).
More precisely, both feedback coefficients 𝑐𝑐𝑔

𝜋 and 𝑑𝑐𝑔
𝜋 are positive and smaller than unit and decrease with γ.

Comparing the effect of an increase in γ on 𝑐𝑐𝑔
𝜋 and 𝑑𝑐𝑔

𝜋 , we find that 𝑐𝑐𝑔
𝜋 decreases at a much faster rate than 𝑑𝑐𝑔

𝜋 .
We notice that as γ reaches 0.2, the value of 𝑐𝑐𝑔

𝜋 is very close to the one obtained with γ = 1 while the value of
𝑑𝑐𝑔

𝜋 is quite far away from its value for γ = 1. Similar observation could be made with 𝑑𝑐𝑔
𝜋 , 𝑑𝑐𝑔

𝑥 , 𝑐𝑐𝑔
𝑟 , and 𝑑𝑐𝑔

𝑟 .

Figure 1: The feedback coefficients of the ALMS.

Using (9)–(11), it is easy to show that under RE, the absolute value of the coefficients in the ALMs are
all increasing as θ decreases, meaning that an increase in the CB’s preference for model robustness amplifies
the responses of all endogenous variables to a change in expected inflation and cost-push shocks. Given that
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the inflation target is equal to zero, the expected inflation at the REE is always equal to zero and the effect of
robustness on the economy is transmitted through the coefficients associated with cost-push shocks in (9)–(11).

Using the baseline parameter values, Figure 2 illustrates how the partial derivatives with respect to θ of the
feedback coefficients in the ALMs evolve with the learning gain γ and the preference for model robustness θ.

Figure 2: The sensitiveness of partial derivatives for θ of the feedback coefficients in the ALMs to γ and θ.

Deriving the feedback coefficients in (28), (30) and (31) with respect to θ yields the following proposition.

Proposition 3: Cautiousness of robust monetary policy under adaptive learning
An increase in the CB’s preference for model robustness (i.e. lower θ) dampens (amplifies) the response of inflation

(the output gap and the nominal interest rate) to inflation expectations and cost-push shocks. The response of the nominal
interest rate to output-gap expectations is independent of model robustness, i.e. 𝜕𝛿𝑐𝑔

𝑟
𝜕𝜃 = 0. Adaptive learning strengthens

the aggressive response of the CB to cost-push shocks or a change in inflation expectations compared to those observed
under rational expectations.

Proof.
See Appendix A.4.

Fearing the worst-case scenarios, the CB becomes more aggressive in its responses to cost-push shocks and
a change in inflation expectations under RE (Leitemo and Söderström 2008). This effect is also present when
private agents form expectations using a learning algorithm and comes to reinforce the attenuation (reinforce
the amplification) effects of learning on the feedback coefficients in the ALM for inflation (the output gap and
the interest rate). In other words, adaptive learning makes the central bank more cautious in the sense of Gian-
noni (2007) and Söderström (2002) but less cautious in the sense of Brainard (1967) and leads the CB to conduct
a more aggressive interest rate policy that dampens (amplifies) the effects of a change in inflation expectations
and cost-push shocks on inflation (the output gap) .

For the baseline parameter values, Figure 3 illustrates how the partial derivatives with respect to γ of the
feedback coefficients in the ALMs evolve with the learning gain γ and the preference for model robustness θ.

It follows from Figure 3 that a decrease in θ increases 𝜕𝑐𝑐𝑔
𝜋

𝜕𝛾 , 𝜕𝑑𝑐𝑔
𝜋

𝜕𝛾 , 𝜕𝑐𝑐𝑔
𝑟

𝜕𝛾 and 𝜕𝑑𝑐𝑔
𝑟

𝜕𝛾 but reduces 𝜕𝑐𝑐𝑔
𝑥

𝜕𝛾 and 𝜕𝑑𝑐𝑔
𝑥

𝜕𝛾 . We
notice that the marginal effect of a decrease in θ on the marginal effect of γ is quite insensitive to the value of γ
in the case of 𝑐𝑐𝑔

𝑥 , 𝑑𝑐𝑔
𝑥 , 𝑐𝑐𝑔

𝑟 , and 𝑑𝑐𝑔
𝑟 . The numerical simulation leads to the following proposition.
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Proposition 4:
For standard parameter values, an increase in the CB’s preference for robustness (i.e. a decrease in θ) increases the

marginal effects of learning gain on the feedback coefficients in the ALMs for inflation and the nominal interest rate but
decreases those on the feedback coefficients in the ALM for the output gap.

Figure 3: The sensitiveness of partial derivatives for γ of the feedback coefficients in the ALMs to γ and θ.

5 Discussions

The finding that constant-gain adaptive learning strengthens the argument in favor of a more aggressive robust
monetary policy is obtained in a standard New Keynesian model with the central bank being confronted to ad-
ditive model misspecifications. The policy implications of this paper are however subject to several limitations
of the model. The most important among them are the assumption that the learning gain is time invariant, the
additive nature of model misspecifications, the absence of the zero lower bound, and the negligence of the in-
teractions between monetary policy and financial frictions. Eliminating some of these limitations may give rise
to promising extensions.

First, the assumption of constant-gain learning can be relaxed. It can be substituted by various learning be-
haviors investigated in the literature.16 One immediate extension to our model is to consider that private agents
use a decreasing-gain algorithm as in Molnár and Santoro (2014) and André and Dai (2017), and examine how
the robust control approach could affect the effect of decreasing-gain learning on optimal monetary policy.17

We can state with confidence that since the learning gain decreases with time, the temporary equilibria under
decreasing-gain learning replicate more or less those under constant-gain learning with given learning gains.
However, it will be more difficult to find an analytical solution as the evolution of learning gain affects the
current equilibrium and induces complex interactions between learning and model misspecifications. Further-
more, the robustness of our results could be checked by considering alternative learning algorithms such as
least squares learning and Bayesian learning.
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Second, the robust control approach in this paper only deals with additive model misspecification. An idea
popularized by Brainard (1967) and emphasized by Blinder (1998) and others is that policymakers should be
cautious by “doing less” when facing to uncertainty about the true parameters of a model. An alternative ap-
proach to robustness is to consider multiplicative Knightian uncertainty by assuming that the uncertainty is
located in one or more specific parameters of the model, and the true values of these parameters are known
only to be bounded between minimum and maximum plausible values (Giannoni 2002; 2007; Onatski and
Stock 2002; Tetlow and von zur Muehlen 2004). However, implementing multiplicative uncertainty makes it
impossible to obtain any analytical result (Söderström 2002). Numerical simulations show that in the presence
of parameter uncertainty, the robust monetary policy rule implies that the interest rate generally reacts more
strongly to changes in inflation and the output gap, with greater inertia than in the absence of such uncertainty.
The policymaker is less cautious than in Brainard’s model, as he cares very much about worst-case situations.
Multiplicative uncertainty makes it more difficult for private agents to forecast the future and hence provides a
stronger argument for their learning behavior. It would be worthwhile to see how adding multiplicative uncer-
tainty to a model with adaptive learning changes the results obtained when model misspecification is additive.

Recent global financial crisis has attracted a great attention to the role played by financial intermediation
and frictions in the monetary transmission mechanism. A number of studies introduce financial frictions in
New Keynesian models.18 Such frictions tend to amplify the fluctuations in inflation and the output gap, espe-
cially when private agents adopt learning behaviors, implying that monetary policy must be more aggressive
in response to inflation shocks than under RE (Caputo, Medina, and Soto 2011; Rychalovska, Slobodyan, and
Wouters 2015; Hollmayr and Kühl 2016). These results suggest that the interactions between learning and ro-
bust monetary policy in the presence of financial frictions could be quite different from those in the absence of
such frictions.

Another current hot topic is to assess whether learning is able or not to avoid convergence to a liquidity
trap since large shocks can put economic variables on an unstable path leading to the zero lower bound (ZLB)
regime (Honkapohja 2016). Incorporating forward guidance into the learning approach, Honkapohja and Mitra
(2015) show that both price level and nominal GDP targeting can better help avoiding an expectations-driven
liquidity trap than under inflation targeting. The effectiveness of these two policy regimes when private agents
are learning largely depends on the credibility of monetary policy that is measured by the degree with which
forward guidance about the future path of the target variable is integrated into the learning process. These
issues deserve further examination in a framework where the central bank sets optimal robust monetary policy.

6 Conclusion

This paper explores the implications for macroeconomic stabilization when both adaptive learning and concern
for additive model misspecification are present. It is shown that the fact that private agents form expectations
using learning algorithm substantially reduces the set of possible model misspecifications compatible with
the dynamic stability of the economy, compared to the possible set under rational expectations. Regarding
the effects of robustness, we find that the results obtained by Leitemo and Söderström (2008) under rational
expectations hypothesis, i.e. the robust monetary policy becomes more aggressive, are still valid. Moreover, due
to adaptive learning, the optimal robust monetary policy becomes even more aggressive than under rational
expectations. The response of inflation (the output gap and the nominal interest rate) to cost-push shocks and
to a change in inflation expectations under adaptive learning is dampened (amplified) by an increase of the
central bank’s preference for model robustness.
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A Appendix

In subsections A.1 and A.2, we closely follow Molnár and Santoro (2014) to find the equilibrium solution un-
der learning. In subsections A.3 and A.4, we develop original techniques to show the effects of learning and
robustness on the equilibrium.
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A.1 The equilibrium solution of inflation under learning

Substituting 𝜆2,𝑡+1 = 0, λ3,t and 𝜆3,𝑡+1 given by (24) and 𝜆1,𝑡+1 = − 𝛼
𝜅 𝑥𝑡+1 from (20) into (21), we obtain

𝜋𝑡 = −𝛼
𝜅

𝑥𝑡 + 𝛽(1 − 𝛾)𝐸*
𝑡𝜋𝑡+1 + [

𝛼𝛾𝛽2

𝜅
+ 𝛽(1 − 𝛾)𝛼

𝜅
] 𝐸∗

𝑡 𝑥𝑡+1. (32)

Using 𝐸𝑡𝜋𝑡+1 ≡ 𝑎𝑡 and (26), we get:

𝑥𝑡 = 𝜅𝜃
𝜅2𝜃 − 𝛼

(𝜋𝑡 − 𝛽𝑎𝑡 − 𝑒𝑡) , (33)

𝑥𝑡+1 = 𝜅𝜃
𝜅2𝜃 − 𝛼

(𝜋𝑡+1 − 𝛽𝑎𝑡+1 − 𝑒𝑡+1) . (34)

Substituting xt and xt+1 given by (33)–(34) into (32) and arranging the terms yields:

𝐸∗
𝑡 𝜋𝑡+1 = 𝐴11𝜋𝑡 + 𝐴12𝑎𝑡 + 𝑃1𝑒𝑡, (35)

with

𝐴11 ≡
𝜅2𝜃 − 𝛼 + 𝛼𝜃 + 𝜃𝛼𝛾𝛽2 [1 − 𝛾(1 − 𝛽)]

𝛽 {(𝜅2𝜃 − 𝛼) (1 − 𝛾) + 𝜃𝛼 [1 − 𝛾(1 − 𝛽)]}
, (36)

𝐴12 ≡ −
𝛼𝛽𝜃 [1 − 𝛽(1 − 𝛾) [1 − 𝛾(1 − 𝛽)]]

𝛽 {(𝜅2𝜃 − 𝛼) (1 − 𝛾) + 𝜃𝛼 [1 − 𝛾(1 − 𝛽)]}
, (37)

𝑃1 ≡ − 𝛼𝜃
𝛽 {(𝜅2𝜃 − 𝛼) (1 − 𝛾) + 𝜃𝛼 [1 − 𝛾(1 − 𝛽)]}

. (38)

According to the proposition 1 from Blanchard and Kahn (1980), the ALM solution for inflation takes the fol-
lowing form :

𝜋𝑡 = 𝑐𝑐𝑔
𝜋 𝑎𝑡 + 𝑑𝑐𝑔

𝜋 𝑒𝑡. (39)

Advancing (39) one period and taking the expectation of the resulting equation while using (6) yield:

𝐸∗
𝑡 𝜋𝑡+1 = 𝑐𝑐𝑔

𝜋 [(1 − 𝛾)𝑎𝑡 + 𝛾𝜋𝑡] . (40)

Using (35) to eliminate 𝐸𝑡𝜋𝑡+1 in (40) and arranging the terms, we get:

𝜋𝑡 =
𝐴12 − 𝑐𝑐𝑔

𝜋 (1 − 𝛾)
𝑐𝑐𝑔

𝜋 𝛾 − 𝐴11

𝑎𝑡 +
𝑃1

𝑐𝑐𝑔
𝜋 𝛾 − 𝐴11

𝑒𝑡. (41)

Comparing (39) and (41) yields:

𝑐𝑐𝑔
𝜋,𝑡 =

𝐴12 − 𝑐𝑐𝑔
𝜋 (1 − 𝛾)

𝑐𝑐𝑔
𝜋 𝛾 − 𝐴11

, (42)

and

𝑑𝑐𝑔
𝜋,𝑡 =

𝑃1

𝑐𝑐𝑔
𝜋 𝛾 − 𝐴11

. (43)
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DE GRUYTER André andDai

We gather equations (6), (7) and (35), while using (33) to substitute xt to obtain the system of three equations:

𝐸∗
𝑡 𝑦𝑡+1 = 𝐴𝑡𝑦𝑡 + 𝑃𝑡𝑒𝑡

where

𝑦𝑡 ≡ [𝜋𝑡 𝑎𝑡 𝑏𝑡] , 𝐴 ≡
⎡⎢⎢⎢
⎣

𝐴11 𝐴12 0
𝛾 1 − 𝛾 0

−
𝜅𝜃𝛾

𝛼 − 𝜅2𝜃
𝛾𝛽𝜅𝜃

𝛼 − 𝜅2𝜃
1 − 𝛾

⎤⎥⎥⎥
⎦

, and 𝑃 ≡
⎡⎢⎢⎢
⎣

𝑃1
0

𝜅𝜃𝛾
𝛼 − 𝜅2𝜃

⎤⎥⎥⎥
⎦

.

The above system is subject to three boundary conditions: a0, b0, and lim
𝑠→∞

|𝐸∗
𝑡 𝜋𝑡+𝑠| < ∞. The eigenvalues of At

are 1 − γ and the two eigenvalues of A1:

𝐴1 = [𝐴11 𝐴12
𝛾 1 − 𝛾] . (44)

We can show that, in Appendix A.2, A1 has an eigenvalue inside and one outside the unit circle.□

A.2 The single stable solution

Among infinite stochastic sequences satisfying equation (42), we focus on a non-explosive solution, i.e. the
solution corresponding to the eigenvalue of A1 given by (44) inside the unit circle. The trace and determinant
of A1 are both positive. Thus, for A1 to have two real eigenvalues (μ1, μ2), one inside and one outside the unit
circle, it is sufficient to show that (1 − 𝜇1)(1 − 𝜇2) < 0. This can be rewritten as:

𝜇1 + 𝜇2 > 1 + 𝜇1𝜇2. (45)

Knowing that 𝜇1 + 𝜇2 is equal to the trace of A1 and 𝜇1𝜇2 equal to its determinant, we rewrite (45) as:

𝜅2𝜃 − 𝛼 + 𝛼𝜃 + 𝜃𝛼𝛾𝛽2 [1 − 𝛾(1 − 𝛽)]
𝛽 {(𝜅2𝜃 − 𝛼)(1 − 𝛾) + 𝜃𝛼 [1 − 𝛾(1 − 𝛽)]}

+ 1 − 𝛾 > 1 + (1 − 𝛾)
𝜅2𝜃 − 𝛼 + 𝛼𝜃 + 𝜃𝛼𝛾𝛽2 [1 − 𝛾(1 − 𝛽)]

𝛽 {(𝜅2𝜃 − 𝛼)(1 − 𝛾) + 𝜃𝛼 [1 − 𝛾(1 − 𝛽)]}

+ 𝛾
𝛼𝛽𝜃 [1 − 𝛽(1 − 𝛾) [1 − 𝛾(1 − 𝛽)]]

𝛽 {(𝜅2𝜃 − 𝛼)(1 − 𝛾) + 𝜃𝛼 [1 − 𝛾(1 − 𝛽)]}
.

After simplification, we get:

(𝜅2𝜃 − 𝛼) [1 − 𝛽(1 − 𝛾)] + 𝛼𝜃(1 − 𝛽) {1 − 𝛽 [1 − 𝛾(1 − 𝛽)]} > 0,

which is verified given that 𝛽 ∈]0, 1[ and 𝛾 ∈ [0, 1] and condition (27).
There exists a unique solution to the model, whose ALM takes the following form:

𝜋𝑡 = 𝑐𝑐𝑔
𝜋 𝑎𝑡 + 𝑑𝑐𝑔

𝜋 𝑒𝑡. (46)

To have a converging (and non-explosive) inflation, we must have 𝑐𝑐𝑔
𝜋 ∈ [0, 1]. Rewriting (42) as 𝛾(𝑐𝑐𝑔

𝜋 )2−𝐴11𝑐
𝑐𝑔
𝜋 −

𝐴12 + 𝑐𝑐𝑔
𝜋 (1 − 𝛾) = 0 and substituting A11 and A12 by their expressions, we obtain:

𝑝2(𝑐𝑐𝑔
𝜋 )2 + 𝑝1𝑐

𝑐𝑔
𝜋 + 𝑝0 = 0 (47)

where

𝑝0 = 𝛼𝛽𝜃 {1 − 𝛽(1 − 𝛾) [1 − 𝛾(1 − 𝛽)]} > 0,
𝑝2 = 𝛾𝛽 {(𝜅2𝜃 − 𝛼) (1 − 𝛾) + 𝛼𝜃 [1 − 𝛾(1 − 𝛽)]} ,
𝑝1 = 𝛼 + 𝛽(1 − 𝛾) {(𝜅2𝜃 − 𝛼) (1 − 𝛾) + 𝛼𝜃 [1 − 𝛾(1 − 𝛽)]} − {𝜃(𝜅2 + 𝛼) + 𝛼𝛽2𝛾𝜃 [1 − 𝛾(1 − 𝛽)]} .
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André andDai DE GRUYTER

To characterize the two solutions of 𝑐𝑐𝑔
𝜋 , we rewrite (47) as:

𝑐𝑐𝑔
𝜋 = −

𝑝0 + 𝑝2 (𝑐𝑐𝑔
𝜋 )2

𝑝1
≡ 𝑓 (𝑐𝑐𝑔

𝜋 ). (48)

We rewrite p1, after some tedious calculus, as

𝑝1 = −(𝜅2𝜃 − 𝛼) [1 − 𝛽(1 − 𝛾)] − 𝛼𝜃(1 − 𝛽) {1 − 𝛽 [1 − 𝛾(1 − 𝛽)])} − 𝑝0 − 𝑝2, (49)

or alternatively simplify it as

𝑝1 = −𝛽𝑝2 − 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 𝑝0. (50)

The conditions imposed on θ to ensure that 𝑝2 > 0, i.e. 𝜃 > 𝛼
𝛼(1+ 𝛾𝛽

1−𝛾 )+𝜅2
, and that 𝑝1 < 0, i.e. 𝜃 > 𝛼

𝜅2+𝛼(1+ 𝛾2𝛽3

1−𝛽(1−𝛾)2 )
,

are less restrictive than condition (27), i.e. 𝜃 > 𝛼
𝜅2 that is imposed to ensure that current output gap decreases

with a rise in expected inflation or a positive cost-push shocks.
Under RE, to ensure the dynamic stability of the equilibrium, we must have according to (9) that 𝛼𝜃𝛽

𝜃(𝛼+𝜅2)−𝛼 <
1, or equivalently 𝜃 > 𝛼

𝛼(1−𝛽)+𝜅2 , which is more restrictive than the condition (12), i.e. 𝜃 > 𝛼
𝛼+𝜅2 . Thus, the stability

condition is  𝜃 > 𝛼
𝛼(1−𝛽)+𝜅2 .

For 𝜃 > 𝛼
𝜅2 , we always have 𝑝2 > 0, and 𝑝1 < 0. This implies that 𝑓 (𝑐𝑐𝑔

𝜋 ) ∶ [0, 1] → [0, 1], with 𝑓 (0) =

−
𝑝0 + 𝑝2

𝑝1
> 0 and 0 < 𝑓 (1) = 𝑝0+𝑝2

𝑝1
< 1 and 𝑓 ′(𝑐𝑐𝑔

𝜋 ) = − 2𝑝2

𝑝1
𝑐𝑐𝑔

𝜋 > 0. Hence, the Brower theorem and the fact

that 𝑓 (𝑐𝑐𝑔
𝜋 ) is strictly monotonously increasing in the interval 𝑐𝑐𝑔

𝜋 ∈ [0, 1] imply that there is a unique solution
in this interval. The other possible solution is greater than unit and is excluded because it leads to an explosive
evolution of inflation.

To ensure that −𝑝1 > 𝑝0 + 𝑝2 and hence the existence of a stable solution, we must have (𝜅2𝜃 −
𝛼) [1 − 𝛽(1 − 𝛾)] + 𝛼𝜃(1 − 𝛽) {1 − 𝛽 [1 − 𝛾(1 − 𝛽)])} > 0. This implies that:

𝜃 > 𝛼
𝛼(1 − 𝛽)[1 − 𝛾𝛽2

1−𝛽(1−𝛾) ] + 𝜅2
. (51)

The stability condition given by (51) is too loose compared to condition (27), i.e. 𝜃 > 𝛼
𝜅2 . As a result, the stability

condition is 𝜃 > 𝛼
𝜅2 instead of (51).

The stable solution of 𝑐𝑐𝑔
𝜋 is given by

𝑐𝑐𝑔
𝜋 =

−𝑝1 − √𝑝21 − 4𝑝2𝑝0
2𝑝2

. (52)

The other possible solution 𝑐𝑐𝑔
𝜋 = −𝑝1+√𝑝2

1−4𝑝2𝑝0

2𝑝2
is greater than unit and is excluded to avoid an explosive evolu-

tion of inflation. Substituting A11 and P1 into (43) and rearranging the terms leads to:

𝑑𝑐𝑔
𝜋 = 𝛼𝜃

𝜃(𝛼 + 𝜅2) − 𝛼 + 𝜃𝛼𝛾2𝛽2(𝛽 − 𝑐𝑐𝑔
𝜋 ) + 𝛾𝛽(1 − 𝛾) {𝜃𝛼𝛽 − [𝜃(𝛼 + 𝜅2) − 𝛼] 𝑐𝑐𝑔

𝜋 }
. (53)

We now show that 𝑓 (𝑐𝑐𝑔
𝜋 ) defined in (48) is bounded, i.e. 𝑓 (𝑐𝑐𝑔

𝜋 ) ∶ [0; 𝛼𝛽𝜃
𝜃(𝛼+𝜅2)−𝛼 ] →]0; 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 [. Knowing that

𝑓 (0) > 0 and substituting 𝑐𝑐𝑔
𝜋 by 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 into the function 𝑓 (𝑐𝑐𝑔
𝜋 ), we find

𝑓 ( 𝛼𝛽𝜃
𝜃(𝛼+𝜅2)−𝛼 ) = −

𝑝0 + 𝑝2 [ 𝛼𝛽𝜃
𝜃(𝛼+𝜅2)−𝛼 ]

2

𝑝1

=
𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 { 𝜃(𝛼+𝜅2)−𝛼
𝛼𝛽𝜃 𝑝0 + 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 𝑝2}

−𝑝1
.

(54)
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DE GRUYTER André andDai

Using 𝑝2 = 𝜃𝛼(1−𝛽)+𝜅2𝜃−𝛼
𝜃𝛼+𝜅2𝜃−𝛼 𝑝2 + 𝜃𝛼𝛽

𝜃𝛼+𝜅2𝜃−𝛼 𝑝2, 𝑝0 = − 𝜃𝛼(1−𝛽)+𝜅2𝜃−𝛼
𝜃𝛼𝛽 𝑝0 + 𝜃𝛼+𝜅2𝜃−𝛼

𝜃𝛼𝛽 𝑝0 and the definition of p0, p1, and p2

given above, we substitute p1 using (50), we obtain:

𝑓 ( 𝛼𝛽𝜃
𝜃(𝛼+𝜅2)−𝛼 ) = −

𝑝0 + 𝑝2 [ 𝛼𝛽𝜃
𝜃(𝛼+𝜅2)−𝛼 ]

2

𝑝1

=
𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 { 𝜃(𝛼+𝜅2)−𝛼
𝛼𝛽𝜃 𝑝0 + 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 𝑝2}
𝛽(𝜅2𝜃−𝛼)

𝜃(𝛼+𝜅2)−𝛼 𝑝2 + 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 𝑝0 + 𝜃𝛼𝛽

𝜃(𝛼+𝜅2)−𝛼 𝑝2
<

𝛼𝛽𝜃
𝜃(𝛼 + 𝜅2) − 𝛼

.

Given that 𝑓 ′(𝑐𝑐𝑔
𝜋 ) = −

2𝑝2
𝑝1

𝑐𝑐𝑔
𝜋 > 0 for 𝑐𝑐𝑔

𝜋 ∈ [0, 1], 𝑓 (𝑐𝑐𝑔
𝜋 ) is strictly increasing in the interval [0; 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 ]. This

property and the fact that 𝑓 (𝑐𝑐𝑔
𝜋 ) ∶ [0; 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 ] →]0; 𝛼𝛽𝜃
𝜃(𝛼+𝜅2)−𝛼 [ imply that there is a unique solution for 𝑐𝑐𝑔

𝜋 so

that 0 < 𝑐𝑐𝑔
𝜋 < 𝛼𝛽𝜃

𝜃(𝛼+𝜅2)−𝛼 .
The case where γ === 0. We obtain by substituting γ = 0 into (36)–(38) :

𝐴11 ≡ 𝜃(𝛼 + 𝜅2) − 𝛼
𝛽 [𝜃(𝛼 + 𝜅2) − 𝛼]

= 1
𝛽

,

𝐴12 ≡ −
𝛼𝜃(1 − 𝛽)

𝜃(𝛼 + 𝜅2) − 𝛼
,

𝑃1 ≡ − 𝛼𝜃
𝛽 [𝜃(𝛼 + 𝜅2) − 𝛼]

.

It follows from (42)–(43) that

𝑐𝑐𝑔
𝜋 =

𝛼𝛽𝜃
𝜃(𝛼 + 𝜅2) − 𝛼

,

𝑑𝑐𝑔
𝜋 = 𝛼𝜃

𝜃(𝛼 + 𝜅2) − 𝛼
.

The case where γ === 1. Inserting γ = 1 into (36)–(38) yields

𝐴11 ≡
𝜃(𝛼 + 𝜅2 + 𝛼𝛽3) − 𝛼

𝛼𝛽2𝜃
,

𝐴12 ≡ − 1
𝛽

,

𝑃1 ≡ − 1
𝛽2 .

Substituting the latter into (36)–(38) leads to 𝑝2 = 𝜃𝛼𝛽2 > 0, 𝑝1 = 𝛼 − 𝜅2𝜃 − 𝛼𝜃 − 𝜃𝛼𝛽3 < 0 and 𝑝0 = 𝛼𝛽𝜃 > 0, and
hence

𝑐𝑐𝑔
𝜋 =

𝜃(𝛼 + 𝜅2) − 𝛼 + 𝜃𝛼𝛽3 − √[𝜃(𝛼 + 𝜅2) − 𝛼 + 𝜃𝛼𝛽3]2 − 4𝜃2𝛼2𝛽3

2𝜃𝛼𝛽2 ,

𝑑𝑐𝑔
𝜋 = 𝛼𝜃

𝜃(𝛼 + 𝜅2) − 𝛼 + 𝛽2𝜃𝛼(𝛽 − 𝑐𝑐𝑔
𝜋 )

.
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André andDai DE GRUYTER

A.3 The effects of learning

Deriving p0, p1 and p2 with respect to γ and using (50), we get:

𝜕𝑝0
𝜕𝛾

= 𝛼𝛽2𝜃 [(2 − 𝛽)(1 − 𝛾) + 𝛾𝛽] > 0,

𝜕𝑝1
𝜕𝛾

= −𝛽
𝜕𝑝2
𝜕𝛾

− 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽

𝜕𝑝0
𝜕𝛾

< 0,

𝜕𝑝2
𝜕𝛾

= 𝛽 {(𝜅2𝜃 − 𝛼)(1 − 2𝛾) + 𝜃𝛼 [1 − 2𝛾(1 − 𝛽)]} ,

= −1 𝜕𝑝1
𝜕𝛾

− 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽

𝜕𝑝0
𝜕𝛾

.

Deriving 𝑐𝑐𝑔
𝜋 with respect to γ yields:

𝜕𝑐𝑐𝑔
𝜋

𝜕𝛾
=

[− 𝜕𝑝1

𝜕𝛾 − 1
√𝑝2

1−4𝑝2𝑝0

(𝑝1
𝜕𝑝1

𝜕𝛾 − 2𝑝0
𝜕𝑝2

𝜕𝛾 − 2𝑝2
𝜕𝑝0

𝜕𝛾 )] 𝑝2 − (−𝑝1 − √𝑝21 − 4𝑝2𝑝0)
𝜕𝑝2

𝜕𝛾

2𝑝22
,

which can be rewritten, using 𝜕𝑝2

𝜕𝛾 = − 1 𝜕𝑝1

𝜕𝛾 − 1
𝛽

𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽

𝜕𝑝0

𝜕𝛾 and the definition of p0, p1 and p2, 𝑝1 = −𝛽𝑝2 −

𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 𝑝0 and 𝑐𝑐𝑔

𝜋 = −𝑝1−√𝑝2
1−4𝑝2𝑝0

2𝑝2
and after fastidious arrangements of terms, as:19

𝜕𝑐𝑐𝑔
𝜋

𝜕𝛾
=

1 − 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 𝑐𝑐𝑔

𝜋

𝛽𝑝2√𝑝21 − 4𝑝2𝑝0
(𝑝0

𝜕𝑝1
𝜕𝛾

− 𝑝1
𝜕𝑝0
𝜕𝛾

) .

Using 𝑐𝑐𝑔
𝜋 < 𝜃𝛼𝛽

𝜃(𝛼+𝜅2)−𝛼 , we obtain: 1 − 𝜃𝛼𝛽
𝜃(𝛼+𝜅2)−𝛼 𝑐𝑐𝑔

𝜋 > 1 − 𝜃𝛼𝛽
𝜃(𝛼+𝜅2)−𝛼

𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 = 0. To determine the sign of 𝐻 ≡

𝑝0
𝜕𝑝1

𝜕𝛾 − 𝑝1
𝜕𝑝0

𝜕𝛾 , we first check its value for γ = 1 and then its derivative with respect to γ.
It is easy to check that for γ = 1, we have

𝐻 = −𝛼𝛽3𝜃 {𝛼 − 𝜃 [𝜅2 − 𝛼𝛽 (1 − 𝛽2)]} < 0

if 𝜅2 − 𝛼𝛽 (1 − 𝛽2) < 0; otherwise, we must impose:

𝜃 > 𝛼
𝜅2 − 𝛼𝛽 (1 − 𝛽2)

> 𝛼
𝜅2 .

Deriving H with respect to γ yields

𝜕𝐻
𝜕𝛾

= 𝑝0
𝜕2𝑝1
𝜕2𝛾

− 𝑝1
𝜕2𝑝0
𝜕2𝛾

= 2𝛼𝜃𝛽3 (1 − 𝛽) {[1 − 𝛾 (1 − 𝛾𝛽)] {𝜃 [𝜅2 + 𝛼 (1 − 𝛽)] − 𝛼} + 𝛽3𝛾2𝛼𝜃} > 0.

Consequently, given that H < 0 for γ = 1 and 𝜕𝐻
𝜕𝛾 > 0 for ∀𝛾 ∈ [0, 1], we conclude that

𝜕𝑐𝑐𝑔
𝜋

𝜕𝛾
< 0.

Deriving 𝑑𝑐𝑔
𝜋 given by (53) with respect to γ yields:

𝜕𝑑𝑐𝑔
𝜋

𝜕𝛾
= 𝜅2𝜃 − 𝛼

𝜅𝜃
𝜕𝑑𝑐𝑔

𝑥
𝜕𝛾

= −𝜅2𝜃 − 𝛼
𝜎𝜅𝜃

𝜕𝑑𝑐𝑔
𝑟

𝜕𝛾

=
−𝛼𝛽𝜃 [Φ − 𝛾[𝛼𝛽𝛾𝜃 + (1 − 𝛾)Θ] 𝜕𝑐𝑐𝑔

𝜋
𝜕𝛾 ]

[Θ + 𝜃𝛼𝛾2𝛽2(𝛽 − 𝑐𝑐𝑔
𝜋 ) + 𝛾𝛽(1 − 𝛾)(𝜃𝛼𝛽 − Θ𝑐𝑐𝑔

𝜋 )]2
,
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where Θ ≡ 𝜃(𝛼 + 𝜅2) − 𝛼 and Φ ≡ 2𝛼𝛽𝛾𝜃(𝛽 − 𝑐𝑐𝑔
𝜋 ) + (1 − 2𝛾)(𝛼𝛽𝜃 − Θ𝑐𝑐𝑔

𝜋 ). Using the fact that β is very close to
one and hence 2𝛽 − 1 > 0, and the fact that 𝑐𝑐𝑔

𝜋 < 𝜃𝛼𝛽
𝜃(𝛼+𝜅2)−𝛼 , which implies that 𝛽 − 𝑐𝑐𝑔

𝜋 > 0 and 𝜃𝛼𝛽 − Θ𝑐𝑐𝑔
𝜋 > 0,

we find that

Φ = 𝛽𝜃𝛼𝛾 (2𝛽 − 1) (𝛽 − 𝑐𝑐𝑔
𝜋 ) + 𝛽𝛾(𝜃𝜅2 − 𝛼)𝑐𝑐𝑔

𝜋 + 𝛽(1 − 𝛾) {𝜃𝛼𝛽 − [𝜃(𝛼 + 𝜅2) − 𝛼] 𝑐𝑐𝑔
𝜋 } > 0.

It follows that

𝜕𝑑𝑐𝑔
𝜋

𝜕𝛾
< 0.

Using the definition of 𝑐𝑐𝑔
𝑥 , 𝑑𝑐𝑔

𝑥 , 𝑐𝑐𝑔
𝑟 and 𝑑𝑐𝑔

𝑟 , it is straightforward to show the sign of their partial derivative with
respect to γ.

A.4 Effects of robustness

Deriving p0, p1 and p2 with respect to θ and using (50), we get:

𝜕𝑝0
𝜕𝜃

= 𝛼𝛽 {1 − 𝛽(1 − 𝛾) [1 − 𝛾(1 − 𝛽)]} =
𝑝0
𝜃

> 0,

𝜕𝑝1
𝜕𝜃

= −𝜅2 [1 − 𝛽(1 − 𝛾)2] − 𝛼(1 − 𝛽) {1 − 𝛽 [1 − 𝛾(1 − 𝛽)])} −
𝜕𝑝0
𝜕𝜃

−
𝜕𝑝2
𝜕𝜃

< 0,

𝜕𝑝2
𝜕𝜃

= 𝛾𝛽 {𝜅2(1 − 𝛾) + 𝛼 [1 − 𝛾(1 − 𝛽)]} > 0.

Deriving 𝑐𝑐𝑔
𝜋 given by (52) with respect to θ, and using 𝜕𝑝2

𝜕𝜃 = − 1
𝛽

𝜕𝑝1

𝜕𝜃 − (𝛼+𝜅2)
𝛼𝛽2

𝜕𝑝0

𝜕𝜃 , the definition of p0, p1 and p2,

𝑝1 = −𝛽𝑝2 − 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 𝑝0 and 𝑐𝑐𝑔

𝜋 = −𝑝1−√𝑝2
1−4𝑝2𝑝0

2𝑝2
yield:20

𝜕𝑐𝑐𝑔
𝜋

𝜕𝜃
= 1

2𝑝22
(𝐼

𝜕𝑝0
𝜕𝜃

+ 𝐽
𝜕𝑝1
𝜕𝜃

) ,

where 𝐼 = 2𝑝2

√𝑝2
1−4𝑝2𝑝0

{𝑝2 + (𝛼+𝜅2)
𝛼𝛽2 𝑝0 + (𝛼+𝜅2)

𝛼𝛽2 𝑝1𝑐
𝑐𝑔
𝜋 } and 𝐽 = 2𝑝2

𝛽√𝑝2
1−4𝑝2𝑝0

[(1 − 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 𝑐𝑐𝑔

𝜋 ) 𝑝0]. Using these defini-

tions and the expressions of 𝜕𝑝0

𝜕𝜃 and 𝜕𝑝1

𝜕𝜃 derived in the above, we obtain:

𝜕𝑐𝑐𝑔
𝜋

𝜕𝜃
=

(− 𝜕𝑝1

𝜕𝜃 − 1
2

𝑝1
𝜕𝑝1
𝜕𝜃 −4𝑝0

𝜕𝑝2
𝜕𝜃 −4𝑝2

𝜕𝑝0
𝜕𝜃

√𝑝2
1−4𝑝2𝑝0

) 𝑝2 − (−𝑝1 − √𝑝21 − 4𝑝2𝑝0)
𝜕𝑝2

𝜕𝜃

2𝑝22

=
(− 𝜕𝑝1

𝜕𝜃 − 1
2

𝑝1
𝜕𝑝1
𝜕𝜃 −4𝑝0

𝜕𝑝2
𝜕𝜃 −4𝑝2

𝜕𝑝0
𝜕𝜃

√𝑝2
1−4𝑝2𝑝0

)

2𝑝2
− 1

𝑝2
𝑐𝑐𝑔

𝜋
𝜕𝑝2
𝜕𝜃

.

Using 𝑝1 = −𝛽𝑝2 − 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 𝑝0, the definition of p0, p1 and p2, we can show that 𝑝0

𝜕𝑝2

𝜕𝜃 − 𝑝2
𝜕𝑝0

𝜕𝜃 > 0 and hence

𝜕𝑐𝑐𝑔
𝜋

𝜕𝜃
= − 1

2𝑝22

2𝑝2
√𝑝21 − 4𝑝2𝑝0

{[1 − 𝜃(𝛼+𝜅2)−𝛼
𝜃𝛼𝛽 𝑐𝑐𝑔

𝜋 ] (𝑝0
𝜕𝑝2
𝜕𝜃

− 𝑝2
𝜕𝑝0
𝜕𝜃

) + 1
𝜃𝛽 𝑐𝑐𝑔

𝜋 𝑝2
𝜕𝑝0
𝜕𝜃

} < 0.

Deriving 𝑑𝑐𝑔
𝜋 given by (53) with respect to θ yields

𝜕𝑑𝑐𝑔
𝜋

𝜕𝜃
=

−𝛼2[1 − 𝛽𝛾(1 − 𝛾)𝑐𝑐𝑔
𝜋 ] + 𝛼𝜃 {𝜃𝛼𝛾2𝛽2 + 𝛾𝛽(1 − 𝛾)[𝜃(𝛼 + 𝜅2) − 𝛼]} 𝜕𝑐𝑐𝑔

𝜋
𝜕𝜃

{𝜃(𝛼 + 𝜅2) − 𝛼 + 𝜃𝛼𝛾2𝛽2(𝛽 − 𝑐𝑐𝑔
𝜋 ) + 𝛾𝛽(1 − 𝛾) {𝜃𝛼𝛽 − [𝜃(𝛼 + 𝜅2) − 𝛼]𝑐𝑐𝑔

𝜋 }}2
< 0.
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André andDai DE GRUYTER

Deriving 𝑐𝑐𝑔
𝑥 , 𝑑𝑐𝑔

𝑥 , 𝑐𝑐𝑔
𝑟 and 𝑑𝑐𝑔

𝑟 with respect to θ leads to

𝜕𝑐𝑐𝑔
𝑥

𝜕𝜃
= − 1

𝜎
𝜕𝑐𝑐𝑔

𝑟
𝜕𝜃

= 𝜅𝛼
(𝜅2𝜃 − 𝛼)2

(𝛽 − 𝑐𝑐𝑔
𝜋 ) + 𝜅𝜃

𝜅2𝜃 − 𝛼
𝜕𝑐𝑐𝑔

𝜋
𝜕𝜃

,

𝜕𝑑𝑐𝑔
𝑥

𝜕𝜃
= − 1

𝜎
𝜕𝑑𝑐𝑔

𝑟
𝜕𝜃

= 𝛼𝜅
(𝜅2𝜃 − 𝛼)2

(1 − 𝑑𝑐𝑔
𝜋 ) + 𝜅𝜃

𝜅2𝜃 − 𝛼
𝜕𝑑𝑐𝑔

𝜋
𝜕𝜃

.

To ensure that 𝜕𝑐𝑐𝑔
𝑥

𝜕𝜃 = − 1
𝜎

𝜕𝑐𝑐𝑔
𝑟

𝜕𝜃 > 0, and 𝜕𝑑𝑐𝑔
𝑥

𝜕𝜃 = − 1
𝜎

𝜕𝑑𝑐𝑔
𝑟

𝜕𝜃 > 0, we must have 𝜕𝑐𝑐𝑔
𝜋

𝜕𝜃 > − 𝛼(𝛽−𝑐𝑐𝑔
𝜋 )

𝜃(𝜅2𝜃−𝛼) and 𝜕𝑑𝑐𝑔
𝜋

𝜕𝜃 > − 𝛼(1−𝑑𝑐𝑔
𝜋 )

𝜃(𝜅2𝜃−𝛼) ,
respectively. For standard parameters values, these conditions are checked.

Notes
1 The attenuation principle is also called “conservatism principle” by Blinder (1998). This conventional wisdom has it that if the central
bank was not sure about the marginal effects on economic variables of a change in its instrument, it should be cautious in the sense that
it changes the instrument less than in the absence of parameter uncertainty. In the literature on robust monetary policy, the meaning of
“cautious” is reversed such that “being cautious (or precautionary)” actually signifies “to do more”, i.e. the policymaker tries to avoid bad
outcomes in the future by responding more aggressively to shocks today (Söderström 2002; Giannoni 2007).
2 Adam and Woodford (2012) have combined the possibility of a deviation from rational expectations and a concern for model robustness
by considering that private sector beliefs are not model-consistent, and the CB does not know exactly how these beliefs are formed. Having
a preference for robustness with respect to this particular type of misspecification, the CB should conduct a monetary policy that shows
greater resistance to surprise increases in inflation than would be considered optimal if the private sector forms RE.
3 Empirical studies show that consumers react sluggishly to persistent shifts in the inflation rate, see Trehan (2011) and Trehan and Lynch
(2013), meaning that they slowly adapt their inflation forecast.
4 Many arguments and proofs of this paper follow quite closely the lines of Molnár and Santoro (2014).
5 Bask and Proaño (2016) do not use the robust control approach but consider various scenarios with different parameters values.
6 There is an alternative assumption according to which the CB acts as a Stackelberg leader, and sets its policy taking account of the
malevolent agent’s choice of the specification errors (Leitemo and Söderström 2008). If we had assumed that the malevolent agent is here
the Stackelberg leader, the approach in terms of model misspecifications would lose its interest since the CB could adjust its policy according
to the scenario designed by the nature/malevolent agent (Hansen and Sargent 2003).
7 Issues of learning when monetary policy is under commitment have been studied by Evans and Honkapohja (2006) showing that both RE
commitment equilibrium (RECE) and RE discretionary equilibrium (REDE) are attainable, and Mele, Molnár, and Santoro (2014) finding
that the optimal monetary policy drives the economy far from the RECE but to the REDE.
8 The modern literature on learning algorithms was pioneered by Marcet and Sargent (1989) who studied the convergence to RE equilib-
rium when agents form expectations using least-squares learning. For a survey of the literature, see Evans and Honkapohja (2001).
9 The limitation of learning process described in (6) and (7) is that agents focus on past information and the forecast with one period ahead.
Alternatively, Preston (2005) considers that long-horizon expectations matter for monetary policy decision.
10 It is to notice that decreasing-gain learning is often the first approach adopted by most economic agents (Berardi and Galimberti 2013).
11 In the approximating model considered by Leitemo and Söderström (2008), inflation is less volatile while the output gap and the interest
rate are more volatile.
12 This condition implies that the second-order condition regarding h for the min-max problem of the CB is verified, i.e. 𝜕2ℒ 𝐶𝐵

𝑡
𝜕2ℎ𝑡

= −𝜃 +
𝛼

𝛼+𝜅2 < 0. If this condition is not verified, the fictitious malevolent agent will choose  ℎ𝑡 → ∞.
13 An alternative approach is to solve for the equilibrium by considering the ”approximating model” (Leitemo and Söderström 2008). The
latter is based on the idea that the CB sets policy and agents form expectations to reflect misspecification in the worst-case model, but there
is no such misspecification in practice in the sense that misspecification ht is null.

14 Indeed, (18) implies that 𝜕2ℒ 𝐶𝐵
𝑡

𝜕2ℎ𝑡
= −𝜃 + 𝜕𝜆1,𝑡

𝜕ℎ𝑡
. Using (19), (25) and (1), we obtain 𝜕𝜆1,𝑡

𝜕ℎ𝑡
= − 𝜅2𝜃

𝛼 + 1 + 𝛾 𝜕𝜆3,𝑡
𝜕ℎ𝑡

. Using (24), (25) and (32),

we can show that 𝜕𝜆3,𝑡
𝜕ℎ𝑡

= 0. Therefore 𝜕2ℒ 𝐶𝐵
𝑡

𝜕2ℎ𝑡
< 0. Leads to 𝜃 > 𝛼

𝛼+𝜅2 . We remark that the lower bound for θ implied by the existence of
optimal solution of the malevolent agent’s maximization problem is the same when agents are learning than under RE (see footnote 11).
15 We will show why this condition should be imposed when we solve the ALM for the output gap.
16 See Evans and Honkapohja (2001) for a presentation of different learning algorithms.
17 The relaxation of the assumption of constant-gain learning is justified by Milani (2014) who shows that private agents appear to have
often switched to constant-gain learning, with a high constant gain, during most of the 1970s and until the early 1980s, while reverting to
a decreasing-gain later on.
18 See Brunnermeier, Eisenbach, and Sannikov (2013) for a survey of the literature.
19 More details are given in a technical appendix that can be obtained upon request.
20 More details are given in the technical appendix.

Article note: A technical appendix is available upon request to the author.
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