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Paths in tournaments, a simple proof of

Rosenfeld’s Conjecture

Charbel Bou Hanna

Lebanese University, KALMA Laboratory, Baalbek

University of Angers, LAREMA Laboratory, Angers

Abstract

Rosenfeld Conjectured [7] in 1972 that there exists an integer K ≥ 8 such
that any tournament of order n ≥ K contains any Hamiltonian oriented
path. In 2000, Havet and Thomassé [5] proved this conjecture for any
tournament with exactly 3 exceptions. We give a simplified proof of this
fact.

1 Introduction

A tournament T is an orientation of a complete graph. The set of vertices of
T is denoted by V (T ) and the set of arcs by E(T ). v(T ) will denote the order
of T , |V (T )|. Sometimes, we write |T | instead of v(T ). T is said to be an
n-tournament if v(T ) = n.
The out-neighbour (resp. in-neighbour) of a vertex v in T is denoted by N+

T (v)
(resp. N−

T (v)) and its out-degree (resp. in-degree) is denoted by d+T (v) (resp.
d−T (v)). We denote by δ+(T ) (resp. δ−(T )) the minimal out-degree (resp. in-
degree) and by ∆+(T ) (resp. ∆−(T )) the maximal out-degree (resp. in-degree).
Note that δ−(T ) ≤ ∆+(T ) (resp. δ+(T ) ≤ ∆−(T )). A tournament T is said to
be regular if d+(v) = d−(v)∀ v ∈ V (T ). A cyclic triangle is a circuit of length
3. We denote by T+

4 a tournament composed of a circuit triangle together
with a source. A Paley tournament on 7 vertices is a tournament T such that
V (T ) = {vi, 1 ≤ i ≤ 7} and (vi, vj) ∈ E(T ) if and only if j−i ≡ 1, 2 or 4(mod 7).
We write T ′ ⊆ T whenever T ′ is a subtournament of T . Let S ⊆ V (T ), we
denote by T [S] the subtournament of T induced by S. If T ′ ⊆ T and S ⊆ V (T ),
we write T ′ + S = T [V (T ′) ∪ S] and T ′ − S = T [V (T ′) − S]. Let v ∈ V (T ),
d+S (v) = |N+

T (v) ∩ S| and d−S (v) = |N−

T (v) ∩ S|. A subset {x1, ..., xr} in T will
be denoted by [x1, xr].

Let P = x1...xs be an oriented path, set P̃ = xs...x1. P is called an s-path,
x1 and xs are its extremities, x1 is the origin and xs is the end. The length
of P, l(P ), is the number of its arcs. P is said to be directed if all of its arcs
are oriented in the same direction. A block of P is a maximal (for ⊆) directed
subpath of P . The path P is said to be of type P (b1, ..., bm) and we write
P = P (b1, ..., bm), if P is composed of m successive blocks B1, ..., Bm, such that
l(Bi) = bi. Moreover, we write P = P+(b1, ..., bm), if (x1, x2) ∈ E(P ). Else, we
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write P = P−(b1, ..., bm). P is said to be antidirected if each block of P is of
length 1.
Note that if P = x1...xs = P+(b1, ..., bm) (resp. P−(b1, ..., bm)) and P ′ =
x′

1...x
′

s = P+(b1, ..., bm) (resp. P−(b1, ..., bm)), then P and P ′ are isomorphic.
We write P ≡ P ′. Furthermore, if we write x1...xs ≡ x′

1...x
′

s, then the mapping:

f : V (P ) → V (P ′) is an isomorphism.
xi → f(xi) = x′

i

A path P , in a tournament T , is said to be Hamiltonian if V (P ) = V (T ).
Let P = x1...xs and Q = y1...yr be 2 disjoint paths in T , PQ denotes the
path x1...xs y1...yr. In a similar way, we may define the path P1P2...Pt from
t pairewisely disjoint paths P1, ..., Pt of T . Let P = v1...vi−1 vi vi+1...vn be an
oriented path in a tournament T , then P − vi is the path v1..vi−1 vi+1...vn in T .
A strong tournament is such that any two of its vertices can be joined by a
directed path. It is known that any tournament T is a transitive union of
strong subtournaments (called strong components) I1, I2, ..., It that is (vi, vj) ∈
E(T )∀ i < j, vi ∈ Ii and vj ∈ Ij . We write T = I1...It. A strong tournament is
characterized by the following property due to Camion [2].

Theorem 1. T is strong if and only if T contains a Hamiltonian circuit.

As a consequence of the above theorem, if T = I1...It, then T contains a directed
path ending at x with V (P ) = V (I1) ∪ ... ∪ V (Ii) for every x ∈ Ti.
The complement of a digraph D, denoted by D, is the digraph obtained from
D by reversing all its arcs.

In 1971, Grünbaum [4] proved the following theorem:

Theorem 2. Any tournament contains any Hamiltonian antidirected path with
exactly 3 exceptions: a cyclic triangle (T3), a regular tournament on 5 vertices
(T5) and a Paley tournament on 7 vertices (T7).

Set T3,5,7 = {T3, T5, T7}. Note that if T ∈ T3,5,7 contains a copy of a path
P , then any vertex in T is an origin of a copy of P . Rosenfeld [7], in 1972,
inspired by the work of Grünbaum, conjectured that there exists K ≥ 8 such
that any tournament of order n ≥ K contains any Hamiltonian oriented path.
The case of directed path being Rédei’s theorem [6]. Alspach, Rosenfeld [1] and
Straight [9] proved Rosenfeld’s conjecture on paths of 2 blocks. In 1973, Forcade
[3] proved Rosenfeld’s conjecture for any tournament of order 2n. Thomason
[10] was the first one to give a general answer. He proved, in 1986, that there
exists n0 < 2128 such that for all n ≥ n0 any tournament of order n contains
any Hamiltonian oriented path. Havet and Thomassé settled the problem by
proving that the three exceptions of Grünbaum are the only tournaments not
satisfying Rosenfled’s conjecture. Havet and Thomassé’s proof consists of giving
a refinement of a key idea introduced by Thomason saying that any set of b1+1
vertices in an n-tournament contains an origin of any (n − 1)-path whose first
block is of length b1. They proved that if s+(x, y) ≥ b1 + 1, then x or y is
an origin of a copy of such path where s+(x, y) = |{z ∈ T such that z can
be reached from x or y by a directed path}|. This new performance allowed
them to remark that proving the existence of an (n − 1)-oriented path in any
n-tournament T is equivalent to the existence of any Hamiltonian path P in
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this tournament unless (T, P ) is one of the 69 exceptions that were verified one
by one. In this paper, we give a simple proof of the result without treating all
these exceptions.

2 The main result

In our proof, we are going to use the following theorem due to El-sahili and
Ghazo-Hanna [8].

Theorem 3. A path lies in a tournament T if and only if it lies in T .

The following Lemmas will be useful in the sequel.

Lemma 1. Let T be a tournament then |{v ∈ T / T − v ∈ T3,5,7}| ≤ 2.

Proof. Suppose that T contains 3 distinct vertices, v1, v2, v3 such that T −
vi ∈ T3,5,7, 1 ≤ i ≤ 3. We may suppose without loss of generality that
(v1, v2), (v2, v3) ∈ E(T ). Since T − v1 ∈ T3,5,7 and T − v3 ∈ T3,5,7, then
N−

T−v3
(v1) = N−

T−v1
(v3) and N+

T−v1
(v3) = N+

T−v3
(v1), but v2 ∈ N+

T−v3
(v1) and

v2 /∈ N+

T−v1
(v3), which is a contradiction.

We may deduce from this Lemma more precise conclusions. Indeed, if T ∈ T3,5,7,
then ∀x ∈ T , ∃ y ∈ N+(x) such that T − {x, y} /∈ T3,5,7.

Lemma 2. (Simple Lemma) Let n ≥ 4. Suppose that any s-tournament (s <
n) contains any s-path unless if the tournament is in T3,5,7 and the path is
antidirected. Let T be an n-tournament with a vertex v such that d−(v) = 0
and let P = x1...xn be a non directed path. Unless P = P+(1, 2) and T − v is
a cyclic triangle, we have:

1. T contains a copy of P with origin x 6= v.

2. Any of the vertices of T − v is an origin of a copy of P if T − v ∈ T3,5,7.

Proof.

1. Let j ∈ [2, n] be the minimal integer such that d−P (xj) = 0. If j = n,
then T − v contains a path P ′ such that P ′v ≡ P since otherwise P − xj

is antidirected and so P = P+(1, 2) and T = T+
4 which is a contradiction.

Otherwise, 1 < j < n. In this case, P − xj + (xj−1, xj+1) or P − xj +
(xj+1, xj−1) is not antidirected. Suppose that P ′ = P − xj + (xj−1, xj+1)
is not antidirected, then T − v contains a path v1 v2...vj−1 vj+1...vn ≡ P ′

and so v1...vj−1 v vj+1...vn ≡ P and v1 6= v.

2. If T − v ∈ T3,5,7, then we may suppose that a copy of P ′ may be found in
T − v starting at any one of the vertices of T − v.

By analogy, the above lemma is valid if d+(v) = 0 with the only exception where
P = P−(1, 2) and T − v is a cyclic triangle. Using the same reasoning, we may
deduce that if P contains a vertex xj with 1 < j < n such that d−P (xj) = 0,
then T contains a copy of P such that v is not an extremity of P .
We are going now to present the proof of the main result.
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Theorem 4. Any n-tournament contains any n-path unless the three exceptions
of Grünbaum.

Proof. Let T be an n-tournament and let P = x1..xn be an n-path. If n ≤ 4,
then any n-path is either directed, antidirected or of two blocks. By theorem 3,
the problem will be solved if we prove the existence of P̂ in T̂, where P̂∈ {P, P}
and T̂∈ {T, T}. We may suppose, without loss of generality, that ∆+(T ) ≥
∆+(T ). We argue by induction on |T | ≥ 5. The case δ−(T ) = 0 can be deduced
from simple lemma and Rédei’s theorem. Set δ−(T ) = i ≥ 1 and suppose,
without loss of generality, that (xi, xi+1) ∈ E(P ), since otherwise, we use P .
Then xi...xn is of type P+(b1, b2, ..., br) for some b1, ..., br ≥ 1. Let v ∈ T such
that d−(v) = δ−(T ), T1 = T [N−(v)] and T2 = T [N+(v)]. We will treat the two
cases according to the existence of a copy of x1...xi in T1.

Case 1. T1 6⊇ v1...vi ≡ x1...xi.
In this case, x1...xi is antidirected and T1 ∈ T3,5,7. If b1 ≥ 3, let a ∈ T2 such
that T2 − a ⊇ vi+3...vn ≡ xi+3...xn. Then T1 + a ⊇ v1...vi+1 ≡ x1...xi+1 such
that vi+1 6= a. So v1...vi+1 v vi+3...vn ≡ P .
In the case b1 ≤ 2, for (xi,xi−1) ∈ E(P), suppose that b1 = 1, we discuss if
T2 ⊇ vi+2...vn ≡ xi+2...xn or not. In the first case, suppose that there exists
x ∈ T1 such that (vi+2, x) ∈ E(T ). By simple lemma, T1 + v ⊇ v1...vi+1 ≡
x1...xi+1 with vi+1 = x, so v1...vn ≡ P . If (x, vi+2) ∈ E(T )∀x ∈ T1, let
t be the minimal integer (t ≥ i + 2) such that d−P (xt) = 0. If there exists
y ∈ T1 such that T2 + y ⊇ wi+1...wn ≡ xi+1...xn with wi+1 = vi+2, then
(T1−y)+v ⊇ v1...vi ≡ x1...xi and so v1...vi wi+1...wn ≡ P . Otherwise, N−(x)∩
[vi+2, vt] = φ and (vt+1, x) ∈ E(T )∀x ∈ T1. In this case, let y ∈ T1. Q =
(vt+1 y vt vt−1...vi+2−vt)−vi+2 is a directed path. If t ≥ i+3, then l(Q) = b2−1.
T2[vt+2, vn] + {vt, v} ⊇ wt...wn ≡ xt...xn with wt = v or, by simple lemma,
wt = vt. In the other hand, by simple lemma, T1+vi+2 ⊇ v1...vi vi+1 ≡ x1...xi+1

with vi+1 = y and vi 6= vi+2, so v1...vi Q̃ wt...wn ≡ P . If t = i+2, let x ∈ T1, T1−
x ⊇ v2...vi ≡ x2...xi. If (vt+1, vt+2) ∈ E(T ), vt+1 v2...vi vt x v vt+2...vn ≡ P .
If (vt+2, vt+1) ∈ E(T ) and there exists y ∈ T1 such that (vt+2, y) ∈ E(T ),
consider (a, b) ∈ E(T1 − y), (T1 − {a, b, y}) + v ⊇ v1...vi−2 ≡ x1...xi−2 and
so v1...vi−2 vt a b vt+1 y vt+2..vn ≡ P . Else, let z ∈ T1. (T1 − z) + vt+1 ⊇
v1...vi ≡ x1...xi with vi 6= vt+1 and (T [vt+2, vn]) + v ⊇ wt+1...wn ≡ xt+1...xn

with wt+1 = vt+2 then v1...vi vt z wt+1...wn ≡ P .
In the other case, T2 6⊇ vi+2...vn ≡ xi+2...xn, so T2 ∈ T3,5,7 and xi+2...xn is
antidirected. If b2 = 1, then P is antidirected treated in Theorem 2. Otherwise,
b2 = 2. Let a ∈ T2, then T1 + a ⊇ v1...vi+1 ≡ x1...xi+1 such that vi+1 6= a.
Since vi+1 ∈ T1 ∈ T3,5,7, then d−T2

(vi+1) ≥ 2, there exists b ∈ T2 − a such that
(b, vi+1) ∈ E(T ). If T2 − {a, b} ⊇ Q ≡ xi+4...xn, then v1...vi+1 b v Q ≡ P .
Otherwise, there exists c ∈ T2 − {a, b} such that (c, b) ∈ E(T ), then, by simple
lemma, (T2 − {a, b}) + v ⊇ Q ≡ xi+3...xn starting by c, then v1...vi+1 bQ ≡ P .
For b1 = 2, here also we study if T2 ⊇ vi+2...vn ≡ xi+2...xn or not. In the
first case, let x ∈ N−(vi+2) ∩ T1, if any, by simple lemma, T1 + v ⊇ v1...vi+1 ≡
x1...xi+1 with vi+1 = x and so v1...vn ≡ x1...xn. If N−(vi+2) ∩ T1 = φ, v can
be inserted inside vi+3...vn to obtain a path Q ≡ xi+2...xn starting at vi+3 in
(T2−vi+2)+v. Similarly, by simple lemma, if N−(vi+3)∩T1 = φ, we may find a
copy of P in T , so, we may suppose in the sequel that d−T1

(vi+2) = d−T1
(vi+3) = 0.
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As above, let t ≥ i+3 be the minimal integer such that d−P (xt) = 0. If t = i+3,
since T1 ∈ T3,5,7, then d+T2

(x) ≥ 1 ∀x ∈ T1, since otherwise, ∆+(T ) > ∆+(T ).

If there exists x ∈ T1 and a ∈ T2 such that (x, a) ∈ E(T ) and d−T2−vi+2
(a) ≥ 1,

let b ∈ N−

T2−vi+2
(a). By simple lemma, T1 + vi+2 ⊇ v1...vi+1 ≡ x1...xi+1 with

vi+1 = x. (T2−{a, vi+2})+v ⊇ vi+3...vn ≡ xi+3...xn with vi+3 = v or, by simple
lemma, vi+3 = b, so v1...vi+1 a vi+3...vn ≡ P . Otherwise, if (vi+2, a) ∈ E(T ),
then the problem is solved by considering v1...vi+1 ≡ x1...xi+1 in T1 + vi+3.
Otherwise, there exists a ∈ T2 such that ∀x ∈ T1, ∀ y ∈ T2 − a, we have (x, a),
(y, x), (a, y) ∈ E(T ). Let y ∈ T2 − a such that T2 − {a, y} /∈ T3,5,7. T1 + y ⊇
v1...vi+1 ≡ x1...xi+1 with vi+1 6= y and T2 − {a, y} ⊇ vi+4...vn ≡ xi+4...xn

then v1...vi+1 a v vi+4...vn ≡ P . If t > i + 3, let x ∈ T1, T1 − x ⊇ v2...vi ≡
x2...xi. If (T2 − vi+2) + {v, x, vi} ⊇ wi...wn ≡ xi...xn with wi ∈ {vi+3, vi},
then vi+2 v2...vi−1 wi...wn ≡ P . Otherwise, ∀x ∈ T1 N−(x) ∩ [vi+4, vt] = φ and
(vt+1, x) ∈ E(T ). Let x, y ∈ T1 such that (x, y) ∈ E(T ) and T1 − {x, y} ⊇
v2...vi−1 ≡ x2...xi−1. As above, (T2 − {vi+2, vi+3}) + {y, v} ⊇ wi+2...wn ≡
xi+2...xn with wi+2 ∈ {y, vi+4}, so vi+2 v2...vi−1 vi+3 xwi+2...wn ≡ P . If T2 6⊇
vi+2...vn ≡ xi+2...xn then, xi+2...xn is antidirected and T2 ∈ T3,5,7. If |T2| >

|T1|, the problem is solved by considering P̃ (b1 = 1). Otherwise, |T1| = |T2|.
Let x ∈ T1. T2 + x ⊇ vi+1...vn ≡ xi+1...xn such that vi+1 6= x. If there exists
y ∈ T1−x such that (y, vi+1) ∈ E(T ), then (T1+ v)−x ⊇ w1..wi ≡ x1...xi with
wi = y and so w1...wi vi+1..vn ≡ P , unless T1−{x, y} ∈ T3,5,7, then there exists
z ∈ T1 − {x, y} such that (y, z) ∈ E(T ). By simple lemma, (T1 − {x, y}) + v ⊇
w1...wi−1 with wi−1 = z, and so w1...wi−1 y vi+1...vn ≡ P . Otherwise T1 and
T2 are cyclic triangles. The problem is solved unless if for u ∈ T, T [N+(u)],
T [N−(u)] ∈ T3. So, if u ∈ T1, then d+T2

(u) = 1. Else, d+T1
(u) = 2. Set

V (T1) = {x, y, z}, then T2 + x ⊇ v4...v7 ≡ x4...x7. Since x4...x7 is antidirected,
then v5 = x. Suppose, without loss of generality that, (y, v4) ∈ E(T ), then
z v y v4...v7 ≡ P .
If (xi−1,xi) ∈ E(P), let x ∈ T1. T1−x ⊇ Q1 ≡ x1...xi−1. If T2+x ⊇ vi+1...vn ≡
xi+1...xn and vi+1 6= x, Q1 v vi+1...vn ≡ P . If vi+1 = x, then, by simple lemma,
T1 + v ⊇ v1...vi+1 ≡ x1...xi+1 such that vi+1 = x. Then v1...vn ≡ P . If T2 + x
contains no copy of xi+1...xn, then this path is antdirected, so we consider

P̃ = y1...yn to remark that P or P contains the arcs (yi, yi−1) and (yi, yi+1), we
recover a previous case.

Case 2. T1 ⊇ v1...vi ≡ x1...xi.
If b1 ≥ 2, then either T2 ⊇ vi+2...vn ≡ xi+2...xn or not. In the first case,
v1...vi v vi+2...vn ≡ P and in the last case, T2 ∈ T3,5,7 and xi+2...xn is an-
tidirected. If ∃x ∈ T2 such that (vi, x) ∈ E(T ), then, by simple lemma,
T2 + v ⊇ vi+1...vn ≡ xi+1...xn with vi+1 = x. Thus v1...vi vi+1...vn ≡ P . Oth-
erwise, (x, vi) ∈ E(T )∀x ∈ T2, we have (vi, vj) ∈ E(T ) whenever j < i, since
otherwise ∆+(T ) ≥ d+

T
(vi) = d−T (vi) > |T2| = d+(v) = ∆+(T ), a contradiction.

By simple lemma, T2 + vi contains a path vi+1...vn ≡ xi+1...xn with vi+1 ∈ T2.
If i = 1, then v vi+1...vn ≡ P . Otherwise, let j < i be the maximal integer such
that d+P (xj) = 0, then v1...vj−1 v vj ...vi−1 ≡ x1...xi. Since (vi, vi−1) ∈ E(T ),
then ∃x ∈ T2 such that (vi−1, x) ∈ E(T ). By simple lemma, we suppose that
vi+1 = x and so v1...vj−1 v vj ...vi−1 vi+1...vn ≡ P .
Now, we will study the case b1 = 1. Suppose that N+(vi) ∩ T2 6= φ. Let
I1, I2, ...It be the strong connected components of T2 such that T2 = I1...It and
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let l = max{j,N+(vi)∩Ij 6= φ}, I = I1 I2...Il and s = |I|. We discuss according
to the value of s:
For the case s > b2, let Q = u1...ub2+1 be a directed path in I such that
ub2+1 ∈ N+(vi) and let j = i + b2 + 2. So either T2 − [u2, ub2+1] contains
a path vj ...vn ≡ xj ...xn, and in this case v1...vi ub2+1...u2 v vj ...vn ≡ P , or
T2 − [u2, ub2+1] ∈ T3,5,7 and xj ...xn is antidirected. By simple lemma, (T2 −
[u2, ub2+1]) + v contains a path vj−1...vn ≡ xj−1...xn with vj−1 = u1. In this
case, v1...vi ub2+1... u2 vj−1...vn ≡ P .
Now we will study the case s = b2. Let Q = u1...ub2 be a directed path in I
such that ub2 ∈ N+(vi) and let j = i + b2 + 2. If T2 − I /∈ T3,5,7 or xj ...xn

is not antidirected, then v1...vi ub2 ...u1 v vj ...vn ≡ P where T2 − I ⊇ vj ...vn ≡
xj ...xn. Otherwise, we will continue the proof depending on the orientation of
xi xi−1 and on the value of i. If (xi−1, xi) ∈ E(P ) or i = 1, let a ∈ T2 − I.
By simple lemma, (T2 − (I ∪ a)) + vi contains a path vj ...vn ≡ xj ...xn with
vj 6= vi, then v1...vi−1 v a ub2 ...u1 vj ...vn ≡ P . Otherwise, (xi, xi−1) ∈ E(P )
and i ≥ 2. If N+(vi−1) ∩ (T2 − I) 6= φ, let a ∈ N+(vi−1) ∩ (T2 − I). As
above ∃ r < i such that v1...vr−1 v vr...vi−1 ≡ x1...xi and by simple lemma
(T2− (I ∪a))+ vi ⊇ vj ...vn ≡ xj ...xn with vj 6= vi, so v1...vr−1 v vr...vi−1 a ub2 ...
u1 vj ...vn ≡ P . Otherwise, let abc be a cyclic triangle in T2− I. Then, if b2 ≥ 2,
v1...vi−1 a vi b ub2 ...u3 v vj ...vn ≡ P with vj ...vn ⊆ (T2 − (I ∪ {a, b})) + {u1, u2}
such that vj ...vn ≡ xj ...xn. If b2 = b3 = 1, v1...vi−1 a vi b c v vj+2...vn ≡ P
where vj+2...vn ⊆ T2 − {a, b, c}. If b2 = 1, b3 = 2 and T2 − I ∈ {T5, T7}, choose
d ∈ T2 − {u1, a, b, c} such that T2 − {u1, a, b, c, d} /∈ T3,5,7 (d exists by Lemma
1), then v1...vi−1 d vi a b c v vj+3...vn ≡ P where vj+3...vn ⊆ T2 − {a, b, c, d}.
For the remaining cases, T2 = T+

4 . The possible situations are the following. If

|T1| = 2, then a copy of P is found by considering P̃ . If |T1| = 3, we have the
following two cases:

v1

v2

v3
v v4 v5

v6

v7

v5 v4 v v7 v6 v3 v1 v2 ≡ P .

v1

v3

v2
v v4 v5

v6

v7

v7 v6 v5 v2 v3 v v4 v1 ≡ P .

If |T1| = 4, the problem is solved unless T1 = T2 and x1...x4 ≡ x9...x6.
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In this case, we have:

v2 v3

v4

v1
v v5 v6

v7

v8

v3 v v2 v1 v4 v6 v7 v8 v5 ≡ P .

Finally, s ≤ b2 − 1. Let u1...us be a directed path in T2 such that (vi, us) ∈
E(T ). If s ≥ 2, then b2 ≥ 3. Let Q be a directed path of length b2 − s − 1 in
T2 − [u1, us] such that (T2 −Q)− [u1, us] ⊇ Q1 ≡ xi+b2+2...xn, and let Q2 be a
Hamiltonian directed path in T [{u1, ..., us−2, us}]. If (xi−1, xi) ∈ E(P ) or |T1| =
1 then v1...vi−1vusviQus−1...u1Q1 ≡ P . Otherwise, (xi, xi−1) ∈ E(P ), then
(T1 − vi) + v ⊇ v′1...v

′

i ≡ x1...xi such that v′i = vi−1. We will insert Q, v, vi, us

into v1...vi−1 us−1...u1 Q1 to obtain a copy of P according to the arcs between
vi−1, vi, us−1 and us. (vi−1, us) ∈ E(T ) ⇒ v′1...v

′

i us vi Qus−1...u1 Q1 ≡ P .
(us, vi−1), (us−1, vi) ∈ E(T ) ⇒ v1...vi−1 us Qv vi us−1...u1 Q1 ≡ P . (us, vi−1),
(vi, us−1),(us−1, vi−1) ∈ E(T ) ⇒ v1...vi−1 us−1 us vi Qus−2...u1 v Q1 ≡ P . The
only remainder case is (us, vi−1), (vi, us−1), (vi−1, us−1) ∈ E(T ). In this case,
v′1...v

′

i us−1 vi QQ2Q1 ≡ P . Now, we will treat the case s = 1 and b2 ≥ 2. If
(xi, xi−1) ∈ E(P ), then |T2| ≥ 3. If ∃ a ∈ (T2−u1)∩N−(vi−1)and b2 = ∆+(T ),
let Q be a Hamiltonian directed path in T2−{u1, a}, then v1...vi−1 a viQu1 v ≡
P . if b2 < ∆+(T ), let Q1 be a directed path of length b2−2 in T2−{a, u1} then
T2 − (V (Q1) ∪ {a}) ⊇ Q2 such that v1...vi−1 a vi Q1 v Q2 ≡ P . If (T2 − u1) ∩
N−(vi−1) = φ, then (T1 − vi−1) ⊆ N−(vi−1) ∩N−(u1) and (u1, vi−1) ∈ E(T ).
Since b2 ≥ 2, then xi+2...xn is neither of type P+(1, 2) nor directed starting
from xi+2. By simple lemma, (T2 − u1) + v ⊇ vi+2...vn ≡ xi+2...xn such that
vi+2 6= v. For |T1| > 2, if ∃ j < i − 1 such that (vj , vi) ∈ E(T ), then since
(T1 − {vi−1, vi, vj}) + u1 ⊇ Q ≡ x1...xi−2, so Qvi−1 vj vi vi+2...vn ≡ P . If
(vi, vj) ∈ E(T ) whenever j < i, then T1 − {v1, vi−1} ⊇ Q1 ≡ x1...xi−2 and
Q1 vi−1 v1 ≡ x1...xi. Then the problem is solved since (vi, v1) ∈ E(T ). For
|T1| = 2, if ∃ a ∈ T2 − u1 such that (T2 − a) ⊇ vi+3...vn ≡ xi+3...xn with vi+3 6=
u1, then a v1 v v2 vi+3 vn ≡ P . Otherwise, by simple lemma, x5...xn is a directed
path. Let a, b ∈ T2 − u1 such that (a, b) ∈ E(T ). |T2| > 3, since otherwise,
N+

T (b) = {v2} then d+T (b) = 1 and so ∆+(T ) > ∆+(T ), a contradiction. Let Q
be a Hamiltonian directed path in T2 −{a, b, u1}, then v v1 b a u1Qv2 ≡ P . For
(xi−1, xi) ∈ E(P ) or i = 1, if T2−u1 ⊇ Q ≡ xi+3...xn, then v1...vi−1 v u1 vi Q ≡
P . Otherwise, T2 − u1 ∈ T3,5,7 and xi+3...xn is antidirected. If b2 = 3, let a ∈
T2 − u1, then T2 −{a, u1} ⊇ Q1 such that v1...vi−1 v a u1 vi Q1 ≡ P . Otherwise,

b2 = 2. If |T1| < |T2|, then, by considering P̃ or P̃ , we recover one of the previous
cases. If |T1| = |T2|, then the problem is solved unless T1 is isomorphic to T2
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and x1...xi ≡ xn...xn−i+1. Then ∃ a ∈ T1 such that d+T1
(a) = 0, T1 − a ∈ T3,5,7

and N−(a)∩T2 = {u1}. Let bcd be a directed path in T1−a and let b′ ∈ T2−u1.
(T1−{a, b, c, d})+v ⊇ Q′ and T2−{b′, u1} ⊇ Q′′ such that Q′ u1 b c d b

′ aQ′′ ≡ P .
From now on, we may suppose that any copy y1...yi of x1...xi in T1 satisfies the
condition that N+(yi) ∩ T2 = φ. Thus, by simple lemma, we can deduce that
xi...x1 is directed or is of type P+(1, 2) with T1−yi is a cyclic triangle. For i = 1,
if xi+2..xn is not directed, then choose a ∈ T2 such that (T2 − a) + v ⊇ Q with

a v1 Q ≡ P . Otherwise, by considering P̃ , the problem is solved since b1 ≥ 2. For
i ≥ 2, let a ∈ T2 ∩N−(vi−1), then (T2 − a) + v ⊇ Q such that v1...vi−1 a viQ ≡
P unless xi+2...xn is directed or ∈ P+(1, 2) with T2 − a is a cyclic triangle.
If ∃ b ∈ (T2 − a) ∩ N+(a), then, if T2 − a = bcd and xi+2...xn = P+(1, 2),
v1...vi−1 a b d vi c v ≡ P or xi+2...xn is directed and v1...vi−1 a b vQ vi ≡ P ,
where Q is a Hamiltonian directed path in T2 −{a, b}. If (T2 − a)∩N+(a) = φ,
since d−T2

(vi−1) = 1, then d+T1
(vi−1) = 0 and i = 2. Thus, by considering

P̃ = y1...yn or P̃ = y1...yn, the problem is solved since P̃ or P̃ contains the arcs
(y1, y2) and (y2, y3).
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