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Introduction

A tournament T is an orientation of a complete graph. The set of vertices of T is denoted by V (T ) and the set of arcs by E(T ). v(T ) will denote the order of T , |V (T )|. Sometimes, we write |T | instead of v(T ). T is said to be an n-tournament if v(T ) = n. The out-neighbour (resp. in-neighbour) of a vertex v in T is denoted by N + T (v) (resp. N - T (v)) and its out-degree (resp. in-degree) is denoted by d + T (v) (resp. d - T (v)). We denote by δ + (T ) (resp. δ -(T )) the minimal out-degree (resp. indegree) and by ∆ + (T ) (resp. ∆ -(T )) the maximal out-degree (resp. in-degree). Note that δ -(T ) ≤ ∆ + (T ) (resp. δ + (T ) ≤ ∆ -(T )). A tournament T is said to be regular if d + (v) = d -(v) ∀ v ∈ V (T ). A cyclic triangle is a circuit of length 3. We denote by T + 4 a tournament composed of a circuit triangle together with a source. A Paley tournament on 7 vertices is a tournament T such that V (T ) = {v i , 1 ≤ i ≤ 7} and (v i , v j ) ∈ E(T ) if and only if j -i ≡ 1, 2 or 4(mod 7). We write T ′ ⊆ T whenever T ′ is a subtournament of T . Let S ⊆ V (T ), we denote by T [S] the subtournament of T induced by S. If T ′ ⊆ T and S ⊆ V (T ), we write

T ′ + S = T [V (T ′ ) ∪ S] and T ′ -S = T [V (T ′ ) -S]. Let v ∈ V (T ), d + S (v) = |N + T (v) ∩ S| and d - S (v) = |N - T (v) ∩ S|.
A subset {x 1 , ..., x r } in T will be denoted by [x 1 , x r ]. Let P = x 1 ...x s be an oriented path, set P = x s ...x 1 . P is called an s-path, x 1 and x s are its extremities, x 1 is the origin and x s is the end. The length of P, l(P ), is the number of its arcs. P is said to be directed if all of its arcs are oriented in the same direction. A block of P is a maximal (for ⊆) directed subpath of P . The path P is said to be of type P (b 1 , ..., b m ) and we write P = P (b 1 , ..., b m ), if P is composed of m successive blocks B 1 , ..., B m , such that l(B i ) = b i . Moreover, we write

P = P + (b 1 , ..., b m ), if (x 1 , x 2 ) ∈ E(P ). Else, we write P = P -(b 1 , ..., b m ). P is said to be antidirected if each block of P is of length 1. Note that if P = x 1 ...x s = P + (b 1 , ..., b m ) (resp. P -(b 1 , ..., b m )) and P ′ = x ′ 1 ...x ′ s = P + (b 1 , ..., b m ) (resp. P -(b 1 , ..., b m ))
, then P and P ′ are isomorphic. We write P ≡ P ′ . Furthermore, if we write x 1 ...x s ≡ x ′ 1 ...x ′ s , then the mapping:

f : V (P ) → V (P ′ ) is an isomorphism. x i → f (x i ) = x ′ i
A path P , in a tournament T , is said to be Hamiltonian if V (P ) = V (T ).

Let P = x 1 ...x s and Q = y 1 ...y r be 2 disjoint paths in T , P Q denotes the path x 1 ...x s y 1 ...y r . In a similar way, we may define the path P 1 P 2 ...P t from t pairewisely disjoint paths P 1 , ..., P t of T .

Let P = v 1 ...v i-1 v i v i+1 ...v n be an oriented path in a tournament T , then P -v i is the path v 1 ..v i-1 v i+1 ...v n in T .
A strong tournament is such that any two of its vertices can be joined by a directed path. It is known that any tournament T is a transitive union of strong subtournaments (called strong components)

I 1 , I 2 , ..., I t that is (v i , v j ) ∈ E(T ) ∀ i < j, v i ∈ I i and v j ∈ I j .
We write T = I 1 ...I t . A strong tournament is characterized by the following property due to Camion [START_REF] Camion | Chemins et Circuits Hamiltoniens des Graphs Complets[END_REF].

Theorem 1. T is strong if and only if T contains a Hamiltonian circuit.

As a consequence of the above theorem, if T = I 1 ...I t , then T contains a directed path ending at x with

V (P ) = V (I 1 ) ∪ ... ∪ V (I i ) for every x ∈ T i .
The complement of a digraph D, denoted by D, is the digraph obtained from D by reversing all its arcs.

In 1971, Grünbaum [START_REF] Grünbaum | Antidirected Hamiltonian Paths in Tournaments[END_REF] proved the following theorem:

Theorem 2. Any tournament contains any Hamiltonian antidirected path with exactly 3 exceptions: a cyclic triangle (T 3 ), a regular tournament on 5 vertices (T 5 ) and a Paley tournament on 7 vertices (T 7 ).

Set T 3,5,7 = {T 3 , T 5 , T 7 }. Note that if T ∈ T 3,5,7 contains a copy of a path P , then any vertex in T is an origin of a copy of P . Rosenfeld [START_REF] Rosenfeld | Antidirected Hamiltonian Paths in Tournaments[END_REF], in 1972, inspired by the work of Grünbaum, conjectured that there exists K ≥ 8 such that any tournament of order n ≥ K contains any Hamiltonian oriented path. The case of directed path being Rédei's theorem [START_REF] Rédei | Ein Kombinatorischer Satz[END_REF]. Alspach, Rosenfeld [START_REF] Alspach | Realization of certain generalized paths in tournaments[END_REF] and Straight [START_REF] Straight | The existence of certain type of semi-walks in tournaments[END_REF] proved Rosenfeld's conjecture on paths of 2 blocks. In 1973, Forcade [START_REF] Forcade | Parity of Paths and Circuits in Tournaments[END_REF] proved Rosenfeld's conjecture for any tournament of order 2 n . Thomason [START_REF] Thomason | Paths and Cycles in Tournaments[END_REF] was the first one to give a general answer. He proved, in 1986, that there exists n 0 < 2 128 such that for all n ≥ n 0 any tournament of order n contains any Hamiltonian oriented path. Havet and Thomassé settled the problem by proving that the three exceptions of Grünbaum are the only tournaments not satisfying Rosenfled's conjecture. Havet and Thomassé's proof consists of giving a refinement of a key idea introduced by Thomason saying that any set of b 1 + 1 vertices in an n-tournament contains an origin of any (n -1)-path whose first block is of length b 1 . They proved that if s + (x, y) ≥ b 1 + 1, then x or y is an origin of a copy of such path where s + (x, y) = |{z ∈ T such that z can be reached from x or y by a directed path}|. This new performance allowed them to remark that proving the existence of an (n -1)-oriented path in any n-tournament T is equivalent to the existence of any Hamiltonian path P in this tournament unless (T, P ) is one of the 69 exceptions that were verified one by one. In this paper, we give a simple proof of the result without treating all these exceptions.

The main result

In our proof, we are going to use the following theorem due to El-sahili and Ghazo-Hanna [START_REF] Sahili | About the Number of Oriented Hamiltonian Paths and Cycles in Tournaments[END_REF].

Theorem 3. A path lies in a tournament T if and only if it lies in T .

The following Lemmas will be useful in the sequel.

Lemma 1. Let T be a tournament then |{v ∈ T / T -v ∈ T 3,5,7 }| ≤ 2. Proof. Suppose that T contains 3 distinct vertices, v 1 , v 2 , v 3 such that T - v i ∈ T 3,5,7 , 1 ≤ i ≤ 3.
We may suppose without loss of generality that

(v 1 , v 2 ), (v 2 , v 3 ) ∈ E(T ). Since T -v 1 ∈ T 3,5,7 and T -v 3 ∈ T 3,5,7 , then N - T -v3 (v 1 ) = N - T -v1 (v 3 ) and N + T -v1 (v 3 ) = N + T -v3 (v 1 ), but v 2 ∈ N + T -v3 (v 1 ) and v 2 / ∈ N + T -v1 (v 3 )
, which is a contradiction. We may deduce from this Lemma more precise conclusions. Indeed, if

T ∈ T 3,5,7 , then ∀ x ∈ T , ∃ y ∈ N + (x) such that T -{x, y} / ∈ T 3,5,7 .
Lemma 2. (Simple Lemma) Let n ≥ 4. Suppose that any s-tournament (s < n) contains any s-path unless if the tournament is in T 3,5,7 and the path is antidirected. Let T be an n-tournament with a vertex v such that d -(v) = 0 and let P = x 1 ...x n be a non directed path. Unless P = P + (1, 2) and T -v is a cyclic triangle, we have:

1. T contains a copy of P with origin x = v.

Any of the vertices of

T -v is an origin of a copy of P if T -v ∈ T 3,5,7 .
Proof.

1. Let j ∈ [2, n] be the minimal integer such that d - P (x j ) = 0. If j = n, then T -v contains a path P ′ such that P ′ v ≡ P since otherwise P -x j is antidirected and so P = P + (1, 2) and T = T + 4 which is a contradiction. Otherwise, 1 < j < n. In this case, P -x j + (x j-1 , x j+1 ) or P -x j + (x j+1 , x j-1 ) is not antidirected. Suppose that

P ′ = P -x j + (x j-1 , x j+1 ) is not antidirected, then T -v contains a path v 1 v 2 ...v j-1 v j+1 ...v n ≡ P ′ and so v 1 ...v j-1 v v j+1 ...v n ≡ P and v 1 = v. 2. If T -v ∈ T 3,5,7
, then we may suppose that a copy of P ′ may be found in T -v starting at any one of the vertices of T -v.

By analogy, the above lemma is valid if d + (v) = 0 with the only exception where

P = P -(1, 2)
and T -v is a cyclic triangle. Using the same reasoning, we may deduce that if P contains a vertex x j with 1 < j < n such that d - P (x j ) = 0, then T contains a copy of P such that v is not an extremity of P . We are going now to present the proof of the main result. Proof. Let T be an n-tournament and let P = x 1 ..x n be an n-path. If n ≤ 4, then any n-path is either directed, antidirected or of two blocks. By theorem 3, the problem will be solved if we prove the existence of P in T, where P∈ {P, P } and T∈ {T, T }. We may suppose, without loss of generality, that ∆ + (T ) ≥ ∆ + (T ). We argue by induction on |T | ≥ 5. The case δ -(T ) = 0 can be deduced from simple lemma and Rédei's theorem. Set δ -(T ) = i ≥ 1 and suppose, without loss of generality, that (x i , x i+1 ) ∈ E(P ), since otherwise, we use P . Then x i ...x n is of type

P + (b 1 , b 2 , ..., b r ) for some b 1 , ..., b r ≥ 1. Let v ∈ T such that d -(v) = δ -(T ), T 1 = T [N -(v)] and T 2 = T [N + (v)
]. We will treat the two cases according to the existence of a copy of x 1 ...

x i in T 1 . Case 1. T 1 ⊇ v 1 ...v i ≡ x 1 ...x i . In this case, x 1 ...x i is antidirected and T 1 ∈ T 3,5,7 . If b 1 ≥ 3, let a ∈ T 2 such that T 2 -a ⊇ v i+3 ...v n ≡ x i+3 ...x n . Then T 1 + a ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 such that v i+1 = a. So v 1 ...v i+1 v v i+3 ...v n ≡ P . In the case b 1 ≤ 2, for (x i , x i-1 ) ∈ E(P), suppose that b 1 = 1, we discuss if T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n or not.
In the first case, suppose that there exists

x ∈ T 1 such that (v i+2 , x) ∈ E(T ). By simple lemma, T 1 + v ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 with v i+1 = x, so v 1 ...v n ≡ P . If (x, v i+2 ) ∈ E(T ) ∀ x ∈ T 1 , let t be the minimal integer (t ≥ i + 2) such that d - P (x t ) = 0. If there exists y ∈ T 1 such that T 2 + y ⊇ w i+1 ...w n ≡ x i+1 ...x n with w i+1 = v i+2 , then (T 1 -y)+ v ⊇ v 1 ...v i ≡ x 1 ...x i and so v 1 ...v i w i+1 ...w n ≡ P . Otherwise, N -(x)∩ [v i+2 , v t ] = φ and (v t+1 , x) ∈ E(T ) ∀ x ∈ T 1 . In this case, let y ∈ T 1 . Q = (v t+1 y v t v t-1 ...v i+2 -v t )-v i+2 is a directed path. If t ≥ i+3, then l(Q) = b 2 -1. T 2 [v t+2 , v n ] + {v t ,
v} ⊇ w t ...w n ≡ x t ...x n with w t = v or, by simple lemma, w t = v t . In the other hand, by simple lemma,

T 1 +v i+2 ⊇ v 1 ...v i v i+1 ≡ x 1 ...x i+1 with v i+1 = y and v i = v i+2 , so v 1 ...v i Q w t ...w n ≡ P . If t = i+2, let x ∈ T 1 , T 1 - x ⊇ v 2 ...v i ≡ x 2 ...x i . If (v t+1 , v t+2 ) ∈ E(T ), v t+1 v 2 ...v i v t x v v t+2 ...v n ≡ P . If (v t+2 , v t+1 ) ∈ E(T ) and there exists y ∈ T 1 such that (v t+2 , y) ∈ E(T ), consider (a, b) ∈ E(T 1 -y), (T 1 -{a, b, y}) + v ⊇ v 1 ...v i-2 ≡ x 1 ...x i-2 and so v 1 ...v i-2 v t a b v t+1 y v t+2 ..v n ≡ P . Else, let z ∈ T 1 . (T 1 -z) + v t+1 ⊇ v 1 ...v i ≡ x 1 ...x i with v i = v t+1 and (T [v t+2 , v n ]) + v ⊇ w t+1 ...w n ≡ x t+1 ...x n with w t+1 = v t+2 then v 1 ...v i v t z w t+1 ...w n ≡ P . In the other case, T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n , so T 2 ∈ T 3,5,7 and x i+2 ...x n is antidirected. If b 2 = 1, then P is antidirected treated in Theorem 2. Otherwise, b 2 = 2. Let a ∈ T 2 , then T 1 + a ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 such that v i+1 = a. Since v i+1 ∈ T 1 ∈ T 3,5,7 , then d - T2 (v i+1 ) ≥ 2, there exists b ∈ T 2 -a such that (b, v i+1 ) ∈ E(T ). If T 2 -{a, b} ⊇ Q ≡ x i+4 ...x n , then v 1 ...v i+1 b v Q ≡ P . Otherwise, there exists c ∈ T 2 -{a, b} such that (c, b) ∈ E(T ), then, by simple lemma, (T 2 -{a, b}) + v ⊇ Q ≡ x i+3 ...x n starting by c, then v 1 ...v i+1 b Q ≡ P . For b 1 = 2, here also we study if T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n or not. In the first case, let x ∈ N -(v i+2 ) ∩ T 1 , if any, by simple lemma, T 1 + v ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 with v i+1 = x and so v 1 ...v n ≡ x 1 ...x n . If N -(v i+2 ) ∩ T 1 = φ, v can be inserted inside v i+3 ...v n to obtain a path Q ≡ x i+2 ...x n starting at v i+3 in (T 2 -v i+2 ) + v. Similarly, by simple lemma, if N -(v i+3 ) ∩ T 1 = φ,
we may find a copy of P in T , so, we may suppose in the sequel that d -

T1 (v i+2 ) = d - T1 (v i+3 ) = 0.
As above, let t ≥ i + 3 be the minimal integer such that d

- P (x t ) = 0. If t = i + 3, since T 1 ∈ T 3,5,7 , then d + T2 (x) ≥ 1 ∀ x ∈ T 1 , since otherwise, ∆ + (T ) > ∆ + (T ). If there exists x ∈ T 1 and a ∈ T 2 such that (x, a) ∈ E(T ) and d - T2-vi+2 (a) ≥ 1, let b ∈ N - T2-vi+2 (a). By simple lemma, T 1 + v i+2 ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 with v i+1 = x. (T 2 -{a, v i+2 })+v ⊇ v i+3 ...v n ≡ x i+3 ...x n with v i+3 = v or, by simple lemma, v i+3 = b, so v 1 ...v i+1 a v i+3 ...v n ≡ P . Otherwise, if (v i+2 , a) ∈ E(T ), then the problem is solved by considering v 1 ...v i+1 ≡ x 1 ...x i+1 in T 1 + v i+3 . Otherwise, there exists a ∈ T 2 such that ∀ x ∈ T 1 , ∀ y ∈ T 2 -a, we have (x, a), (y, x), (a, y) ∈ E(T ). Let y ∈ T 2 -a such that T 2 -{a, y} / ∈ T 3,5,7 . T 1 + y ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 with v i+1 = y and T 2 -{a, y} ⊇ v i+4 ...v n ≡ x i+4 ...x n then v 1 ...v i+1 a v v i+4 ...v n ≡ P . If t > i + 3, let x ∈ T 1 , T 1 -x ⊇ v 2 ...v i ≡ x 2 ...x i . If (T 2 -v i+2 ) + {v, x, v i } ⊇ w i ...w n ≡ x i ...x n with w i ∈ {v i+3 , v i }, then v i+2 v 2 ...v i-1 w i ...w n ≡ P . Otherwise, ∀ x ∈ T 1 N -(x) ∩ [v i+4 , v t ] = φ and (v t+1 , x) ∈ E(T ). Let x, y ∈ T 1 such that (x, y) ∈ E(T ) and T 1 -{x, y} ⊇ v 2 ...v i-1 ≡ x 2 ...x i-1 . As above, (T 2 -{v i+2 , v i+3 }) + {y, v} ⊇ w i+2 ...w n ≡ x i+2 ...x n with w i+2 ∈ {y, v i+4 }, so v i+2 v 2 ...v i-1 v i+3 x w i+2 ...w n ≡ P . If T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n then, x i+2 ...x n is antidirected and T 2 ∈ T 3,5,7 . If |T 2 | > |T 1 |, the problem is solved by considering P (b 1 = 1). Otherwise, |T 1 | = |T 2 |. Let x ∈ T 1 . T 2 + x ⊇ v i+1 ...v n ≡ x i+1 ...x n such that v i+1 = x. If there exists y ∈ T 1 -x such that (y, v i+1 ) ∈ E(T ), then (T 1 + v) -x ⊇ w 1 ..w i ≡ x 1 .
..x i with w i = y and so w 1 ...w i v i+1 ..v n ≡ P , unless T 1 -{x, y} ∈ T 3,5,7 , then there exists z ∈ T 1 -{x, y} such that (y, z) ∈ E(T ). By simple lemma, (T 1 -{x, y}) + v ⊇ w 1 ...w i-1 with w i-1 = z, and so w 1 ...w i-1 y v i+1 ...v n ≡ P . Otherwise T 1 and

T 2 are cyclic triangles. The problem is solved unless if for u ∈ T, T [N + (u)], T [N -(u)] ∈ T 3 . So, if u ∈ T 1 , then d + T2 (u) = 1. Else, d + T1 (u) = 2. Set V (T 1 ) = {x, y, z}, then T 2 + x ⊇ v 4 .
..v 7 ≡ x 4 ...x 7 . Since x 4 ...x 7 is antidirected, then v 5 = x. Suppose, without loss of generality that, (y, v 4 ) ∈ E(T ), then z v y v 4 ...v 7 ≡ P .

If (x i-1 , x i ) ∈ E(P), let x ∈ T 1 . T 1 -x ⊇ Q 1 ≡ x 1 ...x i-1 . If T 2 +x ⊇ v i+1 ...v n ≡ x i+1 ...x n and v i+1 = x, Q 1 v v i+1 ...v n ≡ P . If v i+1 = x, then, by simple lemma, T 1 + v ⊇ v 1 ...v i+1 ≡ x 1 ...x i+1 such that v i+1 = x. Then v 1 ...v n ≡ P . If T 2 +
x contains no copy of x i+1 ...x n , then this path is antdirected, so we consider P = y 1 ...y n to remark that P or P contains the arcs (y i , y i-1 ) and (y i , y i+1 ), we recover a previous case.

Case 2. T 1 ⊇ v 1 ...v i ≡ x 1 ...x i . If b 1 ≥ 2, then either T 2 ⊇ v i+2 ...v n ≡ x i+2 ...x n or not. In the first case, v 1 ...v i v v i+2 ...v n ≡ P and in the last case, T 2 ∈ T 3,5,7 and x i+2 ...x n is an- tidirected. If ∃ x ∈ T 2 such that (v i , x) ∈ E(T ), then, by simple lemma, T 2 + v ⊇ v i+1 ...v n ≡ x i+1 ...x n with v i+1 = x. Thus v 1 ...v i v i+1 ...v n ≡ P . Oth- erwise, (x, v i ) ∈ E(T ) ∀ x ∈ T 2 , we have (v i , v j ) ∈ E(T ) whenever j < i, since otherwise ∆ + (T ) ≥ d + T (v i ) = d - T (v i ) > |T 2 | = d + (v) = ∆ + (T ), a contradiction. By simple lemma, T 2 + v i contains a path v i+1 ...v n ≡ x i+1 ...x n with v i+1 ∈ T 2 . If i = 1, then v v i+1 ...v n ≡ P . Otherwise, let j < i be the maximal integer such that d + P (x j ) = 0, then v 1 ...v j-1 v v j ...v i-1 ≡ x 1 ...x i . Since (v i , v i-1 ) ∈ E(T ), then ∃ x ∈ T 2 such that (v i-1 , x) ∈ E(T )
. By simple lemma, we suppose that v i+1 = x and so v 1 ...v j-1 v v j ...v i-1 v i+1 ...v n ≡ P . Now, we will study the case b 1 = 1. Suppose that N + (v i ) ∩ T 2 = φ. Let I 1 , I 2 , ...I t be the strong connected components of T 2 such that T 2 = I 1 ...I t and let l = max{j, N + (v i ) ∩ I j = φ}, I = I 1 I 2 ...I l and s = |I|. We discuss according to the value of s:

For the case s > b 2 , let Q = u 1 ...u b2+1 be a directed path in I such that u b2+1 ∈ N + (v i ) and let j = i + b 2 + 2. So either T 2 -[u 2 , u b2+1 ] contains a path v j ...v n ≡ x j ...x n , and in this case v 1 ...v i u b2+1 ...u 2 v v j ...v n ≡ P , or T 2 -[u 2 , u b2+1 ] ∈ T 3,5,7 and x j ...x n is antidirected. By simple lemma, (T 2 - [u 2 , u b2+1 ]) + v contains a path v j-1 ...v n ≡ x j-1 ...x n with v j-1 = u 1 . In this case, v 1 ...v i u b2+1 ... u 2 v j-1 ...v n ≡ P . Now we will study the case s = b 2 . Let Q = u 1 ...u b2 be a directed path in I such that u b2 ∈ N + (v i ) and let j = i + b 2 + 2. If T 2 -I / ∈ T 3,5,7 or x j ...x n is not antidirected, then v 1 ...v i u b2 ...u 1 v v j ...v n ≡ P where T 2 -I ⊇ v j ...v n ≡ x j ...x n .
Otherwise, we will continue the proof depending on the orientation of x i x i-1 and on the value of i. 

If (x i-1 , x i ) ∈ E(P ) or i = 1, let a ∈ T 2 -I. By simple lemma, (T 2 -(I ∪ a)) + v i contains a path v j ...v n ≡ x j ...x n with v j = v i , then v 1 ...v i-1 v a u b2 ...u 1 v j ...v n ≡ P . Otherwise, (x i , x i-1 ) ∈ E(P ) and i ≥ 2. If N + (v i-1 ) ∩ (T 2 -I) = φ, let a ∈ N + (v i-1 ) ∩ (T 2 -I). As above ∃ r < i such that v 1 ...v r-1 v v r ...v i-1 ≡ x 1 ...x i and by simple lemma (T 2 -(I ∪ a)) + v i ⊇ v j ...v n ≡ x j ...x n with v j = v i , so v 1 ...v r-1 v v r ...v i-1 a u b2 ... u 1 v j ...v n ≡ P . Otherwise, let abc be a cyclic triangle in T 2 -I. Then, if b 2 ≥ 2, v 1 ...v i-1 a v i b u b2 ...u 3 v v j ...v n ≡ P with v j ...v n ⊆ (T 2 -(I ∪ {a, b})) + {u 1 , u 2 } such that v j ...v n ≡ x j ...x n . If b 2 = b 3 = 1, v 1 ...v i-1 a v i b c v v j+2 ...v n ≡ P where v j+2 ...v n ⊆ T 2 -{a, b, c}. If b 2 = 1, b 3 = 2 and T 2 -I ∈ {T 5 , T 7 }, choose d ∈ T 2 -{u 1 , a, b, c} such that T 2 -{u 1 ,
v 1 v 2 v 3 v v 4 v 5 v 6 v 7 v 5 v 4 v v 7 v 6 v 3 v 1 v 2 ≡ P . v 1 v 3 v 2 v v 4 v 5 v 6 v 7 v 7 v 6 v 5 v 2 v 3 v v 4 v 1 ≡ P . If |T 1 | = 4
, the problem is solved unless T 1 = T 2 and x 1 ...x 4 ≡ x 9 ...x 6 .

In this case, we have: From now on, we may suppose that any copy y 1 ...y i of x 1 ...x i in T 1 satisfies the condition that N + (y i ) ∩ T 2 = φ. Thus, by simple lemma, we can deduce that x i ...x 1 is directed or is of type P + (1, 2) with T 1 -y i is a cyclic triangle. For i = 1, if x i+2 ..x n is not directed, then choose a ∈ T 2 such that (T 2 -a) + v ⊇ Q with a v 1 Q ≡ P . Otherwise, by considering P , the problem is solved since b 1 ≥ 2. For i ≥ 2, let a ∈ T 2 ∩ N -(v i-1 ), then (T 2 -a) + v ⊇ Q such that v 1 ...v i-1 a v i Q ≡ P unless x i+2 ...x n is directed or ∈ P + (1, 2) with T 2 -a is a cyclic triangle. (v i-1 ) = 0 and i = 2. Thus, by considering P = y 1 ...y n or P = y 1 ...y n , the problem is solved since P or P contains the arcs (y 1 , y 2 ) and (y 2 , y 3 ).

v 2 v 3 v 4 v 1 v v 5 v 6 v 7 v 8 v 3 v v 2 v 1 v 4 v 6 v 7 v 8 v 5 ≡ P . Finally, s ≤ b 2 -1. Let u 1 ...u s be a directed path in T 2 such that (v i , u s ) ∈ E(T ). If s ≥ 2, then b 2 ≥ 3. Let Q be a directed path of length b 2 -s -1 in T 2 -[u 1 , u s ] such that (T 2 -Q) -[u 1 , u s ] ⊇ Q 1 ≡ x i+b2+2 ...x n , and let Q 2 be a Hamiltonian directed path in T [{u 1 , ..., u s-2 , u s }]. If (x i-1 , x i ) ∈ E(P ) or |T 1 | = 1 then v 1 ...v i-1 vu s v i Qu s-1 ...u 1 Q 1 ≡ P . Otherwise, (x i , x i-1 ) ∈ E(P ), then (T 1 -v i ) + v ⊇ v ′ 1 ...v ′ i ≡ x 1 ...x i such that v ′ i = v i-1 . We will insert Q, v, v i , u s into v 1 ...v i-1 u s-1 ...u 1 Q 1 to obtain a copy of P according to the arcs between v i-1 , v i , u s-1 and u s . (v i-1 , u s ) ∈ E(T ) ⇒ v ′ 1 ...v ′ i u s v i Q u s-1 ...u 1 Q 1 ≡ P . (u s , v i-1 ), (u s-1 , v i ) ∈ E(T ) ⇒ v 1 ...v i-1 u s Q v v i u s-1 ...u 1 Q 1 ≡ P . (u s , v i-1 ), (v i , u s-1 ),(u s-1 , v i-1 ) ∈ E(T ) ⇒ v 1 ...v i-1 u s-1 u s v i Q u s-2 ...u 1 v Q 1 ≡ P . The only remainder case is (u s , v i-1 ), (v i , u s-1 ), (v i-1 , u s-1 ) ∈ E(T ). In this case, v ′ 1 ...v ′ i u s-1 v i Q Q 2 Q 1 ≡ P . Now, we will treat the case s = 1 and b 2 ≥ 2. If (x i , x i-1 ) ∈ E(P ), then |T 2 | ≥ 3. If ∃ a ∈ (T 2 -u 1 ) ∩ N -(v i-1 )and b 2 = ∆ + (T ), let Q be a Hamiltonian directed path in T 2 -{u 1 , a}, then v 1 ...v i-1 a v i Q u 1 v ≡ P . if b 2 < ∆ + (T ), let Q 1 be a directed path of length b 2 -2 in T 2 -{a, u 1 } then T 2 -(V (Q 1 ) ∪ {a}) ⊇ Q 2 such that v 1 ...v i-1 a v i Q 1 v Q 2 ≡ P . If (T 2 -u 1 ) ∩ N -(v i-1 ) = φ, then (T 1 -v i-1 ) ⊆ N -(v i-1 ) ∩ N -(u 1 ) and (u 1 , v i-1 ) ∈ E(T ). Since b 2 ≥ 2, then x i+2 ...x n is neither of type P + (1, 2) nor directed starting from x i+2 . By simple lemma, (T 2 -u 1 ) + v ⊇ v i+2 ...v n ≡ x i+2 ...x n such that v i+2 = v. For |T 1 | > 2, if ∃ j < i -1 such that (v j , v i ) ∈ E(T ), then since (T 1 -{v i-1 , v i , v j }) + u 1 ⊇ Q ≡ x 1 ...x i-2 , so Q v i-1 v j v i v i+2 ...v n ≡ P . If (v i , v j ) ∈ E(T ) whenever j < i, then T 1 -{v 1 , v i-1 } ⊇ Q 1 ≡ x 1 ...x i-2 and Q 1 v i-1 v 1 ≡ x 1 ...x i . Then the problem is solved since (v i , v 1 ) ∈ E(T ). For |T 1 | = 2, if ∃ a ∈ T 2 -u 1 such that (T 2 -a) ⊇ v i+3 ...v n ≡ x i+3 ...x n with v i+3 = u 1 , then a v 1 v v 2 v i+3 v n ≡ P . Otherwise, by simple lemma, x 5 ...x n is a directed path. Let a, b ∈ T 2 -u 1 such that (a, b) ∈ E(T ). |T 2 | > 3, since otherwise, N + T (b) = {v 2 } then d + T ( 

Theorem 4 .

 4 Any n-tournament contains any n-path unless the three exceptions of Grünbaum.

  a, b, c, d} / ∈ T 3,5,7 (d exists by Lemma 1), then v 1 ...v i-1 d v i a b c v v j+3 ...v n ≡ P where v j+3 ...v n ⊆ T 2 -{a, b, c, d}. For the remaining cases, T 2 = T + 4 . The possible situations are the following. If |T 1 | = 2, then a copy of P is found by considering P . If |T 1 | = 3, we have the following two cases:

  b) = 1 and so ∆ + (T ) > ∆ + (T ), a contradiction. Let Q be a Hamiltonian directed path inT 2 -{a, b, u 1 }, then v v 1 b a u 1 Q v 2 ≡ P . For (x i-1 , x i ) ∈ E(P ) or i = 1, if T 2 -u 1 ⊇ Q ≡ x i+3 ...x n , then v 1 ...v i-1 v u 1 v i Q ≡ P . Otherwise, T 2 -u 1 ∈ T 3,5,7 and x i+3 ...x n is antidirected. If b 2 = 3, let a ∈ T 2 -u 1 , then T 2 -{a, u 1 } ⊇ Q 1 such that v 1 ...v i-1 v a u 1 v i Q 1 ≡ P . Otherwise, b 2 = 2. If |T 1 | < |T 2 |,then, by considering P or P , we recover one of the previous cases. If |T 1 | = |T 2 |, then the problem is solved unless T 1 is isomorphic to T 2 and x 1 ...x i ≡ x n ...x n-i+1 . Then ∃ a ∈ T 1 such that d + T1 (a) = 0, T 1 -a ∈ T 3,5,7 and N -(a)∩T 2 = {u 1 }. Let bcd be a directed path in T 1 -a and let b ′ ∈ T 2 -u 1 . (T 1 -{a, b, c, d})+v ⊇ Q ′ and T 2 -{b ′ , u 1 } ⊇ Q ′′ such that Q ′ u 1 b c d b ′ a Q ′′ ≡ P .

  If ∃ b ∈ (T 2 -a) ∩ N + (a), then, if T 2 -a = bcd and x i+2 ...x n = P + (1, 2), v 1 ...v i-1 a b d v i c v ≡ P or x i+2 ...x n is directed and v 1 ...v i-1 a b v Q v i ≡ P , where Q is a Hamiltonian directed path in T 2 -{a, b}. If (T 2 -a) ∩ N + (a) = φ, since d - T2 (v i-1 ) = 1, then d + T1
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