Paths in tournaments, a simple proof of Rosenfeld's Conjecture

Charbel Bou Hanna

To cite this version:

Charbel Bou Hanna. Paths in tournaments, a simple proof of Rosenfeld's Conjecture. 2020. hal03029968

HAL Id: hal-03029968

https://hal.science/hal-03029968

Preprint submitted on 29 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Paths in tournaments, a simple proof of Rosenfeld's Conjecture

Charbel Bou Hanna
Lebanese University, KALMA Laboratory, Baalbek
University of Angers, LAREMA Laboratory, Angers

Abstract

Rosenfeld Conjectured [7] in 1972 that there exists an integer $K \geq 8$ such that any tournament of order $n \geq K$ contains any Hamiltonian oriented path. In 2000, Havet and Thomassé [5] proved this conjecture for any tournament with exactly 3 exceptions. We give a simplified proof of this fact.

1 Introduction

A tournament T is an orientation of a complete graph. The set of vertices of T is denoted by $V(T)$ and the set of arcs by $E(T) . v(T)$ will denote the order of $T,|V(T)|$. Sometimes, we write $|T|$ instead of $v(T)$. T is said to be an n-tournament if $v(T)=n$.
The out-neighbour (resp. in-neighbour) of a vertex v in T is denoted by $N_{T}^{+}(v)$ (resp. $\left.N_{T}^{-}(v)\right)$ and its out-degree (resp. in-degree) is denoted by $d_{T}^{+}(v)$ (resp. $d_{T}^{-}(v)$). We denote by $\delta^{+}(T)$ (resp. $\left.\delta^{-}(T)\right)$ the minimal out-degree (resp. indegree) and by $\Delta^{+}(T)$ (resp. $\left.\Delta^{-}(T)\right)$ the maximal out-degree (resp. in-degree). Note that $\delta^{-}(T) \leq \Delta^{+}(T)$ (resp. $\delta^{+}(T) \leq \Delta^{-}(T)$). A tournament T is said to be regular if $d^{+}(v)=d^{-}(v) \forall v \in V(T)$. A cyclic triangle is a circuit of length 3. We denote by T_{4}^{+}a tournament composed of a circuit triangle together with a source. A Paley tournament on 7 vertices is a tournament T such that $V(T)=\left\{v_{i}, 1 \leq i \leq 7\right\}$ and $\left(v_{i}, v_{j}\right) \in E(T)$ if and only if $j-i \equiv 1,2$ or $4(\bmod 7)$. We write $T^{\prime} \subseteq T$ whenever T^{\prime} is a subtournament of T. Let $S \subseteq V(T)$, we denote by $T[S]$ the subtournament of T induced by S. If $T^{\prime} \subseteq T$ and $S \subseteq V(T)$, we write $T^{\prime}+S=T\left[V\left(T^{\prime}\right) \cup S\right]$ and $T^{\prime}-S=T\left[V\left(T^{\prime}\right)-S\right]$. Let $v \in V(T)$, $d_{S}^{+}(v)=\left|N_{T}^{+}(v) \cap S\right|$ and $d_{S}^{-}(v)=\left|N_{T}^{-}(v) \cap S\right|$. A subset $\left\{x_{1}, \ldots, x_{r}\right\}$ in T will be denoted by $\left[x_{1}, x_{r}\right]$.
Let $P=x_{1} \ldots x_{s}$ be an oriented path, set $\widetilde{P}=x_{s} \ldots x_{1} . \quad P$ is called an s-path, x_{1} and x_{s} are its extremities, x_{1} is the origin and x_{s} is the end. The length of $P, l(P)$, is the number of its arcs. P is said to be directed if all of its arcs are oriented in the same direction. A block of P is a maximal (for \subseteq) directed subpath of P. The path P is said to be of type $P\left(b_{1}, \ldots, b_{m}\right)$ and we write $P=P\left(b_{1}, \ldots, b_{m}\right)$, if P is composed of m successive blocks B_{1}, \ldots, B_{m}, such that $l\left(B_{i}\right)=b_{i}$. Moreover, we write $P=P^{+}\left(b_{1}, \ldots, b_{m}\right)$, if $\left(x_{1}, x_{2}\right) \in E(P)$. Else, we
write $P=P^{-}\left(b_{1}, \ldots, b_{m}\right) . P$ is said to be antidirected if each block of P is of length 1.
Note that if $P=x_{1} \ldots x_{s}=P^{+}\left(b_{1}, \ldots, b_{m}\right)$ (resp. $P^{-}\left(b_{1}, \ldots, b_{m}\right)$) and $P^{\prime}=$ $x_{1}^{\prime} \ldots x_{s}^{\prime}=P^{+}\left(b_{1}, \ldots, b_{m}\right)$ (resp. $\left.P^{-}\left(b_{1}, \ldots, b_{m}\right)\right)$, then P and P^{\prime} are isomorphic. We write $P \equiv P^{\prime}$. Furthermore, if we write $x_{1} \ldots x_{s} \equiv x_{1}^{\prime} \ldots x_{s}^{\prime}$, then the mapping:

$$
\begin{aligned}
f: \quad V(P) & \rightarrow V\left(P^{\prime}\right) \quad \text { is an isomorphism. } \\
x_{i} & \rightarrow f\left(x_{i}\right)=x_{i}^{\prime}
\end{aligned}
$$

A path P, in a tournament T, is said to be Hamiltonian if $V(P)=V(T)$. Let $P=x_{1} \ldots x_{s}$ and $Q=y_{1} \ldots y_{r}$ be 2 disjoint paths in $T, P Q$ denotes the path $x_{1} \ldots x_{s} y_{1} \ldots y_{r}$. In a similar way, we may define the path $P_{1} P_{2} \ldots P_{t}$ from t pairewisely disjoint paths P_{1}, \ldots, P_{t} of T. Let $P=v_{1} \ldots v_{i-1} v_{i} v_{i+1} \ldots v_{n}$ be an oriented path in a tournament T, then $P-v_{i}$ is the path $v_{1} . . v_{i-1} v_{i+1} \ldots v_{n}$ in T. A strong tournament is such that any two of its vertices can be joined by a directed path. It is known that any tournament T is a transitive union of strong subtournaments (called strong components) $I_{1}, I_{2}, \ldots, I_{t}$ that is $\left(v_{i}, v_{j}\right) \in$ $E(T) \forall i<j, v_{i} \in I_{i}$ and $v_{j} \in I_{j}$. We write $T=I_{1} \ldots I_{t}$. A strong tournament is characterized by the following property due to Camion [2].

Theorem 1. T is strong if and only if T contains a Hamiltonian circuit.
As a consequence of the above theorem, if $T=I_{1} \ldots I_{t}$, then T contains a directed path ending at x with $V(P)=V\left(I_{1}\right) \cup \ldots \cup V\left(I_{i}\right)$ for every $x \in T_{i}$.
The complement of a digraph D, denoted by \bar{D}, is the digraph obtained from D by reversing all its arcs.

In 1971, Grünbaum [4] proved the following theorem:
Theorem 2. Any tournament contains any Hamiltonian antidirected path with exactly 3 exceptions: a cyclic triangle (T_{3}), a regular tournament on 5 vertices (T_{5}) and a Paley tournament on 7 vertices (T_{7}).

Set $\mathcal{T}_{3,5,7}=\left\{T_{3}, T_{5}, T_{7}\right\}$. Note that if $T \in \mathcal{T}_{3,5,7}$ contains a copy of a path P, then any vertex in T is an origin of a copy of P. Rosenfeld [7], in 1972, inspired by the work of Grünbaum, conjectured that there exists $K \geq 8$ such that any tournament of order $n \geq K$ contains any Hamiltonian oriented path. The case of directed path being Rédei's theorem [6]. Alspach, Rosenfeld [1] and Straight [9] proved Rosenfeld's conjecture on paths of 2 blocks. In 1973, Forcade [3] proved Rosenfeld's conjecture for any tournament of order 2^{n}. Thomason [10] was the first one to give a general answer. He proved, in 1986, that there exists $n_{0}<2^{128}$ such that for all $n \geq n_{0}$ any tournament of order n contains any Hamiltonian oriented path. Havet and Thomassé settled the problem by proving that the three exceptions of Grünbaum are the only tournaments not satisfying Rosenfled's conjecture. Havet and Thomassé's proof consists of giving a refinement of a key idea introduced by Thomason saying that any set of $b_{1}+1$ vertices in an n-tournament contains an origin of any $(n-1)$-path whose first block is of length b_{1}. They proved that if $s^{+}(x, y) \geq b_{1}+1$, then x or y is an origin of a copy of such path where $s^{+}(x, y)=\mid\{z \in T$ such that z can be reached from x or y by a directed path\}|. This new performance allowed them to remark that proving the existence of an $(n-1)$-oriented path in any n-tournament T is equivalent to the existence of any Hamiltonian path P in
this tournament unless (T, P) is one of the 69 exceptions that were verified one by one. In this paper, we give a simple proof of the result without treating all these exceptions.

2 The main result

In our proof, we are going to use the following theorem due to El-sahili and Ghazo-Hanna [8].

Theorem 3. A path lies in a tournament T if and only if it lies in \bar{T}.
The following Lemmas will be useful in the sequel.
Lemma 1. Let T be a tournament then $\left|\left\{v \in T / T-v \in \mathcal{T}_{3,5,7}\right\}\right| \leq 2$.
Proof. Suppose that T contains 3 distinct vertices, v_{1}, v_{2}, v_{3} such that $T-$ $v_{i} \in \mathcal{T}_{3,5,7}, 1 \leq i \leq 3$. We may suppose without loss of generality that $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right) \in E(T)$. Since $T-v_{1} \in \mathcal{T}_{3,5,7}$ and $T-v_{3} \in \mathcal{T}_{3,5,7}$, then $N_{T-v_{3}}^{-}\left(v_{1}\right)=N_{T-v_{1}}^{-}\left(v_{3}\right)$ and $N_{T-v_{1}}^{+}\left(v_{3}\right)=N_{T-v_{3}}^{+}\left(v_{1}\right)$, but $v_{2} \in N_{T-v_{3}}^{+}\left(v_{1}\right)$ and $v_{2} \notin N_{T-v_{1}}^{+}\left(v_{3}\right)$, which is a contradiction.

We may deduce from this Lemma more precise conclusions. Indeed, if $T \in \mathcal{T}_{3,5,7}$, then $\forall x \in T, \exists y \in N^{+}(x)$ such that $T-\{x, y\} \notin \mathcal{T}_{3,5,7}$.

Lemma 2. (Simple Lemma) Let $n \geq 4$. Suppose that any s-tournament $(s<$ n) contains any s-path unless if the tournament is in $\mathcal{T}_{3,5,7}$ and the path is antidirected. Let T be an n-tournament with a vertex v such that $d^{-}(v)=0$ and let $P=x_{1} \ldots x_{n}$ be a non directed path. Unless $P=P^{+}(1,2)$ and $T-v$ is a cyclic triangle, we have:

1. T contains a copy of P with origin $x \neq v$.
2. Any of the vertices of $T-v$ is an origin of a copy of P if $T-v \in \mathcal{T}_{3,5,7}$.

Proof.

1. Let $j \in[2, n]$ be the minimal integer such that $d_{P}^{-}\left(x_{j}\right)=0$. If $j=n$, then $T-v$ contains a path P^{\prime} such that $P^{\prime} v \equiv P$ since otherwise $P-x_{j}$ is antidirected and so $P=P^{+}(1,2)$ and $T=T_{4}^{+}$which is a contradiction. Otherwise, $1<j<n$. In this case, $P-x_{j}+\left(x_{j-1}, x_{j+1}\right)$ or $P-x_{j}+$ $\left(x_{j+1}, x_{j-1}\right)$ is not antidirected. Suppose that $P^{\prime}=P-x_{j}+\left(x_{j-1}, x_{j+1}\right)$ is not antidirected, then $T-v$ contains a path $v_{1} v_{2} \ldots v_{j-1} v_{j+1} \ldots v_{n} \equiv P^{\prime}$ and so $v_{1} \ldots v_{j-1} v v_{j+1} \ldots v_{n} \equiv P$ and $v_{1} \neq v$.
2. If $T-v \in \mathcal{T}_{3,5,7}$, then we may suppose that a copy of P^{\prime} may be found in $T-v$ starting at any one of the vertices of $T-v$.

By analogy, the above lemma is valid if $d^{+}(v)=0$ with the only exception where $P=P^{-}(1,2)$ and $T-v$ is a cyclic triangle. Using the same reasoning, we may deduce that if P contains a vertex x_{j} with $1<j<n$ such that $d_{P}^{-}\left(x_{j}\right)=0$, then T contains a copy of P such that v is not an extremity of P.
We are going now to present the proof of the main result.

Theorem 4. Any n-tournament contains any n-path unless the three exceptions of Grünbaum.

Proof. Let T be an n-tournament and let $P=x_{1} \ldots x_{n}$ be an n-path. If $n \leq 4$, then any n-path is either directed, antidirected or of two blocks. By theorem 3 , the problem will be solved if we prove the existence of $\hat{\mathrm{P}}$ in $\hat{\mathrm{T}}$, where $\hat{\mathrm{P}} \in\{P, \bar{P}\}$ and $\hat{\mathrm{T}} \in\{T, \bar{T}\}$. We may suppose, without loss of generality, that $\Delta^{+}(T) \geq$ $\Delta^{+}(\bar{T})$. We argue by induction on $|T| \geq 5$. The case $\delta^{-}(T)=0$ can be deduced from simple lemma and Rédei's theorem. Set $\delta^{-}(T)=i \geq 1$ and suppose, without loss of generality, that $\left(x_{i}, x_{i+1}\right) \in E(P)$, since otherwise, we use \bar{P}. Then $x_{i} \ldots x_{n}$ is of type $P^{+}\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ for some $b_{1}, \ldots, b_{r} \geq 1$. Let $v \in T$ such that $d^{-}(v)=\delta^{-}(T), T_{1}=T\left[N^{-}(v)\right]$ and $T_{2}=T\left[N^{+}(v)\right]$. We will treat the two cases according to the existence of a copy of $x_{1} \ldots x_{i}$ in T_{1}.
Case 1. $T_{1} \nsupseteq v_{1} \ldots v_{i} \equiv x_{1} \ldots x_{i}$.
In this case, $x_{1} \ldots x_{i}$ is antidirected and $T_{1} \in \mathcal{T}_{3,5,7}$. If $b_{1} \geq 3$, let $a \in T_{2}$ such that $T_{2}-a \supseteq v_{i+3} \ldots v_{n} \equiv x_{i+3} \ldots x_{n}$. Then $T_{1}+a \supseteq v_{1} \ldots v_{i+1} \equiv x_{1} \ldots x_{i+1}$ such that $v_{i+1} \neq a$. So $v_{1} \ldots v_{i+1} v v_{i+3} \ldots v_{n} \equiv P$.
In the case $b_{1} \leq 2$, for $\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{i}-\mathbf{1}}\right) \in \mathbf{E}(\mathbf{P})$, suppose that $b_{1}=1$, we discuss if $T_{2} \supseteq v_{i+2} \ldots v_{n} \equiv x_{i+2} \ldots x_{n}$ or not. In the first case, suppose that there exists $x \in T_{1}$ such that $\left(v_{i+2}, x\right) \in E(T)$. By simple lemma, $T_{1}+v \supseteq v_{1} \ldots v_{i+1} \equiv$ $x_{1} \ldots x_{i+1}$ with $v_{i+1}=x$, so $v_{1} \ldots v_{n} \equiv P$. If $\left(x, v_{i+2}\right) \in E(T) \forall x \in T_{1}$, let t be the minimal integer $(t \geq i+2)$ such that $d_{P}^{-}\left(x_{t}\right)=0$. If there exists $y \in T_{1}$ such that $T_{2}+y \supseteq w_{i+1} \ldots w_{n} \equiv x_{i+1} \ldots x_{n}$ with $w_{i+1}=v_{i+2}$, then $\left(T_{1}-y\right)+v \supseteq v_{1} \ldots v_{i} \equiv x_{1} \ldots x_{i}$ and so $v_{1} \ldots v_{i} w_{i+1} \ldots w_{n} \equiv P$. Otherwise, $N^{-}(x) \cap$ $\left[v_{i+2}, v_{t}\right]=\phi$ and $\left(v_{t+1}, x\right) \in E(T) \forall x \in T_{1}$. In this case, let $y \in T_{1} . Q=$ $\left(v_{t+1} y v_{t} v_{t-1} \ldots v_{i+2}-v_{t}\right)-v_{i+2}$ is a directed path. If $t \geq i+3$, then $l(Q)=b_{2}-1$. $T_{2}\left[v_{t+2}, v_{n}\right]+\left\{v_{t}, v\right\} \supseteq w_{t} \ldots w_{n} \equiv x_{t} \ldots x_{n}$ with $w_{t}=v$ or, by simple lemma, $w_{t}=v_{t}$. In the other hand, by simple lemma, $T_{1}+v_{i+2} \supseteq v_{1} \ldots v_{i} v_{i+1} \equiv x_{1} \ldots x_{i+1}$ with $v_{i+1}=y$ and $v_{i} \neq v_{i+2}$, so $v_{1} \ldots v_{i} \widetilde{Q} w_{t} \ldots w_{n} \equiv P$. If $t=i+2$, let $x \in T_{1}, T_{1}-$ $x \supseteq v_{2} \ldots v_{i} \equiv x_{2} \ldots x_{i}$. If $\left(v_{t+1}, v_{t+2}\right) \in E(T), v_{t+1} v_{2} \ldots v_{i} v_{t} x v v_{t+2} \ldots v_{n} \equiv P$. If $\left(v_{t+2}, v_{t+1}\right) \in E(T)$ and there exists $y \in T_{1}$ such that $\left(v_{t+2}, y\right) \in E(T)$, consider $(a, b) \in E\left(T_{1}-y\right),\left(T_{1}-\{a, b, y\}\right)+v \supseteq v_{1} \ldots v_{i-2} \equiv x_{1} \ldots x_{i-2}$ and so $v_{1} \ldots v_{i-2} v_{t} a b v_{t+1} y v_{t+2} . . v_{n} \equiv P$. Else, let $z \in T_{1} .\left(T_{1}-z\right)+v_{t+1} \supseteq$ $v_{1} \ldots v_{i} \equiv x_{1} \ldots x_{i}$ with $v_{i} \neq v_{t+1}$ and $\left(T\left[v_{t+2}, v_{n}\right]\right)+v \supseteq w_{t+1} \ldots w_{n} \equiv x_{t+1} \ldots x_{n}$ with $w_{t+1}=v_{t+2}$ then $v_{1} \ldots v_{i} v_{t} z w_{t+1} \ldots w_{n} \equiv P$.
In the other case, $T_{2} \nsupseteq v_{i+2} \ldots v_{n} \equiv x_{i+2} \ldots x_{n}$, so $T_{2} \in \mathcal{T}_{3,5,7}$ and $x_{i+2} \ldots x_{n}$ is antidirected. If $b_{2}=1$, then P is antidirected treated in Theorem 2. Otherwise, $b_{2}=2$. Let $a \in T_{2}$, then $T_{1}+a \supseteq v_{1} \ldots v_{i+1} \equiv x_{1} \ldots x_{i+1}$ such that $v_{i+1} \neq a$. Since $v_{i+1} \in T_{1} \in \mathcal{T}_{3,5,7}$, then $d_{T_{2}}^{-}\left(v_{i+1}\right) \geq 2$, there exists $b \in T_{2}-a$ such that $\left(b, v_{i+1}\right) \in E(T)$. If $T_{2}-\{a, b\} \supseteq Q \equiv x_{i+4} \ldots x_{n}$, then $v_{1} \ldots v_{i+1} b v Q \equiv P$. Otherwise, there exists $c \in T_{2}-\{a, b\}$ such that $(c, b) \in E(T)$, then, by simple lemma, $\left(T_{2}-\{a, b\}\right)+v \supseteq Q \equiv x_{i+3} \ldots x_{n}$ starting by c, then $v_{1} \ldots v_{i+1} b Q \equiv P$. For $\mathbf{b}_{\mathbf{1}}=\mathbf{2}$, here also we study if $T_{2} \supseteq v_{i+2} \ldots v_{n} \equiv x_{i+2} \ldots x_{n}$ or not. In the first case, let $x \in N^{-}\left(v_{i+2}\right) \cap T_{1}$, if any, by simple lemma, $T_{1}+v \supseteq v_{1} \ldots v_{i+1} \equiv$ $x_{1} \ldots x_{i+1}$ with $v_{i+1}=x$ and so $v_{1} \ldots v_{n} \equiv x_{1} \ldots x_{n}$. If $N^{-}\left(v_{i+2}\right) \cap T_{1}=\phi, v$ can be inserted inside $v_{i+3} \ldots v_{n}$ to obtain a path $Q \equiv x_{i+2} \ldots x_{n}$ starting at v_{i+3} in $\left(T_{2}-v_{i+2}\right)+v$. Similarly, by simple lemma, if $N^{-}\left(v_{i+3}\right) \cap T_{1}=\phi$, we may find a copy of P in T, so, we may suppose in the sequel that $d_{T_{1}}^{-}\left(v_{i+2}\right)=d_{T_{1}}^{-}\left(v_{i+3}\right)=0$.

As above, let $t \geq i+3$ be the minimal integer such that $d_{P}^{-}\left(x_{t}\right)=0$. If $t=i+3$, since $T_{1} \in \mathcal{T}_{3,5,7}$, then $d_{T_{2}}^{+}(x) \geq 1 \forall x \in T_{1}$, since otherwise, $\Delta^{+}(\bar{T})>\Delta^{+}(T)$. If there exists $x \in T_{1}$ and $a \in T_{2}$ such that $(x, a) \in E(T)$ and $d_{T_{2}-v_{i+2}}^{-}(a) \geq 1$, let $b \in N_{T_{2}-v_{i+2}}^{-}(a)$. By simple lemma, $T_{1}+v_{i+2} \supseteq v_{1} \ldots v_{i+1} \equiv x_{1} \ldots x_{i+1}$ with $v_{i+1}=x .\left(T_{2}-\left\{a, v_{i+2}\right\}\right)+v \supseteq v_{i+3} \ldots v_{n} \equiv x_{i+3} \ldots x_{n}$ with $v_{i+3}=v$ or, by simple lemma, $v_{i+3}=b$, so $v_{1} \ldots v_{i+1} a v_{i+3} \ldots v_{n} \equiv P$. Otherwise, if $\left(v_{i+2}, a\right) \in E(T)$, then the problem is solved by considering $v_{1} \ldots v_{i+1} \equiv x_{1} \ldots x_{i+1}$ in $T_{1}+v_{i+3}$. Otherwise, there exists $a \in T_{2}$ such that $\forall x \in T_{1}, \forall y \in T_{2}-a$, we have (x, a), $(y, x),(a, y) \in E(T)$. Let $y \in T_{2}-a$ such that $T_{2}-\{a, y\} \notin T_{3,5,7} . T_{1}+y \supseteq$ $v_{1} \ldots v_{i+1} \equiv x_{1} \ldots x_{i+1}$ with $v_{i+1} \neq y$ and $T_{2}-\{a, y\} \supseteq v_{i+4} \ldots v_{n} \equiv x_{i+4} \ldots x_{n}$ then $v_{1} \ldots v_{i+1} a v v_{i+4} \ldots v_{n} \equiv P$. If $t>i+3$, let $x \in T_{1}, T_{1}-x \supseteq v_{2} \ldots v_{i} \equiv$ $x_{2} \ldots x_{i}$. If $\left(T_{2}-v_{i+2}\right)+\left\{v, x, v_{i}\right\} \supseteq w_{i} \ldots w_{n} \equiv x_{i} \ldots x_{n}$ with $w_{i} \in\left\{v_{i+3}, v_{i}\right\}$, then $v_{i+2} v_{2} \ldots v_{i-1} w_{i} \ldots w_{n} \equiv P$. Otherwise, $\forall x \in T_{1} N^{-}(x) \cap\left[v_{i+4}, v_{t}\right]=\phi$ and $\left(v_{t+1}, x\right) \in E(T)$. Let $x, y \in T_{1}$ such that $(x, y) \in E(T)$ and $T_{1}-\{x, y\} \supseteq$ $v_{2} \ldots v_{i-1} \equiv x_{2} \ldots x_{i-1}$. As above, $\left(T_{2}-\left\{v_{i+2}, v_{i+3}\right\}\right)+\{y, v\} \supseteq w_{i+2} \ldots w_{n} \equiv$ $x_{i+2} \ldots x_{n}$ with $w_{i+2} \in\left\{y, v_{i+4}\right\}$, so $v_{i+2} v_{2} \ldots v_{i-1} v_{i+3} x w_{i+2} \ldots w_{n} \equiv P$. If $T_{2} \nsupseteq$ $v_{i+2} \ldots v_{n} \equiv x_{i+2} \ldots x_{n}$ then, $x_{i+2} \ldots x_{n}$ is antidirected and $T_{2} \in \mathcal{T}_{3,5,7}$. If $\left|T_{2}\right|>$ $\left|T_{1}\right|$, the problem is solved by considering $\overline{\widetilde{P}}\left(b_{1}=1\right)$. Otherwise, $\left|T_{1}\right|=\left|T_{2}\right|$. Let $x \in T_{1} . T_{2}+x \supseteq v_{i+1} \ldots v_{n} \equiv x_{i+1} \ldots x_{n}$ such that $v_{i+1} \neq x$. If there exists $y \in T_{1}-x$ such that $\left(y, v_{i+1}\right) \in E(T)$, then $\left(T_{1}+v\right)-x \supseteq w_{1} . . w_{i} \equiv x_{1} \ldots x_{i}$ with $w_{i}=y$ and so $w_{1} \ldots w_{i} v_{i+1} . . v_{n} \equiv P$, unless $T_{1}-\{x, y\} \in \mathcal{T}_{3,5,7}$, then there exists $z \in T_{1}-\{x, y\}$ such that $(y, z) \in E(T)$. By simple lemma, $\left(T_{1}-\{x, y\}\right)+v \supseteq$ $w_{1} \ldots w_{i-1}$ with $w_{i-1}=z$, and so $w_{1} \ldots w_{i-1} y v_{i+1} \ldots v_{n} \equiv P$. Otherwise T_{1} and T_{2} are cyclic triangles. The problem is solved unless if for $u \in T, T\left[N^{+}(u)\right]$, $T\left[N^{-}(u)\right] \in T_{3}$. So, if $u \in T_{1}$, then $d_{T_{2}}^{+}(u)=1$. Else, $d_{T_{1}}^{+}(u)=2$. Set $V\left(T_{1}\right)=\{x, y, z\}$, then $T_{2}+x \supseteq v_{4} \ldots v_{7} \equiv x_{4} \ldots x_{7}$. Since $x_{4} \ldots x_{7}$ is antidirected, then $v_{5}=x$. Suppose, without loss of generality that, $\left(y, v_{4}\right) \in E(T)$, then $z v y v_{4} \ldots v_{7} \equiv P$.
If $\left(\mathbf{x}_{\mathbf{i}-\mathbf{1}}, \mathbf{x}_{\mathbf{i}}\right) \in \mathbf{E}(\mathbf{P})$, let $x \in T_{1} . T_{1}-x \supseteq Q_{1} \equiv x_{1} \ldots x_{i-1}$. If $T_{2}+x \supseteq v_{i+1} \ldots v_{n} \equiv$ $x_{i+1} \ldots x_{n}$ and $v_{i+1} \neq x, Q_{1} v v_{i+1} \ldots v_{n} \equiv P$. If $v_{i+1}=x$, then, by simple lemma, $T_{1}+v \supseteq v_{1} \ldots v_{i+1} \equiv x_{1} \ldots x_{i+1}$ such that $v_{i+1}=x$. Then $v_{1} \ldots v_{n} \equiv P$. If $T_{2}+x$ contains no copy of $x_{i+1} \ldots x_{n}$, then this path is antdirected, so we consider $\widetilde{P}=y_{1} \ldots y_{n}$ to remark that P or \bar{P} contains the $\operatorname{arcs}\left(y_{i}, y_{i-1}\right)$ and $\left(y_{i}, y_{i+1}\right)$, we recover a previous case.
Case 2. $T_{1} \supseteq v_{1} \ldots v_{i} \equiv x_{1} \ldots x_{i}$.
If $b_{1} \geq 2$, then either $T_{2} \supseteq v_{i+2} \ldots v_{n} \equiv x_{i+2} \ldots x_{n}$ or not. In the first case, $v_{1} \ldots v_{i} v v_{i+2} \ldots v_{n} \equiv P$ and in the last case, $T_{2} \in \mathcal{T}_{3,5,7}$ and $x_{i+2} \ldots x_{n}$ is antidirected. If $\exists x \in T_{2}$ such that $\left(v_{i}, x\right) \in E(T)$, then, by simple lemma, $T_{2}+v \supseteq v_{i+1} \ldots v_{n} \equiv x_{i+1} \ldots x_{n}$ with $v_{i+1}=x$. Thus $v_{1} \ldots v_{i} v_{i+1} \ldots v_{n} \equiv P$. Otherwise, $\left(x, v_{i}\right) \in E(T) \forall x \in T_{2}$, we have $\left(v_{i}, v_{j}\right) \in E(T)$ whenever $j<i$, since otherwise $\Delta^{+}(\bar{T}) \geq d_{\bar{T}}^{+}\left(v_{i}\right)=d_{T}^{-}\left(v_{i}\right)>\left|T_{2}\right|=d^{+}(v)=\Delta^{+}(T)$, a contradiction. By simple lemma, $T_{2}+v_{i}$ contains a path $v_{i+1} \ldots v_{n} \equiv x_{i+1} \ldots x_{n}$ with $v_{i+1} \in T_{2}$. If $i=1$, then $v v_{i+1} \ldots v_{n} \equiv P$. Otherwise, let $j<i$ be the maximal integer such that $d_{P}^{+}\left(x_{j}\right)=0$, then $v_{1} \ldots v_{j-1} v v_{j} \ldots v_{i-1} \equiv x_{1} \ldots x_{i}$. Since $\left(v_{i}, v_{i-1}\right) \in E(T)$, then $\exists x \in T_{2}$ such that $\left(v_{i-1}, x\right) \in E(T)$. By simple lemma, we suppose that $v_{i+1}=x$ and so $v_{1} \ldots v_{j-1} v v_{j} \ldots v_{i-1} v_{i+1} \ldots v_{n} \equiv P$.
Now, we will study the case $b_{1}=1$. Suppose that $N^{+}\left(v_{i}\right) \cap T_{2} \neq \phi$. Let $I_{1}, I_{2}, \ldots I_{t}$ be the strong connected components of T_{2} such that $T_{2}=I_{1} \ldots I_{t}$ and
let $l=\max \left\{j, N^{+}\left(v_{i}\right) \cap I_{j} \neq \phi\right\}, I=I_{1} I_{2} \ldots I_{l}$ and $s=|I|$. We discuss according to the value of s :
For the case $\mathbf{s}>\mathbf{b}_{\mathbf{2}}$, let $Q=u_{1} \ldots u_{b_{2}+1}$ be a directed path in I such that $u_{b_{2}+1} \in N^{+}\left(v_{i}\right)$ and let $j=i+b_{2}+2$. So either $T_{2}-\left[u_{2}, u_{b_{2}+1}\right]$ contains a path $v_{j} \ldots v_{n} \equiv x_{j} \ldots x_{n}$, and in this case $v_{1} \ldots v_{i} u_{b_{2}+1} \ldots u_{2} v v_{j} \ldots v_{n} \equiv P$, or $T_{2}-\left[u_{2}, u_{b_{2}+1}\right] \in \mathcal{T}_{3,5,7}$ and $x_{j} \ldots x_{n}$ is antidirected. By simple lemma, $\left(T_{2}-\right.$ $\left.\left[u_{2}, u_{b_{2}+1}\right]\right)+v$ contains a path $v_{j-1} \ldots v_{n} \equiv x_{j-1} \ldots x_{n}$ with $v_{j-1}=u_{1}$. In this case, $v_{1} \ldots v_{i} u_{b_{2}+1} \ldots u_{2} v_{j-1} \ldots v_{n} \equiv P$.
Now we will study the case $\mathbf{s}=\mathbf{b}_{\mathbf{2}}$. Let $Q=u_{1} \ldots u_{b_{2}}$ be a directed path in I such that $u_{b_{2}} \in N^{+}\left(v_{i}\right)$ and let $j=i+b_{2}+2$. If $T_{2}-I \notin \mathcal{T}_{3,5,7}$ or $x_{j} \ldots x_{n}$ is not antidirected, then $v_{1} \ldots v_{i} u_{b_{2}} \ldots u_{1} v v_{j} \ldots v_{n} \equiv P$ where $T_{2}-I \supseteq v_{j} \ldots v_{n} \equiv$ $x_{j} \ldots x_{n}$. Otherwise, we will continue the proof depending on the orientation of $x_{i} x_{i-1}$ and on the value of i. If $\left(x_{i-1}, x_{i}\right) \in E(P)$ or $i=1$, let $a \in T_{2}-I$. By simple lemma, $\left(T_{2}-(I \cup a)\right)+v_{i}$ contains a path $v_{j} \ldots v_{n} \equiv x_{j} \ldots x_{n}$ with $v_{j} \neq v_{i}$, then $v_{1} \ldots v_{i-1}$ va $u_{b_{2}} \ldots u_{1} v_{j} \ldots v_{n} \equiv P$. Otherwise, $\left(x_{i}, x_{i-1}\right) \in E(P)$ and $i \geq 2$. If $N^{+}\left(v_{i-1}\right) \cap\left(T_{2}-I\right) \neq \phi$, let $a \in N^{+}\left(v_{i-1}\right) \cap\left(T_{2}-I\right)$. As above $\exists r<i$ such that $v_{1} \ldots v_{r-1} v v_{r} \ldots v_{i-1} \equiv x_{1} \ldots x_{i}$ and by simple lemma $\left(T_{2}-(I \cup a)\right)+v_{i} \supseteq v_{j} \ldots v_{n} \equiv x_{j} \ldots x_{n}$ with $v_{j} \neq v_{i}$, so $v_{1} \ldots v_{r-1} v v_{r} \ldots v_{i-1} a u_{b_{2}} \ldots$ $u_{1} v_{j} \ldots v_{n} \equiv P$. Otherwise, let $a b c$ be a cyclic triangle in $T_{2}-I$. Then, if $b_{2} \geq 2$, $v_{1} \ldots v_{i-1} a v_{i} b u_{b_{2}} \ldots u_{3} v v_{j} \ldots v_{n} \equiv P$ with $v_{j} \ldots v_{n} \subseteq\left(T_{2}-(I \cup\{a, b\})\right)+\left\{u_{1}, u_{2}\right\}$ such that $v_{j} \ldots v_{n} \equiv x_{j} \ldots x_{n}$. If $b_{2}=b_{3}=1, v_{1} \ldots v_{i-1}$ a $v_{i} b c v v_{j+2} \ldots v_{n} \equiv P$ where $v_{j+2} \ldots v_{n} \subseteq T_{2}-\{a, b, c\}$. If $b_{2}=1, b_{3}=2$ and $T_{2}-I \in\left\{T_{5}, T_{7}\right\}$, choose $d \in T_{2}-\left\{u_{1}, a, b, c\right\}$ such that $T_{2}-\left\{u_{1}, a, b, c, d\right\} \notin \mathcal{T}_{3,5,7}$ (d exists by Lemma 1), then $v_{1} \ldots v_{i-1} d v_{i} a b c v v_{j+3} \ldots v_{n} \equiv P$ where $v_{j+3} \ldots v_{n} \subseteq T_{2}-\{a, b, c, d\}$.

For the remaining cases, $T_{2}=T_{4}^{+}$. The possible situations are the following. If $\left|T_{1}\right|=2$, then a copy of P is found by considering $\overline{\widetilde{P}}$. If $\left|T_{1}\right|=3$, we have the following two cases:

$$
v_{7} v_{6} v_{5} v_{2} v_{3} v v_{4} v_{1} \equiv P
$$

If $\left|T_{1}\right|=4$, the problem is solved unless $T_{1}=\overline{T_{2}}$ and $x_{1} \ldots x_{4} \equiv x_{9} \ldots x_{6}$.

In this case, we have:

$v_{3} v v_{2} v_{1} v_{4} v_{6} v_{7} v_{8} v_{5} \equiv P$.

Finally, $\mathbf{s} \leq \mathbf{b}_{\mathbf{2}} \mathbf{- 1}$. Let $u_{1} \ldots u_{s}$ be a directed path in T_{2} such that $\left(v_{i}, u_{s}\right) \in$ $E(T)$. If $s \geq 2$, then $b_{2} \geq 3$. Let Q be a directed path of length $b_{2}-s-1$ in $T_{2}-\left[u_{1}, u_{s}\right]$ such that $\left(T_{2}-Q\right)-\left[u_{1}, u_{s}\right] \supseteq Q_{1} \equiv x_{i+b_{2}+2} \ldots x_{n}$, and let Q_{2} be a Hamiltonian directed path in $T\left[\left\{u_{1}, \ldots, u_{s-2}, u_{s}\right\}\right]$. If $\left(x_{i-1}, x_{i}\right) \in E(P)$ or $\left|T_{1}\right|=$ 1 then $v_{1} \ldots v_{i-1} v u_{s} v_{i} Q u_{s-1} \ldots u_{1} Q_{1} \equiv P$. Otherwise, $\left(x_{i}, x_{i-1}\right) \in E(P)$, then $\left(T_{1}-v_{i}\right)+v \supseteq v_{1}^{\prime} \ldots v_{i}^{\prime} \equiv x_{1} \ldots x_{i}$ such that $v_{i}^{\prime}=v_{i-1}$. We will insert Q, v, v_{i}, u_{s} into $v_{1} \ldots v_{i-1} u_{s-1} \ldots u_{1} Q_{1}$ to obtain a copy of P according to the arcs between v_{i-1}, v_{i}, u_{s-1} and $u_{s} .\left(v_{i-1}, u_{s}\right) \in E(T) \Rightarrow v_{1}^{\prime} \ldots v_{i}^{\prime} u_{s} v_{i} Q u_{s-1} \ldots u_{1} Q_{1} \equiv P$. $\left(u_{s}, v_{i-1}\right),\left(u_{s-1}, v_{i}\right) \in E(T) \Rightarrow v_{1} \ldots v_{i-1} u_{s} Q v v_{i} u_{s-1} \ldots u_{1} Q_{1} \equiv P .\left(u_{s}, v_{i-1}\right)$, $\left(v_{i}, u_{s-1}\right),\left(u_{s-1}, v_{i-1}\right) \in E(T) \Rightarrow v_{1} \ldots v_{i-1} u_{s-1} u_{s} v_{i} Q u_{s-2} \ldots u_{1} v Q_{1} \equiv P$. The only remainder case is $\left(u_{s}, v_{i-1}\right),\left(v_{i}, u_{s-1}\right),\left(v_{i-1}, u_{s-1}\right) \in E(T)$. In this case, $v_{1}^{\prime} \ldots v_{i}^{\prime} u_{s-1} v_{i} Q Q_{2} Q_{1} \equiv P$. Now, we will treat the case $s=1$ and $b_{2} \geq 2$. If $\left(x_{i}, x_{i-1}\right) \in E(P)$, then $\left|T_{2}\right| \geq 3$. If $\exists a \in\left(T_{2}-u_{1}\right) \cap N^{-}\left(v_{i-1}\right)$ and $b_{2}=\Delta^{+}(T)$, let Q be a Hamiltonian directed path in $T_{2}-\left\{u_{1}, a\right\}$, then $v_{1} \ldots v_{i-1} a v_{i} Q u_{1} v \equiv$ P. if $b_{2}<\Delta^{+}(T)$, let Q_{1} be a directed path of length $b_{2}-2$ in $T_{2}-\left\{a, u_{1}\right\}$ then $T_{2}-\left(V\left(Q_{1}\right) \cup\{a\}\right) \supseteq Q_{2}$ such that $v_{1} \ldots v_{i-1} a v_{i} Q_{1} v Q_{2} \equiv P$. If $\left(T_{2}-u_{1}\right) \cap$ $N^{-}\left(v_{i-1}\right)=\phi$, then $\left(T_{1}-v_{i-1}\right) \subseteq N^{-}\left(v_{i-1}\right) \cap N^{-}\left(u_{1}\right)$ and $\left(u_{1}, v_{i-1}\right) \in E(T)$. Since $b_{2} \geq 2$, then $x_{i+2} \ldots x_{n}$ is neither of type $P^{+}(1,2)$ nor directed starting from x_{i+2}. By simple lemma, $\left(T_{2}-u_{1}\right)+v \supseteq v_{i+2} \ldots v_{n} \equiv x_{i+2} \ldots x_{n}$ such that $v_{i+2} \neq v$. For $\left|T_{1}\right|>2$, if $\exists j<i-1$ such that $\left(v_{j}, v_{i}\right) \in E(T)$, then since $\left(T_{1}-\left\{v_{i-1}, v_{i}, v_{j}\right\}\right)+u_{1} \supseteq Q \equiv x_{1} \ldots x_{i-2}$, so $Q v_{i-1} v_{j} v_{i} v_{i+2} \ldots v_{n} \equiv P$. If $\left(v_{i}, v_{j}\right) \in E(T)$ whenever $j<i$, then $T_{1}-\left\{v_{1}, v_{i-1}\right\} \supseteq Q_{1} \equiv x_{1} \ldots x_{i-2}$ and $Q_{1} v_{i-1} v_{1} \equiv x_{1} \ldots x_{i}$. Then the problem is solved since $\left(v_{i}, v_{1}\right) \in E(T)$. For $\left|T_{1}\right|=2$, if $\exists a \in T_{2}-u_{1}$ such that $\left(T_{2}-a\right) \supseteq v_{i+3} \ldots v_{n} \equiv x_{i+3} \ldots x_{n}$ with $v_{i+3} \neq$ u_{1}, then $a v_{1} v v_{2} v_{i+3} v_{n} \equiv P$. Otherwise, by simple lemma, $x_{5} \ldots x_{n}$ is a directed path. Let $a, b \in T_{2}-u_{1}$ such that $(a, b) \in E(T) .\left|T_{2}\right|>3$, since otherwise, $N_{T}^{+}(b)=\left\{v_{2}\right\}$ then $d_{T}^{+}(b)=1$ and so $\Delta^{+}(\bar{T})>\Delta^{+}(T)$, a contradiction. Let Q be a Hamiltonian directed path in $T_{2}-\left\{a, b, u_{1}\right\}$, then $v v_{1} b a u_{1} Q v_{2} \equiv P$. For $\left(x_{i-1}, x_{i}\right) \in E(P)$ or $i=1$, if $T_{2}-u_{1} \supseteq Q \equiv x_{i+3} \ldots x_{n}$, then $v_{1} \ldots v_{i-1} v u_{1} v_{i} Q \equiv$ P. Otherwise, $T_{2}-u_{1} \in \mathcal{T}_{3,5,7}$ and $x_{i+3} \ldots x_{n}$ is antidirected. If $b_{2}=3$, let $a \in$ $T_{2}-u_{1}$, then $T_{2}-\left\{a, u_{1}\right\} \supseteq Q_{1}$ such that $v_{1} \ldots v_{i-1}$ v a $u_{1} v_{i} Q_{1} \equiv P$. Otherwise, $b_{2}=2$. If $\left|T_{1}\right|<\left|T_{2}\right|$, then, by considering \widetilde{P} or \bar{P}, we recover one of the previous cases. If $\left|T_{1}\right|=\left|T_{2}\right|$, then the problem is solved unless T_{1} is isomorphic to $\overline{T_{2}}$
and $x_{1} \ldots x_{i} \equiv x_{n} \ldots x_{n-i+1}$. Then $\exists a \in T_{1}$ such that $d_{T_{1}}^{+}(a)=0, T_{1}-a \in \mathcal{T}_{3,5,7}$ and $N^{-}(a) \cap T_{2}=\left\{u_{1}\right\}$. Let $b c d$ be a directed path in $T_{1}-a$ and let $b^{\prime} \in T_{2}-u_{1}$. $\left(T_{1}-\{a, b, c, d\}\right)+v \supseteq Q^{\prime}$ and $T_{2}-\left\{b^{\prime}, u_{1}\right\} \supseteq Q^{\prime \prime}$ such that $Q^{\prime} u_{1} b c d b^{\prime} a Q^{\prime \prime} \equiv P$. From now on, we may suppose that any copy $y_{1} \ldots y_{i}$ of $x_{1} \ldots x_{i}$ in T_{1} satisfies the condition that $N^{+}\left(y_{i}\right) \cap T_{2}=\phi$. Thus, by simple lemma, we can deduce that $x_{i} \ldots x_{1}$ is directed or is of type $P^{+}(1,2)$ with $T_{1}-y_{i}$ is a cyclic triangle. For $i=1$, if $x_{i+2} \ldots x_{n}$ is not directed, then choose $a \in T_{2}$ such that $\left(T_{2}-a\right)+v \supseteq Q$ with a $v_{1} Q \equiv P$. Otherwise, by considering $\overline{\widetilde{P}}$, the problem is solved since $b_{1} \geq 2$. For $i \geq 2$, let $a \in T_{2} \cap N^{-}\left(v_{i-1}\right)$, then $\left(T_{2}-a\right)+v \supseteq Q$ such that $v_{1} \ldots v_{i-1} a v_{i} Q \equiv$ P unless $x_{i+2} \ldots x_{n}$ is directed or $\in P^{+}(1,2)$ with $T_{2}-a$ is a cyclic triangle. If $\exists b \in\left(T_{2}-a\right) \cap N^{+}(a)$, then, if $T_{2}-a=b c d$ and $x_{i+2} \ldots x_{n}=P^{+}(1,2)$, $v_{1} \ldots v_{i-1} a b d v_{i} c v \equiv P$ or $x_{i+2} \ldots x_{n}$ is directed and $v_{1} \ldots v_{i-1} a b v Q v_{i} \equiv P$, where Q is a Hamiltonian directed path in $T_{2}-\{a, b\}$. If $\left(T_{2}-a\right) \cap N^{+}(a)=\phi$, since $d_{T_{2}}^{-}\left(v_{i-1}\right)=1$, then $d_{T_{1}}^{+}\left(v_{i-1}\right)=0$ and $i=2$. Thus, by considering $\widetilde{P}=y_{1} \ldots y_{n}$ or $\overline{\widetilde{P}}=y_{1} \ldots y_{n}$, the problem is solved since \widetilde{P} or \bar{P} contains the arcs $\left(y_{1}, y_{2}\right)$ and $\left(y_{2}, y_{3}\right)$.

Acknowledgment. I would like to thank Professor Amin El Sahili and Doctor Maydoun Mortada for their following up during the preparation of this paper.

References

[1] B. Alspach and M. Rosenfeld. "Realization of certain generalized paths in tournaments", Discrete Math 34 (1981), 199-20.
[2] P. Camion. "Chemins et Circuits Hamiltoniens des Graphs Complets", Comptes Rendus de l'Académie des Science 269 (1959), 2151-2152.
[3] R. Forcade. "Parity of Paths and Circuits in Tournaments", Discrete Math 6 (1973), 115-118.
[4] B. Grünbaum. "Antidirected Hamiltonian Paths in Tournaments", Journal of Combinational Theory. B 11 (1971), 249-257.
[5] F. Havet and S. Thomassé. "Oriented Hamiltonian Paths in Tournaments: A Proof of Rosenfeld's Conjecture", Journal of Combinational Theory. B 78 (2000), 243-273.
[6] L. Rédei. "Ein Kombinatorischer Satz", Acta Scientiarum Mathematicarum 7 (1934), 39-43.
[7] M. Rosenfeld. "Antidirected Hamiltonian Paths in Tournaments", Journal of Combinational Theory. B 12 (1972), 249-257.
[8] A. El Sahili and Z. Ghazo Hanna. "About the Number of Oriented Hamiltonian Paths and Cycles in Tournaments", submitted.
[9] H.J. Straight. "The existence of certain type of semi-walks in tournaments", Proceedings of the Southeastern Conference on Combinatorics, Graph Theory and Computing, Congress. Numer. 29 (1980), 901-908.
[10] A. Thomason. "Paths and Cycles in Tournaments", Transactions of the American Mathematical Society 296 (1986), 167-180.

